
PRIME NUMBERS AND THE RIEMANN HYPOTHESIS

CARL ERICKSON

This minicourse has two main goals. The first is to carefully define the Riemann zeta
function and explain how it is connected with the prime numbers. The second is to
elucidate the Riemann Hypothesis, a famous conjecture in number theory, through its
implications for the distribution of the prime numbers.

1. The Riemann Zeta Function

Let C denote the complex numbers. They form a two dimensional real vector space
spanned by 1 and i where i is a fixed square root of −1, that is,

C = {x+ iy : x, y ∈ R}.

Definition 1. The Riemann zeta function is the function of a complex variable

ζ(s) :=
1

1s
+

1

2s
+

1

3s
+ · · · =

∞∑
n=1

n−s, s ∈ C.

It is conventional to write s = σ + it where s = σ + it and σ, t ∈ R

While this definition may seem straightforward, perhaps you’ve not thought of what com-
plex powers are before. We are probably comfortable with integral powers of a complex
number – we do this in PROMYS at least in the case of Z[i] ⊂ C – but it is by no means
obvious what a complex power of a real number should be.

While more could certainly said, we’ll appeal to standard rules of exponentials and the
Euler identity

eiθ = cos θ + i sin θ, for θ ∈ R.
Then for n ∈ R we have that

n−s = n−σ−it = n−σn−it = n−σe−it logn = n−σ
(

cos(−t log n) + i sin(−t log n)
)
.

We note that by standard trigonometric identities, the quantity in the rightmost paren-
theses has absolute value 1. Thus the mantra is the the real part of the exponent controls
the magnitude of an exponential, while the imaginary part of the exponent controls the
angle of the ray drawn from the origin to the result. This is like the “polar form” of
complex numbers, i.e. an element of C may be written as

reiθ, where r ∈ R≥0, θ ∈ [0, 2π).

This way of writing a complex number is unique unless r = 0.

Now that we understand what each term in the Riemann zeta function’s definition means,
the next thing that we must ask is whether or for which s ∈ C the sum defining ζ(s)
converges. A useful definition for us is the following

Date: July 23, 2008 (last corrected January 14, 2013).
1



Definition 2. Let (ai) ⊂ C be a sequence of complex numbers. We say that the sum

∞∑
i=1

ai

converges absolutely or is absolutely convergent provided that the sum
∞∑
i=1

|ai|

converges in R, where |·| denotes the complex absolute value.

Example 3. The sequence (ai)i≥1 defined by ai = (−1)i+1/i converges in C but is not
absolutely convergent.

Absolute convergence is useful because of the following

Proposition 4. If a sum is absolutely convergent, then it is convergent.

Proof. Exercise. �

Applying the idea of absolute convergence and the fact from calculus class that for σ ∈ R
the sum

∑
n≥1 n

−σ converges for σ > 1, we deduce that ζ(s) converges for σ > 1.

We might ask if ζ(s) converges when σ = 1, or perhaps for some σ < 1. However, for
s = 1, we find that the zeta function gives the harmonic series, which does not converge.
Therefore the statement that ζ(s) converges for σ > 1 is best possible.

2. The Riemann Zeta Function and the Primes

Why would one think that the primes had anything to do with this function? Well, Euler
was fond of writing such equalities as

1

1
+

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+ · · ·

=

(
1 +

1

2
+

1

4
+

1

8
+ · · ·

)(
1 +

1

3
+

1

9
+ · · ·

)(
1 +

1

5
+ · · ·

)
· · ·

as a proof of the infinitude of the primes. We can quickly make this more rigorous. As a
consequence of unique prime factorization, we can write the zeta function (in its region
of absolute convergence) as

ζ(s) =
1

1s
+

1

2s
+

1

3s
+

1

4s
+

1

5s
+

1

6s
+

1

7s
+ · · ·

=

(
1 +

1

2s
+

1

4s
+

1

8s
+ · · ·

)(
1 +

1

3s
+

1

9s
+ · · ·

)(
1 +

1

5s
+ · · ·

)
· · ·

=
∏
p

∞∑
k=0

p−ks

=
∏
p

(
1− 1

ps

)−1
,
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where the last equality applies the geometric series formula
∑∞

i=0 r
i = (1−r)−1 for |r| < 1

and
∏

p signifies a product over the primes in N. As the equality on the second line follows
from unique prime factorization, we can say that the equation

ζ(s) =
∏
p

(
1− 1

ps

)−1
is an “analytic statement of unique prime factorization.” It is known as the Euler prod-
uct. This gives us a first example of a connection between the zeta function and the
primes.

