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Abstract. We construct and study the moduli of continuous representations

of a profinite group with integral p-adic coefficients. We present this moduli
space over the moduli space of continuous pseudorepresentations and show

that this morphism is algebraizable. When this profinite group is the absolute

Galois group of a p-adic local field, we show that these moduli spaces admit
Zariski-closed loci cutting out Galois representations that are potentially semi-

stable with bounded Hodge-Tate weights and a given Hodge and Galois type.

As a consequence, we show that these loci descend to the universal deformation
ring of the corresponding pseudorepresentation.
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1. Introduction

1.1. Overview. Mazur [Maz89] initiated the systematic study of the moduli of
representations of a Galois group G in terms of complete local deformation rings.
For a fixed residual representation ρ̄ with coefficients in the finite residue field F,
which admits a universal deformation ring Rρ̄, the resulting moduli space Spf Rρ̄
is “purely formal” in the sense that the underlying algebraic scheme SpecF is 0-
dimensional. These deformation rings have been studied extensively in recent years,
playing a significant role in automorphy lifting theorems.

In contrast, the moduli of Galois representations that are not purely formal, i.e.
positive-dimensional algebraic families of residual representations, have been some-
what neglected. They do appear implicitly in the work of Skinner-Wiles [SW99] and
Belläıche-Chenevier [BC09a]. The space Ext1

G(ρ̄2, ρ̄1) of extensions of two distinct
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irreducible residual representations ρ̄1, ρ̄2 of G

(1.1)

(
ρ̄1 ∗
0 ρ̄2

)
is the most basic example of such a residual family. The goal of this paper is
to set up a general theory of families of Galois representations and to show that
conditions from p-adic Hodge theory may be sensibly imposed on them. The ad
hoc use of these ideas in [SW99] and [BC09a] suggests that these spaces should
have applications to modularity lifting theorems, and the study of Selmer groups.

To state our first main result, recall that a pseudorepresentation of G is the data
of a polynomial for each element of G, satisfying coherence and continuity condi-
tions one expects from characteristic polynomials of a representation. Chenevier
[Che14] has shown that a residual pseudorepresentation D̄ of G admits only formal
deformations, and that these are parameterized by a universal deformation ring
(RD̄,mD̄). Let RepD̄ denote the groupoid which attaches to any quotient B of
Zp[[t1, . . . , tn]]〈z1, . . . , zm〉, the category of locally free B-modules VB equipped with
a continuous linear action ρB : G → AutB(VB) having residual pseudorepresenta-
tion D̄.

Write ψ̂(ρB) for the pseudorepresentation induced by a representation (VB , ρB).

Denote by ρss
D̄

the unique semi-simple representation such that ψ̂(ρss
D̄

) = D̄. We say

that D̄ is multiplicity-free if ρss
D̄

has no multiplicity among its simple factors.

Theorem A (Theorem 3.8). If G satisfies Mazur’s finiteness condition Φp, then
RD̄ is Noetherian and

ψ̂ : RepD̄ −→ Spf RD̄

is a formally finite type Spf RD̄-formal algebraic stack. Moreover,

(1) RepD̄ arises as the mD̄-adic completion of a finite type SpecRD̄-algebraic
stack

ψ : RepD̄ −→ SpecRD̄.

(2) The defect ν : Specψ∗(ORepD̄ ) → SpecRD̄ between the GIT quotient and
the pseudodeformation space is a finite universal homeomorphism which
is an isomorphism in characteristic zero. In particular, ψ is universally
closed.

(3) If D̄ is multiplicity-free, then RD̄ is precisely the GIT quotient ring.

The theorem should be compared with the result that ψ̂ is an isomorphism when

ρss
D̄

is absolutely irreducible. The fact that ψ̂ is algebraizable may be thought of as

an interpolation of the algebraicity of each fiber of ψ̂ over a pseudorepresentation
D. This fiber consists of the representations with semi-simplification isomorphic
to ρssD , and is naturally algebraic as in (1.1) above. The proof of Theorem A
uses the existence of a “universal Cayley-Hamilton algebra” whose representations
naturally factor the continuous representations of RepD̄. The theorem then follows
from results on the moduli of representations of finitely generated algebras.

Having constructed and algebraized these families, we prove that it is possible
to impose conditions from p-adic Hodge theory on them, namely that they are
potentially semi-stable with a given Hodge type v and Galois type τ in the sense
of [Kis08]. Let K be a finite extension of Qp, with Galois group G = GK . We will

refer to Rep�
D̄

, which is the framed version of RepD̄ (see §3).
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Theorem B (§6.4). Let τ and v be fixed Galois and Hodge types. There exists a
closed formal substack Repτ,v

D̄
↪→ RepD̄ such that for any finite Qp-algebra B and

point ζ : SpecB → RepD̄, ζ factors through Repτ,v
D̄

if and only if the corresponding
representation VB of GK is potentially semi-stable of Galois and Hodge type (τ,v).
Moreover,

(1) Rep�,τ,v
D̄

[1/p] is reduced, locally complete intersection, equi-dimensional,
and generically formally smooth over Qp. If we replace “semi-stable” with
“crystalline,” it is everywhere formally smooth over Qp.

(2) If D̄ is multiplicity-free, then Repτ,v
D̄

is algebraizable, i.e. Repτ,v
D̄

is the

completion of a closed substack Repτ,v
D̄

of RepD̄. The geometric properties

of (1) also apply to Repτ,v
D̄

[1/p], except equi-dimensionality, which applies

to its framed version Rep�,τ,v
D̄

[1/p].

One may also produce the RD̄-algebraic closed substack Repτ,v
D̄

without any

condition on D̄ assuming an algebraization conjecture for ψ (see §3.3).
We emphasize that the methods to cut out these loci of representations are due

to Kisin [Kis08, §§1-2] in the case of complete local coefficient rings, and that we
adapt his arguments to hold over more general coefficient schemes. The geometric
properties of the loci follow from results on the ring-theoretic properties of equi-
characteristic zero potentially semi-stable deformation rings, principally [Bel16].

The fact that ψ is algebraic of finite type and universally closed can be used to
produce a potentially semi-stable pseudodeformation ring. A pseudorepresentation
D valued in a p-adic field E will be said to satisfy a condition applying to represen-
tations when the associated semi-simple representation ρssD satisfies this condition
(see Definition 7.1).

Theorem C (§7.1). Assuming that the algebraization Repτ,v
D̄

of Repτ,v
D̄

exists, the

scheme-theoretic image of Repτ,v
D̄

under ψ corresponds to a quotient of Rτ,v
D̄

of RD̄
which satisfies the following property: for any finite extension E/Qp and any point
z : SpecE → SpecRD̄, the corresponding pseudorepresentation Dz : GK → E
is potentially semi-stable of Galois and Hodge type (τ,v) if and only if z factors
through Rτ,v

D̄
. Moreover,

(1) Rτ,v := Rτ,v
D̄

[1/p] is reduced for any (τ,v) and does not depend on the

choice of Rτ,v
D̄

.
(2) When we replace “semi-stable” by “crystalline,” Rτ,v is pseudo-rational

(see Definition 7.4); in particular, it is normal and Cohen-Macaulay.

We remark that the ring-theoretic properties of the potentially semi-stable pseu-
dodeformation rings in Theorem C are deduced from the geometric properties of
the families of potentially semi-stable representations in Theorem B using invariant
theory: Theorem A tells us that Rτ,v is a GIT quotient ring. The conventional tech-
niques used to study ring-theoretic properties of Galois deformation rings in terms
of Galois cohomology have not been directly applicable to study pseudodeformation
rings Rτ,v

D̄
or Rτ,v. The author intends to report on this in future work.

Having shown that conditions from p-adic Hodge theory cut out a Zariski-closed
condition on algebraic families of local Galois representations, we end the paper
with a discussion of the corresponding constructions for families of global Galois
representations, and pseudorepresentations. We remark that the correct notion
of “a global pseudorepresentation that is locally potentially semi-stable” is more
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restrictive than “a global pseudorepresentation such that its restriction to each
decomposition group over p is potentially semi-stable.” This is well-illustrated
through the explicit example of a 2-dimensional global ordinary pseudodeforma-
tion ring, which we discuss in §7.3. These ordinary pseudodeformation rings are
compared to Hecke algebras in [WWE15b, WWE15a].

As a final point, we emphasize that Theorem A is based on a study of the mod-
uli of representations of a finitely generated associative algebra over a Noetherian
ring in §2. Theorem A is deduced from this study by “removing the topology”
from the representation theory of profinite groups. The conclusions of Theorem A
may be viewed as generalizations, allowing for the profinite topology and non-zero
characteristic, of parts of the investigations of Le Bruyn [LB08, LB12] (building on
[Pro87]) in non-commutative algebraic geometry.

1.2. Summary Outline. Section 2 discusses the geometry of the moduli spaces
of d-dimensional representations RepdR and pseudorepresentations PsRd

R of an asso-

ciative algebra R, especially with reference to the natural map ψ : RepdR → PsRd
R

associating a representation to its induced pseudorepresentation. The main idea
pursued is that the adjoint action of GLd on the scheme of framed representations

Rep�,d
R , whose associated quotient stack is RepdR, has GIT quotient nearly equal

to PsRd
R. In order to establish this, we draw geometric and algebraic consequences

of Chenevier’s work on pseudorepresentations [Che14]. First, we establish that the

GIT quotient and PsRd
R naturally have identical geometric points because each set

of geometric points naturally corresponds to isomorphism classes of semi-simple rep-
resentations. We then introduce the notion of universal Cayley-Hamilton quotient,
which factors the representations of R. Using the theory of polynomial identity
rings to derive finiteness properties of the Cayley-Hamilton quotient, we show that
the discrepancy between the GIT quotient and PsRd

R is finite.
To conclude Section 2, we augment the theory of generalized matrix algebras of

[BC09a, §1.3] so that it functions well in arbitrarily small characteristic, attaching
a canonical pseudorepresentation to a generalized matrix algebra. We also discover
that when R is a generalized matrix algebra, the associated space of pseudorepre-
sentations is precisely the GIT quotient.

In Section 3 we study the map ψ in the setting of continuous representation
theory of a profinite group G, so that we take coefficients in formal schemes over
Zp. The key result is Proposition 3.6, namely that the universal Cayley-Hamilton
quotient E(G)D̄, which factors the representations of G with residual pseudorep-
resentation D̄, is finite as a module over RD̄ and that its adic topology as an
RD̄-module is equivalent to the topology induced by G. Consequently, the moduli
space of representations of E(G)D̄ over D̄ is a finite-type RD̄-algebraic model RepD̄
for the formal moduli space RepD̄ of representations of G with residual pseudorep-
resentation D̄. Adding the results of Section 2, we get Theorem A. We then discuss
how Theorem A implies that formal GAGA holds for ψ in certain cases.

In Section 4 we begin our study of potentially semi-stable representations of
G = GK . We adapt the methods of Kisin [Kis08, §1] to cut out a locus of rep-
resentations with E-height ≤ h within the universal families Rep�

D̄
. The point

of the generalization is that coefficients must now be allowed to be quotients of
RD̄〈z1, . . . , za〉, while the coefficients rings were taken to be local in loc. cit. Along
the way, we expand the allowable coefficients in the theory of Fontaine [Fon90,
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§1.2], drawing an equivalence between continuous representations of GK∞ with ar-
bitrary discrete coefficients, and étale ϕ-modules. The work of Emerton and Gee
[EG15] will interpolate these families, as there exist families of étale ϕ-modules
larger than those that admit a Galois representation. We then construct a projec-
tive subscheme of an affine Grassmannian parameterizing lattices of E-height ≤ h
(i.e. Kisin modules) in the étale ϕ-module, and produce a characteristic zero period
map relating a family of GK∞-representations to an family of Kisin modules.

Section 5 continues with the next part of Kisin’s method [Kis08, §2], descend-
ing, in families, the comparison of a Kisin module to a GK∞ -representation down
to a comparison of a (ϕ,N)-module to a GK-representation. This comparison is
valid over a certain locus, and Section 6 begins with the conclusion that this locus
consists of exactly those GK-representations that are semi-stable with Hodge-Tate
weights in [0, h]. Then we cut out connected components corresponding to a given
p-adic Hodge type or potential semi-stability with a certain Galois type. Theorem
B follows from applying these constructions to a universal family of representations
and algebraizing these closed subschemes using formal GAGA for ψ. Finally, geo-
metric properties of these spaces in characteristic 0 are then deduced from existing
results on their local rings at closed points.

In Section 7, we apply Theorems A and B to cut out potentially semi-stable pseu-
dodeformation rings as the scheme-theoretic image of the potentially semi-stable
locus in RepD̄ under ψ, proving Theorem C. Works of Alper [Alp13, Alp14] and
Schoutens [Sch08] allow us to deduce the ring-theoretic properties of potentially
crystalline pseudodeformation rings using invariant theory. We discuss represen-
tations of the Galois group GF,S of a number field and cut out loci of representa-
tions and pseudorepresentations which are potentially semi-stable at decomposition
groups over p. There are subtleties in this definition, which we illustrate through
an example of ordinary pseudorepresentations.

