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Abstract. This is a brief summary of one part of the forthcoming work “Cohomological
control of deformation theory via A∞-structure.” Let G be a profinite group. The main re-
sult is that a natural A∞-structure on cohomology groups induces presentations of universal
deformation rings for G-representations, more general moduli spaces for G-representations,
and universal deformation rings for Galois pseudorepresentations. Nothing in this summary
is particular to the case that G is a Galois group. Remaining parts of the forthcoming paper
(not described here) give applications to number theory.

1. Fine and coarse moduli of Galois representations

In this section, we give background for the result, quickly summarizing [WE15].

1.1. Fine moduli of representations. The most often-applied moduli theory of repre-
sentations of a profinite group, due to Mazur [Maz89], proceeds as follows: fix a residual
representation ρ̄ : G→ GLd(F) and study its deformations, which is often represented by a
universal deformation ring Rρ̄. In [WE15], I have studied the moduli of all representations,
a space we will call “Rep.” Universal deformations rings Rρ̄ are complete local rings in Rep.
Because we must take account of the profinite topology on G, it is natural to restrict the
coefficient rings (on which we evaluate Rep) to quotients of completions of Z[x1, . . . , xn] at
some ideal containing a rational prime p.

To understand Rep, it is helpful to introduce pseudorepresentations, a notion due to
Chenevier [Che14].1 An A-valued pseudorepresentation D : G → A of dimension d is a
collection of characteristic polynomial coefficient functions

D = (f1 = Tr, f2, . . . , fd = det) : G→ A

satisfying conditions that would be expected if it came from an A-valued representation. We
write PsR for the (fine) moduli scheme of pseudorepresentations. There is a natural map
ψ : Rep→ PsR associating a representation to its characteristic polynomial. Although not
every pseudorepresentation arises from a representation, it is critically important that pseu-
dorepresentations valued in a field are in bijection with semi-simple representations [Che14,
Thm. A]. Accordingly, we write D̄ : G → F for a residual pseudorepresentation valued in a
finite field F, and write ρ̄ss

D̄
: G→ GLd(F) for the associated semi-simple representation.

Chenevier has shown that each D̄ has a universal deformation ring RD̄, which we call
a pseudodeformation ring. Unlike the moduli of representations Rep, PsR is the dis-
joint union of deformation spaces of residual pseudorepresentations [Che14, Thm. F]. Conse-
quently, we study one connected component of Rep at a time, written ψ : RepD̄ → SpecRD̄.

Date: 2015-11-02.
1Chenevier’s definition develops notions due to Wiles [Wil88] and Taylor [Tay91].
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The attention to RepD̄ broadens the scope of the usual moduli theory of representations of
G, initiated by Mazur [Maz89]. Mazur defined the universal deformation ring Rρ̄ of a single
residual representation ρ̄ : G → GLd(F); F is a finite field. The deformation rings Rρ̄ are
local rings in RepD̄ when the semi-simplification (ρ̄)ss equals ρ̄ss

D̄
. When ρ̄ss

D̄
is reducible, ψ

is not an isomorphism and RepD̄ is not local. For example, when ρ̄ss
D̄

has two simple factors
ρ̄1, ρ̄2, the special fiber of ψ consists of F-valued representations of the forms(

ρ̄1 ∗
0 ρ̄2

)
,

(
ρ̄1 0
0 ρ̄2

)
, and

(
ρ̄1 0
∗ ρ̄2

)
.

However, when ρ̄ss
D̄

is irreducible, ψ is an isomorphism [Che14, Thm. B], and RepD̄ =
SpecRρ̄ss

D̄
. The coarse moduli and fine moduli are identical. Consequently, the attention to

coarse moduli is novel for residually reducible Galois representations.

1.2. Coarse moduli of representations. Let’s make the definition of fine and coarse
moduli spaces clear. Fine moduli spaces X parameterize precisely the objects one desires up
to isomorphism, but are often not realizable as schemes. Rather, they are algebraic stacks
that are often non-separated, making their geometry somewhat difficult. This is the case
with RepD̄.

