A Harder-Narasimhan theory for Kisin modules

Brandon Levin and Carl Wang Erickson

February 24, 2015

Brandon Levin and Carl Wang Erickson

HN-theory and Kisin varieties

February 24, 2015 1 / 17

Theorem (Wiles, Taylor-Wiles, BCDT)

Any elliptic curve E/\mathbb{Q} is modular.

A key input into Wiles' method and subsequent improvements is a good understanding of Galois deformation spaces at $\ell = p$.

Let *K* be a finite extension of \mathbb{Q}_p , and let Γ_K be the absolute Galois group of *K*. Fix

$$\overline{\rho}: \Gamma_{K} \to \mathrm{GL}_{n}(\mathbb{F}_{p}).$$

There is a universal deformation space $D_{\overline{\rho}}$ represented by a quotient of a power-series ring $R_{\overline{\rho}}$ over \mathbb{Z}_p (when $\overline{\rho}$ is absolutely irreducible).

If *E* is an elliptic curve over *K* with good reduction, then $E[p^n]$ is a finite flat group scheme over \mathcal{O}_K for all *n*. The representation of Γ_K on the p^n -torsion points is called **flat**.

The **flat deformation space** $D_{\overline{\rho}}^{\text{fl}}$ is the subspace of $D_{\overline{\rho}}$ of representations that come from finite flat group schemes over \mathcal{O}_{K} .

What are the connected components of $D_{\overline{\rho}}^{\text{fl}}[1/p]$?

- (Ramakrishna) When n = 2 and $K = \mathbb{Q}_p$, then $D_{\overline{\rho}}^{\text{fl}}[1/p]$ is connected.
- When *n* = 2, we have full description of connected components for any *K* by work of Kisin, Imai, Gee, and Hellmann.
- When n > 2, the question is open in general (unless K is mildly ramified).

Theorem (Kisin)

There is a projective variety $X_{\overline{\rho}}$ over \mathbb{F}_p such that $X_{\overline{\rho}}(\mathbb{F})$ is the set of finite flat group schemes \mathcal{G} over \mathcal{O}_K such that $\mathcal{G}(\overline{K}) \cong \overline{\rho} \otimes_{\mathbb{F}_p} \mathbb{F}$.

Application

Connected components of $D^{\mathrm{fl}}_{\overline{\rho}}[1/p]$ are related to the connected components of $X_{\overline{\rho}}$.

Definition

Assume K/\mathbb{Q}_p is totally ramified of degree e and \mathbb{F} is a finite field. Let $\varphi : \mathbb{F}[[u]] \to \mathbb{F}[[u]]$ be the homomorphism sending $u \mapsto u^p$. A Kisin module of rank n over \mathbb{F} is a finite free $\mathbb{F}[[u]]$ -module $\mathfrak{M}_{\mathbb{F}}$ with a semilinear map

 $\phi:\mathfrak{M}_{\mathbb{F}}\to\mathfrak{M}_{\mathbb{F}}$

such that the cokernel (of the linearization) is killed by u^e .

Theorem (Kisin)

The category of Kisin modules over \mathbb{F} is anti-equivalent to the category of finite flat group schemes over \mathcal{O}_K with an \mathbb{F} -action.

イロト 不得下 イヨト イヨト

Slope function

- The generic fiber of (\mathfrak{M}, ϕ) is $(\mathfrak{M}[1/u], \phi[1/u])$. (This is an étale $\mathbb{F}((u))$ -module).
- The *degree* of (\mathfrak{M}, ϕ) is $\frac{1}{e} \dim_{\mathbb{F}} \operatorname{coker}(\phi)$.
- The slope is $\mu(\mathfrak{M}) := \deg(\mathfrak{M}) / \operatorname{rank}(\mathfrak{M})$.

This was inspired by Fargues' (2010) theory of Harder-Narasimhan filtrations for finite flat group schemes.

Theorem (L.-W. E.)