Now lets take the limit of ζ(s) as s→ 1+, that is, as s approaches 1 from the right along
the real line. Clearly this limit does not converge, as we know that the harmonic series
diverges. Yet the limit of each factor in the Euler product is the real number(

1− 1

p

)−1
=

p

p− 1
.

Since the product of these real numbers over the primes diverges, we may then conclude
the following

Theorem 5. There are infinitely many primes.

Thus using calculus concepts and the unique prime factorization theorem, the zeta func-
tion has yielded another proof of the most ancient theorem about the primes. This is
another sign that the zeta function and the primes are connected.

The Euler product may also be applied to solve this problem.

Exercise 6. Call a positive integer m nth power free provided that for all ` ∈ Z+,

`n | m =⇒ ` = 1.

Now for x ∈ R+ and integers n ≥ 2 define fn(x) as

fn(x) = #{m ∈ Z+ : m ≤ x and m is nth power free}.
Prove that for integers n ≥ 2,

lim
x→∞

fn(x)

x
= ζ(n)−1.

Ok, what else can we find out about the primes by applying calculus concepts to the
Euler product? Take the (modified) Taylor series for the log function at 1, that is, the
series

log(1− x) = −
∞∑
n=1

xn

n
= −x− x2

2
− x3

3
− · · · , for x ∈ C, |x| < 1.

Applying this to the Euler product for the zeta function we find that

log ζ(s) = log
∏
p

(
1− 1

ps

)−1
= −

∑
p

log(1− p−s)

=
∑
p

∞∑
m=1

1

mpms

=
∑
p

1

ps
+

(∑
p

∑
m=2

1

mpms

)
.
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Now try you hand at bounding sums in the following

Exercise 7. The sum on in the parentheses in the final equality converges for s ≥ 1.

This has a very pleasant consequence.

Corollary 8. The sum of the reciprocals of the primes diverges.

Proof. Consider the equation for log ζ(s) above as s→ 1+. We know that log ζ(s)→ +∞
because lims→1+ ζ(s) = +∞. However, the quantity on the right hand side in parentheses
remains bounded as s → 1+. Therefore the sum

∑
p p
−s becomes arbitrarily large as

s→ 1+, allowing us to conclude that the sum∑
p

1

p

does not converge. �

Using more subtle properties of the zeta function involving techniques like those that will
be “black boxed” later in this talk, one can prove that∑

p≤x

1

p
∼ log log x.

3. The Properties of the Zeta Function

In the previous talk this evening, Josh discussed on the Chebyshev bounds on the prime
counting function

π(x) :=
∑
p≤x

1

where p varies over prime numbers no more than x, and the related function

ψ(x) :=
∑
pn≤x

log p

where p ranges over primes and n ranges over positive integers such that pn ≤ x. We wil
rewrite the second function as

ψ(x) =
∑
n≤x

Λ(n),

where Λ is the von Mangoldt function defined by

Λ(n) =

{
log p if n = pm for some m
0 otherwise.

Be sure to observe that the two formulations of ψ(x) are equivalent.

Mathematicians in the nineteenth century worked toward the prime number theorem,
which is a statement about the asymptotic behavior of π(x). We often use the ∼ symbol
to describe asymptotics. It has the following meaning: let f(x) and g(x) be two complex
functions of a real variable x. We say that

f(x) ∼ g(x)

provided that

lim
x→+∞

f(x)

g(x)
= 1.
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With this notation in place we can state the prime number theorem.

Theorem 9 (Prime Number Theorem). Let π(x) be the prime counting function defined
above. Then

π(x) ∼ x

log x
.

Other ways of stating the prime number theorem are that the probability of a randomly
chosen positive integer no more than x being prime approaches 1/ log x, or that the
probability of a randomly chosen positive integer near x being prime is 1/ log x. Note
that these probabilities are not trivially the same - these quantities are similar because
of the log function’s differential properties.

The prime number theorem was proven in 1896 by Hadamard and Vallée Poussin inde-
pendently. Each completed the proof by constraining the complex numbers s such that
ζ(s) = 0. The next main ideas develop several main ideas having to do with these zeros,
leaving complex analysis as a “black box.”

The zeta function is often called the “Riemann zeta function” because Riemann instigated
serious study of it. He proved the following items, in bold.

• ζ(s) has an “analytic continuation” to the rest of C, which is complex dif-
ferentiable except for the “simple pole” at s = 1.

An analytic continuation is an important concept in complex analysis, but one has already
encountered this function in calculus class. Consider the function

1 + x+ x2 + x3 + · · · ,

which converges only in the disk {z ∈ C : |z| < 1} and on some points on the border of
the disc. This is the Taylor expansion at 0 for the function

1

1− x
,

which we know perfectly well can be defined for x outside the disk, even though its series
representation cannot. Analytic continuation is much like this: it extends a function that
is a priori defined on a constrained domain to a larger domain of definition in a sensible
way. However, our intuition from real functions will fail us here, because there are many
real differentiable functions like

f(x) :=

{
x2 if x ≥ 0
−x2 if x < 0

which are once or twice differentiable, but not smooth (i.e. infinitely differentiable). How-
ever, complex differentiable functions have the amazing property that they are infinitely
differentiable whenever they are once differentiable. Any differentiable (thus infinitely
differentiable) complex function is termed “holomorphic” or “analytic.” This special
property of complex differentiable functions is critical for showing that functions such
as ζ(s) have unique analytic continuations. The continuation of ζ(s) is differentiable at
every s ∈ C except s = 1; here it looks locally like 1

s−1 , a situation which is called “having
a simple pole” at s = 1.

We won’t talk about what the analytic continuation of the zeta function looks like on much
of C, because of the next item that Riemann proved limits zeros rather seriously.
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• The zeta function obeys a functional equation, namely

ζ(1− s) = 2(2π)−s cos(πs/2)Γ(s)ζ(s),

where

Γ(s) :=

∫ ∞
0

xs−1e−xdx for σ > 0.

and the cos function is defined on C by

cos(s) =
eis + e−is

2
.

Note that the restriction on the convergence of the Γ-function does not stop us from
relating any two values of the zeta function (however, the Γ-function also admits an
analytic continuation!).

This functional equation relates the zeta functions value at a complex number s to its
value at the point given by reflecting s across the point 1/2 ∈ C. Thus as we know
the behavior of the zeta function for σ > 1 relatively well, we also know its behavior for
σ < 0. We will demonstrate this by characterizing all of the zeros of ζ(s) just as Riemann
did.

Consider the functional equation and let s vary over A = {s ∈ C : <(s) > 1}. Let us
find those values of s where the right side of the functional equation has a zero. First of
all, ζ(s) 6= 0 for all s ∈ A. This is the case because the logarithm of ζ(s) converges for
all s ∈ A, which, since x → 0 in C implies that the real part of log x approaches −∞,
means that ζ(s) cannot be zero. All of the remaining factors are never zero for any s in
C. Thus the right side of the functional equation is zero only when cos(πs/2) is zero,
that is, when s is an odd integer at least 3. Therefore we have that ζ(1 − s) is zero for
all odd integers that are at least three, i.e.

ζ(s) = 0 and <(s) < 0 =⇒ s = −2,−4,−6,−8, . . . .

These zeros at the negative even integers are called the trivial zeros of ζ(s).

Now we have limited the unknown zeros of ζ(s) to the region 0 ≤ <(s) ≤ 1. This region is
called the critical strip. We will see the arithmetic significance of this shortly, but having
gone this far in characterizing the zeros, it is time to state the Riemann Hypothesis.