Coarse moduli spaces, which in many cases are produced by Mumford’s geometric invariant
theory (GIT) [Mum65], are schemes that are the best possible scheme approximating X .
Namely, X receives a morphism φ : X → X that is universal for morphisms from X to
affine schemes. However, coarse moduli spaces such as X do not automatically represent a
known moduli functor. It was an achievement of GIT to describe the geometric points of X
moduli-theoretically, but not much more was known.

I am interested in determining natural (fine) moduli functors that coarse moduli spaces
represent. I will describe my past and continuing work along these lines for two particular
moduli problems: the moduli of representations and the moduli of semi-linear modules.

By GIT arguments, it is known that the coarse moduli scheme of representations has
the same set of geometric points as PsR (see e.g. [Ric88]), i.e. semi-simple representations.
An isomorphism of points is not useful for deformation theory, and my work provides a
refinement (see also [Che13, Prop. 2.3]).

Theorem 1.2.1 ([WE15, §3]). ψ : RepD̄ → SpecRD̄ is a map from the fine moduli space to
the coarse moduli space of representations, perhaps with a p-torsion, nilpotent defect when
the simple factors of ρss

D̄
are not distinct. In particular, ψ is universally closed.

Assume that the defect vanishes. When RepD̄ is presented as a quotient stack of a
reducible group G acting on an affine scheme SpecS, then the statement that SpecRD̄ is the
coarse moduli space associated to RepD̄ means that RD̄ = SG. We will use this equality to
determine RD̄, below.

2. Cohomological control of deformation theory via A∞-structure.

We will now describe how anA∞-structure on cohomology influences the moduli spaces/rings
described above. See [Kel06] for an introduction to A∞-algebras appropriate to the applica-
tions described in this note.
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2.1. Overview. In this paragraph, we overview the main results under discussion, deter-
mining equi-characteristic moduli spaces Rρ̄, RepD̄, and RD̄ in terms of A∞-structure on
cohomology.2 These results are motivated by the following questions.

(1) Can one find information about a deformation ring Rρ̄ in cohomology making the
standard tangent and obstruction theory explicit, e.g. a presentation for the ring Rρ̄?

(2) Generalizing the first question, can one determine the global structure of the fine
moduli spaces RepD̄ in terms of cohomology?

(3) Can the structure of the coarse moduli space of representations, i.e. the moduli of
pseudorepresentations represented by the pseudodeformation ring RD̄, be determined
in terms of cohomology?

We will answer these questions positively, using an A∞-structure on cohomology. This
structure extends the usual cup product in cohomology to “higher cup products.” The
A∞-structure offers a language with which to describe how an obstruction theory works.
This language helps significantly with understanding RepD̄ and RD̄. Before stating precise
theorems and introducing notation necessary to state them, we summarize the results in the
following

Theorem 2.1.1 ([WE]). Let ρ̄ be a semi-simple representation of G over a field k. Let D̄
denote the induced pseudorepresentation of G. Then there is an A∞-algebra structure on⊕

i≥0 ExtiG(ρ̄, ρ̄) such that the restriction of this structure to i = 0, 1, 2 gives presentations
for the following rings (or spaces):

(1) When ρ̄ is irreducible, the deformation ring Rρ̄.
(2) The moduli stack RepD̄ of deformations of representations of G with residual pseu-

dorepresentation D̄.
(3) When the simple factors of ρ̄ are distinct, the presentation of RepD̄ induces a pre-

sentation for the pseudodeformation ring RD̄ via the invariant-theoretic relationship
between RepD̄ and RD̄ established in Theorem 1.2.1.

Answering (3) especially interesting, because not even the tangent space dimension for
RD̄ had been worked out in the generality I achieve, much less an obstruction theory. And
the tangent dimension is especially critical for number-theoretic applications. The tangent
space is determined in Corollary 2.3.5. The best past result along the lines of (3) is work
of Belläıche [Bel12], who determines the tangent space of RD̄ when there are two simple
factors.