The function μ defines a HN-theory on the category of Kisin modules. In particular, any $\mathfrak M$ has a canonical HN-filtration

 $0 = \mathfrak{M}_0 \subset \mathfrak{M}_1 \subset \mathfrak{M}_2 \subset \ldots \subset \mathfrak{M}_k = \mathfrak{M}$

by strict subobjects such that $\mathfrak{M}_{i+1}/\mathfrak{M}_i$ is semi-stable and $\mu(\mathfrak{M}_i/\mathfrak{M}_{i-1}) < \mu(\mathfrak{M}_{i+1}/\mathfrak{M}_i)$.

• The HN-filtration generalizes the connected-etale sequence for finite flat group schemes.

 The HN-polygon is the concave polygon with breakpoints (rank(M_i), deg(M_i)).

Definition

For $\nu = (a_1, a_2, ..., a_n)$ with $a_i \in \mathbb{Z}$ and $a_{i+1} \ge a_i$, a Kisin module $(\mathfrak{M}, \phi_{\mathfrak{M}})$ over \mathbb{F} of rank *n* has **Hodge type** ν if there exists a basis $\{e_i\}$ of \mathfrak{M} such that $u^{a_i}e_i$ generates the image of $\phi_{\mathfrak{M}}$.

Definition

Let $(\mathcal{M}_{\overline{\rho}}, \phi)$ be the étale $\mathbb{F}_{p}((u))$ -module of rank n attached to $\overline{\rho}$. The closed Kisin variety has points given by

$$X^{
u}_{\overline{
ho}} = \{\mathfrak{M}[1/u] \cong \mathcal{M}_{\overline{
ho}} \mid \mathfrak{M} \text{ has Hodge type} \leq \nu\}.$$

It is a projective scheme over \mathbb{F}_p .

Remark

This is subspace of $X_{\overline{\rho}}$ if $0 \le a_i \le e$ for all *i*.

Theorem (L.-W. E.)

There is a stratification

$$\bigcup_{P} X^{\nu,P}_{\overline{\rho}} = X^{\nu}_{\overline{\rho}}$$

by locally closed subschemes indexed by concave polygons P such that the points of $X^{\nu,P}_{\overline{\rho}}$ are the Kisin modules with HN-polygon P.

Remark

For any point in X_{ρ}^{ν} , the HN-polygon lies above the Hodge polygon ν . Hence, there are a finite number of such strata.

Pictures

Explanation

In the following slides, for different Hodge polygons ν , we draw the set of possible HN-polygons.

- For any $\overline{\rho}$ of the appropriate dimension, the strata of $X^{\nu}_{\overline{\rho}}$ will be indexed by this finite set of polygons.
- The Hodge polygon ν appears in black.
- We color the polygons the same if they share the same segments in common with the Hodge polygon.
- Only strata with the same color can occur on the same connected component (i.e., the union of the strata with same color is open and closed in X^ν₀).

Remark

For any particular $\overline{\rho}$, many of the strata could be empty. For example, if $\overline{\rho}$ is irreducible, then only the constant slope stratum will appear.

Brandon Levin and Carl Wang Erickson

Components for GL_2 , $\nu = (0,3)$

Brandon Levin and Carl Wang Erickson

▲ 注 ト 4 注 ト 注 少 Q C February 24, 2015 13 / 17

Components for GL₃, $\nu = (0, 0, 1)$

3

3 D (3 D)

< 4 ₽ > <

3

∃ ► < ∃ ►</p>

< 🗗 🕨 🔸

Components for GSp_4 , $\nu = (-2, -1, 1, 2)$

Conjecture

Let $\mathfrak M$ and $\mathfrak N$ be Kisin modules over $\mathbb F.$ If $\mathfrak M$ and $\mathfrak N$ are semistable, then

 $\mathfrak{M}\otimes_{\mathbb{F}}\mathfrak{N}$

is semistable of slope $\mu(\mathfrak{M}) + \mu(\mathfrak{N})$.

Theorem (L.-W. E.)

The tensor product theorem holds when $\mathfrak{M}[1/u]$ and $\mathfrak{N}[1/u]$ are irreducible (with a few technical assumptions).

Application

Study Kisin varieties for reductive groups G and G-valued flat deformation rings.

Brandon Levin and Carl Wang Erickson

Image: Image: