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1. Introduction

In 1976 K. Ribet [20] proved a refinement of Kummer’s criterion for the regularity of
an odd prime p. Kummer’s criterion relates the condition that p is regular, i.e. that
the ideal class group of the cyclotomic field Q(µp) has no p-torsion, to the p-divisibility
of important analytic quantities called Bernoulli numbers. J. Herbrand [12] in 1932
proved one direction of a more precise version of Kummer’s criterion. Namely, Herbrand’s
theorem states that if one decomposes the p-part of the class group in terms of the action
of Gal(Q(µp)/Q) on it, a certain Bernoulli number is divisible by p if a corresponding
part of the decomposition is non-trivial. Herbrand’s theorem uses Stickelberger’s theorem
and classical algebraic number theory. Ribet proved the converse using techniques in
arithmetic geometry: given a certain Bernoulli number divisible by p, he produces a Galois
representation that cuts out an unramified p-extension of Q(µp) associated via class field
theory to such a non-trivial part of the class group. This essay is primarily intended as a
description of Ribet’s techniques, focusing especially on his congruences between modular
forms and on one of Ribet’s major tools, the Eichler-Shimura relation. However, we will
still attempt to “connect all the dots.” Let us begin by giving background to make precise
what I have said above and to motivate Ribet’s work.

1.1. Background on Cyclotomic Fields. In 1851, E. Kummer proved Fermat’s Last
Theorem for a large number of odd prime exponents p. These primes, called regular
primes, are those odd primes p such that p does not divide the ideal class number of
Q(µp), where µp is a primitive pth root of unity. For if p is regular, one can argue by
contradiction as follows.

Let x, y, z ∈ Z be a non-trivial, pairwise coprime counterexample to Fermat’s last theo-
rem, i.e.

xp + yp = zp,

and furthermore assume p - xy. Factoring these integers in Z[µp] yields an equality of
principal integral ideals,

(1.1)

p−1∏
i=0

(x+ µipy) = (z)p,

One may showing that the factors on the left of (1.1) are relatively prime ideals; con-
sequently, each factor is a pth power of some ideal ai. Then, on the critical hypothesis
that p is regular, each ai is a principal ideal. Arguing in terms of the generators of these
ideals then provides a basic proof of the rest of Fermat’s last theorem (see for example
[27], Chs. 1,9).

This connection with Fermat’s last theorem is one of the many reasons that cyclotomic
fields figure prominently in algebraic number theory. A few more reasons include

• The ring of integers of a cyclotomic field is well understood, in contrast to most
high-degree number fields. The maximal order of the nth cyclotomic field Q(µn)
is Z[µn], whereas the ring of integers of an arbitrary high-degree number field
may be virtually impossible for a computer to determine. Consequently, prime
decomposition behavior in cyclotomic fields is well understood.

• The nth cyclotomic field is an abelian Galois extensions of Q with galois group
(Z/nZ)×. Since by the Kronecker-Weber theorem all abelian extensions of Q lie in
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some cyclotomic extension, class field theory over Q may be reduced to cyclotomic
fields. See for example [14].

• They and their generalizations, CM-fields, were among the first families of number
fields of arbitrarily high degree about which we can say anything very interesting
about their class groups and regulators (see Appendix A.1).

It is the last type of fact in the above list that we would like to know, and Kummer
proved, in order to say more about Fermat’s last theorem. Namely, he gave “Kummer’s
criterion” for when a prime p is regular.

Theorem 1.1 (Kummer; [27], Thm. 5.34). An odd prime p is irregular if and only if
there exists an even integer 2 ≤ k ≤ p − 3 such that p divides the numerator of the kth
Bernoulli number Bk, given by the Taylor series

(1.2)
t

et − 1
=
∑
n≥0

Bn

n!
tn.

Remark 1.2. Proving Kummer’s criterion in its original setting is very interesting but
would take us too far afield. Thus Appendix A.1 proves one direction of Kummer’s
criterion. Also, this appendix provides lemmas on relations between Bernoulli numbers
and the class number of Q(µp), Ribet’s use of which we describe in §3.

Certainly Kummer’s criterion is a good computational tool for finding regular primes;
mathematicians have exploited it heavily. For instance, the first few Bernoulli numbers
are

(1.3) B2 =
1

6
, B4 =

−1

30
, B6 =

1

42
, B8 =

−1

30
, B10 =

5

66
, B12 =

−691

2730
,

allowing us to verify that 691 is an irregular prime and that 3, 5, 7, 11, 13 are regular.
However, the key theoretical importance of Kummer’s criterion is that, as I noticed
professors often comment, Bernoulli numbers are analytic objects. That is, generalized
Bernouli numbers appear as special values of L-functions, and the Bernoulli numbers are
associated with the simplest L-function:

(1.4) ζ(1− n) =
−Bn

n
, n = 1, 2, 3, . . .

where ζ(s) is the Riemann zeta function. We may therefore restate Kummer’s criterion
in this

Corollary 1.3. An odd prime p is irregular if and only if there exists an even integer
2 ≤ k ≤ p− 3 such that p divides the numerator of ζ(1− k).

A great deal of advances in number theory have to do with linking special values of L-
functions to arithmetic problems. Ribet’s converse to Herbrand’s theorem is one such
result.

1.2. The Converse to Herbrand’s Theorem. Herbrand [12] proved a refinement of
Kummer’s criterion, showing that the p-divisibility of a specific Bernoulli number could
only occur if a corresponding character occurs in the action of Gal(Q(µp)/Q) on the p-part
of the class group of Q(µp). While Herbrand used classical algebraic number theoretic
tools, Ribet in 1976 proved the converse by applying newly discovered techniques in
arithmetic geometry. Ribet’s proof is the subject of this essay, and we will investigate
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the constitution of his proof in detail. First we will get clear on precisely what Herbrand
and Ribet proved.

Let us fix the following notation, following Ribet’s paper [20]. Let A be the class group of
Q(µp) and let C be the Fp-vector space A/Ap where Fp is the finite field with p elements.
The Fp-vector space structure is induced by the structure of A as a Z-module. Note
that

dimFp A/A
p = p-rank of A.

Clearly the absolute Galois group Gal(Q̄/Q) acts on C through its abelian quotient
∆ = Gal(Q(µp)/Q). Later (§5.1), we will show that whenever a representation ρ : G −→
GL2(F̄p) has finite image, it is semisimple if and only if the order of its image is prime to
p. Hence because |∆| = p− 1, the Galois representation C is semisimple. Therefore it is
a direct sum of powers of the standard Galois character

(1.5) χ : Gal(Q̄/Q)→ ∆
∼−→ F×p ↪→ F̄×p ,

given by the relation
σ(µp) = µχ(σ)

p , for all c ∈ C.
Thus the direct sum of powers of χ that composes C may be canonically written

(1.6) C =
⊕

i (mod p−1)

C(χi),

where C(χi) is the χi-isotypical component of C as a ∆-module. That is, C(χi) is the
subspace of c in C such that σ(c) = χi(σ) · c. To observe that this decomposition is
canonical, note, for example, that C(χ) is the unique subspace of elements c ∈ C such
that ∆ acts on the Fp-modules C(χ) and 〈µp〉 in the same way.

Ribet proved the following

Theorem 1.4 ([20], Theorem 1.1). Let k be an even integer, 2 ≤ k ≤ p − 3. Then p
divides the numerator of Bk if an only if C(χ1−k) 6= 0.

Ribet completed the proof of this equivalence by showing that if p divides Bk, then
C(χ1−k) 6= 0. Classically, Herbrand had proved the converse by refining Stickelberger’s
theorem (see [27], §§6.2-6.3). Together, the results of Herbrand and Ribet describe the
action of ∆ on the p-part of the class group of Q(µp) in terms of analytic quantities.

Of course, it is not a complete description. For example, the quantity of 2 ≤ k ≤ p − 3
such that p | Bk is a lower bound on the p-rank of C, but as long as p is irregular there
is no a priori upper bound.1 Also, note that this theorem applies only to even integers
k. The question of whether C(χ1−k) 6= 0 for an odd k is the same as the question of
the truth of Vandiver’s conjecture that the class number Q(µp)

+ is prime to p (see [27]
for information on Vandiver’s conjecture). In all known examples, Vandiver’s conjecture
holds, and actually, Ribet’s theorem is a consequence of the truth of Vandiver’s conjecture
[15].

There are other ways in which Ribet’s result could superficially appear to be uninter-
esting. For example, it followed from the main conjecture of Iwasawa theory proved by
Mazur and Wiles [19] in 1984 [15], and also in an even more elementary fashion from
techniques in Euler systems developed by V. Kolyvagin [16] and F. Thaine [26] (in [27],

1The Iwasawa main conjecture proved by B. Mazur and A. Wiles [19] implies that C(χi) is one-
dimensional. Such topics will be discussed further in the conclusion.
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§15.2). Yet as C. Khare [15] notes, “The proof of Ribet is still valuable as it explicitly
constructs abelian unramified extensions of exponent p of Q(µp) with controlled behav-
ior.” Furthermore, Ribet’s strategy was expanded upon by Wiles successively throughout
the 1980s, culminating in the Iwasawa conjecture for totally real fields [30].

Let’s take a look at Ribet’s overall strategy.

1.3. Ribet’s Proof of the Converse. From the summary above we know that Ribet’s
proof depends on the geometric construction of a certain Galois representation. Here we
summarize more deeply, describing Ribet’s strategy and the way it will be presented in
this essay.

The first step is to understand how the construction of a certain special representation
imply the converse to Herbrand’s theorem. I consider the proof rather interesting, because
I had encountered Galois representations in the number theoretic atmosphere around
me, but did not understand how they are canonical enough to be number theoretically
applicable. In §2 we will add flesh to Ribet’s treatment of deducing the converse to
Herbrand from the existence of the representation, which, naturally, is brief because it
depends on basic facts about Galois representation and class field theory.

Once we know that the existence of such a special representation (Theorem 2.3 below)
implies the converse to Herbrand’s theorem, it remains to construct the representation.
We will accomplish this in three steps: constructing in §3 a cusp eigenform congruent
modulo a prime over p to the Eisenstein series whose constant cofficient is Bk; associating
to it in §4 its abelian variety Af and the accompanying p-adic Galois representations, and
finally in §5 showing via the Eichler-Shimura relation’s connection between the modular
form and the representation that the reduction of this representation is of the correct
form. We will focus on two parts of the proof. Firstly, we will follow Ribet directly
to give a detailed explanation of how to construct such a cusp form. But our second
point of emphasis is one that Ribet merely quotes: it is the Eichler-Shimura relation
(Theorem 4.19), which studies the modular curves associated to the cusp form and shows
that the action of Hecke operators on the cusp form is equivalent to the action of Frobenius
on the reduction of the modular curve modulo p.

At this point it is not possible to give much more motivating detail, as these details must
be built up. However, I believe it is possible to give a few key motivating statements
that, while broad and imprecise, are extremely helpful for understanding what is going
on.

Let us suppose that p | Bk. We then construct in §3 a cusp eigenform that is congruent
modluo p to the Eisenstein series Gk of weight k on SL2(Z). Note well that we have
already used the fact that p | Bk, since the constant coefficient of Gk is Bk (up to a
p-unit) and cusp forms have no constant coefficient. Now from Shimura’s construction
of the abelian variety associated to the eigenform, we will get by the end of §4 a Galois
representation

ρ : Gal(Q̄/Q) −→ GL2(Kp)

where Kp is a finite extension of the p-adic numbers Qp and Vp is a two- dimensional
Kp-representation called the Tate module of the abelian variety. This representation
will not be diagonalizable, and in fact we will prove that it is irreducible. However, the
Eichler-Shimura relation gives us a connection between the coefficients of the modular
form and this Galois action. Therefore, just as our cusp eigenform “looks like” a cusp form
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modulo p, so will the reduction modulo p of the representation “look like” a representation
coming from an Eisenstein series. The representation associated to Eisenstein series Gk

2

is 1⊕ χk−1 modulo p ([11], Thm. 9.6.6). From this fact we can show that the reduction
of ρ modulo p is reducible and of the form

(1.7)

(
1 ∗
0 χk−1

)
This reduction is obtained by choosing a Galois-stable lattice T ⊂ Vp and considering
the action of Galois on T/pT . Ribet’s clever work on reducible reductions of simple Kp-
representations, which will be discussed in §5.2, then implies that there exists a T such
that the representation in Equation (1.7) is not semi-simple, i.e. not diagonalizable, and
as mentioned above it follows that the image of ρ̄ has order divisible by p. As this image
is the Galois group of some normal extension of Q (see Definition 2.4), it turns out that
it is precisely these elements of order p that correspond to p-extensions of Q(µp). The
most difficult part of Ribet’s work is to show that this part of the representation (ergo the
p-extensions) are unramified at p. The geometric details of Ribet’s approach are beyond
the scope of this essay.

1.4. Preliminaries. I have intended to write this essay toward an audience of number
theory students in Part III while still keeping it to a reasonable length. Thus I presume
comfort with notions from algebraic geometry such as Riemann-Roch, Picard groups, etc.,
the basic concepts of representation theory, Riemann surfaces and spaces of differentials
on them, algebraic number theory including infinite Galois theory and L-functions, and
elliptic curves at the level of the Part III course. Preliminaries on modular forms and
other especially critical topics are given here according to their level of importance, but
hastily. I try to indicate sources for both the original major advances and sources that
help the student like me get a grip on them. Likewise, I have tried, mostly in §1.3
above, to give a good deal of the “philosophy” involved in how I came to understand the
material.

1.5. Acknowledgments and Sources. This document was originally written as an
essay fulfilling the requirements of one exam for my Cambridge Part III course in 2007-
2008. I’m very appreciative to my essay supervisor Dr. Tobias Berger for the interesting
topic and helpful meetings.

Of course, none of the core material is original to me. Proofs are drawn from the sources
cited. The reader will note that I am especially dependent upon Ribet’s paper [20], A
Modular Construction of Unramified p-extensions of Q(µp), and on F. Diamond and J.
Shurman’s [11] A First Course in Modular Forms. The other sources I consulted first
hand were Washington’s book on cyclotomic fields [27], Shimura’s book on Automorphic
Forms [23], Khare’s notes on Ribet’s proof [15], and to a lesser extent [17], [4], [10], [18],
and [24]. Other sources cited are the original works cited in the sources I consulted, or
advanced articles that I used to write the conclusion (§6) or refer to as tangents.

2Since in this essay we only know about representations assocaited to modular forms of weight 2, we
should clarify that this representation comes from from the Eisenstein series G2,ε of weight 2 which is
congruent modulo p to Gk. Deligne’s [6] work is needed to associate a representation to Gk.
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2. Extensions of Q(µp) and Representations

Ribet’s“main theorem,” our Theorem 1.4, describes the action of Galois on the class
group A of Q(µp). However, his efforts are dedicated to constructing a special Galois
representation. Therefore we will begin as Ribet does, addressing why the existence of
this representation implies the main theorem. There are two steps: first, we will use class
field theory to write down the theorem in terms of extensions of Q. Then we will show
that this form of the theorem follows from the existence of the representation.

Let us without delay state the following theorem, which, as we will prove, is equivalent
to the main theorem, Theorem 1.4.

Theorem 2.1 ([20], Theorem 1.2). Suppose p | Bk. Then there exists a Galois extension
E/Q containing Q(µp) such that

(1) The extension E/Q(µp) is unramified.

(2) The group Gal(E/Q(µp)) is a non-trivial abelian group of type (p, . . . , p), i.e. killed
by p.

(3) If σ ∈ Gal(E/Q) and τ ∈ Gal(E/Q(µp)) then στσ−1 = χ(σ)1−k · τ .

Of course, this theorem will be proved later. For now, we show that it is equivalent to
the main theorem.

Proposition 2.2. Theorem 2.1 is equivalent to the main theorem, Theorem 1.4.

Proof. This is an exercise in class field theory. See G. Janusz’s book [14] for a well
presented version of classical class filed theory including the facts we now require.

The equivalence C 6= 0 if and only if parts (1) and (2) of Theorem 2.3 clearly follows from
the definition of the Hilbert class field and the fact that the Artin map is an isomorphism.
Thus it remains to show that part (3) is equivalent to the C(χ1−k) part of C being
nontrivial. We will accomplish this via the “functorality of the Artin symbol,” which
when applied to the present case states that

(2.1) σ

[
E/Q(µp)

a

]
σ−1 =

[
E/Q(µp)

σa

]
where a is a fractional ideal of Q(µp), σ is an element of Gal(E/Q) (though it is clear from
the right hand side of the equality that its action depends only on which coset modulo

∆ it belongs to), and
[
E/Q(µp)

·

]
is the Artin symbol for the unramified abelian extension

E/Q(µp).

Choose some τ ∈ Gal(E/Q(µp)) and let H be the Hilbert class field of Q(µp). The
Artin symbol for E/Q(µp) is a quotient of the symbol for H/Q(µp). Hence, just as the
former symbol is surjective by Takagi’s existence theorem, so is the latter. Therefore
there exists a fractional ideal a of Q(µp) that the Artin symbol for E/Q(µp) sends a to τ ,

i.e. τ =
[
E/Q(µp)

a

]
. Assuming that there is some k for which the relation στσ−1 = χ1−k · τ

holds, then by the functorality relation (2.1) we have

(2.2)

[
E/Q(µp)

σa

]
= στσ−1 = χ(σ)1−k · τ = χ(σ)k−1 ·

[
E/Q(µp)

a

]
=

[
E/Q(µp)

χ1−k(σ) · a

]
.
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The equality of the leftmost and rightmost terms implies that χ(σ)1−ka is in the same
ideal class as σa modulo the kernel of the Artin symbol for E/Q(µp). Since this kernel
is Ap (recall C = A/Ap), we know that if there is some τ ∈ Gal(E/Qµp) such that
στσ−1 = χ1−k(σ) · τ then C(χ1−k) 6= 0. One may easily check that the converse follows
from formula (2.2) as well, completing the proof. �

Theorem 2.1, which restates the main theorem in terms of Galois extensions, follows from
the existence of the Galois representation that Theorem 2.3 below claims to exist. I can
say that understanding why Theorem 2.3 implies Theorem 2.1 was valuable as an exercise
because it is an example of how a the existence of a certain Galois representation and
certain number fields are connected. This idea is useful, for example, in showing that
some Galois representations cannot exist, e.g. [25], which was a first step towards Serre’s
conjecture.

