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Abstract. We give answers to three questions posed by Sorensen [Sor20].

These concern the relationship between a modulo p Iwasawa algebra of a tor-
sionfree pro-p group and A∞-algebra structures on its Yoneda algebra.
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1. Introduction

Let p be a prime number. The subject of this paper is the modulo p repre-
sentation theory of p-adic Lie groups G. This is of natural interest relative to
the proposed p-adic local Langlands correspondence. For an introduction to this
connection, see [Har16].

In light of the fact that p divides the pro-order of any positive-dimensional p-
adic Lie group, the usual functor F between modulo p smooth representations of
G and modules for the Hecke algebra is not exact and loses information. This
situation is similar to the failure of Maschke’s theorem for representations of a
finite group over a field whose characteristic is not relatively prime to the order
of the group. The presence of non-semi-simple objects obstructs F from being an
equivalence. Schneider has proposed a derived Hecke algebra whose appropriate
module categories should not lose information, and has completely described the
Hecke algebra in the case G = Zp [Sch15].

Recently, Sorensen [Sor20] produced a generalization of Schneider’s description of
the derived Hecke algebra to G that are merely required to be pro-p, hence compact,
and torsionfree. This crucially relies on the notion of an A∞-algebra structure on
the derived Hecke algebra, along with a category of A∞-modules. He also asked
some questions regarding whether his results could be made more precise, proving
stronger characterizations of G and its category of smooth modulo p representations
in terms of the derived Hecke algebra. We remark that Sorensen’s description is
completely explicit only in the case that G is abelian (cf. his remark in [Sor20, §1,
pg. 155]), and that this limitation is part of what what his questions address.
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The point of this paper is to record positive answers to these questions. A
secondary goal is to illustrate that the author’s recent work [WE18, Part 2] furnishes
an efficient framework to apply the the role of A∞-algebras in non-commutative
deformation theory in order to answer the questions. We recall results from [WE18]
in §2, followed by the application toward positive answers in §3. In preparation to
state these answers, the rest of this introduction is occupied with introducing the
results and questions of Sorensen [Sor20].

As Sorensen mentions [Sor20, §12], these positive answers had been confirmed to
him by experts. Work of Positselski, which provides another approach to positive
answers, are discussed at the end of this introduction (§1.5).

1.1. The setting of [Sor20]. We recall the setting of Sorensen’s paper [Sor20]. We
will use some common notions about p-adic Lie groups without giving definitions
here, referring the reader to [Sor20], where they are clearly explained. Schneider’s
book [Sch11] is a thorough exposition of this background material.

Let G be a p-adic Lie group that is torsionfree and pro-p. Let k be a finite field
of characteristic p. Let Ω = k[[G]] be the completed group algebra, the Iwasawa
algebra of G, which is a local associative k-algebra equipped with its standard
profinite topology. Let D(Ω) denote the derived category of the category Mod(Ω)
of pseudocompact left Ω-modules, which, as Sorensen explains [Sor20, §3], is anti-
equivalent to the category of smooth k-linear representations of G. Let Ω! denote
the opposite algebra of the Yoneda algebra of Ω, recalling that the Yoneda algebra
in the category Mod(Ω),

Ext•Ω(k, k) :=
⊕
i∈Z≥0

ExtiΩ(k, k),

is a canonical Z-graded k-algebra under the cup product. We call Ω! the Koszul dual
k-algebra of Ω; it plays the role of the derived Hecke algebra, for reasons explained
in [Sor20, §1].

For concreteness, and in order to recall Sorensen’s results, we set up a narrower
class of groups G where the structure of Ω! is well-understood (see especially [Sor20,
§§7-8] and [Sch11] for reference). When G is equipped with a valuation, there arises
a graded k-Lie algebra of G that we denote by g (see e.g. [Sch11, §§23-25]). When
there is a basis for G whose elements have the same valuation t ∈ R>1/(p−1), G is
called equi-p-valued and g is concentrated in degree t; in particular, g is abelian.
Sorensen especially focuses on the case where G is a uniform pro-p group, which
implies that G is equi-p-valued and that the valuation can be chosen so that g is
concentrated in degree 1.

Combining a theorem of Lazard [Laz65] in the equi-p-valued case with conse-
quences of the straightforward nature of g in the uniform case, one has a canonical
Z-graded k-algebra isomorphism of [Sor20, Cor. 8.3],

(1.1.1) Ω! ∼−→
∧
k

g∗ :=
⊕
i∈Z≥0

∧ik(g∗),

where (−)∗ denotes k-linear duality. A particular consequence of (1.1.1) is that

dimk ExtiΩ(k, k) =
(

dimk g
i

)
for integers i, 0 ≤ i ≤ dimk g.

This discussion makes it clear that the passage Ω 7→ Ω! loses information: there
are equal-dimensional uniform pro-p groups that are not isomorphic, and thus their



HIGHER PRODUCTS AND IWASAWA ALGEBRAS 3

Iwasawa algebras are not isomorphic. Yet the k-Lie algebras of uniform pro-p groups
are determined up to isomorphism by their dimension alone [Sor20, §7.1].

1.2. The results of [Sor20]. Sorensen proves that there exists an A∞-algebra
structure enriching the graded algebra Ω! that recovers the lost information, in
the following sense. We denote such a structure by m, and write (Ω!,m) for the
resulting A∞-algebra. For an introduction to A∞-algebras, see the references given
in §1.6, where the notion of “enrichment” is also discussed.

We emphasize that m is unique up to non-unique isomorphism, which is typical
for A∞-algebra structures. That is, whilst m is not canonical, the isomorphism
class of (Ω!,m) is canonical. In particular, m is called trivial when it carries no
more information than Ω!; triviality of (Ω!,m) is well-defined up to isomorphism.

There is a derived category of strictly unital left A∞-modules of (Ω!,m), denoted
D∞(Ω!,m). The main result of [Sor20] is that there is an equivalence of triangulated
categories

([Sor20, Thm. 1.1]) D(Ω)
∼−→ D∞(Ω!,m).

And when G is a uniform pro-p group, this can be rephrased as

([Sor20, Thm. 1.2]) D(Ω)
∼−→ D∞(

∧
g∗,m).

1.3. The questions. Sorensen asks whether and how the relationship between Ω
and the isomorphism class of (Ω!,m) can be made more precise [Sor20, §12]. We
quote his questions verbatim; the only changes arise from

• writing G′ ⊂ G as a subgroup instead of H ⊂ G, and from
• following this paper’s convention of writing (Ω!,m) for an A∞-algebra structure

on Ω! that extends its inherent graded algebra structure, leaving Ω! to denote
the underlying dg-algebra (with trivial differential).

Here are the questions.

(a) By [Sor20, Thm. 1.1], one can recover Ω = k[[G]] up to derived equivalence
from the A∞-algebra (Ω! = Ext•Ω(k, k)op,m). Does (Ω!,m) determine Ω up to
isomorphism?

(b) Is there a converse to [Sor20, Thm. 1.2] in the sense that G must be abelian if
the A∞-structure on

∧
g∗ is trivial?

(c) Suppose G′ ⊂ G is an open subgroup. Then Ω(G) is finite free over the sub-
algebra Ω(G′) and we have the restriction map Mod(Ω(G)) → Mod(Ω(G′))
which induces a map D(Ω(G)) → D(Ω(G′)). Is there a morphism of A∞-
algebras (

∧
g∗,m) → (

∧
g′∗,m′) inducing the corresponding map on D∞ via

“extension of scalars” along this map?

1.4. The answers. We answer these questions affirmatively in §3. We show that
question (a) has an affirmative answer in a particularly strong way – there exists a
presentation for Ω in terms of A∞-structures related to (Ω!,m) – which is then used
to answer (b) and (c). We review background from [WE18] in §2, which culminates
in a presentation of Ω in terms of an A∞-algebra structure m′ enriching the graded
algebra structure on Ω! (Theorem 2.5.1). In order to apply this presentation, the
key technical requirement, satisfied in Corollary 3.1.5, is an explicit isomorphism
of A∞-algebras between (Ω!,m) and (Ω!,m′). Both m and m′ arise quite naturally
from a single set of choices, but they are quite different and are reconciled using a
result of Segal [Seg08] recorded as Proposition 3.1.4.
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1.5. Related works. As discussed in [WE18, §4.5], the fact that a choice of A∞-
algebra structure m on Ω! determines a presentation for Ω was proved by Segal
[Seg08, Thm. 2.14] in an analogous situation when k has characteristic zero. (This
was also proved in the case of a graded algebra in place of Ω in [LPWZ09].) The
extension to general characteristic is given in [WE18, Part 2]. In addition, the
amplification of [Seg08] given in [WE18, Cor. 6.2.6] especially clarifies the given
answer to question (c).

L. Positselski has previously answered these questions positively, in the sense
that positive answers follow from the isomorphism (1.1.1) and rather immediate
consequences of his work. Namely, Positselski has studied equivalences of module
categories that accompany bar-cobar equivalences of categories of dg-algebras and
A∞-algebras, from which positive answers can be derived.

• A positive answer to question (a) follows from [Pos11, §6.10, part (b) of The-
orem, pg. 76]. It is also recorded as [Pos17, Thm. 3.3].

• A positive answer to question (b) may be found in [Pos17, end of Ex. 6.3, pg.
225].

• A positive answer to question (c) follows from [Pos11, §6.9, part (a) of Propo-
sition, pg. 74].