The complication in determining the tangent space of RD̄ is that one needs the explicit
obstruction theory for representations produced in part (2). Indeed, obstructions to repre-
sentations influence the tangent space for pseudorepresentations – this basically reflects the
fact that characteristic polynomial coefficients, other than the trace, are of degree ≥ 2 in
matrix coefficients, and that obstructions appear only degree ≥ 2.

Remark 2.1.2. I am optimistic that workable formulas will come of the case with multiplicity,
in future work. This will demand avoiding using invariant theory to determine RD̄. In con-
trast, we heavily use invariant theory to calculate RD̄ in the multiplicity-free case discussed
in the paper.

2We use Rρ̄, RepD̄, and RD̄ to denote equi-characteristic moduli spaces/rings for the rest of this note.
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2.2. A∞-algebras and presentations for Rρ̄, RepD̄. It is well known that there is a graded
multiplicative cup product structure m2 on H∗G(adρ̄) arising from the usual cup product in
cohomology and the multiplication map adρ̄ ⊗ adρ̄ → adρ̄. In fact, due to a theorem of
Kadeishvili [Kad82], there are “higher cup products”

mn : H∗G(adρ̄)⊗n → H∗G(adρ̄), of graded degree 2− n, n ≥ 2

extending m2. This structure (H∗G(adρ̄), (mn)n≥2) is known as an A∞-algebra. While the
choice of (mn) is not unique, the theorems below do not depend on the choices.

Remark 2.2.1. See the appendix §3 for a concrete explanation of how the mn influence the
moduli of representations. Theorems 2.2.2 and 2.2.3 can be deduced, in principle, from the
examples explained in §3.

Consider the dual maps

m∗n : H2
G(adρ̄)∗ −→ H1

G(adρ̄)∗⊗n, m∗ : H2
G(adρ̄)∗

Πm∗n−→
∏
n≥2

H1
G(adρ̄)∗⊗n.

These give a presentation for Rρ̄ when ρ̄ is absolutely irreducible. We write k[[V ]] for the
completed symmetric algebra of the k-vector space V , i.e. k[[V ]] :=

∏
n≥0 Symn

k V .

Theorem 2.2.2. Let ρ̄ be absolutely irreducible. Then there is a canonical isomorphism

k[[ Ext1
G(ρ̄, ρ̄)∗]]

(m∗ Ext2
G(ρ̄, ρ̄)∗)

∼−→ Rρ̄.

Notice that the surjection to Rρ̄ from k[[ Ext1
G(ρ̄, ρ̄)∗]] follows from the standard result that

the tangent space of Rρ̄ is canonically isomorphic to Ext1
G(ρ̄, ρ̄). The higher cup products

determine the kernel.

The generalization to the description of RepD̄ when D̄ is not irreducible includes Theorem
2.2.2 as a special case. We set up some notation in order to state it:

• Let ρ̄ =
⊕

1≤i≤r ρ̄i be a semi-simple representation with no multiplicity (i.e. ρ̄i '
ρ̄j ⇔ i = j), and let D̄ be the induced pseudorepresentation.
• Write r for {1, 2, . . . , r}, and l for {0, 1, . . . , l}.
• Now ExtiG(ρ̄, ρ̄) has a “matrix-coordinate” decomposition ExtkG(ρ̄j, ρ̄i) =

⊕
1≤i,j≤r ExtkG(ρ̄j, ρ̄i),

and the higher cup products mn respect this decomposition.
• Let C ⊂ Sym∗k Ext1

G(ρ̄, ρ̄)∗ be the ideal generated by cyclic tensors, where a cyclic
tensor is an element of

Ext1
G(γ)∗ :=

⊗
0≤s≤l(γ)−1

Ext1
G(ρ̄γ(s), ρ̄γ(s+1))

∗,

where γ : l→ r is a closed path of length l, i.e. γ(0) = γ(l).
• We write S∧I for the completion of a ring S at an ideal I.