We should note that Theorem 2.1 and Theorem 2.3 are not a priori equivalent; the
existence of certain number field extensions does not, as far as I know, imply the existence
of a specific, much less modular, representation that cuts them out. However, we do know
that these theorems are equivalent because of Herbrand’s theorem.

This theorem is the true “main theorem” of Ribet’s paper. It establishes the existence of
a certain Galois representation that cuts out exactly the kind of number fields we need
to prove Theorem 2.1, and will take the rest of our efforts to prove.

Theorem 2.3 ([20], Theorem 1.3). Suppose p | Bk. Then there exists a finite field F ⊇ Fp
and a continuous representation

(2.3) ρ̄ : GQ → GL2(F)

such that

(A) ρ̄ is unramified at all primes ` 6= p.

(B) The representation ρ̄ is reducible (over F) in such a way that ρ̄ is isomorphic to
a representation of the form (

1 ∗
0 χk−1

)
.

That is, ρ̄ is an extension of the 1-dimensional representation with character χk−1

by the trivial 1-dimensional representation.

(C) The image of ρ̄ has order divisible by p. In other words, ρ̄ is not diagonalizable.

(D) Let Dp be a decomposition group for p is GQ. Then ρ̄(Dp) has order prime to p,
i.e. ρ̄ |Dp is diagonalizable.

To complete our preliminaries and begin working on proving Theorem 2.3, we now prove
that it implies Theorem 2.1. Actually, as Ribet notes, Theorem 2.3 implies Theorem 2.1
with Q(µp) replaced by Q(µ1−k

p ), which has degree (p−1)/(p−1, k−1) over Q. Of course
this version of Theorem 2.1 implies the desired one.

Let us record a few useful definitions.

Definition 2.4. A field K ⊂ Q̄ is cut out by a Galois represetation ρ of GQ provided
that ker ρ is the unique subgroup of GQ fixing K. Note that Gal(K/Q) ∼= GQ/ ker ρ.
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Definition 2.5. Call a Galois represetation ρ of GQ unramified at ℘, a prime in the
number field K, provided that for any inertia group Ip of a maximal ideal p ⊂ Z̄ over ℘,
Ip ⊂ ker ρ.

Observe that a Galois representation ρ is unramified at a rational prime p, then p does
not ramify in the (Galois) extension of Q cut out by ρ. This is the simple yet impor-
tant fact that makes it important to construct a representation with highly controlled
ramification.

Proposition 2.6. Theorem 2.3 implies Theorem 2.1

Proof. The image of ρ̄ is finite, so it is isomorphic to the Galois group of a finite extension
E/Q. Therefore, write ρ̄ for the injection ρ̄ : Gal(E/Q) ↪→ GL2(F). Recalling the
definition of χ in Equation (1.5) and noting especially that it factors through ∆, we note
that part (B) implies that Q(µ1−k

p ) ⊂ E.

Now we claim that E/Q(µ1−k
p ) is Galois and Gal(E/Q(µ1−k

p )) is of type (p, p, . . . , p), i.e. it

is elementary abelian. The extension Gal(E/Q(µ1−k
p )) is Galois because if σ ∈ Gal(E/Q)

fixes Q(µ1−k
p ), then

(2.4) ρ̄(σ) =

(
1 ∗
0 1

)
,

and matrices of this form are clearly a normal subgroup of ρ̄(Gal(E/Q)). The extension
has type (p, . . . , p) because matrices of the form in Equation (2.4) must have order di-
viding p. Part (C) says that there exist matrices of order p, therefore as the quotient
Gal(Q(µ1−k

p /Q) of Gal(E/Q) has order prime to p, the extension E/Q(µ1−k
p ) is nontrivial.

This establishes part (2) of Theorem 2.1.

Ramification properties have yet to be addressed. Because by part (A) ρ̄ is unramified
at all primes ` 6= p, we need only address the prime p. Of course, the extension Q(µ1−k

p )

is totally ramified at p. It remains to show that E/Q(µ1−k
p ) is unramified at (the unique

prime over) p. This is the case because of part (D): the decomposition group Dp has
order prime to p, but the ramification index of p in E divides the order of Dp. Therefore
the prime over p in Q(µ1−k

p ) does not ramify in E, completing our proof of part (1).

Finally we prove part (3), that στσ−1 = χ(σ)1−k · τ when σ ∈ Gal(E/Q) and τ ∈
Gal(E/Q(µp). This follows from representing σ and τ in matrix form via ρ̄, i.e.

(2.5) ρ̄(σ) =

(
1 aσ
0 χ(σ)k−1

)
and ρ̄(τ) =

(
1 aτ
0 1

)
.

The representatives for σ and τ are as Equation (2.5) prescribes because χ factors through
∆ and τ fixes µp, ergo χ kills τ . Then we simply conjugate as in the statement of part
(3) above to find

ρ̄(σ)ρ̄(τ)ρ̄(σ)−1 =

(
1 aσ
0 χ(σ)k−1

)(
1 aτ
0 1

)(
1 −aσ · χ(σ)1−k

0 χ(σ)1−k

)
=

(
1 χ(σ)1−kaτ
0 1

)
=

(
1 aτ
0 1

)χ(σ)1−k

= χ(σ)1−k · ρ̄(τ)
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where the final “·” means that χ(σ)1−k, an element of F×p , acts naturally on the Fp-module

Gal(E/Q(µ1−k
p )).

Thus we have verified part (1), and Proposition 2.6 is proved. �

3. Congruences between Modular Forms

In this section we will construct on the assumption that p | Bk a certain weight 2 cusp
eigenform f that is congruent to the Eisenstein series (3.1) modulo p. This will allow
us in §§4 and 5 to use the Eichler-Shimura relation to produce a representation as in
Theorem 2.3. Keep in mind the comments in §1.3, that what we will create is a cusp
eigenform that looks a lot like an Eisenstein series modulo p and therefore will have a
similar representation modulo p.

To fix notation, a whirlwind tour of modular forms is in order. Definitions for the reader
not familiar with modular forms may be found in the Appendix §A.3.

3.1. Modular Forms and Eisenstein Series. Modular forms are holomorphic func-
tions on the upper half plane H that are

(1) invariant of some weight k ∈ Z+ under precomposition with the fractional linear
actions of a congruence subgroup Γ of SL2(Z), namely, with respect to the weight-k
operator (also known as the slash operator) [γ]k for all γ ∈ Γ; and

(2) can be extended continuously to H∗ = H ∪ P1(Q).

The modular forms of weight k on Γ constitute a complex vector space denoted Mk(Γ).
If the holomorphy restrictions on f are loosened to meromorphy, then f is called an
automorphic form. We will exclusively work with modular forms on the usual congruence
subgroups Γ0(N) and Γ1(N) (Definition A.3.1). Such modular forms have a unique
Fourier expansion

f : H → C, z →
∑
n≥0

an(f)qn

where q = e2πiz and an(f) represents the nth Fourier coefficient of f .

The naturality of modular forms and the important subspace of cusp forms is best ex-
plained through their role as differentials of hyperbolic Riemann sufaces. The orbits of Γ
in H, denoted Y (Γ), and its compactification, X(Γ) = Γ\H∗, are called modular curves.
They are Riemann surfaces, and the compactification is accomplished by adjoining the
cusps of Γ (Definition A.3.4).

The space Mk(Γ) of modular forms is naturally isomorphic to the vector space of holo-
morphic differentials on Y (Γ), loosely via the map f 7→ f(dz)k/2. However, because dz
has simple poles at the cusps, not all of Mk(Γ) maps to holomorphic differentials. This
motivates the naturality and importance of the subspace of cusp forms Sk(Γ), defined by
requiring that a modular form vanish at the cusps of Γ. Note that because there is always
a cusp “at infinity” (i.e. at z = i∞, or equivalently q = 0), a cusp form f must have no
constant coefficient, i.e. a0(f) = 0. In this paper, we will focus primarily on the weight
k = 2 and Γ = Γ1(p) for an odd prime p. It is important to know as in Example A.3.5
that Γ0(p) has two cusps. See Appendix A.3 or Ch. 2 of [23] for further details.
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Eisenstein series are the archetypal examples of modular forms. Let k be an even integer,
k ≥ 4. The Bernoulli number Bk is (up to p-unit) the constant term of the Eisenstein
series Gk ∈Mk(SL2(Z)),

(3.1) Gk(z) = −Bk

2k
+
∑
n≥1

∑
d|n

dk−1qn,

which is constructed in Appendix A.2 to show its naturality. Note that by Equation (1.4),
we can replace −Bk/2k in formula (3.1) with ζ(1−k)/2. That is, the constant coefficient
of this Eisenstein series is an L-value special. This phenomenon will generalize to other
Eisenstein series below. The Eisenstein series in Equation (3.1) is the starting point for
our congruence, for when p | Bk, this Eisenstein series “looks like” a cusp form, which
must have no constant coefficient, modulo p.

The other Eisenstein series that we require are Eisenstein series of weight 1 and 2 on
Γ1(p)). This prompts us to take a brief interlude to introduce the concept of a “type”
of a modular form on Mk(Γ1(N)), which will be heavily utilized. The basic idea is that
since Γ1(N) ⊂ Γ0(N), a modular form on Γ1(N) is not necessarily modular on Γ0(N),
but this is nearly the case.

Definition 3.1. Let f be a modular form of weight k on Γ1(N). Such f is said to have
level N . Then (by [11], §5.2) there exists a unique Dirichlet character ε to the modulus
N such that

f [
(
a b
c d

)
]k = ε(d) · f for all γ ∈ Γ0(N).

The character ε is called the type of f on Γ0(N). We write f ∈Mk(N, ε).

Remark 3.2. In fact, this definition gives one of the two types of Hecke operators on
level N , the diamond operator 〈d〉 for (d,N) = 1. It is defined as 〈d〉 f = f [

(
a b
c d

)
]k where

γ ∈ Γ0(N) and f ∈Mk(Γ1(N)). Note that the action is not trivial since Γ0(N) properly
contains Γ1(N) for N > 2. See the comments around formula (A.3.3) for further details.

There are two Eisenstein series (up to scalar multiple) on Γ1(p) for each non-trivial even
type ε, and one Eisenstein series when ε is the trivial character (by dimension formulas,
[11], Theorem 3.5.1; see also [23]). While sums such as that in (3.1) do not converge for
k = 1 or k = 2, the weights that we require, there are similar constructions (see [11], §§4.6
and 4.8). Here we will simply write down the Eisenstein series for non-trivial types.

Definition 3.3. Let ε be a non-trivial even type as above. Then the two Eisenstein
series in M2(p, ε) are

(3.2) G2,ε = L(−1, ε)/2 +
∑
n≥1

∑
d|n

ε(d)dqn,

and the semi-cusp form

(3.3) s2,ε =
∑
n≥1

∑
d|n

ε(n/d)dqn

The semi-cusp form s2,ε is so called because it vanishes at infinity (which is clear from its
lack of a constant coefficient) but does not vanish at the other cusp of Γ0(p) (the cusps
are recorded in Equation (A.3.1)).

Now, the weight 1 forms, which only exist for ε odd just as those with even weight exist
only for ε even.

11



Definition 3.4. Let ε be an odd type on (Z/pZ)×. Then the Eisenstein series of weight
1 and type ε on Γ0(p) is

(3.4) G1,ε = L(0, ε)/2 +
∑
n≥1

∑
d|n

ε(d)qn.

Note how in both weights 1 and 2 an L-function value (see L-function definition, Eq.
A.1.1) appears as the constant term in the place of a Riemann zeta function value in
(3.1). These values are in fact generalized Bernoulli numbers, which are dealt with in the
Appendix and defined in Definition A.1.22.

3.2. The Construction. Now we may focus on the modular forms relevant to our con-
struction. First, fix notation. Let ℘ be a prime in Q(µp−1) dividing p, noting that p splits
completely in Q(µp−1). We will need to discuss congruences modulo p in terms of this
prime because our modular forms are of non-trivial type on Γ0(p), and therefore even
the Eisenstein series’ coefficients generate Q(µp−1) over Q (see Definition 3.1) Also, in
analogy to the distinguished Galois character χ, permanently fix ω as the unique type on
Γ0(p) such that

(3.5) ω(d) ≡ d (mod ℘) for all d ∈ Z.

Remark 3.5 ([27], p. 57). In fact, any such ω also satisfies ω(d) ≡ d (mod p) for all d
in Z, even though p is not a principal ideal. It is known as the Teichmüller character,
and is discussed further in Appendix A.1.

The main remaining prerequisite for the proofs of this construction is the theory of Hecke
operators. I have decided to expound on these operators in §3, since there has been a
good deal of background in this section already and one needs to know relatively little,
and so I have omitted as much detail as possible from the following list. However, all of
these definitions will be fleshed out in §3 or Appendix A.3.

Fact 3.6. The following are facts about Hecke actions on modular forms.

(1) For any k, there exist for every n ≥ 1 a Hecke operator Tn on Mk(Γ1(N)) that
restricts to Sk(Γ1(N)) and preserve type spaces Mk(N, ε).

(2) There is always a basis of simultaneous eigenvectors of for the Tn with (n,N) = 1,
since these operators commute. Such a simultaneous eigenvector is called an
eigenform.

(3) If f is an eigenform in S2(Γ1(p)) for all Tn, (n,N) = 1, then it is an eigenform for
all Tn.

(4) If f is an eigenform with respect to Tn, then the eigenvalue is an(f)/a1(f). Since
the T` for ` prime generate the Hecke operators, an eigenvector with respect to
these Hecke operators has that the eigenvalue λ(n) of Tn is equal to an(f)/a1(f)
for all n.

(5) The Eisenstein series that we have written down are Hecke eigenforms.

Here is the construction we wish to prove.
12



Theorem 3.7 ([20], Theorem 3.7). Suppose that p | Bk. Then there exists a cusp form
f =

∑
n≥1 anq

n of weight 2 and type ωk−2 which is a normalized (a1 = 1) eigenform for
all Hecke operators and which satisfies

(3.6) a` ≡ 1 + `k−1 ≡ 1 + ωk−2(`)` (mod p)

for all primes ` 6= p, where p is a certain prime ideal over p in the field K generated by
the coefficients of f , which does not depend on `.

Remark 3.8. Ribet makes a few enlightening comments, which we now repeat here, as
to why he chose to go the route of working with weight 2 forms. Deligne [6] associated
to modular forms of arbitrary weight a representation via Galois cohomology, and Serre
suggested to Ribet that a congruence such as the one he proves might exist for a cusp
eigenform that, like Gk, has weight k. However, at the time of Ribet’s work there was
only enough known about these representations to prove parts (A), (B), and (C) of The-
orem 2.3, and not part (D). Then Ribet uses another idea of Serre, that representations
coming from such a cusp eigenform “ought to be visible” modulo p on the Jacobian va-
riety J1(p) associated to Γ1(p). Since forms of weight 2 on Γ1(p) are differentials on this
variety, it is natural to look at them. As Khare [15] notes, this is an example of a principle
discovered after the time of Ribet’s paper, that “modulo p everything is weight 2.”

3.3. Proof. Now let us proceed to work toward Theorem 3.7. Among our major tools
are the Eisenstein series, which are useful because they are eigenforms whose coefficients
we know, and the Deligne-Serre lemma (Lemma 3.14), which will allow us to produce a
true eigenform out of a formal q-expansion that we only know to be an eigenform modulo
℘. For these first few lemmas, drop the assumption that p | Bk.

The following proposition is critical to our progress in two ways. It provides the basic
congruence between Eisenstein series between Gk and an cusp eigenform when p | Bk,
and also allows us to construct a special series in Proposition 3.10 using already known
facts (Lemma 3.12) about how many k satisfy p | Bk.

Proposition 3.9 ([20], Lemma 3.1). Let k be even, 2 ≤ k ≤ p − 3. Then the modular
forms G2,ωk−2 and G1,ωk−1 have ℘-integral q-expansions in Q(µp−1) which are congruent
modulo ℘ to the q-expansion

(3.7) Gk(z) = −Bk/2k +
∑
n≥1

∑
d|n

dk−1qn.

Proof. The assertion is clear except for the constant coefficients, because the nth coef-
ficient (n ≥ 1) of G2,ωk−2 (resp. G1,ωk−1) is ωk−2(d)d (resp. ωk−1(d)), which is plainly
congruent modulo ℘ to that of Equation (3.7) by the special property of ω (Equation
(3.5)).

Therefore only the constant coefficients are of concern. However, the congruence between
−Bk/2k and the constant coefficients for G2,ωk−2 follows directly from Proposition A.1.26
in the Appendix, and the congruence for G1,ωk−1 follows from Fact A.1.24 and just a bit
of computation. �

With the basic congruence of Proposition 3.9 in place, we use it to produce a modular
form of any non-trivial even type that does not look like a cusp form modulo ℘. This
form will be used to produce such a cusp form when p | Bk.
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Proposition 3.10. Let k be as above. Then there exists a modular form g of weight 2 and
type ωk−2 whose q-expansion coefficients are ℘-integers in Q(µp−1) and whose constant
term is 1.

Before proving Proposition 3.10, we need these lemmata.

Lemma 3.11. Let t be the number of even integers n, 2 ≤ n ≤ p− 3, such that p divides
Bn. Then pt | h−p , the negative part (Defn. A.1.21) of the class number hp of Q(µp).

Proof. This is Proposition A.1.27 in the Appendices. �

Lemma 3.12. The negative part h−p of the class number of Q(µp) is bounded by

h−p < p(p+3)/42−(p−1)/4.