1.6. Conventions and definitions. We work with complexes, graded algebras,
dg-algebras, and A∞-algebras over a finite field k of positive characteristic p. All
gradings in the remainder of this paper are indexed by Z, and the differentials have
graded degree +1.

Remark 1.6.1. The assumption that p is odd is used in [Sor20, §2] in order to relate
the Yoneda algebra Ω! to the k-Lie algebra g via the isomorphism (1.1.1). We will
not require this since we will simply work directly with the Yoneda algebra Ω!.
This approach comes along with the minor caveat that when p = 2, we are actually
answering versions of questions (b) and (c) with

∧
g∗ replaced by Ω!. The main

theorems of this paper, in §3, are phrased accordingly.

We let T̂kV denote the free completed tensor algebra on a graded k-vector space
V . We let V ∗ denote the graded degree-wise k-linear dual of V , that is, (V ∗)n =
(V −n)∗. This dual operation extends to complexes.

We use Σ to denote suspension of a (differential) graded k-vector space. This is
mainly used to move elements of graded vector spaces from degree 1 to degree 0, so
that we can consider algebras involving them as (classical) k-algebras (as opposed
to graded k-algebras). The symbol ΣV ∗ should be read as (ΣV )∗, first suspending
and then applying the graded dual.

An A∞-algebra over k is an algebra in graded k-vector spaces over the A∞-
operad. In this article, we call these “A∞-algebras,” not mentioning k. See the
article of Keller [Kel01] for the full definition of the category of A∞-algebras, match-
ing the convention we use here. Here, we give summary definitions. In particular,
when B,B′ are graded k-vector spaces, we use (B,m), where m = (mn)n≥1, to
denote an A∞-algebra structure on B, i.e.

mn : B⊗n −→ B, for n ≥ 1, of graded degree 2− n
satisfying certain compatibility conditions. Likewise, f = (fn)n≥1 : (B,m) →
(B′,m′) denotes a morphism of A∞-algebras, where

fn : B⊗n −→ B′, for n ≥ 1, of graded degree 1− n.
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We also refer to terms describingA∞-algebras (minimal, formal) andA∞-morphisms
(quasi-isomorphism, etc.) that can be found in [Kel01]. We emphasize that an A∞-
algebra (B,m) is called minimal when m1 = 0.

We will treat dg-algebras (C, dC ,m2,C), where dC is the differential and m2,C

is the multiplication, as A∞-algebras. The A∞-structure is m = (mn)n≥1 where
m1 = dC , m2 = m2,C , and mn = 0 for n ≥ 3. In contrast, we say that an
A∞-algebra structure m enriches a dg-algebra (C, dC ,m2,C) when m1 = dC and
m2 = m2,C ; for enrichments m, there is no restriction on mn for n ≥ 3. We remark
that enrichments of graded algebras, considered to be a dg-algebra with a trivial
differential, are minimal by definition. For example, the A∞-algebra enrichments
of the Yoneda algebra Ω! discussed earlier in this introduction are minimal.

The works of Keller [Kel01, Kel02, Kel06] are useful introductions to A∞-algebras
in relation to representations of algebras, with respect to the perspective and con-
ventions of this paper.

1.7. Acknowledgements. The author would like to thank Claus Sorensen for his
interest in [WE18] and for stimulating correspondence on the topic of this paper.
The author also would like to thank Peter Schneider and Leonid Positselski for
helpful and clarifying correspondence about a previous version of this paper. The
author was supported by Engineering and Physical Sciences Research Council grant
EP/L025485/1.

2. Recalling a result from [WE18]

In this section, our goal is to state an application of [WE18, Cor. 6.2.6] to
the Iwasawa algebra Ω, which is recorded here as Theorem 2.5.1. We first recall
background that is presented at greater length in [WE18, §5].

2.1. Hochschild cohomology. Firstly we recall a continuous version of the stan-
dard Hochschild cochain complex

C•(Ω, k) :=
⊕
i∈Z≥0

Ci(Ω, k) :=
⊕
i∈Z≥0

Homk(Ω⊗i, k)

of Ω, where the (Ω,Ω)-bimodule structure on k is trivial and where Homk(Ω⊗i, k)
consists of those k-linear maps that are continuous under the topology induced
by the profinite topology carried by Ω. This is naturally a dg-algebra, where the
multiplication comes from the multiplication operation on k and the standard cup
product of Hochschild cochains. In what follows, we presume continuity of all
Hochschild cochains and pass over topological conditions in silence.

Likewise, denote the cohomology of the Hochschild cochain complex, which we
will call Hochschild cohomology, by

H•(Ω, k).

This is a graded k-algebra.
It is standard that H•(Ω, k) is canonically isomorphic, as a graded k-algebra,

to the Yoneda algebra Ext•Ω(k, k). We apply this isomorphism without further
comment in the sequel.
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2.2. Minimal models for dg-algebras. Let (C, dC ,m2,C) be a dg-k-algebra with
graded cohomology algebra H = (H•(C), 0,m2). It is a result of Kadeishvili
[Kad82], which may also be found recorded [WE18, §2.2], that there exists an
A∞-algebra structure m = (mn)n≥1 on the cohomology of a dg-algebra such that

• it enriches the graded algebra structure on H, in the sense that

m1 = 0 and m2 ≡ m2,C (mod B•(C))

where B•(C) represents the graded vector space of coboundaries in C.
• there exists a quasi-isomorphism of A∞-algebras

f = (fn)n≥1 : H → C

where f1 sends each cohomology class to a choice of representative cocycle. In
order to interpret this map in the A∞ category, recall that dg-algebras may
be taken to be A∞-algebras with trivial higher multiplications, as discussed in
§1.6.

This data (m, f) is unique up to non-unique isomorphism.
Because an A∞-algebra (A,m) is called minimal when m1 = 0, we call a (H,m)

produced by Kadeishvili a minimal model of (C, dC ,m2,C), as f : (H,m) →
(C, dC ,m2,C) is a quasi-isomorphism. We call such (m, f) a minimal model struc-
ture of H relative to (C, dC ,m2,C).

Subsequent work of Kontsevich–Soibelman [KS00] established the existence of
minimal models for A∞-algebras and clarified that a homotopy retract structure
on (C, dC) relative to (H, 0) gives rise to a choice of (m, f) producing the minimal
model.

Definition 2.2.1. Let (A, dA), (C, dC) be complexes. We call (A, dA) a homotopy
retract of (C, dC) when they are equipped with maps

Ch
&& p //

A
i

oo

such that p and i are morphisms of complexes, h : C → C[1] is a morphism of
graded vector spaces, idC − ip = dCh+ hdC , and i is a quasi-isomorphism.

Proposition 2.2.2 (Kontsevich–Soibelman [KS00]). Let (C,m′) be an A∞-algebra.
A homotopy retract (i, p, h) between (H•(C), 0) and (C,m′1) induces, via explicit
formulas, a minimal model structure (f,m). That is, there are formulas in (i, p, h)
and m′ that produce the minimal A∞-algebra structure m on H•(C) and the quasi-
isomorphism f : (H•(C),m)→ (C,m′).

Proof. See [LV12, Thm. 9.4.14] or [WE18, Thm. 5.2.5]; both of these references
record the formulas. �

Applying this to the case where (C,m′) is a dg-algebra (i.e. m′n = 0 for n ≥ 3)
implies Kadeishvili’s result on A∞-algebra minimal models for dg-algebras.

Remark 2.2.3. Merkulov set up the same formulas in a more concrete way [Mer99],
which the author learned from work of Lu–Palmieri–Wu–Zhang [LPWZ09]. These
formulas may be found in [WE18, Ex. 5.2.8], and we give some information here
for the reader’s convenience.
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Following Merkulov, we note that a homotopy retract between the cohomology
(H, 0) and the complex it arose from, (C, dC), amounts to a direct sum decompo-
sition

(2.2.4) Cn = Bn ⊕ H̃n ⊕ Ln for all n ≥ 0,

where Bn denotes the subspace of Cn consisting of n-coboundaries, H̃n is a com-
plement to Bn in the subspace Zn of Cn consisting of n-cocycles, and Ln is a
complement to Zn in Cn. Then f1 in degree n is a map Hn → Cn lifting each
cohomology class to a choice of representing cocycle. This is specified by the decom-
position above as follows: f1 is the inverse of the natural isomorphism H̃n ∼→ Hn.
Similarly, f = (fn)n≥1 and m = (mn)n≥1 are given inductively by formulas in Cn

using the decomposition above and the isomorphism f1 : Hn ∼→ H̃n.

It will also be useful to have an inverse quasi-isomorphism to the f of the minimal
model structure.

Proposition 2.2.5. Let (C,m′) and (i, p, h) as in Proposition 2.2.2, so that we
have the minimal model structure (f,m) described there. Then p extends to a
quasi-isomorphism of A∞-algebras, in the following sense: there exists a quasi-
isomorphism g = (gn)n≥1 : (C,m′) → (H•(C),m) such that g1 = p. Moreover, g
is a left inverse to f , in that g ◦ f : (H•(C),m)→ (H•(C),m) is the identity map.
That is, g ◦ f is an A∞-isomorphism, where (g ◦ f)1 is the identity map idH•(C)

and (g ◦ f)n = 0 for n ≥ 2.