Conjecture 10 (Riemann Hypothesis). The non-trivial zeros of ζ(s) have real part one-
half, i.e.

ζ(s) = 0 and 0 ≤ <(s) ≤ 1 =⇒ <(s) =
1

2
.

Let’s make a few observations about the zeros of ζ(s) in the critical strip. Note that via
our computations of complex exponentials at the outset, the complex conjugate n−sof
n−s is equal to n−s. Therefore ζ(s) = ζ(s) for all s ∈ C. Therefore if s = σ + it is a zero
of zeta in the critical strip, its complex conjugate s = σ− it is a zero as well. Recall also
that zeros in the critical strip will reflect over the point 1/2. Therefore if the Riemann
hypothesis is false and ρ = β + iγ is a zero in the critical strip but off the critical line
<(s) = 1/2, there are zeros to the right of the critical line, two of them being in the list
of distinct zeros

ρ = β + iγ; ρ = β − iγ; 1− ρ = (1− β)− iγ; 1− ρ = (1− β) + iγ.
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Many many zeros of the Riemann zeta function have been calculated, and all of them are
on the critical line. We should also remark that all zeros of the Riemann zeta function
are simple zeros (i.e. they look like the zero of f(x) = x at zero, not the the zero of
f(x) = xn where n > 1), but this is not worth getting into.

But now, what can we do to connect the primes to the zeros of the zeta function? The
key is complex analysis.

4. The Zeros of the Zeta Function and Prime Distribution

Complex analytic tools are good at finding poles - after all, poles are the interruptions in
the strong condition of complex differentiability. Since we have been claiming that the
zeros of the zeta function are significant for prime distribution, it makes sense that we
will further examine the log of the zeta function. The log has poles where zeta has zeros
or poles. More precisely, we will examine its logarithmic derivative, i.e. the derivative of
its log, which also will have poles where zeta has poles or zeros. We calculate

d

ds
(log ζ(s)) = − d

ds

∑
p

log(1− p−s)

=
∑
p

(1− p−s)−1p−s log p

=
∑
p

∑
m≥1

log pp−ms.

Recalling the definition of the von Mangoldt function Λ(n) from the beginning of section
3, we find that the last equality can be immediately translated into

d

ds
log ζ(s) =

∞∑
n=1

Λ(n)

n−s
.

Now comes in the critically important tool from complex analysis, which we must leave
as a black box. In English, the idea is this: given a reasonably well behaved (e.g. not
exponentially growing) function f : N→ C, the value of

F (x) =
∑
n≤x

f(n)

is intimately tied to the poles of
∞∑
n=1

f(n)

ns

via Perron’s formula.

In our case, we want to discuss ψ(x) =
∑

n≤x Λ(n). Recall that the prime number theorem
states that ψ(x) ∼ x.

In fact, Perron’s formula will even interpolate the points of discontinuity of ψ(x), that is
we will get a formula for

ψ0(x) :=

{
ψ(x) if ψ is continuous at x
ψ(x+)+ψ(x−)

2
if ψ is not continuous at x.
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Perron’s formula states that

ψ0(x) = x−
∑
ζ(ρ)=0

0≤<(ρ)≤1

xρ

ρ
− log 2π − 1

2
log(1− x−2),

that is, as we add non-trivial zeros ρ to the sum on the right hand side, the right hand
side will coverge pointwise to ψ0(x) for every x ∈ R≥0. This equality is known as the
explicit formula for ψ.

We remark that the first term of the right side (namely x) comes from the pole of ζ(s)
at 1, the second term comes from the non-trivial zeros, the third term comes from the
properties of ζ(s) at 0, and the final term comes from the trivial zeros. Notice that each
exponent of x is the coordinates of a pole – this is part of Perron’s formula.

Finally we’ve come up with an expression for ψ(x) depending on the zeros of x. The
prime number theorem states that ψ(x) ∼ x, i.e. that the first term of the right side
above dominates all of the others as x→∞. Let’s check this, term by term.

The rightmost term, 1
2

log(1−x−2), will shrink to 0 as x gets large, so we need not worry
about it. The next term is a constant, and so does not matter when x gets large either.
This leaves the non-trivial zeros to contend with the x term on the left. We should remark
that it is not obvious that the sum over the non-trivial zeros converges, but estimates
for zero density in the critical strip first done by Riemann are sufficient to show that the
sum converges.

Recall from the outset that when we take a real number x to the complex power ρ, the
real part of ρ controls the size of xρ and its imaginary part controls the angle of the ray
from 0 to xρ. In fact, because zeros of the zeta function come in conjugate pairs, we may
pair up the zeros in the sum over non-trivial zeros; one pair ρ = β + iγ and ρ where
ρ = |ρ| eiθρ gives us

xρ

ρ
+
xρ

ρ
=
xβ(eiγ log xρ+ e−iγ log xρ)

β2 + γ2

=
xβ

|ρ|
(ei(γ log x−θρ) + e−i(γ log x−θρ)

= 2
xβ

|ρ|
cos(γ log x− θρ).

As θρ is very close to ±π/2, this result looks a lot like a constant times xβ sin(γ log x),
and this is a fine function to graph or look at in order to get an idea of what each
conjugate pair of zeros contributes to the ψ(x) function. You may find a picture of what
such a function looks like at a website to be discussed below. Note also that the fact
that imaginary parts cancel when we sum over conjugate pairs makes a lot of sense, since
ψ(x) is a real function.

With this in place, we can say what Hadamard and Vallée Poussin proved about the
zeros of the zeta function in order to have the prime number theorem as a corollary: they
proved that there are no zeros of the zeta function on the line <(s) = 1. Let’s think about
why this is sufficient.

Let’s say that ρ = β+iγ is a zero in the critical strip that is not on the critical line, that is,
a counterexample to the Riemann hypothesis. Then there exists a zero that is to the right
of the critical line, i.e. with β > 1/2, by the discussion of the symmetry of zeros above.
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Without loss of generality, say that ρ is this zero. Then ρ and its conjugate ρ generate a
term of the sum which reaches a magnitude as high as xβ times a constant. If somehow
the four zeros generated by ρ and the zero-symmetries were the only counterexamples
to the Riemann hypothesis, then there would be crazy variations in prime density: if x
were such that cos(γ log x−θρ) is near 1, then by examining the explicit formula for ψ(x)
we see that there would be fewer primes near to this x. This is the case because the
wave

2
xβ

|ρ|
cos(γ log x− θρ)

generated by ρ and its conjugate will be much bigger than the waves generated by any
of the other non-trivial zeros. Likewise, when x is such that cos(γ log x − θρ) is close to
-1, there will be many more primes near x. We can see how the truth of the Riemann
hypothesis makes x as good of an estimate for ψ(x) as it can be.

When we consider the prime number theorem, we realize that our aberrant zero ρ will
not create trouble as long as β < 1; for we calculate

lim
x→∞

ψ(x)

x
= lim

x→∞

x− 2xβ cos(γ log x− θρ)/ |ρ|
x

= 1,

provided that β < 1. If there were to be a zero ρ with real part equal to 1, we can see
via the explicit formula that the prime number theorem would not be true.

I want to conclude by giving you the idea that the Riemann hypothesis does not just
make ψ(x) as close to x as possible, but also is very beautiful. If it is true, it means that
primes are generated by a bunch of different frequencies of waves that grow at the same
rate. If some waves grow faster than others, we get havoc.

To observe this all in action, check out the following website:

http://www.secamlocal.ex.ac.uk/people/staff/mrwatkin/zeta/encoding2.htm

This website contains graphs of the components of the explicit formula coming from each

zero, so that you can see what a function like 2x
β

|ρ| cos(γ log x − θρ) looks like. But most

importantly, it has an applet at the bottom that shows the ψ-function in yellow and
shows the right side of the explicit formula as additional non-trivial zeros are added to
the sum. Check it out!
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