Proof. In [17], Thm. 7.1, and the discussion afterwards, we find that ±Dp = p(p−3)/2h−p
where Dp is the determinant of a dimension (p− 1)/2 matrix with each entry an integer
from 1 to p− 1. The absolute value of the determinant is bounded by the product of the
Euclidean lengths of the row vectors (Hadamard’s inequality), from which we derive the
desired inequality. �

Now we can produce a “unit series” of sorts, which will allow us to cancel constant terms
to produce semi cusp forms later.

Proof. (Proposition 3.10) It suffices to construct a g whose constant term is a ℘-unit, since
it may be multiplied by another unit to get the desired form. We know from Proposition
3.9 that the Eisenstein series G2,ωk−2 will suffice unless p | Bk. In this case, consider the
set of pairs of even integers

(n,m), 2 ≤ n,m ≤ p− 3, such that n+m ≡ k (mod p− 1).

Then the product G1,ωk−1G1,ωk−1 is a modular form of weight 2 and type ωk−2 whose
q-expansion coefficients are ℘-integers. Furthermore, its constant term is a ℘-unit unless
p | BnBm. Therefore, our proposition is true unless for every such pair (n,m), p divides
one of the two Bernoulli numbers Bn, Bm. Since there are (p−1)/2 Bernoulli numbers in
question, we need only show that p divides less than (p − 1)/4 of them to complete the
proof.

By Lemma 3.11, if t is the quantity of even integers n, 2 ≤ n ≤ p− 3, such that p divides
Bn, then pt | h−p . Yet we know from Lemma 3.12 that h−p < p(p+3)/42−(p−1)/4. We are

therefore done because h−p = 1 for p ≤ 19,3 and p ≤ 2(p−1)/4 for p > 19, implying that

h−p < p(p−1)/4 as desired. �

Having assembled the necessary tools to make the congruence, return to the usual nota-
tion. Fix an integer k as above, i.e. even from 2 to p − 3, and assume that p | Bk. Fix
also ε = ωk−2.

3In fact these are the only cyclotomic fields Q(µp) with p prime and unique factorization. See [27],
Ch. 11.
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Proposition 3.13 ([20], Proposition 3.4). There exists a semi cusp form f =
∑

n≥1 anq
n

such that the an are ℘-integers in Q(µp−1) and such that

f ≡ Gk ≡ G2,ε (mod ℘)

as q-expansions.

Proof. Let c be the constant term of G2,ε. Then f = G2,ε− c ·g has constant term 0 in its
q-expansion since the constant coefficient of g is 1. Therefore f is a semi cusp form, since
it vanishes at the cusp∞. The congruence G2,ε ≡ Gk (mod ℘) proved in Proposition 3.9
implies that their respective constant coefficients −Bk/2k and c are congruent as well.
Since p | Bk, we then have that ℘ | c. Thus f ≡ G2,ε (mod ℘), completing the proof. �

The Deligne-Serre lifting lemma, which we now quote, is a very useful tool that makes
modulo p congruences on modular forms worthwhile. Note, however, that it is stated
completely module-theoretically.

Lemma 3.14 (Deligne-Serre lifting lemma; [9], Lemme 6.11). Let M be a free module
of finite type over a discrete valuation ring R; write m for the maximal ideal of R, k
the residue field, and K the field of fractions. Let T be a pairwise commutative set of
endomorphisms of M . Let f ∈ M/mM be a nonzero common eigenvector of all T ∈ T ,
and let aT ∈ k be the corresponding eigenvalues. Then, there exists a discrete valuation
ring R′ containing R with maximal ideal m′ such that m′ ∩R = m, fraction field K ′ such
that [K ′ : K] <∞, and a nonzero element f ′ of

M ′ = R′ ⊗RM,

which is an eigenvector of all T ∈ T with corresponding eigenvalues a′T such that a′T ≡ aT
(mod m′).

The Deligne-Serre lemma will lift our Eisenstein series to a cusp form, if we can verify
that the Eisenstein series are eigenforms modulo p. In fact, even more is true: as stated
above, they are eigenforms before reduction. The following lemma records this fact.

Lemma 3.15. The Eisenstein series G2,ε and s2,ε are Hecke eigenforms for all Hecke
operators on M2(p, ε).

Proof. It is elementary to verify that these forms are eigenforms for Hecke operators Tn
with (n, p) = 1, but for weight 2 forms the situation is not so hard for (n, p) 6= 1. As
recorded above, Proposition 5.2.3 of [11] implies the lemma. �

The following proposition constructs f that will turn out to have the properties desired
of the construction. However, it leaves the fact that f is an eigenform with respect to Tp,
which will be proved afterwards to complete Theorem 3.7.

Proposition 3.16 ([20], Prop. 3.5). Assume that p | Bk. There exists a non-zero cusp
form f ′ of type ε which is an eigenform for all Hecke operators Tn with (n, p) = 1 and
which has the property that for each prime ` 6= p the eigenvalue λ(`) of T` acting on f ′

satisfies

λ(`) ≡ 1 + `k−1 ≡ 1 + ε(`)` (mod M),

where M is a certain prime (independent of `) lying over ℘ in the field Q(µp−1, λ(n))
generated by the eigenvalues over Q(µp−1).
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Proof. On application of the Deligne-Serre Lifting Lemma, Lemma 3.14, every part of
the proposition will be complete except the claim that f ′ is a cusp form and not merely
a semi cusp form. Thus we begin by applying the Deligne-Serre lemma.

Let R be the localization at ℘ of the ring of integers OQ(µp−1) of Q(µp−1). Let T be
the set of Hecke operators {Tn : (n, p) = 1} on Mk(p, ε), which, as Fact 3.6 notes,
commute pairwise as required. Since these operators commute, Lemma 3.15 implies that
the following decomposition respects the action of operators in T (cf. [11], §5.11).

M2(p, ε) = S2(p, ε)⊕ 〈G2,ε〉 ⊕ 〈s2,ε〉

Therefore set

M =
(
S2(p, ε)⊕ 〈s2,ε〉

)
∩R[[q]],

i.e. M is the space of semi cusp forms of weight k and type ε on Γ0(p) with q-expansion
coefficients in R. This is a free module of finite rank over R. Replace f from Proposition
3.13 with its reduction modulo ℘, and that proposition subsequently implies that f is
equal to the reduction of G2,ε modulo ℘, hence by Lemma 3.15 is an eigenform with Tn-
eigenvalues

∑
d|n ε(d)d for (d, n) = 1. Using the terminology of the Deligne-Serre lemma,

aTn is this same eigenvalue, and more precisely,

aT` ≡ 1 + ε(`)` (mod ℘) for ` 6= p prime.

Applying the Deligne-Serre lemma to these M , R, T , f , and aTn precisely as it is recorded
in Lemma 3.14, we find that the resulting f ′ has exactly the properties required, except
that it is a semi-cusp eigenform with respect to T and not necessarily a cusp eigenform.
In particular, M is a prime over ℘ in a finite extension K ′ of Q(µp−1) and f ′ has coeffi-
cients with non-negative valuation with respect to every prime in K ′ over ℘. Its Hecke
eigenvalues are a′T = λ(n) for (n, p) = 1.

It remains to verify that f ′ is a cusp form. The key is that the space of semi cusp forms in
Mk(p, ε) is the direct sum of the cusp forms and the semi cusp eigenspace 〈s2,ε〉. Hence it
suffices to show that f ′ cannot be s2,ε. This is readily verified: the eigenvalue of T` acting
on s2,ε is ε(`)+`, which cannot be congruent modulo ℘ to the corresponding f ′-eigenvalue
1 + ε(`) unless ε is trivial, which we have ruled out. �

Though f ′ has only been proven to be an eigenform with respect to Tn with (n, p) = 1,
facts about Hecke operators listed in Remark 3.6 imply that f ′ in an eigenform with
respect to Tp as well. Hence we complete the proof of the construction, Theorem 3.7.

Proof. (Theorem 3.7) Let f ′ be the eigenform for Hecke operators Tn, (n, p) = 1 given
by Proposition 3.16 above. Since all eigenforms in S2(Γ1(N)) are newforms, then the
remarks above (and the fuller explanation found in Definition A.3.16 and Fact A.3.17
below) imply that f ′ is an eigenform with respect to all Hecke operators Tn. As remarked
above, for every eigenform g of a single Tn, the eigenvalue is an(g)/a1(g). Therefore there
is a scalar multiple of f ′, call it f , that has Fourier expansion

f =
∑
n≥1

λ(n)qn.

where λ(n) is the eigenvalue of f with respect to Tn and λ(`) ≡ 1 + ε(`)` for all primes
` 6= p, which is exactly what Theorem 3.7 demands. �
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4. The Eichler-Shimura Relation

The Eichler-Shimura relation appears as a citation in Ribet’s work, but is a critical tool.
In this section our goal is to understand the Eichler-Shimura relation, even though we
will not be able to furnish all of the scheme-theoretic details.

The Eichler-Shimura relation states, loosely, that for most primes ` the Hecke action of
T` on the modular curve of Γ1(N) is congruent modulo ` to a Frobenius action. The
Eichler-Shimura relation will be useful in the following way: Factoring the Jacobian of
the modular curve according to a basis of normalized cusp eigenforms on Γ1(p) (Theorem
4.12) so that the action of T` on that factor is as the `th coefficient of our special modular
form f . Restricting the Eichler-Shimura relation to the factor associated to a certain
eigenform f matches up the coefficients of f with a Galois representation that is an
extension of the Frobenius action.

Almost everything in the previous two sentences needs to be developed, and their useful-
ness is mainly to state concisely what we will accomplish. In §4.1, the objects that Hecke
operators act on - modular forms, modular curves, divisors, Jacobians - will be developed.
The action of Hecke will be described on these objects according to need in §4.2. Then
§4.3 will explain what we mean by an action on a curve being “congruent modulo `”
to another action. This requires defining reductions of curves and morphisms. We will
then be prepared to prove the Eichler-Shimura relation in §4.4. Finally, in §4.5 we will
construct the ℘-adic Tate module, which is the representation we have been looking for.
Throughout, the presentation draws heavily on chapters 5 to 9 of [11].

4.1. Hecke Objects. For lack of a better term, “Hecke objects” are the sets that Hecke
operators act on. In this section we will build them up without reference to Hecke’s action
on them. The actions will be developed as needed in the next section. The main objects
that we build up here are moduli spaces of elliptic curves and Jacobians of modular
curves.

Modular forms are the best known Hecke object, but in fact no more details are needed
in addition to those given in §3.

The moduli spaces of elliptic curves are actually modular curves. Recall the definitions
of the modular curves Y (Γ) and X(Γ) from Definition A.3.8 if necessary. We will work
entirely with the modular curves Y1(N) = Y (Γ1(N)) and its compactification X1(N) =
X(Γ1(N)). This is natural after knowing of the most basic example, i.e. for SL2(Z)\H =
Y1(1) = Y (1).

Example 4.1. Each complex elliptic curve is uniquely holomorphically isomorphic to
a complex torus C/Λ where Λ is a lattice in C, and that for each Λ there is a unique
SL2(Z)z ∈ Y (1) = SL2(Z)\H, z ∈ C, such that the lattice Λz := [1, z] is homothetic to
Λ. Therefore,

Γ(1)z 7→ Ez = C/[1, z]
is a bijection between the modular curve Y (1) and the set of complex elliptic curves up
to isomorphism. Thus Y (1) is a moduli space.

It is reasonable to expect that if 1 < [Γ(1) : Γ] < ∞, then Y (Γ) is a moduli space of
elliptic curves with some extra data. These will be called “enhanced elliptic curves (for
Γ).” Since it is only the case Γ = Γ1(p) that concerns us, we will define the moduli space
only for Γ1(N).
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Definition 4.2. An enhanced elliptic curve for Γ1(N) is a pair (E,Q) where E is a
complex elliptic curve and Q is a point of E of order precisely N . We say that two such
pairs (E,Q), (E ′, Q′) are equivalent if there exists an isomorphism E

∼−→ E ′ such that
Q 7→ Q′. We let W1(N) denote the set of enhanced elliptic curves for Γ1(N) modulo this
equivalence relation.

This proposition shows that these enhanced elliptic curves modulo equivalence in W1(N)
carry exactly the extra data that will naturally match up, similarly to Example 4.1, with
Y1(N).

Proposition 4.3 ([11], Theorem 1.5.1(b)). The moduli space for Γ1(N) is

W1(N) = {[Ez, 1/N + Λz] : z ∈ H}.
Two points [Ez, 1/N+Λz] and [Ez′ , 1/N+Λz′ ] are equal if and only if Γ1(N)z = Γ1(N)z′.
Thus there is a bijection

ψ1 : W1(N)
∼−→ Y1(N)

We shall write out half of the proof since it provides a good background example for the
upcoming computation of Hecke actions on these curves.

Proof. Choose any point [E,Q] of W1(N). Choose z′ ∈ H such that E
∼−→ Ez′ = C/Λz′ .

Thus Q = (cz′ + d)/N + Λz′ for some c, d ∈ Z. Since the order of Q is precisely N , it is
clear that (N, (c, d)) = 1. Therefore there exist a, b, k ∈ Z such that ad − bc − kN = 1
and the matrix γ =

(
a b
c d

)
reduced modulo N is in SL2(Z/NZ). Adding multiples of N

to the entries of γ doesn’t affect Q, so we may therefore assume that γ ∈ SL2(Z). Let
z = γ ·z′. Then because the action of γ scales the lattice Λz′′ by (cz′′+d)−1, we have that
(cz′ + d)Λz = Λz′ . Thus we may complete the first part of the proof by verifying that

(cz′ + d)

(
1

N
+ Λz

)
=
cz′ + d

N
+ Λz′ = Q.

This shows that [E,Q] = [C/Λz, 1/n+ Λz] for some z ∈ H as desired.

We leave the second part of the proof as an exercise. �

The formulation above leaves us ready to compute the action of Hecke operators on Y1(N)
as a moduli space.

The other main Hecke objects we discuss are the Jacobians and Picard groups of the
modular curve X1(N). Recall that the Jacobian of a Riemann surface is essentially
integration of differentials modulo homology, as follows.

Given a compact Riemann surface X of genus g > 0, recall that Ω1(X) is the g-
dimensional C-vector space of degree 1 holomorphic differentials on X. We expect that
the dual space Ω1(X)∧ = HomC(Ω1(X),C) be given by path integration. However, in-
tegration is path dependent, with paths that are not homotopy equivalent generating
different integrals. The homotopy group π1(X) gives paths up to homotopy equavalence,
but since path integration does not depend upon the order of paths, the obstruction to
removing path dependence from integration is the abelianization of π1(X), namely the
homology group H1(X,Z). If we think of Ai and Bi as the two inequivalent path inte-
grations around each of the g handles, then they form a Z-basis for H1(X,Z). One may
verify that Ω1(X)∧ = H1(X,Z)⊗R. The Jacobian is the quotient of Ω1(X)∧ by H1(X,Z),
that is “integration modulo homology.”
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Definition 4.4. Let X be a compact Riemann surface of genus g. Then the Jacobian of
X is

Jac(X) = Ω1(X)∧/H1(X,Z),

which is isomorphic to the g-dimensional complex torus Cg/Λg.

We also record the Abel-Jacobi theorem, which will provide an important algebraic per-
spective on the Jacobian necessary to reduce the Jacobian, a complex object, to Q and
subsequently to finite fields. Let the Abel-Jacobi map Ψ : X → Jac(X) be

Ψ(x) =

∫ x

x0

ω

where ω ∈ Ω1(X) and x0 ∈ X is a fixed base point. Extend this linearly to Div(X)
and observe that the dependence on x0 vanishes on the degree-0 divisors Div0(X). Thus
we have a canonical map Ψ : Div0(X) → Jac(X). The Abel-Jacobi theorem draws an
isomorphism between the Picard group of X and Jac(X).

Theorem 4.5 ([5], Thm. 1.5). The map Ψ : Div0(X) → Jac(X) defined above has a
kernel consisting precisely of the group of principal divisors on X. Hence Ψ induces an
isomorphism from Pic0(X) to Jac(X).

Let J1(N) denote the the Jacobian of X1(N). Proposition A.3.9 stated that

ψ : S2(Γ1(N))
∼−→ Ω1(X1(N)),

so the dual spaces may also be identified via

(4.1) S2(Γ1(N))∧ = ψ∧(Ω1(X1(N))∧).

Sending the homology into S2(Γ1(N)) via the same map, the Jacobian of the modular
curve X1(N) may be taken to be J1(N) = S2(Γ1(N))∧/H1(X1(N),Z). With this identity
in place, the action of Hecke on the Jacobian can by simply defined as precomposition
by the action on modular forms, if the action preserves homology.

With the moduli space perspective on the modular curves and the concept of the Jacobian
prepared, Hecke actions will be defined on them.

4.2. Hecke Actions. Here we make a brisk description of the Hecke actions that required
for the purposes of this paper. A fuller explanation may be found in Appendix A.3.

Hecke actions in all of their guises come from a double coset of GL+
2 (Q). In general,

double cosets Γ1γΓ2 send modular forms, modular curves, etc. with respect to the con-
gruence subgroup Γ1 to corresponding objects defined with respect to another congruence
subgroup Γ2. The orbits of the action of Γ1 on the double coset, i.e. Γ1\Γ1γΓ2, are finite
in number. Therefore, since the domain for the operators are invariant with respect to
Γ1, the operator is defined by a finite number of matrices in GL+

2 (Q). It is in terms of
these representative matrices that we will discuss Hecke operators.

Our Hecke operators will be double coset operators with Γ1 = Γ2 = Γ1(N), so they map
the corresponding modular forms of level N , modular curves, etc., to themselves. An
example of a Hecke operator already mentioned in this paper appeared in Remark 3.2.
For γ ∈ Γ0(N) the double coset Γ1(N)γΓ1(N) consists of one orbit of the left action of
Γ1(N) and is represented by γ. Since the action depends only on the bottom right entry d
of γ, this Hecke operator is written as the diamond operators 〈d〉. The action on modular
forms, for example, was given in Remark 3.2.
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The other type of Hecke operator will play a much larger role. It is this type of operator
that will be called a Hecke operator in contrast to the diamond operator. They are
written Tn for all positive integers n; however, the double coset definition is complicated
for general n, so we will only discuss its matrix decomposition for n = p a prime. This
will end up being no problem, since, as has been referred to in the previous sections, the
Hecke operators of prime index suitably generate the others.

The Hecke operator Tp is the double coset of Γ1(N) defined by γ =
(

1 0
0 p

)
. The Γ1(N)-

orbits in the double coset Γ1(N)γΓ1(N) are represented by matrices according to the
following

Proposition 4.6. Let p be a prime and N be a positive integer. If p - N , then a system
of representatives B(p,N) of Γ1(N)\Γ1(N)

(
1 0
0 p

)
Γ1(N) is given by

B(p,N) =

{(
1 j
0 p

)}p−1

j=0

∪
{(

m n
N p

)
·
(
p 0
0 1

)}
where mp− nN = 1.

Let the matrices in the left set be denoted βj =
(

1 j
0 p

)
, and the right factor β∞.

If p | N , then B(p,N) is given by

B(p,N) = {βj}p−1
j=0 .

Proof. See [11], Prop. 5.2.1. �

With the matrix representatives of the double coset for
(

1 0
0 p

)
defined, the Hecke operator

Tp may be defined in various context in terms of the action of these matrices. For example,
the action on modular forms Mk(Γ1(N)) is given by the sum of the weight-k operators
for the B(p,N) (see Proposition A.3.12). Later we will see that this action on modular
forms induces an action on the Jacobian J1(N) via precomposition.

The other Hecke objects, modular curves and their moduli spaces, have a simpler action
since there is no weight factor. A point Γ1(N)z ∈ X1(N) where z ∈ H∗ is sent to a
divisor via

Tp : Γ1(N)z 7→
∑

β∈B(p,N)

Γ1(N)(β · z)

where the action of β is the usual fractional linear transformation. This map extends Z-
linearly to degree-0 divisors Div0(X1(N)) and descends to the Picard group Pic0(X1(N))
([11], §§6.2-6.3). Of course, the action of Hecke operators on the moduli space will be
equivalent. The moduli space formulation of the Hecke action will be the principal way
that we calculate the reduction of the Hecke action to nonzero characteristic, so here we
we calculate the action of Tp and 〈d〉 on W1(N) explcitly.

Proposition 4.7. The Hecke action Tp : Div(W1(N)) → Div(W1(N)) on the moduli
space W1(N) the Z-linear extension of

W1(N) 3 [E,Q] 7→
∑
C

[E/C,Q+ C]

where the sum is taken over all order p subgroups C ⊂ E such that C ∩ 〈Q〉 = {0E}.
Likewise, the operator 〈d〉 behaves as 〈d〉 : [E,Q] 7→ [E, dQ].
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Proof. By Propostion 4.3, it suffices to prove this proposition for [E,Q] = [Λz, 1/N + Λz]
for arbitrary z ∈ H. As βjz = (z + j)/p for 0 ≤ j < p and β∞z = 1/p, the associated
elliptic curve to each of these points is E/Cj where Cj = 〈(z + j)/p〉 + Λz and C∞ =
〈1/p〉+Λz. Each of these subgroups satisfy the condition laid out in the proposition above,
that they are order p subgroups that only trivially intersect 〈Q〉 = 〈1/N〉 unless p | N , in
which case C∞ intersects 〈Q〉, However, it is precisely when p | N that β∞ 6∈ B(p,N), so
on verifying that the Cj are all possible subgroups of order p, the proof for Tp is complete.

The part on 〈d〉 is a quick exercise. �

The Hecke action on the moduli space W1(N) complete, we move on to the action on
Jacobian.

Recall the formulation of the Jacobian in Equation (4.1), i.e.

J1(N) = S2(Γ1(N))∧/H1(X1(N),Z).

A Hecke operator acts on the dual space S2(Γ1(N))∧ by precomposition, that is, for
ϕ ∈ S2(Γ1(N))∧,

(T (ϕ)) (f) = ϕ(T · f) for all f ∈ S2(Γ1(N)).

Thus the Hecke algebra would act on J1(N) by composition on the right if it preserves
homology. In fact this is the case.

Proposition 4.8 ([11], Prop. 6.3.2). The Hecke operators T = Tp and T = 〈d〉 act by
precomposition on the Jacobian associated to Γ1(N),

T : J1(N) −→ J1(N), [ϕ] 7→ [ϕ ◦ T ] for ϕ ∈ S2(Γ1(N))∧,

where [ϕ] represents the equivalence class of ϕ ∈ S2(Γ1(N))∧ modulo H1(X1(N),Z).

Proof. Omitted. See Remark. �

Remark 4.9. Verifying Proposition 4.8 involves factoring the Hecke operators through
two intermediate modular curves. Unfortunately this perspective on Hecke actions, while
it is tractable at the level of this essay, becomes most important in geometric reasoning
involved in proving the Eichler-Shimura relation that is beyond the scope of this essay.
As it is lengthy as well, I have chosen to omit it. The proof may be found in [11].

From this point forward, we must quote liberally from the theory of newforms, discussed in
the Appendix. The main facts needed may be found in Definition A.3.16 and Fact A.3.17.
Also, we will require the Hecke algebra T, defined in Definition A.3.15.

Proposition 4.8 is significant because it shows that the Hecke algebra consists of auto-
morphisms of a free finitely generated Z-module, namely the homology H1(X1(N),Z).
This must be the case, otherwise the Hecke action would not descend from S2(Γ1(N))∧

to J1(N). The consequences are the following.

Proposition 4.10. These facts follow from the fact that T consist of automorphisms of
a free finitely generated Z-module.

(1) The Hecke algebra T is itself a finitely generated Z-algebra.

(2) Each Tn satsifies a monic polynomial equation with integer coefficients, so its
eigenvalues, and in turn the coefficients of a normalized Hecke eigenform, are
algebraic integers.
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(3) Let f(z) =
∑

n≥1 an(f)qn be a normalized eigenform. Then the image Z[an(f)] of
the homomorphism

λf : T→ C, T f = λf (T )f

is a finitely generated Z-module, and therefore lies in a number field, denoted Kf .

If we set If = ker(λf ), then T/If
∼−→ Z[an(f)].

.

Proof. Clear, though perhaps only on reading Appendix A.3. �

Now we are able to construct the main geometric object from which we will derive our
Galois representation, the abelian variety Af associated to a newform f . At the very
beginning of this section, I commented that the Eichler-Shimura relation, while it applies
to the entire modular curve X1(N), would be used to construct a Galois representation
after restricting it to a certain factor of the Jacobian of the modular curve corresponding
to our special cusp eigenform f from §2. The following definition of an abelian variety is
this certain factor.

Definition 4.11. Let f be a newform of level N . The abelian variety associated to f is
the quotient variety

Af = J1(N)/IfJ1(N),

where If has been defined in item (3) above.

For Φ = [ϕ] + IfJ1(N) ∈ Af , it follows from strong multiplicity one ([11], p. 198) that
for a eigenform g ∈ Sk(Γ1(N)), we have Φ(g) = 0 if and only if If · g 6= 0. Recalling from
Fact A.3.17 that a Galois conjugate of a newform is again a newform, it is then easy to
check that fσ is killed by If , and we may once more argue by multiplicity one that these
are the only such eigenforms. Therefore if we set Vf ⊂ S2(Γ1(N)) to be the C-span of the
Galois orbit of f , we know that the action of the abelian variety on cusp forms factors
through the V ∧f modulo homology’s restriction to V ∧f . This reasoning is made rigorous
in [11], Proposition 6.6.4.

Thus we may conclude that following diagram,

(4.2) J1(N)
Tp //

��

J1(N)

��
Af

ap(·)∗
// Af

,

commutes, in the sense that the restriction of Tp to ϕ ∈ Af is given by linearly extending
the action on elements g of an eigenbasis given by

(ap(g)∗ϕ)(g) =

{
ap(g)ϕ(g) if g = fσ

0 otherwise.

to all of S2(Γ1(N)) by linearity.

Because of this restriction result, it is natural to expect (on the theory of newforms) that
the Jacobian factors into abelian varieties. We quote the decomposition.
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Theorem 4.12 ([11], Thm. 6.6.6). The Jacobian assocaited to Γ1(N) is isogenous to a
direct sum of Abelian varieties associated to equivalence classes of newforms,

J1(N)→
⊕
f

A
mf
f .

Here the sum is taken over a set of representatives f ∈ S2(Γ1(Mf )) at levels Mf dividing
N , and each mf is the number of divisors of N/Mf .

This decomposition will be useful again when we take the Eichler-Shimura relation, which
describes the Hecke action on the entire Jacobian of Γ1(p) reduced modulo ` in terms of
a Frobenius action, and restrict this to Af to get our Galois representation.

4.3. Reduction of Algebraic Curves. Here we will discuss reduction in two senses.
First of all, we will discuss how the results from the previous section, which were phrased
in terms of Riemann surfaces and C-vector spaces, apply in a very similar form to the
same algebraic curves defined over Q. Then, we will discuss the geometry of the reduction
of these varieties modulo a prime.

The Riemann existence theorem says that the analytic structure of functions and dif-
ferentials on Riemann surfaces comes from a corresponding algebraic structure. That
is, for example, our Riemann surface X1(N) is a complex algebraic curve, and therefore
has a function field of transcendence degree 1 over C given by the meromorphic func-
tions on X1(N). In the case N = 1, it is well known that the function field C(X(1))
of X(1) = SL2(Z)\H∗ is the field of rational functions C(j), where j(z) is the elliptic
modular function. Viewing X(1) as a moduli space of “non-enhanced” complex elliptic
curves W1(1) as in Example 4.1, the point Ez = C/Λz in W1(1) is related to the function
field C(X(1)) in that Ez has j-invariant j(z).

The case that concerns us, the function field C(X1(N)), is less pervasively known, but
can still be easily complex analytically verified (see [11], §7.5) to be

(4.3) C(X1(N)) = C(j, f1), where f1(z) =
g2(z)

g3(z)
℘z(1/N),

and where g2, g3 are certain multiples of our familiar Eisenstein series G4, G6 respectively.
Also, ℘z is the Weierstrass ℘-function for the lattice [1, z] ([11], Prop. 7.5.1).

Using the moduli space interpretation of E we can reprove formula (4.3) in a more
geometric fashion. The additional effort will be worthwhile since this technique gives us
a model for X1(N) over Q, so we move forward thusly.

Consider the universal elliptic curve

Ej : y2 + xy = x3 − 36

j − 1728
x− 1

j − 1728
,

an elliptic curve over Q(j), with formal j-invariant j. The notation Ej is not to be

confused with Ez. In fact Ez
∼−→ Ej(z) via the Weierstrass ℘-function. Then the element

1/N + Λz of Ez maps via ℘ to

Qz(1/N) =

(
g2(z)

g3(z)
℘z(1/N),

(g2(z)

g3(z)

)3/2

℘′z(1/N)

)
,

which is a sensible place for the function field generators in Equation (4.3) come from
given the description of the moduli space W1(N) ∼= Y1(N) in Proposition 4.3. This leads
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us to think that a function field for X1(N) over Q could potentially be K1 = Q(j, f1)
as well. To show that Q is algebraically closed in K1, we will calculate the action of
G = Gal(Q(j)/Q(j)) on the N -torsion Ej[N ], which we know from the theory of elliptic
curves is congruent to (Z/NZ)2 ([24], Cor. 6.4). Take Q = Qz(1/N), P = Qz(z/N) as a
basis for Ej[N ]. Then we have a G-representation ρ : G → GL2(Z/NZ) defined by the
relation [

P σ

Qσ

]
= ρ(σ)

[
P
Q

]
, σ ∈ G.

By the results in [11], §§7.5-7.6, this representation is surjective and cuts out

H = Gal(Q(j, Ej[N ], µN)/Q(j))
∼−→ GL2(Z/NZ).

This is to be expected because the Weil pairing eN : Ej[N ] × Ej[N ] → 〈µN〉 ([24], §8.1)
is Galois equivariant and eN(P σ, Qσ) = eN(P,Q)det ρ.

Despite the appearance of µN , we are hoping that the field K1 ⊂ Q(k,Ej[N ], µN) in-
tersects trivially with Q(µN). This is the case if the image under ρ of the subgroup of
H fixing K1 surjects via “det” onto (Z/NZ)×. This image is readily calculable because
fixing f1 means fixing Q, therefore these are the matrices of the form(

a b
0 1

)
.

These matrices’ determinants take on all possible values, so we have verified that Q(j, f1)
is the function field of a nonsingular projective algebraic curve over Q. It remains to show
only that this model is the same one as over C. This follows upon the fact that f1 has
the same degree minimal polynomial over both Q(j) and C(j) ([11], Exer. 7.7.2). Thus
from now on, when we write X1(N) we mean a complex algebraic curve with a model
over Q.

At this point we have finished one part of the reduction: from analytic objects over C to
algebraic objects over Q.

Remark 4.13. While the Hecke actions on the moduli space have not been brought
along down to Q, it turns out that Hecke operators are defined over Q. The Jacobian
has not been brought along, but by Weil’s theory [28] in its algebraic geometric Picard
group form it remains valid as we reduce. Therefore we will use the Picard group from
now on. See Chapter 7 of [11] for details.

The next step is to reduce our curves over Q to curves over the finite field Fp. Requiring
scheme theory, these topics are beyond the scope of this essay, though [11], §8.5 overviews
the situation from a classical point of view. However, they are quite important and we
will try to give indications here of what must be done. The first main notion is that

of good reduction. Good reduction of some object X will be written X̃. Work such as
[22] extends to algebraic curves and Jacobians the most basic notion of good reduction,
that of elliptic curves. In order to be able to discuss good reduction effectively in the
elliptic curve case, a canonical model is required. This is the global minimal Weierstrass
equation. The analogy in the case of algebraic curves (resp. Jacobians) are canonical
proper models (resp. Neron or “minimal” models) over Spec Z. Here is one example,
drawn from [10].

Example 4.14 ([10], Ex. 8.0.1). Consider the scheme Y = Spec (Z[j]) over Spec Z and
the isomorphism φ : Y1(1)→ Y(C) which sends SL2(Z)z to the element of Y(C) defined
by j → j(z). The pair (Y , φ) is a model for Y1(1) over Z.
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For our purposes, however, we may draw on the intuition from basic algebraic geome-
try.

Definition 4.15. Let Z(p) be the localization of Z at p. Following [11] §8.5, say that a
nonsingular affine curve C defined by polynomials ϕ1, . . . , ϕm ∈ R = Z(p)[x1, . . . , xn] has
good reduction at p if they generate a prime ideal in R and the reductions ϕ̃1, . . . , ϕ̃m ∈
Fp[x1, . . . , xn] defines a nonsingular affine algebraic curve C̃ over Fp. Call C̃ the reduction
of C at p. Similarly extend this definition to projective curves by homogenizing at looking
at affine pieces.

Before moving on and focusing on good reduction, we should note that studying the
geometry in the case of bad primes is relevant to Ribet’s proof. For it is the Deligne-
Rappoport results [7] on the fibres at bad primes are a critical tool used by Ribet to
control the ramification of the representation at the prime p.

For the computations in the next section that derive the Eichler-Shimura relation, it is
the moduli space perspective on the Hecke operators that is most intrumental. Thus
information on the reduction of this moduli space from the original setting is needed.
Let W1(N) now represent the space of elliptic curves over Q̄, which is parameterized by
the Q̄-points of X1(N)/Q. To reduce the moduli space modulo p where p - N , chose
a maximal ideal p of Z̄ over p and restrict to those elliptic curves with good reduction
modulo p. Write

W1(N)′ = {[E,Q] ∈ W1(N) : E has good reduction at p}

Likewise write W̃1(N) for the moduli space of elliptic curves over F̄p. The reduction map
is therefore

W1(N)′ → W̃1(N), [Ej, Q] 7→ [Ẽj, Q̃].

Remark 4.16. Note how the reduction of this moduli space depends on p not dividing
N : for simplicity say N = p. Then there are p2 − 1 points of order p in E[p], but at

most p − 1 such points in Ẽ. The supersingular case makes it especially obvious that

there are some elements of [E,Q] ∈ W1(p) that do not reduce well to W̃1(p). This fact
is made geometrically rigorous for the modular curve in Igusa’s theorem [13] that X1(N)
has good reduction at p for p - N .

Finally, we record a few facts about the moduli space reduction that we have just written
out apply more generally to nonsinglular projective algebraic curves over Q with good
reduction at p. See [11], §8.5 for further details.

Fact 4.17. The natural reduction map C → C̃ is surjective, and induces a surjective
map on degree-0 divisors. Principal divisors are sent to principal divisors, ergo this map

descends to a surjective map Pic0(C)→ Pic0(C̃).

Fact 4.18. Morphisms between curves h : C → C̃ ′ of positive genus reduce naturally to

a morphism h̃ : C̃ → C̃ ′ such that

C
h //

��

C ′

��

C̃
h̃ //

C̃ ′

commutes.
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4.4. The Eichler-Shimura Relation. There are three basic ingredients that go into
the Eichler-Shimura relation. First, there is the Hecke action on the moduli space Y1(N)
given in Proposition 4.7. Igusa’s theorem [13] (see also [11], Thm. 8.6.1) states that
Y1(N) has good reduction over p for all p - N . It remains only to reduce the Hecke action
modulo p - N and find that it is given by the action of Frobenius as follows.

Let σp be the Frobenius action x → xp on the coordinates of an algebraic curve over
Fp.

Theorem 4.19 (Eichler-Shimura Relation, [11], Theorem 8.7.2). Let p - N . The follow-
ing diagram commutes:

Pic0(X1(N))
Tp //

��

Pic0(X1(N))

��

Pic0(X̃1(N))
σp,∗+ f〈p〉∗σ∗p // Pic0(X̃1(N))

where the starred maps are the pushforwards and pullbacks.

Remark 4.20. Following the treatment in [11], there will be a major gap in rigor in our
proof of the Eichler-Shimura relation. Recall from Remark 4.9 that understanding the
Hecke action Tp on X1(N) involves factoring through two intermediate modular curves.
These modular curves have bad reduction at p, putting their study beyond the scope of
this essay. On the other hand, there is no such impediment for the operators 〈d〉 where
(d,N) = 1, so their reduction, used in the statement of Theorem 4.19, follows directly
from Fact 4.18. However, as Diamond and Shurman comment, it suffices to assume that
a commutative diagram

Pic0(X1(N))
Tp //

��

Pic0(X1(N))

��

Pic0(X̃1(N))
eTp // Pic0(X̃1(N))

exists, and then compute T̃p ([11], p. 349). This is what our proof will consist of.

Most of the work (and the most interesting work, in my opinion) is in this lemma, which
computes the reductions modulo p of the factors [E/C,C + Q] for E with which the
Hecke action on the moduli space was expressed in Proposition 4.7. Note that this
lemma assumes that E has ordinary reduction at p.

Lemma 4.21 ([11], Lem. 8.7.1). Let E be an elliptic curve over Q̄ with good ordinary
reduction at p maximal in Q̄ over p and let Q ∈ E be a point of order precisely N , p - N .

Let C0 be the order p kernel of the reduction map E[p]→ Ẽ[p]. For any order p subgroup
C of E,

[Ẽ/C, Q̃+ C] =

{
[Ẽσp , Q̃σp ] if C = C0

[Ẽσ−1
p , [p]Q̃σ−1

p ] C 6= C0

Proof. Suppose C = C0. Let E ′ = E/C and let Q′ = Q + C = ϕ(Q), where ϕ : E → E ′

is the quotient isogeny. Let ψ be the dual isogeny of ϕ. The proof may be reduced to
showing that ψ̃ is seperable. It will suffice to prove this case because one of ψ̃ and ϕ̃ must
be a Frobenius endomorphism as they have degree p, and in the ordinary reduction case,
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this endomorphism is inseparable while its dual is seperable ([24], Thm. 3.1). We may

then write ϕ̃ = i ◦ σp where i : Ẽσp → Ẽ ′ is an isomorphism and i(Q̃σp) = (̃Q′). Hence

[Ẽ ′, Q̃′] = [Ẽσp , Q̃σp ]

as desired.

Now prove that ψ̃ is separable. Consider the commutative diagram

E ′[p]
ψ //

��

E[p]

��

Ẽ ′[p]
ψ̃ // Ẽ[p]

Since E has ordinary reduction, so does its isogenous image E ′, so the bottom two groups
have order p. Because ϕ ◦ ψ(E ′[p]) = [p]E ′[p] = 0 and both ϕ and ψ have degree p, it
follows that ψ(E ′[p]) = kerϕ = C. By assumption, ψ(E ′[p]) = C0 which is the kernel
of the reduction given by the right side downward arrow, thus the diagram sends E ′[p]

to {0} ⊂ Ẽ[p]. However, the left side downward arrow is surjective, so we conclude that

ker ψ̃ = Ẽ ′[p]. Then since its degree equals the order of its kernel, ψ̃ is a separable isogeny.

On the other hand suppose that C 6= C0. Use the same notation as above, so that ϕ is
the quotient isogeny and ψ is its dual. In analogy to C = kerϕ and C0, let C ′ = kerψ
and let C ′0 be the kernel of the reduction of E ′[p], an order p subgroup of E ′[p]. We claim
that C ′ = C ′0. Since C0 6= C = kerϕ, the subgroup ϕ(C0) has order p. Similar to before,
ϕ(C0) must be contained in kerψ since ψ ◦ϕ = [p] = 0 |E[p]. Thus ϕ(C0) = C ′. But since
C0 is the kernel of the left arrow and C ′0 is the kernel of the right, it must be the case
that ϕ(C0) ≤ C ′0, hence ϕ(C0) = C ′0 since both have order p. This means that C ′ = C ′0.

This puts us back in the first case (C = C0) with ϕ replaced by ψ. Applying those

arguments to ψ, E ′, and Q′ (note that ψ(Q) = [p]Q) means that ψ̃ = i ◦ σp where

σp is the Frobenius endomorphism on Ẽ ′ and i : Ẽ ′
σp → Ẽ is an isomorphism such

that Q̃′
σp

= [p]Q̃. Apply σ−1
p to i (coefficientwise) so that iσ

−1
p : Ẽ ′ → Ẽσ−1

p sends

Q̃′ 7→ [p]Q̃σ−1
p . Thus we have an equivalence of enhanced elliptic curves

[Ẽ ′, Q̃′] = [Ẽσ−1
p , [p]Q̃σ−1

p ],

completing the lemma. �

As the above lemma applies only to E that are ordinary at p, we quote the results for
when E is supersingular at p.

Lemma 4.22 ([11], Exer. 8.7.1). Let E be an elliptic curve over Q̄ with supersingular
reduction at p a maximal ideal in Z̄ over p and let Q ∈ E be a point of order precisely
N . Then for any order p subgroup C of E,

[Ẽ/C, Q̃+ C] = [Ẽσp , Q̃σp ] = [Ẽσ−1
p , [p]Q̃σ−1

p ].

Note that by this lemma, it does no harm to our considerations of the action of Tp on

W̃1(N) to assume that every elliptic curve in W̃1(N) has ordinary reduction at p.

At this point the Eichler-Shimura relation can be readily imagined.
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Proof. (Sketch) Since we are assuming that p - N , by Proposition the action of Tp on
W1(N) is

Tp : [E,Q] 7→
∑

[E:C]=p

[E/C,Q+ C],

which by Lemma 4.21 reduces modulo p on E with good reduction at p to

Tp([Ẽ, Q̃]) =
∑
C

[Ẽ/C, Q̃+ C] = [Ẽσp , Q̃σp ] + p([Ẽσ−1
p , [p]Q̃σ−1

p ])

= (σp + p〈̃p〉σ−1
p )[Ẽ, Q̃],

as there are p + 1 subgroups of E of order p, one being C0. Note that the reduction of
〈d〉 is easy to compute (see Proposition 4.7).

The correlation proved between the Tp action on W1(N)′ and W̃1(N) extends Z-linearly
to divisors, that is,

Div0(W1(N)′)
Tp //

��

Div0(W1(N)′)

��

Div0(W̃1(N))
σp+pf〈p〉σ−1

p // Div0(W̃1(N))

commutes. This is the front square in the diagram,

Pic0(X1(N))
Tp //

��

Pic0(X1(N))

��

Div0(W1(N)′)

66mmmmmmmmmmmm
Tp //

��

Div0(W1(N)′)

66mmmmmmmmmmmm

��

Pic0(X̃1(N))
σp,∗+ f〈p〉∗σ∗p // Pic0(X̃1(N))

Div0(W̃1(N))

66nnnnnnnnnnnn
σp+pf〈p〉σ−1

p // Div0(W̃1(N))

66nnnnnnnnnnnn

where the back square is the one that we wish to show commutes. The side squares
commute by Igusa’s work [13], and the top part of the square commutes if one takes
an algebraic perspective on the Hecke action Proposition 4.8 and reduces it to Q as per
Remark 4.13 and then reduces modulo p. The bottom square is verified to be commutative
in [11], Exer. 8.7.2. Therefore the Eichler-Shimura relation is complete. �

Remark 4.23. The action σp + p〈̃p〉σ−1
p on divisors becomes σp,∗ + 〈̃p〉σ∗p is a natural

extension of the fact that [p] = σp,∗σ
∗
p on elliptic curves (which are their own Jacobian).

We conclude by noting that the rigorous proof of the Eichler-Shimura relation may be
found in Shimura’s book [23], §7.4. It draws heavily on his theory of canonical models,
found in [23], §6.7.

4.5. The Resulting Galois Representation. Let us return to the notation of the
previous sections: instead of working with general Γ1(N) and the assocaited modular
curves, etc., consider an odd prime p such that p | Bk for appropriate k, and let f be the
cusp eigenform in S2(Γ1(p)) constructed in §3. We wish to apply the Eichler-Shimura
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relation and the factorization of the Jacobian (Theorem 4.12) to construct an `-adic
representation of GQ closely associated to f . Consequently, a change in notation is in
order. The prime p replaces the integer N as the level, and q takes the place of p, i.e.
q 6= p. We proceed following [11], §9.5.

Clearly the `n torsion of J1(p) is of rank 2g where g is the genus of X1(p), since J1(p) ∼=
Cg/Λg. These torsion points are algebraic over Q since we take Pic0 instead of J and
consider Pic0(X1(p)), which has a good model over Q, and moreover since we may take
this model to be a Neron model with good reduction for q - p, we have an isomorphism

Pic0(X1(p))[`n]
∼−→ Pic0(X̃1(p))[`n] where the reduction is modulo q and ` - qN .4 Galois

will act on these torsion groups, but the comprehensive way to capture the action is to
take its inverse limit.

Definition 4.24. The `-adic Tate module of X1(p) is

V`(Pic0(X1(p))) = lim
←n
{Pic0(X1(p))[`n]} ⊗Q.

The Tate module V`(Pic0(X1(p))) is a free Q`-vector space of dimension 2g.

As Pic0(X1(p)) is defined over Q, GQ acts on Pic0(X1(p))(Q̄); since it has the structure of
an abelian variety over Q, the action induces an automorphism on Pic0(X1(p))[`n], and
is compatible with the inverse limit defining the Tate module, i.e.

GQ

wwnnnnnnnnnnnnnn

((QQQQQQQQQQQQQQ

Aut(Pic0(X1(p))[`n]) Aut(Pic0(X1(p))[`n+1])oo

This compatibility gives us a continuous representation

ρX1(p),` : GQ → GL2g(Z`) ⊂ GL2g(Q`).

As the action of Hecke operators on Pic0(X1(p)) is defined over Q (see Remark 4.13), the
Hecke action on the Jacobian commutes with the Galois action. The upcoming theorem
shows that they are intertwined, extending, in a sense, the Eichler-Shimura relation from
finite fields to the global situation. First, a few facts should be collected.

Definition 4.25. Let q be a maximal ideal in Z̄ over a rational prime q. An absolute
Frobenius element of q is any element in the decomposition group Dq of q that acts as
the Frobenius automorphism on Z̄/q = F̄q. Sometimes, by abuse of notation, we write
Frobq to denote an arbitrary absolute Frobenius element for some such q over q.

Clearly these Frobenius elements will be a useful tool in “extending” the Eichler-Shimura
relation to a global context.

Fact 4.26. It follows from the Cebotarev density theorem (see for example [14]) that if

(4.4) F = {Frobq}q|q ⊂ GQ

is a set of absolute Frobenius elements, one for each rational prime q, then this set is
dense in GQ. Thus knowing the behavior of a continuous representation on such a set
prescribes the representation.

4This situation exemplifies how abelian varieties extend the theory of elliptic curves.
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Theorem 4.27 ([11], Thm. 9.5.1). The Galois representation ρX1(p),` is unramified at
every prime q - `p. For any such q let q ⊂ Z̄ be any maximal ideal over q. Then
ρX1(p),`(Frobp) satisfies the polynomial equation

x2 − Tpx 〈p〉 p = 0.

Proof. Choose q in Z̄ over q - `p. There is a commutative diagram

Dq
//

��

Aut(Pic0(X1(p))[`n])

��
GFq // Aut(Pic0(X̃1(p))[`n]).

Since the right side arrow is an isomorphism as was mentioned above, and the inertia
group Iq is the kernel of the left side map, the representation is unramified (see Definition
2.5).

To prove the second part of the theorem, the Eichler-Shimura relation restricts to `n-
torsion so that

Pic0(X1(p))[`n]
Tq //

��

Pic0(X1(p))[`n]

��

Pic0(X̃1(p))[`n]
σq,∗+ f〈q〉∗σ∗q // Pic0(X̃1(p))[`n].

Replacing the top arrow with Frobq + 〈q〉 qFrob−1
q also commutes (see Definition 4.25).

Since the vertical arrows are isomorphisms,

Tq = Frobq + 〈q〉 qFrob−1
q on Pic0(X1(p))[`n].

Since this holds for all n, so the equality extends to the Tate module V`. The minimal
polynomial for the action of Frobq follows from the equality. �

All that is left to secure the relation that we desire is to apply (the algebraic reduction
of) Theorem 4.12 to restrict this relation to the factor Af of J(p), the abelian variety
associated to f . This follows from the following

Lemma 4.28 ([11], Lem. 9.5.2). The restriction map Pic0(X1(p))[`n] → Af [`
n] is sur-

jective and its kernel is stable under GQ.

Proof. Choose y ∈ Af [`
n]. Then on writing y = x + IfPic0(X1(p)) for some x ∈

Pic0(X1(p)), it must be the case that `nx ∈ IfJ1(p). It is easily verifed that `n-
multiplcation is surjective on IfJ1(p), thus `nx = `nx′ for some x′ ∈ IfPic0(X1(p)).
Therefore x− x′ is in Pic0(X1(p))[`n] and maps to y, showing that the restriction map is
surjective as desired.

The second part of the lemma follows from the fact that Hecke and Galois actions on
Pic0(X1(p)) commute (see [11]). �

Recall the notation on abelian varieties from §4.1, namely Kf = Z[{an(f)]⊗Q, degKf =
d. Then the action of GQ on Pic0(X1(p))[`n] induces an action on Af [`

n], subsequently
on the Tate module V`(Af ). Thus V`(Af ) is a representation, written commonly as

(4.5) ρAf ,` : GQ → GL(V`(Af )) = GL2d(Q`),
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and which inherits properties such as continuity and restricted ramification from ρX1(p),`.
Since by formula (4.2) Tq acts as aq(f) on Af , and 〈q〉 acts as ε(q) where ε is the type of
f , the equation

x2 − aq(f)x+ ε(q)q = 0

is satisfied by Frobq. After showing that V`(Af ) is in fact free of rank 2 over Kf ⊗ Q
([11], Lemma 9.5.3), we may conclude with this final theorem, the construction of the
representation associated to f , which we state in greater generality (replacing p with
N).

Theorem 4.29. Let f ∈ S2(N, ε) be a newform with number field Kf . Let ` be a prime.
For each prime λ of Kf lying over ` there is a 2-dimensional Galois representation

ρf,λ : GQ → GL(V`(Af )) = GL2(Kf,λ),

where Kf,λ is the λ-adic completion of Kf . This representation is unramified at every
prime q - `N . For any such q let q ⊂ Z̄ be any maximal ideal lying over q. Then
ρf,λ(Frobq) satisfies the polynomial equation

x2 − aq(f)x+ ε(q)q = 0.

Finally we have produced a Galois representation associated to a cusp eigenform in
S2(Γ1(p)). The theorem above shows that the representation may be studied via the
coefficients of the modular form. The next section takes facts about this representation
and the form of the coefficients of the special cusp eigenform produced in §3 to produce
a reduction that cuts out exactly the Galois extension that we want, proving most of the
main theorem.

5. Properties of the Representation

By the work in §4 culminating in Theorem 4.29, any appropriate cusp eigenform yields
a Galois representation such that the coefficients of the eigenform correspond describe
the action of absolute Frobenius elements in GQ. Note well, however, that this is a
different kind of representation from the one that we are trying to produce to prove
Theorem 2.3. Theorem 4.29 is a representation over a local field, whereas we are looking
for a representation over a finite field. The representation sought will be a reduction of the
p-adic representation. This section will take the representation from the cusp eigenform
constructed in Theorem 3.7 and describe an appropriate choice of reduction which fulfills
parts (A), (B), and (C) of Theorem 2.3. Our goal is the following theorem.

Theorem 5.1. Assume that p | Bk. Let f be the newform of weight 2, level p, and type
ε = ωk−2 constructed in Theorem 3.7. Let K be the completion of the coefficient field of
f at p, the specific prime over p given in Theorem 3.7, and O,F be its ring of integers
and residue field. Let ρ : GQ → GL2(K) be the representation associated to f by Theorem
4.29. Then there exists a reduction

ρ̄ : GQ → GL2(F)

of ρ such that

(1) ρ̄ is unramified at all primes ` 6= p;
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(2) The representation ρ̄ is reducible over F such that it is isomorphic to a represen-
tation of the form (

1 ∗
0 χk−1

)
;

(3) ρ̄ is not semisimple, or equivalently (Lemma 5.3, its image has order divisible by
p.

That is, there exists a representation ρ̄ satsifying all of Theorem 2.3 except part (D).

Note that since ρ is unramified at all primes ` 6= p by its construction in Theorem 4.29,
even the reader who does not know the definition of a “reduction” of ρ would expect that
ρ̄ satisfies property (1) automatically. Indeed this is the case. It remains only to verify
parts (2) and (3).

5.1. Reductions of p-adic Representations. As first steps toward proving Theorem
5.1, we will define the reduction of a p-adic representation, and then discuss basic prop-
erties of reduced representations. For example, Lemma 5.3, the equivalence of semisim-
plicity and the absence of elements of order p in the image of a reduced representation
modulo p, substantiates the equivalence claimed in part (3) of Theorem 5.1.

This this section (§5.1), we will use the same notation as in Theorem 5.1, but work with
general objects of those type (i.e. K is any finite extension of Qp, etc.) Also fix O as the
integer ring of K with uniformizer π.

Given a d-dimensional p-adic Galois representation ρ : GQ → GL(V ) = GL2(K),5 it is
reasonable to be curious why such a representation has a natural reduction modulo p
since not all elements of GLd(Qp) are p-integral. Yet the fact that the representations
constructed above have integral trace and determinant suggest that such a reduction is
possible at least in that case. But in fact, this is always the case. Some lattice T of
V is always left stable because GQ is compact and acts continuously on V (Proposition
A.4.2).

WIth this lattice T in hand, GQ acts on T/πT , which is a vector space of dimension two
over F. This action is the reduction of ρ.

Definition 5.2. Let ρ be a Galois representation on V that fixes lattice T as above.
Then the induced map

ρ̄ : GQ → GL(T/πT ) = GL2(F)

is the reduction of ρ attached to T .

Recall that a semi-simplification of a representation is the direct sum of its Jordan-Hölder
factors. By the Brauer-Nesbitt Theorem ([4], Thm. 30.16), the semi-simplfication of ρ̄
does not depend on the choice of lattice T . Thus ρ̄ is unique (up to equivalence of course)
if any reduction of ρ is simple.

However, the opposite case, when some ρ̄ is reducible, is the case that Ribet wants to
deal with (cf. Theorem 5.1). In this case, the Brauer-Nesbitt theorem implies that there

5The discussion is restricted to dimension 2, but these beginning comments on the existence of reduc-
tions applies to arbitrary dimension.
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are two characters ϕ1, ϕ2 : GQ → F× such that the semisimplification of ρ̄ is ρ̄ = ϕ1 ⊕ ϕ2

for any reduction ρ̄ of ρ. Hence, ρ̄ may be written in one of the two forms(
ϕ1 ∗
0 ϕ2

)
,

(
ϕ1 0
∗ ϕ2

)
,

depending on which character ϕi gives the action of ρ̄ on its fixed subspace. We call these
forms upper triangular and lower triangular respectively.

While the following lemma is not critical to producing an appropriate reduction, it is
a basic fact about representations over finite fields that will be crucial to later results.
Namely, by producing a reduced representation that is reducible but not semisimple,
the elements of order p that then exist are those that correspond to the unramified p-
extensions of Q(µp).

Lemma 5.3. Let ρ̄ : GQ → GL2(F) be a representation on a finite field F. Then ρ̄ is
semisimple if and only if its image has order prime to the characteristic p of F.

Proof. ([17], pp. 182–183) Choose some element α ∈ Im(ρ̄). Its Jordan normal form in
F̄ is then one of (

a 1
0 a

)
or

(
a 0
0 d

)
, a, d ∈ F×.

For n ≥ 1 the nth power of these matrices are(
an nan−1

0 an

)
or

(
an 0
0 dn

)
respectively. Plainly, p divides the order of the left matrix and does not divide the order
of the right side matrix. As the left matrix does not act semisimply whereas the right
matrix does, the lemma has been verified. �

5.2. Ribet’s Lemma on Reducible Reductions. With these preliminaries in place,
we may move on to prove a critical lemma from Ribet’s paper, that results in a reduced
representation that is reducible but not semi-simple so that, for example, Lemma 5.3
applies. While Ribet’s idea in [20] of producing a certain representation to deduce alge-
braic number theoretic properties were used heavily in further developments, T. Berger
commented to me that of theorems in [20] it is this representation theoretic lemma that
mathematicians have built upon most. Note that it implies that either character ϕi may
act on the fixed subspace, depending on the choice of lattice.

Proposition 5.4 ([20], Prop. 2.1). Suppose that the K-representation ρ is simple but
that its reductions are reducible. As above let ϕ1, ϕ2 be the characters associated to the
reductions of ρ. Then GQ leaves stable some lattice T ⊂ V for which the associated

reduction is of the form

(
ϕ1 ∗
0 ϕ2

)
but is not semi-simple.

Proof. Following Ribet, to begin we set out two preliminary facts.

Choosing a GQ-stable lattice T of V and a O-basis for this lattice allows ρ to be viewed
as a map GQ → GL2(O). A matrix M ∈ GL2(K) such that Mρ(GQ)M−1 ⊆ GL2(O)
defines another GQ-stable lattice MT with basis the image under M of the basis for T .
From this lattice we get a new reduction

(5.1) GQ →Mρ(G)M−1 ↪→ GL2(O)→ GL2(F).
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Secondly, the proof will use heavily the identity

(5.2) P

(
a πb
c d

)
P−1 =

(
a b
πc d

)
,

where P =

(
1 0
0 π

)
.

Now we begin the proof proper. Choose a lattice T in V . If the reduction of ρ associated

to T has lower triangular form

(
ϕ1 0
∗ ϕ2

)
, then the top right entry of every matrix in

ρ(GQ) has positive valuation. Hence by Equation (5.2) we have Pρ(GQ)P−1 ⊂ GL2(O)

and the new reduction as in Equation (5.1) is of the form

(
ϕ1 ∗
0 ϕ2

)
. Therefore we may

assume that the reduction is of the form desired.

To complete the proof, we assume that all reductions ρ̄ of ρ of upper triangular form
are semisimple, and prove that ρ is then reducible. This will prove the proposition by
contradiction.

Set M0 as the 2×2 identity matrix. Inductively, we will define a converging set of matrices

Mi =

(
1 ti
0 1

)
such that Miρ(G)M−1

i consists of elements of GL2(O) whose lower-left entries are divisible
by π and whose upper right entries are divisible by πi. This will imply that ρ is reducible
because the matrix M =

(
1 t
0 1

)
with t = lim ti will then be such that Mρ(G)M−1 consists

of matrices whose upper right entries are 0.

Now, the induction step. Assume that Miρ(G)M−1
i consists of matrices of the form(

a πib
πc d

)
where a, b, c, d ∈ O. By the conjugation formula (5.2), the matrices in P iMiρ(G)M−1

i P−i

are of the form

(
a b

πi+1c d

)
, thereby describing a reduction modulo π which is in upper

triangular form. By assumption, such a representation is semisimple; therefore there

exists u ∈ O such that U =

(
1 u
0 1

)
diagonalizes the (mod π) representation. Therefore

the matrices in

UP iMiρ(G)M−1
i P−iU−1 have the form

(
a πb

πi+1c d

)
as conjugation by U does not modify the bottom left entry. Conjugating by P−i allows
us to conclude that since

(P−iUP iMi)ρ(G)(P−iUP iMi)
−1

consists of integral matrices whose bottom left entries are divisible by π and whose upper
right corner entries are divisible by πi+1, setting

Mi+1 = P−iUP iMi =

(
1 ti + πiu
0 1

)
completes the induction. This form of Mi+1 makes it plain to see that {ti} converges. �
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5.3. Constructing the Desired Reduction. All of the tools are in place to complete
the proof of (all but one part of) Ribet’s [20] main theorem (Theorem 2.3), construct-
ing a reduced representation with special properties. We have already verified that the
representation ρ associated to the special cusp eigenform f is unramified at all primes
except p, so it remains to show that there exists a lattice in the representation such that
the associated reduction has the form (

1 ∗
0 χk−1

)
and is not semisimple. Ribet’s lemma on reducible reductions of simple representations
(Proposition 5.4) reduces the task to showing that ρ is irreducible and then finding a
lattice such that the associated reduction is reducible. Then all that is left is to show
that the reduction on such a lattice has semisimplification of the form 1⊕ χk−1, where χ
was defined in fomula (1.5).

We will prove that ρ is irreducible first, after recalling notation.

Working on the assumption such that p | Bk, k even, 2 ≤ k ≤ p− 3, recall the ensemble
of notation from Theorem 5.1, namely, the cusp eigenform f ∈ S2(p, ε = ωk−2, the
continuous representation

(5.3) ρ = ρf,p : GQ → GL(Vp(Af )) = GL2(K)

from the Tate module V = V`(Af ), and so forth. Recall that f ≡ Gk (mod p) by
construction, so that

(5.4) a`(f) ≡ 1 + `k−1 (mod p),

as recorded in Theorem 3.7. Thus by Theorem 4.29, the key consequence of the Eichler-
Shimura relation, we know that an absolute Frobenius element Frob` over ` acts on V
with trace and determinant

Tr(Frob`) = a`, det(Frob`) = ` · ε(`).

This concludes the facts required.

Recall from Fact 4.26 that any system of absolute Frobenius elements F (defined in Equa-
tion (4.4)) is dense in GQ. Therefore since ρ and thus its determinant are continuous,
the determinant may be uniquely extended from F ⊂ GQ to a continuous homomor-
phism GQ → Kp. The unique character extending Frob` 7→ ` is the standard cyclotomic
character

χ∗ : GQ → Z×p ⊂ K×,

which is defined (naturally extending χ, see Equation (1.5)) by the relation

σ(µpn) = µ
χ(σ)
pn for all σ ∈ GQ, n ∈ Z+.

Note that χ∗ cuts out the field Q(µp∞) =
⋃
n Q(µpn). Likewise, view ε as a character of

GQ via

(5.5) ε : σ 7→ ε(χ∗(σ)).

Now we can prove

Proposition 5.5 ([20], Prop. 4.1). The Kp representation ρ is irreducible.
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Proof. Suppose the proposition is false. Then the semisimplification of ρ (the unique
semisimple representation with the same Jordan-Hölder factors) is abelian, hence the
direct sum of two characters ρ1, ρ2 : GQ → K×p . Each ρi is “locally algebraic” in Serre’s
terminology [21] because it is an abelian representation from an abelian variety. Conse-
quently, [21], Prop. III.1.2 implies that each ρi may be written as an integral power χni∗
of χ∗ on an open subgroup of an inertia group for p in GQ. This implies that ρi = χiεi,
where εi is a character of finite order ramified only at p. Regarding the Galois characters
εi and χ as Dirichlet characters (taking both χ and εi through the “reverse” of formula
(5.5)), we have for ` 6= p the relations

`n1+n2ε1(`)ε2(`) = ` · ε(`)
a` = ε1(`)`n1 + ε2(`) · `n2

because of formula (5.4). From the first relation we observe that n1 +n2 = 1, so that one
of the ni, say n1, is at least 1, and n2 ≤ 0. Therefore, by the second relation, |a`| ≥ `− 1
for all ` 6= p. Since by the list of Bernoulli numbers in Equation (1.3) we may take ` ≥ 7,
this is a contradiction to the Riemann hypothesis of the Weil conjectures (theorems of

Deligne [8]) that |a`| ≤ 2
√
`. �

Having proved that ρ is irreducible, it remains only to find a lattice such that the reduction
is of the correct form (Equation (5.3)). In fact, any GQ-invariant lattice suffices!

Proposition 5.6 ([20], Prop. 4.2). There exists an O-lattice T ⊂ V invariant by GQ for
which the action of GQ on T/πT may be described matrically as(

1 ∗
0 χk−1

)
and is furthermore semisimple.

Proof. As a preliminary, note that χ∗ reduces modulo π to χ, that is,

GQ
χ∗ //

χ

44Z×p // F×p � � // F×

By Proposition 5.5, ρ is irreducible. Hence Ribet’s lemma on representations, Proposition
5.4, implies that irreducible representations with reducible reductions are not semisimple.
Thus if we can find a reducible reduction ρ̄ of ρ, the last part of the proposition is complete.
The Brauer-Nesbitt theorem states that the reduction of a representation has a well
defined semisimplification, hence it suffices to find a lattice T such that the associated
reduction has semisimplification 1⊕ χk−1. As there exist reducible representations with
this semisimplification, the reducibility of ρ̄ follows from finding such a lattice T . Actually,
any GQ stable lattice will suffice, so chose a lattice and write it as T .

The Eichler-Shimura relation implies that an absolute Frobenius element for ` 6= p acts on
T/πT with trace a` (mod π) and discriminant `·ε(`) (mod π). Because of the congruence
between f and Gk (Theorem 3.7) we know these numbers to be congruent to `k−1 + 1
and `k−1 (mod π). By the Chebotarev density theorem (Fact 4.26) and the fact that
`k−1 ≡ χk−1 (mod π) where the trace and determinant of the action of GQ on T/πT are
1+χk−1 and χk−1 respectively. Hence, every σ ∈ GQ, has the same characteristic roots as a
representation of the form 1⊕χk−1, so it follows by the Brauer-Nesbitt theorem that these
two representations have the same semisimplification, i.e. the reduced representation
associated to T has semisimplification 1⊕ χk−1 as desired. �
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With the above proof complete, the representation that we must construct to prove
Theorem 2.3 has been assembled up to property (D) of Theorem 2.3. Ribet’s proof is
beyond the scope of this essay.

6. Conclusion

Studying Ribet’s paper [20] has been a very enlightening exercise in a rather literal sense.
Becoming more familiar with how Galois representations, modular forms, and classical
algebraic number theory come together has helped me understand the context for other
mathematics that I hear about from day to day. Perhaps this is because the converse
to Herbrand’s theorem is in the center of a forceful historical stream of research. This
seems to be the case to me, heuristically, because having looked at Wiles’ papers through
the 1980s, they each seem to be building on each other but starting in many ways with
Ribet’s paper. For example, Wiles in [31], the first paper to follow Ribet’s, directly
extends Ribet’s results. Letting C(χi), i odd with 2 < i ≤ p−3, be the component of the
entire p-Sylow subgroup of the class group A of Q(µp) that is isotypical for χi, he proves
that

Theorem 6.1 ([31], Thm. 1.1). If C(χi) is cyclic, then its order is precisely pm where
m is the p-adic valuation of B1,ω−1.

The assumption that C(χi) is cyclic was completed with the proof of the main conjecture
of Iwasawa theory [19] a few years later. One question to ask is whether B1,ωi is a better
quantity to look at than the usual Bernoulli numbers Bk. Does Bk have the same p-adic
valuation as its paired B1,ωi? If not, then the B1,ωi seem to be the right quantities to
look at.

The geometric reasoning that Ribet uses to prove property (D) appears to be a next step
to take, while at the same Wiles comments in one of his papers in the 1980s that he
will attempt to minimize the role of geometry, presumably in favor of number theoretic
arguments. I’m interested to find out more about what results in the Ribet and Wiles
vein since then have been discovered with geometry and without.

In preparing this essay I spent a good deal of time with Diamond and Shurman’s book
[11]. While it’s very impressive what is covered in the book, I came to be even more
impressed with Shimura’s book [23] although I did not have the time to delve into it. I
agree with F. Calegari’s review [3] of [11] that “More recent works such as [11] contrast
and complement [23] more than replace it.” Shimura’s book appears to be the source to
go to for the constructions that we sketched in §4.

A. Appendices

A.1. Proving One Direction of Kummer’s Criterion. Let p be an odd prime. Kum-
mer’s criterion states a remarkable connection between values of the Riemann zeta func-
tion, which are analytic quantities, and the p-divisibility of the ideal class number h = hp
of the cyclotomic field Q(µp).

Recall the following statements from the Introduction.

Theorem A.1.1 (Kummer; [27], Thm. 5.34). Let ζ(s) be the Riemann zeta func-
tion. Then p is irregular if and only if p divides the numerator of at least one of
ζ(−1), ζ(−3), . . . , ζ(4− p).
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If we define the Bernoulli numbers by

t

et − 1
=
∞∑
n=0

Bn
tn

n!
,

then in fact ζ(−n+ 1) = −Bn/n for n = 1, 2, . . . and it is not hard to see that Bn is zero
for all odd n except B1 = −1/2. Thus we can restate Kummer’s criterion as

Corollary A.1.2. A prime p is irregular if and only if it divides the numerator of at
least one of the Bernoulli numbers B2, B4, . . . , Bp−3.

One more topic that should be mentioned before going on is p-adic zeta and L-functions.
The beginning of this concept was Kummer’s “Kummer congruences” (which will be
useful later)

Theorem A.1.3 ([27], Cor. 5.14). For all positive even n ≡ m 6≡ 0 (mod p− 1),

Bn

n
≡ Bm

m
(mod p)

is an equivalence of p-integral quantities.

In terms of zeta values, this implies that ζ(1−n) ≡ ζ(1−m) (mod p) for such m,n. This
is the first step toward showing that this ζ may be extended to a continuous function on
Zp. In the modern perspective, Kummer congruences are viewed as a property of p-adic
L-functions. As the conclusion (§6) discussed, these functions are strongly connected
with extensions of Ribet’s work [20] that this paper has described.

A similarly useful theorem, which also goes to explain why m,n ≡ 0 (mod p − 1) is
excluded from the Kummer congruence, is the von Staudt-Clausen theorem

Theorem A.1.4 (von Staudt-Clausen; see [27], Thm. 5.10). Let n be an even positive
integer. Then the fractional part of the Bernoulli number Bn is given by

Bn ≡ −
∑

(p−1)|n

1

p
(mod Z).

The most basic implications are the following.

Corollary A.1.5. The Bernoulli number Bn is p-integral unless (p−1) | n. If (p−1) | n
then pBn is p-integral.

Let us now set out to overview the proof of Kummer’s criterion in the direction of p |
Bk =⇒ p | h.

The key will be to relate arithmetic data of K = Q(µp) to its maximal real subfield
K+ = Q(µp)

+, in the following progression:

(1) Study the relation between the integral units in K and in K+, producing a relation
between the regulators RK and RK+ . In fact, we will find that RK/RK+ = 2(p−3)/2.

(2) Write the Dedekind zeta functions ζK(s), ζK+(s) for K and K+ in terms of Dirich-
let characters and their L-functions.

(3) Apply the analytic class number formula to the quotient ζK(s)/ζK+(s).
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(4) Use the the conductor-discriminant formula and the functional equation for the
L-functions to get cancellation in all factors of the equation except h/h+ (where
h+ is the class number of K+ and

∏
χ L(0, χ̄) for odd χ.

(5) Show that the class group of K+ injects into that of K via the natural inclusion
of ideals, so that h/h+ is an integer and has arithmetic meaning (it’s called the
negative part of the class number, h−).

(6) Write these L-values as generalized Bernoulli numbers: in the same way that
ζ(0) = −B1, get L(0, χ̄) = −B1,χ̄. Namely,

h− = 2p
∏

odd χ∈XK

(
−1

2
B1,χ

)
= 2p

p−1∏
k=2 even

(
−1

2
B1,ωk−1

)
where ω is a distinguished character called the Teichmuller character.