Proof. This follows from [CL19, Thm. 3.9(2)]. �

2.3. The bar equivalence. We recall a dualized version of the bar equivalence,
which is described at more length in [WE18, §2].

Let (A,m) be an A∞-algebra. Taking the suspension of the graded dual of
mn : A⊗n → A as described in §1.6, we get

m∗n : ΣA∗ −→ (ΣA∗)⊗n, of graded degree 1.

Taking the product over the codomain, we produce

m∗ =
∏
n≥1

m∗n : ΣA∗ −→ T̂kΣA∗.

By applying the Leibniz rule, we uniquely extend this map to a derivation

m∗ : T̂kΣA∗ −→ T̂kΣA∗.

Note that nothing in the construction of m∗ depends on m satisfying the compat-
ibility conditions demanded of an A∞-algebra structure on A. In fact, m gives an
A∞-algebra structure if and only if the derivation m∗ is a differential, i.e. (m∗)2 = 0.
This is a consequence of the bar equivalence, which is an isomorphism of categories
between A∞-algebras and co-free co-complete co-dg-algebras. The above “dualed”
version of the bar equivalence restricts to an equivalence on those A∞-algebras A
such that An is finite-dimensional for all n ∈ Z.

Thus, when (A,m) is an A∞-algebra, we write

Bar∗(A,m) := (T̂kΣA∗,m∗, s)

for the complete dg-algebra given by the differential m∗ and the standard multipli-
cation s of T̂ΣA∗. In words, we call this the dual bar construction of (A,m).
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2.4. The classical hull. There is a natural inclusion functor from k-algebras to dg-
k-algebras, sending a k-algebra D to a dg-k-algebra D[0] concentrated in degree zero
and with a trivial differential. This functor has a left adjoint on dg-k-algebras. This
functor sends a dg-k-algebra (B, dB ,m2,B) to its quotient A(B) = A(B, dB ,m2,B)
by the ideal generated by ⊕

n∈Zr{0}

Bn and dB(B−1),

which we call the classical hull of B.
We are especially interested in the case of the dg-algebra B = Bar∗(A,m).

Because its underlying complete graded algebra is freely generated by ΣA∗, one
may readily compute that the classical hull is presented as

A(B) =
T̂k(Σ(A1))∗

(m∗(((Σ(A2))∗))
.

2.5. A result from [WE18]. Recall from the introduction that Ω is the Iwasawa
algebra of G over k and Ω! is the opposite algebra of the Yoneda algebra Ext•Ω(k, k).
The main result that we wish to recall from [WE18, §6] gives a presentation of Ω
in terms of a choice of decomposition of C•(Ω, k) as in (2.2.4). We state it in terms
of its application to Ω.

Theorem 2.5.1. Choose a homotopy retract structure on (H•(Ω, k), 0) relative to
(C•(Ω, k), dC), or, equivalently, a decomposition of C•(Ω, k) as in (2.2.4). This
determines the additional data (f,m) as explained in §2.2. These data determine
an isomorphism

ρu : Ω
∼−→ A(Bar∗(H•(Ω, k))) ∼=

T̂kΣH1(Ω, k)∗

(m∗(ΣH2(Ω, k)∗)

given by, for x ∈ Ω,

ρu : x 7→ x̄+

∞∑
i=1

(e 7→ (fi(e))(x)),

where e is a generic element of (ΣH1(Ω, k))⊗i and x 7→ x̄ denotes reduction modulo
the unique maximal ideal of Ω.

We explain how it is that e 7→ (fi(e))(x) denotes an element of (ΣH1(Ω, k)∗)⊗i,
where i ≥ 1. Notice first that the fixed fi, having graded degree 1 − i, maps
(H1(Ω, k))⊗i to C1(Ω, k). As C1(Ω, k) consists of functions from Ω to k, evaluating
fi(e) at a fixed choice of x ∈ Ω results in the desired map H1(Ω, k)∗)⊗i → k.

Proof of Theorem 2.5.1. The statement of Theorem 2.5.1 is an application of [WE18,
Cor. 6.2.6(1)], where

• Ω replaces k[G]∧ker ρ,

• an assumption that Hn(Ω, k) is finite-dimensional for all n is dropped, since
this follows from G being finite-dimensional as a p-adic Lie group, and

• there are some other simplifications because ρ : k[G] → k is the trivial repre-
sentation in the present case.

Indeed, because G is pro-p, the completed group algebra Ω of G over k is canonically
isomorphic to the completion of k[G] at the kernel of the trivial representation
ρ : k[G]→ k. �
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Remark 2.5.2. We see in the presentation of Theorem 2.5.1 what data in the A∞-
algebra (H•(Ω, k),m) does not obviously influence the presentation of Ω. Namely,
we see that the groups H1(Ω, k) and H2(Ω, k) along with the A∞-products mn :
H1(Ω, k)⊗n → H2(Ω, k) determine the isomorphism class of the k-algebra Ω. For
example, the groups Hi(Ω, k) for i ≥ 3 are not obviously involved. Since, conversely,
the isomorphism class of (H•(Ω, k),m) is determined by Ω, it would be interesting
to determine whether and how the entire A∞-algebra structure m is determined by
mn : H1(Ω, k)⊗n → H2(Ω, k) in the case of a uniform pro-p group G.