1.3. Acknowledgements. We wish to thank Mark Kisin and recognize his in-
fluence in two capacities, firstly as the originator of the p-adic Hodge theoretic
methods and ideas in this paper, and secondly for his suggestion to examine the
geometric relationship between moduli spaces of Galois representations and moduli
spaces of pseudorepresentations. This was begun in the author’s Ph.D. thesis under
his supervision. The influence of Gaëtan Chenevier will also be clear to the reader.
It is also a pleasure to thank Brian Conrad, Barry Mazur, Gaëtan Chenevier, Joël
Belläıche, Preston Wake, Rebecca Bellovin, David Zureick-Brown, and Brandon
Levin for helpful discussions related to this work. We also thank the anonymous
referees for their thorough readings and helpful comments. Part of this work was
completed with support from the National Science Foundation in the form of a
graduate research fellowship. They have our thanks. Finally, we are grateful for
the support and hospitality of the mathematics departments at Harvard University
and Brandeis University.

2. Moduli of Representations of a Finitely Generated Group or
Algebra

Let A be a commutative Noetherian ring, let R be an associative but not neces-
sarily commutative A-algebra, and let d ≥ 1 be an integer. We will often assume
that R is finitely generated over A (cf. [MR01, §1.6.2]), e.g. the main result Theo-
rem 2.20. For example, we may have R = A[G] for some finitely generated group



6 CARL WANG-ERICKSON

G. We will study the moduli of d-dimensional representations of R relative to the
space of d-dimensional pseudorepresentations of R, ultimately showing in Theorem
2.20 that they almost form an adequate moduli space when R is finitely generated.
Later, in §3, we will apply this study to continuous representations of a profinite
group.

2.1. Moduli Spaces of Representations and Pseudorepresentations. With
A, R, and d as above and S = SpecA, here are the moduli groupoids we will
consider.

Definition 2.1. (1) Define the functor on S-schemes Rep�,d
R by setting

X 7→ {OX -algebra homomorphisms R⊗OS OX −→Md(X).

(2) Define the S-groupoid RepdR by setting

ob RepdR(X) = {V/X rank d vector bundle,

OX -algebra homomorphism R⊗OS OX −→ EndOX (V )},

with the natural OX -linear, R-equivariant isomorphisms of such objects.

(3) Define the S-groupoid Rep
d

R by setting

ob Rep
d

R(X) = {E a rank d2 OX -Azumaya algebra,

OX -algebra homomorphism R⊗OS OX −→ E},

with the natural OX -linear, R-equivariant isomorphisms of such objects.

One can check that Rep�,d
R is representable by an affine scheme which is finite

type over S if R is finitely generated over A. It has been studied extensively,
especially when A is an algebraically closed field of characteristic zero (see e.g.

[LM85, Pro87, LB08, LB12]). Also, RepdR is equivalent to the algebraic quotient

stack [Rep�,d
R /GLd] by the adjoint action of GLd just as we also have Rep

d

R
∼=

[Rep�,d
R /PGLd]. While Rep

d

R has the advantage that it often has representable

loci, we will focus on RepdR because it carries a universal vector bundle.

We will be interested in the geometry of RepdR relative to the moduli space of
d-dimensional pseudorepresentations of R. We will use the notion of pseudorepre-
sentation due to Chenevier [Che14], following previous notions due to Wiles [Wil88]
and Taylor [Tay91]. He uses the notion of a multiplicative polynomial law due to
Roby [Rob63, Rob80].

Definition 2.2 ([Che14, §1.5]). A d-dimensional pseudorepresentation D of R over
A is a homogenous multiplicative polynomial law D : R→ A, i.e. an association of
each commutative A-algebra B to a function

DB : R⊗A B −→ B

satisfying the following conditions:

(1) DB is multiplicative and unit-preserving (but not necessarily additive),
(2) DB is homogenous of degree d, i.e.

∀ b ∈ B, ∀ x ∈ R⊗A B, DB(bx) = bdDB(x), and
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(3) D is functorial on A-algebras, i.e. for any commutative A-algebras B → B′,
the diagram

R⊗A B
DB //

��

B

��
R⊗A B′

DB′ // B′

commutes.

We define PsRd
R(B) to be the set of d-dimensional pseudorepresentations D : R⊗A

B → B. It is evident that PsRd
R is a functor on A-algebras.

A pseudorepresentation may be thought of as an ensemble of characteristic
polynomials, one for each element of R, satisfying compatibility properties as if
they came from a representation of R. For r ∈ R, its characteristic polynomial
χ(r, t) ∈ A[t] is given by DA[t](t− r) and is written

(2.1) χ(r, t) = td − ΛDd−1(r)td−1 + · · ·+ (−1)dΛDd (r) = td +

d∑
i=1

(−1)iΛDi (r)td−i.

Indeed, the χ(r, t) for r ∈ R characterize the pseudorepresentation [Che14, Lem.
1.12(ii)].

Any B-valued representation (V, ρ) ∈ RepdR(B) of R induces a pseudorepresen-
tation, denoted ψ(V ), given by composition of ρ : R ⊗A B → EndB(V ) with the
determinant map det : EndB(V ) → B. This is easily checked to be functorial in
A-algebras and therefore defines a morphism

ψ : RepdR −→ PsRd
R.

There also exist analogous maps to PsRd
R from Rep�,d

R and Rep
d

R. The usual notion
of characteristic polynomial of a representation coincides with the characteristic
polynomial of the representation’s induced pseudorepresentation.

Base changes of ψ have a natural interpretation as follows.

Definition 2.3. With R and A as above and any B-valued d-dimensional pseu-
dorepresentation D : R ⊗A B → B of R, we say that a d-dimensional repre-
sentation (ρ, V ) of R with coefficients in a B-algebra C is compatible with D if
det ◦ρ = D ⊗B C. We denote the resulting SpecB-groupoid by RepR,D and note

that RepR,D = RepdR ×PsRdR
SpecB, where SpecB → PsRd

R corresponds to the

pseudorepresentation D.

Chenevier, following the work of Roby [Rob63, Rob80], proved that the functor
of d-dimensional pseudorepresentations of R

PsRd
R : B 7→ {d-dimensional pseudorepresentations D : R⊗A B −→ B}

is representable by an affine scheme PsRd
R = Spec ΓdA(R)ab (see [Che14, Prop. 1.6]),

so that there exists a universal d-dimensional pseudorepresentation of R

Du : R⊗A ΓdA(R)ab −→ ΓdA(R)ab.