Theorem 2.2.3. There is a map

Spf
(Sym∗k Ext1

G(ρ̄, ρ̄)∗)∧C
(m∗ Ext2

G(ρ̄, ρ̄)∗)
−→ R̂epD̄

presenting the stack R̂epD̄ as a quotient by the natural action of the torus of units in
EndG(ρ̄, ρ̄).
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Remark 2.2.4. Consider that the quotient Sym∗k Ext1
G(ρ̄, ρ̄)∗/(C,m∗ Ext2(ρ̄, ρ̄)∗) parameter-

izes k-valued representations whose pseudorepresentation is D̄ (i.e. whose semi-simplification
is ρ̄), i.e. this is the special fiber over Spf RD̄.

Remark 2.2.5. Theorem 2.2.3 may be thought of as an “abelianization” of the results of
Segal [Seg08], with attention to the profinite topology of G.

2.3. Invariant theory. We have seen that SpecRD̄ is the GIT quotient of the quotient
stack RepD̄ (Theorem 1.2.1), where we remind the reader of the assumption that the simple
factors of ρ̄ss

D̄
are distinct. Working with the presentation of this stack in Theorem 2.2.3 (and

the comments afterward), we can determine RD̄ explicitly.

First we consider the case Ext2
G(ρ̄, ρ̄) = 0, which we call the representation-unobstructed

case. In this case, is is quite easy to describe the tangent space to RD̄. The obstructions may
be non-trivial, and have been determined in the literature in a combinatorial way. Indeed,
RD̄ is simply the invariant subring for the natural torus action on (Sym∗k Ext1

G(ρ̄, ρ̄))∧C . Here
is some notation and the result.

• A closed path in γ : l→ r is called simple if γ(i) = γ(j)⇒ {i, j} = {0, l}.
• A cycle in r is an equivalence class of closed paths of length l under the equivalence

relation γ ∼ γ′ iff there exists i ∈ l such that γ(j) = γ(i+ j (mod l)) for j ∈ l.
• Write SC(r) for the set of equivalence classes of simple cycles in r.
• Say that Ext1

G(ρ̄, ρ̄) (or ρ̄) is strongly connected if for any i, j ∈ r, there exists a path
γ from i to j and Ext1

G(γ) is non-trivial.

Theorem 2.3.1 ([BLBVdW03]). Assume that ρ̄ = ρss
D̄

is representation-unobstructed. Then
RD̄ is isomorphic to the image of the natural map

k[[
⊕

γ∈SC(r)

Ext1
G(γ)∗]] −→ k[[ Ext1

G(ρ̄, ρ̄)∗]].

In particular, the tangent dimension of RD̄ is equal to the dimension of
⊕

γ∈SC(r) Ext1
G(γ),

and, if ρ̄ is strongly connected, the Krull dimension of RD̄ is given by dimk Ext1(ρ̄, ρ̄)−r+1.

There is also a combinatorial expression for RD̄ in terms of the simplicial homology of the
quiver associated to ρ̄.

Now we continue to the general case, which may not be representation-unobstructed. We
will write R1

D̄
for the RD̄ of Theorem 2.3.1, i.e. ignoring the presence of Ext2. We will present

RD̄ as a quotient of R1
D̄

, which is possible given the invariant theory involved. We require a
bit more notation.

• Write SCC(i, j) for the set of “simple closed complements” of the length one path
from j to i; i = j is allowed, but SCC(i, i) = ∅.

Theorem 2.3.2. There is an isomorphism

RD̄
∼−→

R1
D̄(⊕

i,j∈r

m∗ Ext2
G(ρ̄j, ρ̄i)

∗ ⊗
( ⊕
γ∈SCC(i,j)

Ext1
G(γ)∗

))
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Remark 2.3.3. In view of Theorem 2.3.1, Theorem 2.3.2 gives a formula for an upper bound
on the tangent dimension and Krull dimension of RD̄ in terms of dimensions of cohomology
groups.

Remark 2.3.4. The presentation of Theorem 2.3.2 differs from a usual presentation of a
deformation problem in that the relations can kill tangent vectors.