3. Answers and proofs

In this section, we answer the questions of §1.3. These answers are applications
of Theorem 2.5.1, which gives a presentation of Ω in terms of a choice of a homotopy
retract between the Hochschild cochain complex and the Yoneda algebra (which is
Hochschild cohomology of the trivial Ω-bimodule k).

The main obstacle in the way of directly addressing the questions is that an
alternative dg-algebra to the Hochschild cochain complex is used in [Sor20] to induce
the same Yoneda algebra and an A∞-algebra structure on its opposite. Namely, the
endomorphism dg-algebra of the (projective) bar resolution of k is used. While these
algebras are, of course, quasi-isomorphic (as complexes) with naturally compatible
induced graded-homogeneous multiplication operations on their cohomology – that
is, the Yoneda algebra – we must account for their distinctiveness because the
construction of A∞-algebra structures on their cohomology depends on the dg-
algebra structure. We accomplish this using an explicit quasi-isomorphism between
these two dg-algebras, due to Segal [Seg08] (see Proposition 3.1.4).

3.1. Compatibility of the two endomorphism dg-algebras. We begin with
a definition of compatibility of a homotopy retract. For the definition of homotopy
retracts, see e.g. [WE18, Defn. 5.2.1].

Definition 3.1.1. Choose a homotopy retract (i, p, h) (resp. (i′, p′, h′)) between a
cochain complex C (resp. C ′) and its cohomology H = H•(C) (resp. H ′ = H•(C ′)).
Let Ψ : C → C ′ be a quasi-isomorphism, which therefore induces an isomorphism
H•(Ψ) : H

∼→ H ′. We say that Ψ is compatible with these two homotopy retracts
when we have commutative squares

H
i //

H•(Ψ)
��

C

Ψ
��

C
p //

Ψ
��

H

H•(Ψ)
��

ΣC
h //

ΣΨ

��

C

Ψ
��

H ′
i′ // C ′ C ′

p′ // H ′ ΣC
h′ // C ′

Remark 3.1.2. This may be too specific of a definition of a compatible homotopy
retract for a general theory, but it suffices for the situation at hand.

We will use the following pair of compatible homotopy retracts, given a quasi-
isomorphism and extra maps.

Lemma 3.1.3. Let Ψ be a quasi-isomorphism of complexes Ψ : C → C ′ that admits
a left inverse quasi-isomorphism Φ : C ′ → C, i.e. Φ ◦Ψ = idC . Let (i′, p′, h′) be a
homotopy retract between C ′ and H ′. Then the following natural formulas produce
a compatible homotopy retract (i, p, h) between C and H.

i = Φ ◦ i′ ◦H•(Ψ), p = H•(Φ) ◦ p′ ◦Ψ, h = Φ ◦ h′ ◦ ΣΨ.
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Proof. The homotopy retract property of (i, p, h) follows by direct computation.
The compatibility follows directly from the formulas. �

Let E•(Ω, k) denote the endomorphism dg-algebra of the bar resolution of k. As
usual, C•(Ω, k) denotes the dg-algebra of Hochschild cochains of the Ω-bimodule k.

Proposition 3.1.4. There exists an explicit quasi-isomorphism of dg-algebras Ψ :
C•(Ω, k)→ E•(Ω, k) that admits a (non-multiplicative) left inverse of cochain com-
plexes Φ : E•(Ω, k) → C•(Ω, k). Under the identification of graded vector spaces
H•(C•(Ω, k)) ∼= H•(E•(Ω, k)) (using the fact that they both compute the same
Ext-functors), H•(Ψ) is the identity map.

Proof. This is the content of [Seg08, Lem. 2.6]. �

The following corollary sums up the relationship between the twoA∞-algebras we
have seen, and which we now recall. We use the notation H•(Ω, k) for Hochschild
cohomology and (Ω!)op ∼= H•(E•(Ω, k)) for the Yoneda Ext-algebra, which are
canonically identified via H•(Ψ) according to Proposition 3.1.4.

Corollary 3.1.5. Let Ψ, Φ, C•(Ω, k), E•(Ω, k) be as in Proposition 3.1.4. Choose
a homotopy retract (i′, p′, h′) between E•(Ω, k) and (Ω!)op. These choices produce,
via explicit formulas,

• a compatible homotopy retract (i, p, h) of C•(Ω, k) by Lemma 3.1.3.
• (fH ,mH) (resp. (fop,mop)) be the minimal model structure induced by

(i, p, h) (resp. (i′, p′, h′)) according to the formulas of Proposition 2.2.2.
• gop : E•(Ω, k) → ((Ω!)op,mop) be the left inverse to fop given by Proposi-

tion 2.2.5.

In addition, the isomorphism of graded algebras H∗(Ψ) : H•(Ω, k)
∼→ (Ω!)op extends

to an isomorphism of A∞-algebras determined by

Υ : (H•(Ω, k),mH)
∼−→ ((Ω!)op,mop),

given by

Υ = gop ◦Ψ ◦ fH

Proof. In view of the formulas, we may let ι = (ιn)n≥1 : (H•(Ω, k),mH) →
((Ω!)op,mop) be determined by ι1 = H∗(Ψ) and ιn = 0 for n ≥ 2. �

Now we combine the foregoing corollary with the presentation of Ω in terms of
cohomological data given in Theorem 2.5.1.

Corollary 3.1.6. Choose a homotopy retract (i′, p′, h′) between E•(Ω, k) and (Ω!)op.
This choice induces a presentation of Ω in terms of (Ω!,m) and other data induced
by (i′, p′, h′) enumerated in Corollary 3.1.5. The presentation is given by

Ω
∼−→ A(Bar∗((Ω!)op,mop)) =

T̂kΣ((Ω!)1)∗

(mop∗(Σ((Ω!)2)∗)

ρu : x 7→ x̄+

∞∑
i=1

(e 7→ ((f ◦Υ−1)i(e))(x)),

where e is a generic element of (Σ(Ω!)1)⊗i and x 7→ x̄ denotes reduction modulo
the unique maximal ideal of Ω.
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The meaning of (e 7→ ((f ◦Υ−1)i(e))(x)) is just as explained after Theorem 2.5.1,

keeping in mind that Υ−1 is an A∞-isomorphism ((Ω!)op,mop)
∼→ (H•(Ω, k),mh).

Note also that (Ω!)i = ExtiΩ(k, k).

Proof. This is a combination of Corollary 3.1.5 and Theorem 2.5.1. �

3.2. Question (a): Characterizing the Iwasawa algebra with A∞-products.
We prove that the A∞-enrichment of the Yoneda algebra of Ω characterizes Ω up
to isomorphism.

Theorem 3.2.1. The isomorphism class of the A∞-algebra (Ω!,m) determines Ω
up to isomorphism.

Proof. We see in Corollary 3.1.6 that when m is determined by a homotopy retract
between (Ω!, 0) and E•(Ω, k), then the classical hull of its dual bar construction
admits an isomorphism from Ω. Because the isomorphism class of the k-algebra
A(Bar∗(A,m)) does not depend on the choice of a A∞-algebra (A,m) within its
minimal isomorphism class, we have the theorem. �

3.3. Question (b): Formal A∞-algebra model and abelianness. A minimal
A∞-structure m is called formal when mn = 0 for n ≥ 3.

Theorem 3.3.1. If the A∞-algebra structure m enriching Ω! ∼=
∧

g∗ has trivial
higher multiplications mn, n ≥ 3, then G is abelian. In particular, Ω ' k[[x1, . . . , xn]],
where n is the k-dimension of Ext1

Ω(k, k).

The converse to this theorem was proven in [Sor20, Thm. 1.2].

Proof. Because G injects into the units of the completed group algebra Ω, it suffices
to prove that Ω is commutative.

When (Ω!,m) is trivial, then, by [Sor20, Thm. 1.2], it is A∞-isomorphic to the
Iwasawa algebra Ω(Zdp) of Zdp, where d = dimG. Then, by Theorem 3.2.1, we know

that Ω ' Ω(Zdp), so Ω is commutative. �

Remark 3.3.2. The author thanks Claus Sorensen for suggesting the efficient proof
above upon seeing an earlier version of this paper. For the purpose of illustrating
what calculations lie below the result, the following more explicit argument still
may be instructive as to the role of the A∞-structures.

Alternate proof of Theorem 3.3.1. By Corollary 3.1.6, we have a presentation for Ω
in terms of A(Bar∗((Ω!)op,mop)), where mop

n = 0 for n = 1 or n ≥ 3, and mop
2 is

given by the isomorphism Ω! ∼=
∧

g∗ of (1.1.1). Recall from §2.3 that the expression
mop∗ determining A(Bar∗((Ω!)op,mop)) in Corollary 3.1.6 is the product over n of
the suspended linear duals mop∗

n : ΣExt2
Ω(k, k)∗ → (ΣExt1

Ω(k, k)∗)⊗n of the A∞-
structure maps mop

n : Ext1
Ω(k, k)⊗n → Ext2

Ω(k, k). Thus we are only concerned with
the degree 2 contribution

mop∗
2 : ΣExt2

Ω(k, k)∗ → (ΣExt1
Ω(k, k)∗)⊗2.

To calculate mop∗
2 , we note that the isomorphism Ω! ∼=

∧
g∗ supplies a canonical

isomorphism

∧2Ext1
Ω(k, k)

∼−→ Ext2
Ω(k, k)
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such that the multiplicationmop
2 in the graded algebra (Ω!)op, restricted to Ext1

Ω(k, k),
is the composition of this map with the standard projection

Ext1
Ω(k, k)⊗2 � ∧2Ext1

Ω(k, k).

Therefore, the image of mop∗
2 in (ΣExt1

Ω(k, k)∗)⊗2 is precisely the alternating tensor
subspace. This completes this alternate proof of Theorem 3.3.1. �

3.4. Question (c): Change of group. In this section, we work with an open
subgroup G′ ⊂ G. Correspondingly, we write Ω(G),Ω(G′) for their Iwasawa alge-
bras. And for all objects discussed in previous sections with respect to G, we use
their “primed version” with respect to G′, e.g. f ′ instead of f .

Theorem 3.4.1. Let G′ ⊂ G be an open subgroup. Then there is a morphism
of A∞-algebras (Ω(G)!,m) → (Ω(G′)!,m′) compatible with the restriction map
Mod(Ω(G))→ Mod(Ω(G′)), where “compatible” means that we have associated this
map of A∞-algebras to the right-hand vertical arrow in this diagram of presentation
maps

(3.4.2) Ω(G′)

��

∼ // T̂kΣExt1
Ω(G′)(k,k)∗

(m∗((ΣExt2
Ω(G′)(k,k)∗))

��

Ω(G)
∼ // T̂kΣExt1

Ω(G)(k,k)∗

(m∗((ΣExt2
Ω(G)

(k,k)∗))

and that the diagram commutes up to inner automorphism in Ω(G′).

Because the diagram commutes up to inner automorphism, it induces the map
of module categories required by question (c).

The proof relies upon using Hochschild cohomology to produce the diagram
above, and then applying the isomorphism Υ of Corollary 3.1.5 at the end.

Proof. Choose two (independent) homotopy retracts as in Corollary 3.1.5, one for
objects associated to G, and one for objects associated to G′. This results in the
objects enumerated there, which we will now use. In addition, we require a left
inverse g′H to f ′H , as in Proposition 2.2.5.

We link the objects associated to G to those associated to G′ by via the natural
map of Hochschild cochains C•(G, k)→ C•(G′, k) induced by restricting functions
of G×i to its subgroup G′×i. We have a morphism of A∞-algebras HG → HH

resulting from the composite

(3.4.3) ηH : H•(G, k)
fH−→ C•(G, k)

restr.−→ C•(G′, k)
g′H−→ H•(G′, k).

Subsequently, we produce η : ((Ω(G)!)op,mop)→ ((Ω(G′)!)op,m′op) by η := Υ◦ηH◦
Υ−1. This is the opposite A∞-morphism to the desired morphism in the statement
of the theorem.

This morphism η is compatible with the natural restriction map of quasi-compact
module categories Mod(Ω(G)) → Mod(Ω(G′)) because – we claim – (3.4.2) com-
mutes up to inner automorphism by the domain Ω(G′). This claim of commutativity
follows from the following facts:
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• the right-hand downward map in (3.4.2) is induced by η, simply by applying the
(functorial) dual-bar construction and the classical hull construction (described
in §§2.3-2.4) to η

• the A∞-quasi-isomorphisms

fH : H•(G, k)
∼−→ C•(G, k), f ′H : H•(G′, k)

∼−→ C•(G′, k)

are used to produce the presentations appearing as the horizontal pair of arrows
in the theorem statement, via the formula of Theorem 2.5.1.

Thus the clockwise map in (3.4.2) corresponds to f ′H ◦ ηH : H•(G, k)→ C•(G′, k),
while the counter-clockwise map in (3.4.2) corresponds to the composition of the
leftmost two maps of (3.4.3), which we now denote by tH := (restr.)◦fH . Expressed
in terms of tH , the two presentation maps correspond to f ′H ◦ g′H ◦ tH and tH ,
respectively. From [WE18, Thm. 6.2.3], we know that f ′H and f ′H ◦ g′H ◦ f ′H result
in a pair of isomorphisms

Ω(G′)
∼ // T̂kΣExt1

Ω(G′)(k,k)∗

(m∗((ΣExt2
Ω(G′)(k,k)∗))

,

as in the top horizontal arrow of (3.4.3), that differ by an inner automorphism of
Ω(G′). �
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