(7) Use this formula for generalized Bernoulli numbers,

B1,χ =
1

p

p∑
a=1

χ(a)a,

and the special property of the Teichmuller character show that

B1,ωp−2 ≡ −1

p
mod Zp,

so

h− ≡
p−3∏

k=2, even

(
−1

2
B1,ωk−1

)
(mod p)

(8) Apply the Kummer congruence to get B1,ωk−1 ≡ Bk/k (mod p) (all quantities
being p-integral).

The above sketches the proof that p | Bk for k = 2, 4, . . . , p − 3 implies that p | h,
which is one direction of Kummer’s criterion. To show the other direction, one proves
that p | h+ =⇒ p | h− and then applies the same congruence. This is accomplished
by dealing with the even characters and showing that p-divisibility of their Bernoulli
numbers is related to those of odd character Bernoulli numbers. Unfortunately we will
forgo this here.

In order to motivate our calculation of quantities related to the units of K = Q(µp), we
begin with the analytic class number formula, which connects the residue at s = 1 of the
Dedekind zeta function of a number field with arithmetic invariants.

Definition A.1.6. Let F be a number field. The Dedekind zeta function of F is

ζF (s) =
∏
℘

(1− (N℘)−s)−1,

where N is the absolute norm and the product is over the primes of K.

Theorem A.1.7 (Analytic Class Number Formula; see e.g. [14]). Let F be a number
field. The Dedekind zeta function ζF (s) has a simple pole at s = 1 with residue

2r1(2π)r2hFRF

wF
√
|d(F )|

,
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where r1 (resp. r2) is the number of real (resp. conjugate paired complex) embeddings
F ↪→ C, hF is the ideal class number of F , RF is the regulator of F , wF is the number
of roots of unity in F , and d(F ) is the field discriminant of F .

Since K is an abelian number field, its Dedekind zeta function may be factored into L-
functions of the associated Dirichlet characters. We quote the following result the theory
of Dirichlet characters, which in this setting are the most basic Galois representations.
This theory has been implicit in dealing with the reduced representations needed to prove
Ribet’s theorem.

Proposition A.1.8 ([27], Thm. 4.3). Let F/Q be a Galois extension contained in Q(µn)
for some n ∈ Z+. Identify Gn = Gal(Q(µn)/Q) with (Z/nZ)× canonically (cf. χ in Eq.
(1.5)) and let XF ≤ Gn be the subgroup of Dirichlet characters whose kernel contains the
subgroup of Gn fixing F , i.e. such that they cut out F . Then

ζF (s) =
∏
χ∈XF

L(s, χ)

where the L-function L(s, χ) is

(A.1.1) L(s, χ) =
∞∑
n=0

χ(n)

ns
=
∏
q

(1− χ(q)

qs
)−1.

These Dirichlet characters are a more general version of the characters χ and χ∗ encoun-
tered in this paper, though χ∗ is the extension of the Dirichlet characters described here
to Gal(Q̄/Q).

Applying the above facts to the number fields K and K+ in particular, we calculate the
L-values appearing in the ratio of their analytic class number formulas.

Corollary A.1.9. Let XK be the group of Dirichlet characters associated to K by Propo-
sition A.1.8. The analytic class number formula for K and K+ and the decomposition of
their associated Dedekind zeta functions into L-functions of Dirichlet characters implies
that ∏

1 6=χ∈XK

L(1, χ) =
2r1(2π)r2hKRK

wK
√
|d(K)|

,

∏
16=χ even ∈XK

L(1, χ) =
2r1(2π)r2hK+RK+

wK+

√
|d(K+)|

.

Proof. The first formula follows from the fact that if χ = 1p is the trivial character, then
L(s, χ) has a simple pole at s = 1 with residue 1. The remaining factors are real numbers
which are not equal to zero by the proof of Dirichlet’s theorem on primes in arithmetic
progressions (see e.g. [27], Cor.4.4). The first formula follows.

For the second formula, note that because an odd character of Gal(K/Q) corresponds
to complex conjugation and K+ is the maximal totally real subfield of K (or alterna-
tively because [K : K+] = 2 uniquely), the subgroup of Dirichlet characters of (Z/nZ)×

associated to K+ is the group of even characters, i.e. those that send −1 to 1. �

Let h+ = hK+ be the class number of the maximal real subfield K+ = Q(µp +µ−1
p ) of K.

Recall that we want to prove one direction of Kummer’s criterion by relating arithmetic
data of K to that of K+. In fact, what we will do is divide out their Dedekind zeta
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functions and calculate all of of the ratios, leaving only that a ratio of class numbers
h/h+ is equal to L-values of odd characters. Subsequently, these L-values will be equated
with Bernoulli numbers.

To begin progress toward proving Kummer’s criterion, getting a handle on integral units
in K relative to K+ is critical, because this will allow us to compute several factors in
their class number formulas.

Remark A.1.10. By abuse of terminology we will often call the integral units of a
number field F simply “the units of F .”

Proposition A.1.11. These are facts about K.

(1) K is a totally complex field, that is there are r1 = 0 real embeddings of K into C,
and r2 = (p− 1)/2 conjugate pairs of complex embeddings.

(2) The maximal (totally) real subfield of K is K+ = Q(µp + µ−1
p ), and its ring of

integers is OK+ = Z[µp + µ−1
p ]. We have [K : K+] = 2.

(3) K and K+ have the same unit rank, ergo O×K+ ↪→ O×K has finite index.

Remark A.1.12. Facts like this hold for a more general class of fields called CM-fields.

Proof. To show (1): Note that every pth root of unity not equal to 1 is primitive, so the
embeddings K ↪→ C are given by µp 7→ µap for a = 1, 2, . . . , p− 1. Clearly each of these is
not a real embedding. Thus they are complex embeddings, and as deg(K/Q) = r1 + 2r2,
the result follows.

To show (2): Clearly µp + µ−1
p is real, so K+ is a totally real field. It has index 2 in K

because µ satisfies the irreducible polynomial

X2 − (µ+ µ−1)X + 1 = 0.

To show (3): By Dirichlet’s unit theorem and (1), the unit rank of K is r1 + r2 − 1 =
(p− 1)/2− 1. Since K+ is totally real, its unit rank is its degree minus 1, which is also
(p− 1)/2− 1. �

Thus we have calculated the terms r1, r2 for both K and K+ in their analytic class number
formulas. Part (3) Proposition A.1.11 is a first step toward making the calculations about
regulators and number of roots of unity. As K+ is totally real, its only roots of unity are
±1. It is not hard to show that ±µnp are the roots of unity in K, so the ratio wK/wK+ in
the analytic class number formula is p.

The regulator is generally a difficult term to calculate, and accordingly, we will not be
able to do this. However, the following proposition will allow the ratio of regulators of
K and K+ to be written down.

Proposition A.1.13. For any unit ε of Z[µp], there exists a unit ε1 ∈ O×K+ and an
integer r such that ε = µrp · ε1. Thus the index of the units of OK+ in OK is p.

Proof. Choose ε as above and set α = ε/ε̄. Clearly α is an algebraic integer with abso-
lute value 1; also, all of its conjugates have absolute value 1, since they commute with
conjugation.

Claim. An algebraic integer α whose Galois conjugates all have absolute value 1 must be
a root of unity.
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Proof. Say that the degree of α is d. Then each of its powers have degree no more than
d. Let f(x) be the minimal polynomial for a power of α. Then the ith coefficient of f
is bounded by the binomial coefficient

(
i
d

)
since all conjugates of α are bounded by 1.

Therefore there are only finitely many such polynomials, ergo finitely many powers of
α. �

The only roots of unity in K are ±µap, so ε/ε̄ = ±µap for some a. We will now show that
± = +.

Assume that ± = −. Since ε is an integer, recall that (p) = (µ− 1)p−1 and write

ε = b0 + b1µp + · · ·+ bp−2µ
p−2
p

≡ b0 + b1 + · · ·+ bp−2 (mod µp − 1).

Since ε̄ = b0 + b1µ
i
p + · · · , the same congruence is true for ε̄. Therefore,

ε = −µapε̄ ≡ −ε (mod µp − 1),

and 2ε ≡ 0 (mod µ− 1). But this is impossible because (µp − 1) is relatively prime to 2
and ε is a unit.

Thus we conclude that ε/ε̄ = µap. Letting 2r ≡ a (mod p) and ε1 = µ−rp ε, we get ε = µrpε1

and ε̄1 = ε1, completing the proof. �

Now we are already able to calculate the ratio of regulators ofK andK+. Recall this

Definition A.1.14. The regulator of a number field F is

RF = |det(δi log |σi(εj)|)1≤i,j≤r| ,

where {εj} is a set of generators for the units of OF modulo roots of unity and the σi,
and r = r1 + r2− 1 of the r+ 1 embeddings F ↪→ C (up to conjugate pair) are chosen to
be σi. (The choice of which one is omitted does not matter) The δi factor is 1 for a real
embedding σi and 2 for a representative σi of a pair of complex conjugate embeddings.

The ratio of regulators now follows immediately from the proposition.

Corollary A.1.15. The ratio of the regulator RK of K to the regulator RK+ of K+ is

(A.1.2)
RK

RK+

= 2(p−3)/2.

Proof. Since the units of K+ have index p in those of K, and p is also the index of the
roots of unity of K+ in K, the inclusion O×K+ ↪→ O×K sends a set of generators of O×K+

modulo roots of unity to an analogous set in O×K . Therefore the only difference in the
calculation of their regulators is the δi factors. Since K is totally complex and K+ is
totally real, the calculations in Proposition A.1.11 completes the proof. �

At this point all of the ratios of data appearing in the analytic class number formulas for
K and K+ have been determined except h/h+ and the ratio of the field discriminants.
While these discriminants are easily calculable, they will fall out in the calculation because
of the following two facts.
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Fact A.1.16 (Conductor-Discriminant Formula; [27], Thm. 3.11). Let F be a number
field associated to the group XF of Dirichlet characters. Then the discriminant of F is
given by

d(F ) = (−1)r2
∏
χ∈XF

fχ,

where fχ is the conductor of the character, i.e. the minimal modulus for which χ is a
dirichlet character.

Corollary A.1.17. Let K,K+ be as usual. Then |d(K)| = |d(K+)|2 = pp−1.

Proof. Every non-trivial character in XK has the same modulus (= p) and there are p−1
such characters, while there are (p−1)/2 non-trivial characters in the subgroup XK+ . �

Fact A.1.18 ([27], Cor. 4.6). Let τ(χ) be the Gauss sum associated to the Dirichlet
character χ, and let XF be the Dirichlet characters associated to the Galois extension
F/Q. Then ∏

χ∈XF

τ(χ) =

{ √
|d(K)| if K is totally real

ideg(K/Q)/2
√
|d(K)| if K is complex.

Corollary A.1.19. Let K be as usual and let X ′ be the subset of odd characters of XK.
Then ∏

χ∈X′
τ(χ) = i(p−1)/2p(p−1)/4

Proof. Immediate. �

Finally, we may calculate the ratio of the class number formulas for K and K+ written in
terms of L-functions in Corollary A.1.9. The quotient relates the product of L-functions
of odd Dirichlet characters to the modulus p to the ratios of arithmetic data calculated
above. ∏

χ odd

L(1, χ) =

(
2r1(K)(2π)r2(K)

2r1(K+)(2π)r2(K+)

)(
RK

RK+

)(
wK+

wK

)(√
|d(K+)|√
|d(K)|

)(
h

h+

)

=

(
(2π)(p−1)/2

2(p−1)/2

)
· 2(p−3)/2 · p−1 · p−(p−1)/4 ·

(
h

h+

)
Now we apply the functional equation of L-functions for odd Dirichlet characters and
observe that

(A.1.3) L(1, χ) =
τ(χ)π

ifχ
L(0, χ̄)

where τ(χ) and fχ were defined in the Facts above and χ̄ denotes the complex conjugate
of χ. We want to know what Equation (A.1.3) looks like as a product over odd characters
of XK . By the Corollaries above,∏
χ odd

τ(χ)π

ifχ
L(0, χ̄) =

(
π

ip

)(p−1)/2 ∏
χ odd

τ(χ)
∏
χ odd

L(0, χ̄) = π(p−1)/2p−(p−1)/4
∏
χ odd

L(0, χ).

Substituting this expression in for
∏

χ odd L(1, χ), we see that the factors π(p−1)/2 and

p−(p−1)/4 cancel6 to yield the following equality.

6And though we have glossed over it, the choices of square root of p needed to define p(p−1)/4 for p ≡ 3
(mod 4) are the same.
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Proposition A.1.20.

h

h+
=
( p

2(p−3)/2

)
·
∏

odd χ∈XK

L(0, χ).

It is not a priori the case that h/h+ is an integer, but this is the case. Since K/K+ is
ramified at p (and at ∞), it follows by class field theory that the class number of h+

divides h. Additionally, one may verify that the ideal class group of K+ injects into that
of K naturally, under inclusion of ideals. Therefore the quotient not only is an integer,
but has arithmetic meaning. We draw the following definition.

Definition A.1.21. The negative part h− of the class number h of K is the quotient
such that h−h+ = h.

We aim to show that p | Bk implies that p | h−. The next step toward this goal is to
match up the L-values above with Bernoulli numbers.

Recall that if ζ(s) is the Riemann zeta function, ζ(0) = −B1 = 1/2, and a similarly
ζ(1 − n) = −Bn for every positive integer n. In just the same way, one may define
generalized Bernoulli numbers for Dirichlet characters, and get a similar relation with
the L-function associated to that character.

Definition A.1.22 ([27], p. 31).

fχ∑
n=0

χ(a)teat

efχt − 1
=
∞∑
n=0

Bn,χ
tn

n!
.

We are concerned with these numbers when n = 1, because (by [27], Thm. 4.2)

L(0, χ) = −B1,χ.

Therefore we may rewrite Proposition A.1.20 as

Corollary A.1.23.

h− = 2p
∏

XK3χ odd

(
−1

2
B1,χ

)
,

Now we have shown that a factor of h may be written as a product of generalized Bernoulli
numbers. All that remains to prove Kummer’s criterion is to connect the generalized
Bernoulli numbers with the usual ones that we first introduced.

The following formula is the starting point for drawing this connection.

Fact A.1.24 ([27], p. 32). As long as χ is not a trivial Dirichlet character, we have that

B1,χ =
1

fχ

f∑
a=1

χ(a)a,

recalling that for any Dirichlet character χ of K, fχ = p.

At this point it is useful to introduce the Teichmüller character, which was used heavily
throughout this paper.
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Definition A.1.25. Now choose ω : (Z/pZ)× −→ µp−1 ⊂ Q(µp−1) ↪→ C to be the
generator of XK such that

ω(a) ≡ a (mod p).

Note well that p is not prime in Q(µp−1) (see Remark 3.5).

Here it will be used to canonically associate the set of B1,χ for odd χ with the Bk for k
even, 2 ≤ k ≤ p− 1.7 The correct choice is B1,ωk−1 , which we now demonstrate.

Proposition A.1.26. Choose an even integer k, 2 ≤ k ≤ p − 1. The set of characters
B1,ωk−1 for these values of k is the entire set of odd characters in XK, and

B1,ωk−1 ≡
{

Bk
k

(mod p) if k 6= p− 1
−1
p

(mod pOQ(µp−1)) if k = p− 1.

Proof. Choose such a k. Use the easily verified congruence ω(n) ≡ np (mod p2) and Fact
A.1.24 with fωk−1 = p to get that

pB1,ωk−1 ≡
p−1∑
n=1

n1+p(k−1) (mod p2).

On the other hand, we have ([2], p. 385)

pBt ≡
p−1∑
n=1

nt (mod p2),

which is a congruence of p-integral quantities by the von-Staudt–Clausen Theorem (The-
orem A.1.4. Hence

pB1,ωk−1 ≡ pB1+p(k−1) (mod p2)

Say that k 6= p− 1. Then Since 1 + p(k − 1) 6≡ 0 (mod p− 1), the Kummer congruence
(Theorem A.1.3 implies directly that

pB1,ωk−1 ≡ p
Bk

k
(mod p2).

for even k, which is what we desired. If on the other hand k = p− 1, then

pB1,ωk−1 ≡ pB1+p(k−1) ≡ −1 (mod p2)

by the von Staudt-Clausen theorem, completing the proof. �

Now we can prove something a bit stronger than the basic statement of the forward
direction of Kummer’s criterion.

Proposition A.1.27. The negative part of the class number, h−, is divisible by p if
and only if some Bernoulli number Bk for even k, 2 ≤ k ≤ p − 3, is divisible by p.
Furthermore, if p divides t distinct such Bernoulli numbers Bk, then pt | h−.

7We have restricted our attention to 2 ≤ k ≤ p−3 in the rest of the material on Ribet’s converse. While
it is already clear why this is the case from the von Staudt-Clausen theorem, the following proposition
makes it clear that while k ≡ 0 (mod p− 1) is excluded, it does play an important role.
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Proof. By Corollary A.1.23,

h− = 2p
∏

odd χ∈XK

(
−1

2
B1,χ

)
= 2p

p−1∏
k=2 even

(
−1

2
B1,ωk−1

)
since ω is odd (as ω(−1) ≡ −1 (mod p)).

The k = p− 1 term is exceptional; Proposition A.1.26 states that pBω−1 ≡ −1 (mod p2).
Therefore (2p)(−1

2
B1,ωp−2) ≡ 1 (mod p), and we end up with

h− ≡
p−3∏

k=2, even

(
−1

2
B1,ωk−1

)
(mod p)

which by our recent calculation can be written

(A.1.4) h− ≡
p−3∏

k=2, even

(
−1

2

Bk

k

)
=

p−3∏
k=2, even

(
−1

2
ζ(1− k)

)
.

As all quantities Bk/k are p-integral, the first part of the proposition is complete.

To prove the second part, simply note that as B1,ω−1 always has p-adic valuation8 -1,
Corollary A.1.23 implies that the p-adic valuation of h− is the sum of the p-adic valuations
of the Bk for 2 ≤ k ≤ p − 3, k even. This is even stronger that what the proposition
required us to prove. �

This completes one direction of Kummer’s criterion, as we record here.

Corollary A.1.28. If an odd prime p divides the numerator of Bk for some even k,
2 ≤ k ≤ p− 3, then p is irregular.

Remark A.1.29. The converse statement, which would complete Kummer’s criterion,
follows upon showing that if p | h+, then p | h− as well. This involves character compu-
tations that are best presented with p-adic L-functions ([27], Cor. 8.17).

A.2. Eisenstein Series on SL2(Z). The Eisenstein series Gk used throughout the doc-
ument is scalar multiple of the following somewhat more natural Eisenstein series,

(A.2.1) G′k(z) =
′∑

(c,d)

1

(cz + d)k
, z ∈ H,

where the ’ indicates that the 0-vector is skipped. We may readily rearrange this sum to
get

(A.2.2) G′k(z) =
∑
d 6=0

d−k + 2
∞∑
c=1

(∑
d∈Z

(cz + d)−k

)
.

It is a nice exercise to observe that this is a modular form of weight k on SL2(Z).

Using the identity ([11], p. 5)∑
d∈Z

(z + d)−k =
(−2πi)k

(k − 1)!

∞∑
m=1

mk−1qm

8Appropriately extended from Q to Q(µp−1).
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and noticing the Riemann zeta function in formula (A.2.2) we find that

G′k(z) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
c=1

∞∑
m=1

mk−1qcm

= 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn,

(A.2.3)

where σk−1 is the (k − 1)-power divisor function

σk−1(n) =
∑

0<m|n

mk−1.

Finally, recalling the identity

ζ(k) = −(2πi)k

2k!
Bk,

which is equivalent to Equation (1.4) via the functional equation for the zeta function,
we find that a scalar multiple of G′k is the familiar Gk appearing in 3.1.

A.3. Background on Modular Forms. Though it will require us to introduce some
new information and notation quickly, it will be helpful to make a precise statement
of what we will construct before we begin to go about it. We begin with a hasty list
of relevant definitions having to do with modular forms. Modular forms are complex
analytic functions on the upper half plane

H = {z ∈ C : =(z) > 0}
that can be extended continuously to H plus its cusps

H∗ = H ∪ P1(Q)

and that obey certain transformation properties under the fractional linear transformation
action certain subgroups of SL2(Z) on C. In the course of the following definitions, let
γ = ( a bc d ) be an element of SL2(Z). We follow [11], §1.2 in this presentation.

Definition A.3.1. A congruence subgroup of the modular group SL2(Z) is a subgroup
that contains the principal congruence subgroup

Γ(N) = {γ ∈ SL2(Z) : γ ≡ I2 (mod N)}
for some positive integer N . Some of the standard modular subgroups other than the
principle congruence subgroups Γ(N) itself are

Γ1(N) =

{
γ ∈ SL2(Z) : γ ≡

(
1 ∗
0 1

)
(mod N)

}
and

Γ0(N) =

{
γ ∈ SL2(Z) : γ ≡

(
∗ ∗
0 ∗

)
(mod N)

}
,

i.e. those elements such that c ≡ 0 (mod N).

Now we can take a first step toward defining a modular form.

Definition A.3.2. Let k be an integer. Say that a meromorphic function f : H → C is
weakly modular of weight k over a congruence subgroup Γ provided that

f(γ(z)) = (cz + d)kf(z)

for all γ ∈ Γ and z ∈ H.
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In order to simplify notation, we introduce the following operator that allows us to write
down a concise definition of weak modularity.

Definition A.3.3. The weight-k operator [·]k : SL2(Z) → End({f : H → C}) for an
integer k is an action of SL2(Z) on functions f : H → C, written on the right as

(f [γ]k)(z) = (cz + d)−kf(γ · z)

Thus a meromorphic function f on H is weakly modular of weight k provided that
f [γ]k = f for all γ ∈ Γ.

Say for the moment that Γ = SL2(Z). Then since ( 1 1
0 1 ) ∈ SL2(Z), a weakly modular

function of weight k on SL2(Z) is periodic with period 1. Therefore a modular form
has a Fourier development (conditional on convergence properties), which we will call a
“q-expansion” because we take q = e2πiz and then commonly write

f(z) =
∑
n≥n0

anq
n.

More generally, if f is weakly modular on the congruence subgroup Γ ⊇ Γ(N), then f
has such a Fourier development with q replaced by qN = e2πiz/N .

Returning to the case that f is weakly modular on SL2(Z) and considering f as a function
of q, it is then a function on the punctured unit disc {z ∈ C : 0 < |z| < 1}. We say that
f is “holomorphic (resp. meromorphic) at infinity” if it can be extended holomorphically
(resp. meromorphically) to q = 0, the terminology coming from the fact that q → 0 as
=(z)→ +∞. We require this condition because then not only is f(dz)k/2 a meromorphic
differential on the Riemann surface SL2(Z)\H, but it can also be extended to the compact
Riemann surface SL2(Z)\(H ∪ {∞}), a “modular curve” obtained by adjoining a point
at infinity.

In fact, this point at infinity is the simplest instance of idea of a cusp is much more general
and can apply to all congruence subgroups. The following definitions make rigorous the
above comments on SL2(Z) and extend the ideas to congruence subgroups.

Definition A.3.4. Let Γ be a congruence subgroup. A cusp of Γ is a Γ-equivalence class
of Q ∪ {∞}.

The following examples are useful to make this definition concrete, and are also the
primary examples needed in this paper.

Example A.3.5. When Γ = SL2(Z), there is only one cusp, since any rational number
r/s where (r, s) = 1 or r = 0 is sent to infinity by γ =

(
a b
−s r

)
where a, b ∈ Z are chosen so

that ar + bs = 1. However, when Γ = Γ0(p) where p is prime, then there are two cusps,
the class containing ∞ and the class containing 0. These classes are

(A.3.1)
{r
s
∈ Q : p | s and r 6= 0

}
∪ {∞} and

{r
s
∈ Q : p - s

}
,

respectively.

The condition on weakly modular functions on Γ analogous to the “holomorphic at infin-
ity” condition on SL2(Z) is holomorphicity at cusps. This definition is given by sending
a cusp of Γ to infinity with SL2(Z).

Definition A.3.6. Let f be weakly modular of weight k on Γ. Then f is holomorphic
the cusps of Γ provided that f [γ]k is holomorphic at infinity for all γ ∈ SL2(Z).
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Now we have all of the ingredients to define a modular form.

Definition A.3.7. A modular form (resp. automorphic form) of weight k on a congru-
ence subgroup Γ, Γ(N) ⊆ Γ ⊆ SL2(Z), is a function f : H → C such that

(1) f is a weakly modular function of weight k,

(2) f is holomorphic (resp. meromorphic), and

(3) f is holomorphic (resp. meromorphic) at all cusps of Γ.

Moreover, if f is a modular form and f [γ]k vanishes at infinity for all γ ∈ SL2(Z), we say
that f vanishes at the cusps of Γ and call f a cusp form. We denote the C-vector space
of such modular/cusp/automorphic forms as

Mk(Γ), Sk(Γ), Ak(Γ), respectively.

The best way I know to understand the naturality of these requirements on a modular
form is to consider their relationship with modular curves (see [11], Ch. 2).

Definition A.3.8. Let Γ be a congruence subgroup. The modular curve Y (Γ) is the
quotient space of orbits of the action of Γ on H,

Y (Γ) = Γ\H.
Similarly, the modular curve X(Γ) is

X(Γ) = Γ\H∗.
We write Y (N) = Y (Γ(N)), Y0(N) = Y (Γ0(N)), Y1(N) = Y (Γ1(N)), and similarly for
X(Γ).

For a given congruence subroup Γ the modular curves Y (Γ) and X(Γ) are Riemann
surfaces, and X(Γ) is compact Riemann surface (see [23], §1.5).

Similar to what we noted in the case that Γ = SL2(Z) above, automorphic forms of weight
k on Γ correspond to degree k/2 meromorphic differentials on X(Γ). Since we are most
concerned with the situation when k = 2 and our differentials are holomorphic and this
situation is simpler than general k, so we quote this more

Proposition A.3.9 ([23], Cor. 2.17). Let Γ be a congruence subgroup. Then S2(Γ) is
isomorphic to the C-vector space Ω1(X) of all degree 1 holomorphic differentials under
the map f 7→ f(dz). It follows from the Riemann-Roch theorem that the dimension of
these two spaces is equal to the genus of X(Γ).

While one might expect that the space of modular forms M2(Γ) would satisfy this propo-
sition instead of S2(Γ), the key is that dz itself has poles at the cusps that are cancelled
by the zeros of cusp forms ([23], §2.4). This is why we narrow our focus to cusp forms in
§4.

Having defined modular forms in the previous appendix, we now go on to discuss the
action of Hecke operators on them. The discussion of Hecke actions was minimized in
the main part of the text as they would distract too much from the main thrusts of the
background to Ribet’s proof. However, Hecke theory, mostly in the theory of newforms,
are used liberally in the main parts of this essay. Therefore we record here the details of
Hecke action for reference.
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Hecke operators are an example of double coset operators, which, naturally, are based on
double cosets.

Definition A.3.10. Let Γ1 and Γ2 be congruence subgroups of SL2(Z) and let α ∈
GL+

2 (Q). A double coset in GL+
2 (Q) is a set

(A.3.2) Γ1αΓ2 = {γ1αγ2 : γi ∈ Γi}.

Such double cosets act on modular forms and modular curves, both of which we defined
in §2. The double coset A.3.2 sends modular forms on Γ1 to modular forms on Γ2. The
orbit space Γ1\Γ1αΓ2 is finite, therefore we may define the action to be

Definition A.3.11 ([11], Def. 5.1.3). For congruence subgroups Γ1 and Γ2 of SL2(Z)
and α ∈ GL+

2 (Q), the weight-k Γ1αΓ2 operator takes functions f ∈Mk(Γ1) to

f [Γ1αΓ2]k =
∑
j

f [βj]k

where {βj} are orbit representatives, i.e. Γ1αΓ2 =
⋃
j Γ1βj is a disjoint union.

One should verify that these Hecke operators are well-defined despite the choice of {βj},
and send cusp forms to cusp forms.

The Hecke operators for the purposes of this exposition are double cosets with Γ1 = Γ2 =
Γ1(N), and so are automorphisms of Mk(Γ1(N)). The first type of Hecke operator is
strongly connected to our notion of type from the last section. Choose any γ ∈ Γ0(N),
recalling that Γ0(N) ⊃ Γ1(N) and conventionally γ =

(
a b
c d

)
. Then on noting that

Γ1(N)C Γ0(N) we have

f [Γ1(N)γΓ1(N)]k = f [γ]k.

As f is Γ1(N)-invariant and the coset of γ in Γ1(N)/Γ0(N) is determined by d, we can
write this double coset operator as the diamond operator

(A.3.3) 〈d〉 f = f [α]k for any α =

(
a b
c δ

)
where δ ≡ d (mod N).

To see the connection with the type of a modular form on Γ1(N), note that

Mk(N, ε) = {f ∈Mk(Γ1(N)) : 〈d〉 f = ε(d)f for all d ∈ (Z/NZ)×}.

Our other Hecke operator, denoted Tp where p is prime, is given by γ =
(

1 0
0 p

)
. The Γ1(N)-

orbits in the double coset Γ1(N)γΓ1(N) are represented by the matrices βj =
(

1 j
0 p

)
and,

if p - N , β∞. Call this set of representatives B(p,N). They appear in the following
description of the action of Tp on f ∈Mk(Γ1(N)).

Proposition A.3.12 ([11], Prop. 5.2.1). With notation as above, the operator Tp =
[Γ1(N)γΓ1(N)]k on Mk(Γ1(N)) is given by

Tpf =

{ ∑p−1
j=0 f [

(
1 j
0 p

)
]k if p | N∑p−1

j=0 f [
(

1 j
0 p

)
]k + f [

(
m n
N p

)(
p 0
0 1

)
]k if p - N, where mp− nN = 1.

Also, we can verify from Proposition A.3.12 that the effect of Tp on Fourier series is as
follows. Let an(f) denote the nth coefficient of a modular form f .
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Proposition A.3.13 ([11], Proposition 5.2.2). Let f ∈ Mk(Γ1(N)) and ε : (Z/NZ)× →
C× such that f ∈Mk(Γ0(N), ε). Since

(
1 1
0 1

)
∈ Γ1(N), f has a Fourier expansion

f(z) =
∞∑
n=0

an(f)qn.

Then Tpf ∈Mk(Γ0(N), ε) and its Fourier expansion is

(Tpf)(z) =
∞∑
n=0

(
anp(F ) + ε(p)pk−1an/p(f)

)
qn,

where an/p(f) := 0 when n/p 6∈ Z.

From this action on Fourier coefficients comes the correlation between Hecke eigenvalues
and the coefficients. We note in this corollary that the phenomenon is not restricted to
Hecke operators of prime index.

Corollary A.3.14. If a modular form f is an eigenvector of the Hecke operator Tn for,
then an(f)/a1(f) is the eigenvalue of Tn.

We used this fact many times in §3.

Hecke operators Tn can be defined for any n ∈ Z+ in terms of the Tp; for example
TmTn = Tmn for (m,n) = 1. However, it is the prime index operators that will be
most useful to us since they are most simple but also generate the Tn for all n over
Z. The Hecke operators Tn and 〈d〉 where (pn,N) = 1 are are pairwise commutative,
preserve cusp forms, and are normal (i.e. commute with their adjoint) with respect to
the Petersson inner product on Mk(Γ1(N)).9 Together, all of these Hecke operators form
the algebra

T0 = Z[{〈n〉 , Tn : (n,N) = 1}]
which is a subalgebra of the full Hecke algebra.

Definition A.3.15. The Hecke algebra is the Z-algebra

T = Z[{Tn, 〈n〉 : n ∈ Z+}],

where the weight and level of the Hecke operators is left implicit.

All of the material mentioned can be studied further in [11], §§5.2-5.4.

Because of these properties we have listed, the spectral theorem of linear algebra implies
that there exists an orthogonal basis of simultaneous eigenforms for the Hecke subalgebra
T0. However, we would like to find eigenforms with respect to all Hecke operators, because
we want to be able to write down a cusp form that is unique up to a constant if we are
given a system of Hecke eigenvalues. In this case, if f has an(f) = 1, we say that f
is a normalized eigenform, and consequently the nth coefficient an(f) is the eigenvalue
λ(n) of Tn. This extension from an eigenform for T0 to one for T is possible if we study
newforms, a theory due to Atkin-Lehner [1], which we now overview.

9At least one of the two factors in the inner product must be a cusp form in order to define the
Petersson inner product, but this still suffices.
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Definition A.3.16. The space Sk(Γ1(N)) is the direct sum the old subspace Sk(Γ1(N))old

and the new subspace 〈Sk(Γ1(N))new〉. Clearly whenM | N , then Sk(Γ1(M)) ⊂ Sk(Γ1(N)),
so some modular forms in Sk(Γ1(N)) may be inherited. And in fact whenever aM | N
then g(az) ∈ Sk(Γ1(N)) is inhertied from g ∈ Sk(Γ1(M)). These inherited forms compose
Sk(Γ1(N))old, and its orthogonal complement under the Petersson inner product is the
new subspace. A newform is a member of a set Sk(Γ1(N))new, which is an orthogonal
normalized basis of eigenforms for the new subspace.

We cite the following information from the theory of newforms.

Fact A.3.17. The Hecke algebra T preserves the decomposition into new and old sub-
spaces. While there are eigenforms in Sk(ΓN) with respect to T0, if such an eigenform is
in the new subspace then it is an eigenform for T as well. This is not necessarily the case
in the old subspace. Finally, any Galois conjugate of a newform is again a newform.

Proof. See [5], Theorem 1.22 for a fuller statement, or [17] for the first few facts. The
result on Galois conjugation can be found in [11], Theorem 6.5.4. �

As in §2, we will continue to deal only with S2(Γ1(p)), which has no oldforms since
M2(SL2(Z)) is trivial. We used this fact in the proof of Proposition 3.16, namely, we con-
structed an eigenform with respect to T0 and then claimed that since it was a newform it
must be an eigenform for T and therefore have a completely prescribed Fourier expansion
when normalized.

A.4. Galois Representations. In this appendix we collect a few useful definitions and
facts that are a useful reference for Galois representation. Actually, the collection as a
whole is too short and not particularly useful, but I hope to add to it.

Definition A.4.1. Let d be a positive integer. A d-dimensional p-adic Galois represen-
tation is a d-dimensional topological vector space V over K, where K is a finite extension
of Qp, that is also a GQ-module such that the action

V ×GQ → V, (v, σ) 7→ vσ

is continuous. If V ′ is another such representation and there is a continuous GQ module

isomorphism of K-vector spaces V
∼−→ V ′ then V and V ′ are said to be equivalent.

Note that we have the usual ambiguity of term “representation” to mean both the map
into the space of automorphisms of a vector space and the vector space itself.

The fact that any representation is similar to an integral one is an interesting application
of the p-adic topology.

Proposition A.4.2 ([11], Prop. 9.3.5). Let ρ : GQ → GLd(K) be a Galois representation.
Then ρ is similar to a Galois representation ρ′ : GQ → GLd(OK).

Proof. Let V = Kd and Λ = OdK . Since Λ is compact in V and GQ is compact as well,
so is the image Λ′ = ρ(GQ)Λ. Therefore the image lies in λ−rΛ for some r ∈ Z+. The
image is finitely generated, it contains Λ so its rank is at least d, it is free since OK is a
principal ideal domain, and so its rank is precisely d. It is preserved by the action of GQ.
Thus any OK basis of Λ′ gives the desired ρ′. �
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