In particular, one can readily find an expression for the tangent space t of RD̄ in terms of
the expression given in Theorem 2.3.2, generalizing the result of Belläıche [Bel12]. Belläıche’s
result determines the tangent space when r ≤ 2. The ith cup products for 2 ≤ i ≤ r are
needed to determine t, for general r, which explains the limitation on the techniques of
[Bel12].

Corollary 2.3.5. There is a non-canonical isomorphism

t
∼−→ ker

( ⊕
γ∈SC(r)

Ext1
G(γ) −→

⊕
i,j∈r

Ext2
G(ρj, ρi)⊗

( ⊕
γ′∈SCC(i,j)

Ext1
G(γ′)

))
,

where for a triple (γ, (i, j), γ′), the corresponding factor of the map is non-zero exactly when
γ contains a length n path γ′′ from j to i with complementary path γ′, in which case the map
is

Ext1
G(γ) = Ext1

G(γ′′)⊗ Ext1
G(γ′)

bn⊗id−→ Ext2
G(ρj, ρi)⊗ Ext1

G(γ′).

Remark 2.3.6. Belläıche determines a “complexity filtration” on t [Bel12]. The fact that we
express t as a direct sum, instead of determining graded pieces of this filtration, reflects the
non-canonical choices of A∞-structure (mn).

3. Appendix: The representation-theoretic significance of A∞-structure

In this appendix, we illustrate, in concrete, representation-theoretic terms, what question
the A∞-structure on cohomology answers, and to explain the notion of A∞-algebras so that
its usefulness to answer this question is clear.

We will consider representations ρi of G on finite-dimensional k-vector spaces. We know
that Ext1

G(ρ2, ρ1) describes extensions up to natural equivalence. Given such an extension
e12 ∈ Ext1

G(ρ2, ρ1), we will represent it as(
ρ1 e12

ρ2

)
.

Given another extension e23 ∈ Ext1
G(ρ3, ρ2), we ask whether there is a representation of the

form ρ1 e12 ?
ρ2 e23

ρ3

 .

There will be such a representation precisely when the cup productm2(e12, e23) ∈ Ext2
G(ρ3, ρ1)

vanishes. Then, the ways to “fill in” the “?” with f13 are a principal homogenous space under
Ext1

G(ρ3, ρ1). Continuing on, given that there are two representations of length three,ρ1 e12 f13

ρ2 e23

ρ3

 and

ρ2 e23 f24

ρ3 e34

ρ4

 ,
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there is a representation of length 4 inducing the two representations above as a sub (resp. quo-
tient), i.e. of the form 

ρ1 e12 f13 ?
ρ2 e23 f24

ρ3 e34

ρ4

 ,

if and only if a “higher cup product” m3(e12, e23, e34) ∈ Ext2
G(ρ4, ρ1) vanishes. Notice that

the existence of some way to fill in “?” does not depend on the choice of f13 or f24.

Going on as above, one will find the following result, which we state as follows.

Proposition 3.0.1. A set of non-zero extensions ei,i+1 ∈ Ext1
G(ρi+1, ρi), 1 ≤ i < d, arises

as subquotients of a length d representation with unique Jordan-Hölder filtration with ordered
graded pieces ρ1, ρ2, . . . , ρd, i.e. there exists a representation of the form

(3.0.2)


ρ1 e12 · · · f1d

ρ2
. . . f2d

. . .
...
ρd

 ,

if and only if, for every `, 1 ≤ ` ≤ d, and every sequence ei, ei+1, . . . , ei+` of consecutive
extensions, m`(ei, ei+1, . . . , ei+`) ∈ Ext2

G(ρi+`, ρi) vanishes.

Thus we see that the behavior of mn for any n has a representation-theoretic consequence.
Compare [Kel01, Example 7.8].
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[Che13] Gaëtan Chenevier. Représentations Galoisiennes automorphes et conséquences

arithmétiques des conjectures de Langlands et Arthur. Habilitation, Paris XI, 2013.
http://www.math.polytechnique.fr/~chenevier/articles/determinants.pdf.
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