When R is finitely generated over A, ΓdA(R)ab is also finitely generated over A
[Che14, Prop. 2.38].

The notion of a kernel of a pseudorepresentation provides a first step toward our
goal of understanding ψ.
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Definition 2.4. The kernel ker(D) of a pseudorepresentation D : R→ A is a two-
sided ideal of elements r ∈ R such that for all A-algebras B and all r′ ∈ R ⊗A B,
the characteristic polynomial χ(rr′, t) ∈ B[t] is equal to td. Call D faithful if
ker(D) = 0.

See [Che14, §1.17] for further properties of the kernel, among them being the
fact that the quotient algebra R/ ker(D) is the minimal quotient through which D
factors. Moreover, in the case that A is an algebraically closed field, the surjection
R→ R/ ker(D) realizes the representation ρssD of the following

Theorem 2.5 ([Che14, Thm. A]). Let k̄ be an algebraically closed field and let
D : R → k̄ be a d-dimensional pseudorepresentation. Then there exists a unique
(up to isomorphism) d-dimensional semi-simple representation ρssD : R → Md(k̄)
such that ψ(ρssD ) = D.

From this theorem, we know that there is a unique semi-simple representation
in each geometric fiber of ψ. Moreover, it is precisely the orbits (under the adjoint
action of GLd) of geometric points corresponding to semi-simple representations in

Rep�,d
R (k̄) which are closed orbits (cf. [Kra82, §II.4.5, Prop.]). It is equivalent to

say that each fiber ψ−1(D) of a geometric point D ∈ PsRd
R(k̄) has a unique closed

point corresponding to the representation ρssD . We summarize these facts:

Corollary 2.6. If R is finitely generated over A, the morphism ψ : RepdR → PsRd
R

induces an isomorphism of sets from the closed geometric points of RepdR to the

geometric points of PsRd
R. The inverse map sends D ∈ PsRd

R(k̄) to the semi-simple
representation ρssD , where the geometric points of the fiber ψ−1(D) correspond to
representations with Jordan-Hölder factors identical to ρssD .

In §2.3, we will refine Corollary 2.6 using geometric invariant theory. This will
rely in part upon understanding what base extensions make a pseudorepresentation
become realizable as the determinant of a representation. That is, we are seeking
a version of Theorem 2.5 where k 6= k̄.

Toward this goal, we first recall the following theorem of Chenevier. To state it,
we need the following definitions. For any algebraic field extension K/k, we write
Ks for the maximal separable extension of k in K. Let (fi, qi) be the exponent of
a field extension ki/k, i.e. fi = [ksi : k] and qi is the least power of p = char k such
that kqii ⊂ ksi . Given any simple k-algebra Si with center ki, there is a canonical
nifiqi-dimensional pseudorepresentation, denoted detSi : Si → k and defined as
follows: detSi is the composition of the standard reduced norm Si → ki followed by
the qi-Frobenius map Fqi : ki → ksi followed by the standard field-theoretic norm
ksi → k.

Theorem 2.7 ([Che14, Thm. 2.16]). Let k be a field and let R be a k-algebra with a
d-dimensional pseudorepresentation D : R → k. Then R/ ker(D) is a semi-simple
k-algebra of the form

R/ ker(D)
∼−→

s∏
i=1

Si

where Si is a simple k-algebra with center ki and dimension n2
i over ki. There are

unique integers mi such that

D =

s∏
i=1

detmiSi and d =

s∑
i=1

miniqifi.
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R/ ker(D) is finite-dimensional over k if any of the following conditions are
satisfied.

(1) k is a perfect field,
(2) d < char(k) or char(k) = 0,
(3) char(k) > 0 and [k : kp] <∞.

Notice that R/ ker(D) is finite dimensional if and only if [ki : k] <∞ for all i.

Remark 2.8. Below in Corollary 2.14, we give another condition under which
R/ ker(D) is finite-dimensional, namely, that R is finitely generated.

We consider our refinement to be a corollary of Chenevier’s result, and we use
the same notation.

Corollary 2.9. Assume that R/ ker(D) is finite-dimensional over k. There exists
a field extension k′/k of degree bounded by

∏s
i=1[ki : k]ni/qi such that D ⊗k k′ is

realizable, i.e. there exists ρ : R/ ker(D) → Md×d(k
′) such that ψ(ρ) = D ⊗k k′.

The extension k′/k may be taken to be a separable extension if and only if ki/k are
simple field extensions for all i, and in this case there exists a choice of separable
k′/k such that [k′ : k] ≤

∑s
i=1 fini ≤ d. In addition,

(1) When either of conditions (1) or (2) of Theorem 2.7 is true, k′/k may be
taken to be a separable extension.

(2) Assume that k′/k may be taken to be a separable extension. If the Brauer
groups of the fields ki have no elements of order ≤ d other than the identity,
then k′/k may be taken to be the trivial extension.

Proof. The question of realizing detSi as the induced pseudorepresentation of a
representation after some scalar extension may be addressed separately for each of
the three factors composing detSi . First we address the reduced norm θi : Si → ki.
It is well-known that there exists a minimal finite separable extension k′i/ki such

that Si ⊗ki k′i
∼→ Mni(k

′
i) and [k′i : ki] ≤ ni (see e.g. [GS06, Prop. 4.5.5]). This

representation of Si over k′i realizes θi ⊗ki k′i. Later in the proof, it will be useful

to draw this isomorphism as αi : Si ⊗ksi k
′
i
s ∼→Mni(k

′
i).

Next we address the field-theoretic norm Ni : ksi → k, which is a fi-dimensional
k-linear pseudorepresentation. By definition, Ni is the pseudorepresentation in-
duced by the determinant of the regular representation ρi : ksi →Mfi(k) of ksi over
k.

We claim that the qi-Frobenius map Fqi : ki → ksi , which is a qi-dimensional
pseudorepresentation, is realized as the determinant of some representation after a
finite scalar extension if and only if ki/k

s
i is finite. Secondly, when ki/k

s
i is finite

we claim that this scalar extension may be taken to be separable if and only if it
may be taken to be trivial if and only if ki/k

s
i is a simple extension.

To prove the first claim, observe that the minimal dimensional ksi -linear represen-
tation of ki is the the regular representation ki → M[ki:ksi ](k

s
i ). Assuming [ki : ksi ]

is finite, let Li be an intermediate field such that [ki : Li] = qi. Such an Li exists
since any purely inseparable extension may be realized as a sequence of extensions
of degree p achieved by adjoining pth roots. The ring ki ⊗ksi Li is a local ring with
residue field ki. The action of ki ⊗ksi Li on ki realized by projection of the regular
action to the residue field, which we will call βi below, is then a qi-dimensional
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Li-linear representation. One can check that its induced qi-dimensional pseudorep-
resentation is Fqi ⊗ksi Li. Indeed, the characteristic polynomial of the Li-linear
action of α ∈ ki on ki is Xqi − αqi .

Having proved the first claim, the second claim follows from the following obser-
vations. If Ki/k

s
i is any finite separable extension, then ki ⊗ksi Ki is a field, and so

the minimal dimension of a Ki-linear representation of ki ⊗ksi Ki remains [ki : ksi ].
Also, we observe that qi = [ki : ksi ] if and only if ki/k

s
i is simple if and only if ki/k

is simple.
Taking the fields Li and k′i as above, let L′i be the composite field Lik

′
i
s ∼=

k′i
s⊗ksi Li, which has degree over k satisfying the bound [L′i : k] ≤ [ki : k]ni/qi. We

claim that there is a L′i-linear representation of Si realizing detSi ⊗kL′i. First we
note that we can draw an isomorphism

ki ⊗k L′i ' ki ⊗ksi k
s
i ⊗k L′i ' ki ⊗ksi L

′
i ⊗k ksi ' ki ⊗ksi k

′
i
s ⊗ksi Li ⊗k k

s
i .

The rightmost ordering of tensor factors makes it clear that we can apply the
composition of appropriate scalar extensions of αi and βi, followed by ρi on the ksi
factor to obtain a L′i-linear niqifi-dimensional representation

γi : Si ⊗k L′i −→Mni(k
′
i)⊗ksi Li ⊗k k

s
i −→Mniqi(L

′
i)⊗k ksi −→Mniqifi(L

′
i)

realizing the pseudorepresentation detSi ⊗kL′i.
The composite field k′ of all of these field extensions L′i of k then satisfies the

properties sought after in the statement, including the degree bound. In particular,
the pseudorepresentation D from the statement of the corollary is realized, after a
base change to D ⊗k k′, by the d-dimensional k′-linear representation

s∏
i=1

(
γ×mii ⊗L′i k

′) : R/ ker(D)⊗k k′
∼−→

s∏
i=1

(
Mniqifi(L

′
i)⊗L′i k

′)×mi .
Moreover, (1) follows from the observation that when ki/k is simple, L′i may be
taken to be separable with [L′i : k] bounded by nifi. This results on the desired
restrictions on k′ in the case that ki/k is simple for all i.

Under the assumptions of (2), the arguments above allow us to take L′i/ki to be
the trivial extension, so that k′/k is also the trivial extension. In particular, the
assumption about the Brauer group guarantees that k′i = ki. �

2.2. Cayley-Hamilton Algebras are Polynomial Identity Rings. The notion
of a Cayley-Hamilton pseudorepresentation will be critical in what follows.

Definition 2.10. A pseudorepresentation D : R → A is called Cayley-Hamilton
when for any A-algebra B and every element r ∈ R⊗AB, r satisfies its characteristic
polynomial χ(r, t) ∈ B[t], i.e. χ(r, r) = 0. In this case, one also calls (R,D) a
Cayley-Hamilton algebra.

This terminology comes from the Cayley-Hamilton theorem, which says that the
determinant map det : Md×d(A)→ A is a Cayley-Hamilton pseudorepresentation.

Chenevier shows

Proposition 2.11 ([Che14, §1.17]). Given a pseudorepresentation D : R → A,
there exists a two-sided ideal CH(D) ⊂ R which is the obstruction to D being
Cayley-Hamilton. Because ker(D) ⊇ CH(D), D factors through R/CH(D) giving
a Cayley-Hamilton pseudopreresentation D : R/CH(D) → A (which we also de-
note by D) and making (R/CH(D), D) into a Cayley-Hamilton algebra. Also, the
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Cayley-Hamilton ideal is stable under base change; that is, for any A-algebra B,
there is a natural isomorphism

R/CH(D)⊗A B
∼−→ (R⊗A B)/CH(D ⊗A B).

It can be useful to take the perspective that a Cayley-Hamilton algebra is a
generalization of a matrix algebra, and to consider Cayley-Hamilton algebra-valued
representations. For instance, Procesi proved that in equi-characteristic 0, any
Cayley-Hamilton algebra admits an embedding into a matrix algebra [Pro87]. When
we take the Cayley-Hamilton algebra produced out of the universal d-dimensional
pseudorepresentation Du : R⊗A ΓdA(R)ab → ΓdA(R)ab, which we denote by

E(R)d := (R⊗A ΓdA(R)ab)/CH(Du),

we can get a “universal Cayley-Hamilton algebra” (E(R)d, Du) and “universal
Cayley-Hamilton representation” ρu : R⊗AΓdA(R)ab → E(R)d (see [Che14, §1.22]).
The consequence of this universality that we are concerned with is the following

Proposition 2.12 ([Che14, Prop. 1.23]). For any commutative A-algebra B and

(VB , ρB) ∈ RepdR(B), there exists a unique factorization of ρB as

R⊗A B −→ E(R)d ⊗ΓdA(R)ab B → EndB(VB)

where the map ΓdA(R)ab → B is induced by the pseudorepresentation det ◦ρB :
R⊗A B → B. In partulcar, for ρB = ρu, there is a canonical isomorphism

RepdR
∼−→ RepE(R)d,Du

to the moduli of representations of E(R)d compatible with Du (see Definition 2.3).

Now we will discuss polynomial identity rings, written PI-rings; we refer to the
book [Pro73] for the precise definition of a polynomial identity ring. It will suffice
to say that an associative ring R is called a polynomial identity ring when there
exists some non-commutative polynomial in n variables that every n-tuple in R×n

satisfies. For example, every commutative ring R is a polynomial identity ring
because any x, y ∈ R satisfy the equation xy − yx = 0.

Proposition 2.13. If (R,D) is a Cayley-Hamilton A-algebra, it is a PI-A-algebra
with polynomial identity dependent only on the dimension of D. If, in addition, R
is finitely generated over the Noetherian ring A, R is finite as an A-module.

Proof. By [Pro73, Prop. 3.22], given any d ∈ Z≥1, there is an explicit polynomial
identity with coefficients in Z such that any associative A-algebra R that is integral
over A with degree bounded by d is a PI-A-algebra with this particular polynomial
identity. Consequently, any Cayley-Hamilton A-algebra (R,D) is a PI-A-algebra
because any element of R is integral over A of degree bounded by d = dim(D);
indeed, χ(r, r) = 0 for all r ∈ R. By [Pro73, Ch. VI, Thm. 2.7], any integral,
finitely generated non-commutative PI-algebra over a commutative Noetherian ring
is module-finite. �

Consequently, such R is Noetherian, finite as a module over its center, and
Jacobson when A is Jacobson [MR01, §1.1.3, §9.1.3]. Remarkably, this proposition
along with Proposition 2.12 implies that the study of d-dimensional representation
theory of a finitely generated non-commutative A-algebra R amounts to the study
of representations of a certain module-finite algebra over a Noetherian ring. In
particular, we have this strengthening of Chenevier’s Theorem 2.7.
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Corollary 2.14. With the assumptions of Theorem 2.7, dimk R/ ker(D) is finite
when R is finitely generated as a k-algebra.

Here are some results from PI-theory that will be useful even in the infinitely
generated cases we will study later, namely group algebras of profinite groups.

Proposition 2.15. Let A = k be field and let R be an associative (non-unital)
k-algebra satisfying the polynomial identity xd, i.e. every element of R is nilpotent
of degree at most d ∈ Z≥1. Then there exists some N = N(d) ∈ Z≥1 depending
only upon d such that R is nilpotent of degree N , i.e. RN = 0.

Proof. When char(k) = 0 or char(k) > d, the Nagata-Higman theorem states that
RN = 0 where N = 2d − 1.

On the other hand, the main theorem of [Sam09] states that if char(k) = p > 0,
then there exists an integer N = N(p, d) depending only on p and d such that RN =
0. Combining these two results, we may set N(d) = max{2d−1}∪{N(p, d)}p≤d. �

The work of Samoilov [Sam09] is the key input needed to loosen conditions
guaranteeing that a deformation ring of pseudorepresentations of a profinite group
is Noetherian (see Prop. 3.2). It will be used in the form of the following

Corollary 2.16. Given a positive integer d, there exists a positive integer N(d)
with the following property. Let k be a field and let (R,D) be a Cayley-Hamilton
k-algebra of degree d (which may not be finitely generated over k). Then the kernel
ker(D) ⊂ R is nilpotent of order N(d).

Proof. The definition of ker(D) implies that every element r ∈ ker(D) has char-
acteristic polynomial χ(r, t) = td, and because (R,D) is Cayley-Hamilton we have
that χ(r, r) = rd = 0. Then Proposition 2.15 implies the result. �

2.3. Invariant Theory. For this paragraph, we will assume that R is finitely
generated over the Noetherian commutative ring A so that RepdR and PsRd

R are

finite type over S = SpecA. The fact that ψ : RepdR → PsRd
R is a bijection on

closed geometric points suggests a comparison between PsRd
R and the geometric

invariant theoretic (GIT) quotient.

Definition 2.17. The GIT quotient of the action of an affine algebraic S-group
scheme G on an affine S-scheme X = SpecB, written X//G, is given by X//G :=
SpecBG.

The work of Alper [Alp13, Alp14] provides a useful perspective on geometric
invariant theory that is appropriate for our use. We will refer to loc. cit. for the
definitions of adequate and good moduli spaces, since for our purposes, the following
examples of adequate and good moduli spaces suffice.

Example 2.18. (1) Let G be a reductive S-group scheme acting on an affine
S-scheme X. Then the natural morphism from the quotient stack to the
GIT quotient [X/G]→ X//G is an example of an adequate moduli space.

(2) Now G be a linearly reductive S-group scheme acting on X; see e.g. [Alp13,
§12] for a definition. Then [X/G] → X//G is an example of a good moduli
space. We will only require the fact that a torus is linearly reductive over
any S. If S = Spec k and char k = 0, reductive is equivalent to linearly
reductive; if char k > 0, linearly reductive means that the connected com-
ponent of the identity in G is a torus, and the group of components has
order prime to char k.
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We will be interested in the particular case of the adequate moduli space

φ : RepdR
∼= [Rep�,d

R /GLd] −→ Rep�,d
R //GLd.

Here are the main results of Alper’s work.

Theorem 2.19 ([Alp14, Alp13]). Let φ : X → Y be an adequate moduli space.

(1) φ is surjective, universally closed, and universally submersive.
(2) Two geometric points x1, x2 ∈ X (k̄) are identified in Y if and only if their

closures {x1} and {x2} intersect in X ×Z k̄.
(3) If X is finite type over a Noetherian scheme S, then Y is finite type over

S and for every coherent OX -module F , φ∗F is coherent.
(4) φ is universal for maps from X to algebraic spaces which are either locally

separated or Zariski-locally have affine diagonal.
(5) Adequate moduli spaces are stable under flat base change and descend in

the fpqc topology of the target.
(6) A good moduli space is an adequate moduli space.
(7) Good moduli spaces are stable under arbitrary base change.

Part (4) of Theorem 2.19 immediately implies that ψ : RepdR → PsRd
R factors

uniquely through the adequate moduli space φ : RepdR → Rep�,d
R //GLd, inducing a

canonical map ν:

RepdR

ψ

��

φ

%%
PsRd

R Rep�,d
R //GLdν

oo

Combining Corollary 2.6 with part (2) of Theorem 2.19, we find that ν induces an
isomorphism on geometric points. It is the same to say that ν is surjective and
radicial [Gro60, 3.5.5].

What we will show is that PsRd
R differs from the GIT quotient by at most an

adequate homeomorphism, i.e. an integral universal homeomorphism that is an iso-
morphism in characteristic zero. In the affine Noetherian case, this means that the
kernel and cokernel of a ring map consists of finite modules of p-torsion nilpotents.
It is possible to eliminate this difference in certain cases (see Theorem 2.27).

Theorem 2.20. If R is finitely generated over A, the difference ν between ψ :
RepdR → PsRd

R and an adequate moduli space is an adequate homeomorphism.

We emphasize that the isomorphism in characteristic zero is due to Chenevier,
using ideas of Procesi [Pro87].

Proof. The proof that ψ is precisely an adequate moduli space in equi-characteristic
zero is due to Chenevier [Che13, Prop. 2.3]. We know that ν is surjective and
radicial by the comments above, so in light of [Gro67, Cor. 18.12.11], it remains
to show that ν is finite. It will suffice to prove that ν is universally closed, since
it is clearly affine, hence separated, and proper affine morphisms are finite. We
will prove this by verifying the valuative criterion for universally closed morphisms
given in [LMB00, Thm. 7.10] (see also [Gro61a, Remark 7.3.9(i)]).
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Let B represent a complete discrete valuation ring with an algebraically closed
residue field and fraction field K. Given a diagram of A-schemes

SpecK
α //

��

Rep�,d
R //GLd

ν

��
SpecB

DB // PsRd
R

we will show that there exists a finite field extension K ′/K and, letting B′ denote

the integral closure of B in K ′, a morphism f : SpecB′ → RepdR such that φ ◦ f :

SpecB′ → Rep�,d
R //GLd verifies the valuative criterion.

Let DB denote the pseudorepresentation of R over B associated to the B-point of
PsRd

R in the diagram, and let D denote DB⊗BK. Theorem 2.19 implies that there

exists a semi-simple K̄-representation of R inducing a point of RepdR lying over α.
The kernel of the action of R ⊗A K on this representation factors through (R ⊗A
K)/ ker(D), which is finite-dimensional over K by Corollary 2.14. Then Corollary
2.9 tells us that this representation is, in fact, realizable as a representation ρ :
R ⊗A K ′ → Md(K

′) in RepdR(K ′) where K ′/K is some finite extension of fields,
and whose induced pseudorepresentation det ◦ρ is identical to D ⊗K K ′.

Let B′ be the integral closure of B in K ′, which is a DVR [Ser79, Prop. II.3].
We claim that ρ is isomorphic to ρB′ ⊗B′ K ′, where ρB′ : R ⊗A B′ → EndB′(L

′)
and L′ is a rank d projective B′-module, which will complete the proof. Choose a
d-dimensional K ′-vector space V ′ realizing ρ, and let L be a B′-lattice L ⊂ V ′. Now
let L′ be the B′-linear span of the translates of L by R ⊗A B. This is a finite B′-
module because the action of R⊗AB factors through its Cayley-Hamilton quotient
(R ⊗A B)/CH(D ⊗A B) by Proposition 2.12, and this quotient is B-module-finite
by Proposition 2.13. Therefore L′ is a B′-lattice because it is finite and torsion-free,
and the induced ρB′ : R⊗A B′ → EndB′(L

′) yields ρ after applying ⊗B′K ′. �

2.4. Generalized Matrix Algebras. The concept of a generalized matrix algebra
(GMA) with respect to a pseudocharacter has been carefully studied in [BC09a,
§1]. It will be helpful in the sequel to develop the notion of GMA relative to
a pseudorepresentation in order to eliminate complications with pseudocharacters
arising in small characteristic. In particular, this will allow us to adapt the theory
of GMAs to characteristic smaller than the dimension. However, no change to the
definition of the GMA is necessary: we will show that a GMA admits a canonical
pseudorepresentation. This was also shown independently by Ann-Kristin Juschka,
following the suggestion of [WE13, Remark 2.3.3.6].

A pseudocharacter is the data of a trace coefficient function Λ1 satisfying identi-
ties expected of a trace function coming from a representation (see [Tay91], [BC09a,
§1.2] for the definition), while a d-dimensional pseudorepresentation D keeps track
of all characteristic polynomial coefficients {ΛDi }di=1 as in (2.1). In particular, a
d-dimensional pseudorepresentation D : R → A induces a d-dimensional pseu-
docharacter ΛD1 : R→ A. This is a bijective correspondence if (2d)! is invertible in
A [Che14, Prop. 1.29].

We follow [BC09a, §1.3] closely in what follows, showing that a GMA admits a
canonical pseudorepresentation compatible with its canonical pseudocharacter.
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Definition 2.21 ([BC09a, §1.3]). Let A be a commutative ring and let R be an
A-algebra. Call R a generalized matrix algebra or GMA of type (d1, . . . , dr) if there
exists data E = ({ei}, {φi}) as follows.

(1) A set of r orthogonal idempotents e1, . . . , er with sum 1, and

(2) A set of isomorphisms of A-algebras φi : eiRei
∼→Mdi(A),

such that the trace map Tr = TrE : R→ A defined by

Tr(x) :=

r∑
i=1

Trφi(x)

is a central function, i.e. Tr(xy) = Tr(yx) for all x, y ∈ R. We call E the data of
idempotents of R and write (R, E) for a GMA.

We note that all of the arguments of [BC09a, §1.3.1-§1.3.6] have no dependence
on the characteristic of A or the invertibility of d! in A, except the proof that the
trace map Tr associated to E is a pseudocharacter. Therefore, we have access to
these results of [BC09a, §1] on the structure of a GMA, which we record here in
order to introduce notation.

• Write δj,k ∈ Md(A) for the matrix with entries 0 except in the (j, k)th entry,
where the value is 1.

• For each i, 1 ≤ i ≤ r, a primitive decomposition of idempotents ei = E1
i +

· · ·+ Edii where Eji := φ−1
i (δj,j).

• We also write El for the lth primitive idempotent of R given by the order
down the diagonal of the idempotents E1

1 , E
2
1 , . . . , E

d1
1 , E1

2 , . . . , i.e. El = Eji
for l = j +

∑i−1
i′=1 di′ .

• Set Ai,j := E1
iRE

1
j , and write ϕi,j,k for the map Ai,j ⊗A Aj,k → Ai,k induced

by multiplication, where 1 ≤ i, j, k ≤ r. These satisfy the properties (UNIT),
(COM), and (ASSO) of [BC09a, Lem. 1.3.5].

• The argument of [BC09a, §1.3.2] applies to show that there is a canonical
isomorphism

(2.2) R
∼−→


Md1(A1,1) Md1×d2(A1,2) · · · Md1×dr (A1,r)

Md2×d1(A2,1) Md2(A2,2) · · · Md2×dr (A2,r)
...

...
...

...
Mdr×d1

(Ar,1) Md2
(Ar,2) · · · Mdr (Ar,r)

 ,

• Likewise, writeAi,j := EiREj , and write ϕi,j,k for the mapAi,j⊗AAj,k → Ai,k
induced by multiplication, where 1 ≤ i, j, k ≤ d, which will also satisfy (UNIT),
(COM), and (ASSO).

• A canonical isomorphism φi,i : Ai,i
∼→ A induced by φi and a canonical iso-

morphism φl : Al,l ∼→ A induced by φil .

We recall the definition of an adapted representation of a GMA.

Definition 2.22 ([BC09a, Definition 1.3.6]). Let B be a commutative A-algebra
and let (R, E) be a generalized matrix A-algebra. A representation ρB : R→Md(B)
is said to be adapted to E if its restriction to the A-subalgebra

⊕r
i=1 eiRei is the

composite of the representation
⊕r

i=1 φi by the natural “diagonal” map

Md1
(A)⊕ · · · ⊕Mdr (A)→Md(B).
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We define Rep�
Ad(R, E) to be the functor associating to an A-algebra B the set of

adapted representations of (R, E) over B.

By [BC09a, Prop. 1.3.9], Rep�
Ad(R, E) is represented by the affine scheme corre-

sponding to the quotient of the A-algebra

(2.3) T := Sym∗A

 ⊕
1≤i 6=j≤r

Ai,j


by the ideal J generated by b ⊗ c − ϕ(b ⊗ c) for all ϕ = ϕi,j,k, b ∈ Ai,j , c ∈ Aj,k
and 1 ≤ i, j, k ≤ r. These are precisely the relations required to ensure that the
morphism of A-modules R → Md(B) induced by the A-algebra homomorphism
T → B along with (2.2) is actually a morphism of A-algebras. Then, the universal
adapted representation f : R→Md(T/J) is induced by the natural mapsAi,j → B;
each Ai,j → B is an A-split injection [BC09a, Prop. 1.3.13].

With the above notions in place, we are equipped to introduce a canonical pseu-
dorepresentation associated to a GMA.

Proposition 2.23. Given a GMA A-algebra (R, E) of dimension d, there exists
a natural d-dimensional Cayley-Hamilton pseudorepresentation DE : R → A given
by, for any commutative A-algebra B, the formula

DE(x) :=
∑
σ∈Sd

sgn(σ)
∏

cycles γ of σ

φk

σ−1(k)∏
l=k

ElxEσ(l)


for any x ∈ R⊗AB. Here, the product is first over the cycles γ of σ and then over
the elements l of the cycle taken in the order that they appear in the cycle, where k
is a choice of initial element of γ. We also have Tr = ΛDE1 .

Proof. It is clear that we have a homogenous degree d polynomial law DE : R→ A,
and it will be a pseudorepresentation if it is multiplicative. This follows from the fact
that, by inspection of the definition of DE , the injection f : R ↪→Md(T/J) satisfies
DE = det ◦f . These maps remain injective after any base extension ⊗AB because
the injections Ai,j → T/J are split. Therefore, the determinant is a multiplicative
homogenous degree d polynomial law, i.e. a pseudorepresentation. One may check
that TrE = ΛDE1 by computing the characteristic polynomial χDE (r, t).

We now verify that DE does not depend upon the choice of initial element k in
each cycle γ composing σ. This follows from the property (COM) of the multipli-
cation maps ϕ deduced from the centrality of TrE in [BC09a, Lem. 1.3.5], which
reads as follows:

(COM) For all i, j and all x ∈ Ai,j , y ∈ Aj,i,we have ϕi,j,i(x⊗ y) = ϕj,i,j(y ⊗ x).

Therefore, for any σ ∈ Sd, cycle γ of σ, and k ∈ γ at which we will begin the
multiplication, we have that

σ−1(k)∏
l=k

ElxEσ(l) =
(
EkxEσ(k)

)
·
σ−1(k)∏
l=σ(k)

ElxEσ(l) =

σ−1(k)∏
l=σ(k)

ElxEσ(l) ·
(
EkxEσ(k)

)
=

k∏
l=σ(k)

ElxEσ(l)
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where we apply (COM) in the central equality. �

The proof shows that the determinant of the universal adapted representation
R → Md(T/J) is compatible with the pseudorepresentation DE : R → A in-
duced by the GMA structure (R, E). Consequently, we have a monomorphism

Rep�
Ad(R, E) ↪→ Rep�

R,DE induced by forgetting the adaptation; it may be easily
checked to be a closed immersion.

Considering the adjoint action of GLd on framed representations, the stabilizer
subgroup of an adaptation is the center Z(E) of the diagonally embedded subgroup

GL(E) := GLd1 ×GLd2 × · · · ×GLdr ↪→ GLd. Therefore Z(E) acts on Rep�
Ad(R, E)

compatibly with the action of GLd on Rep�
R,DE via the immersion above. This

means that the morphism (2.4) exists, and, furthermore, we show the following.

Proposition 2.24. Given a GMA (R, E) over A, the natural morphism

(2.4) [Rep�
Ad(R, E)/Z(E)] −→ RepR,DE

of SpecA-algebraic stacks is an isomorphism.

Proof. Let X be a SpecA-scheme. Choose (ρ, VX) ∈ RepR,DE (X). The idem-
potents ei ∈ R break VX into a direct sum of projective sub-OX -modules Vi :=
ρ(ei)VX of rank di,

VX ∼=
r⊕
i=1

Vi.

Each Vi receives an A-linear action of eiRei ⊂ R. Using the GMA data φi :
eiRei

∼→Mdi(A) and the fact that the pseudorepresentation induced by VX lies over
DE , we see that the action of eiRei on Vi is faithful and induces an isomorphism
EndOX (Vi) ' Mdi(OX). Consequently, Vi is isomorphic as an OX -module to a

twist of a free rank di vector bundle O⊕diX by some line bundle Li.
Let Gi := IsomOX (Li,OX) be the Gm-torsor over X corresponding to Li. Then

G := ×ri=1Gi is naturally a Z(E)-torsor. Indeed, the base change of VX to G from
X is a free rank d OG-vector bundle with a canonical basis adapted to (R, E). This

defines a map G → Rep�
Ad(R, E), equivariant for the action of Z(E). We have

therefore established a morphism

RepR,DE −→ [Rep�
Ad(R, E)/Z(E)].

We observe that this provides a quasi-inverse to (2.4). �

In the case of a generalized matrix algebra, we can improve on Theorem 2.20.

Corollary 2.25. Let (R, E) be a generalized matrix A-algebra with canonical pseu-
dorepresentation DE : R→ A. Then RepR,DE → SpecA is a good moduli space.

Proof. We will argue that the invariant ring (T/J)Z(E) of the Z(E)-action on the

coordinate ring T/J of Rep�
Ad(R, E), given in (2.3), is equal to A. In light of

Example 2.18, Rep�
Ad(R, E) → SpecA is a good moduli space because tori are

linearly reductive over any base, and because A = (T/J)Z(E). Then the statement
of the Corollary follows from Proposition 2.24.

It is clear that A is contained in (T/J)Z(E), and we will show any Z(E)-invariant
in T/J is in A. Indeed, Z(E) acts on Ai,j as the torus in GLr acts by roots on the
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(i, j)-coordinate of Mr, so that the invariant subring of T is generated by tensors
of the form ∏

1≤i≤`

ai,σ(i)

where σ : {0, . . . , `} → {1, . . . , `} is a cycle (i.e. σ(0) = σ(`)) of length `. The ideal
J is stable under Z(E), and (T/J)Z(E) = TZ(E)/JZ(E) because Z(E) is linearly
reductive [Alp13, Rem. 4.11]. By considering the generators of J and the property
(ASSO), we conclude that all of the invariant tensors are equivalent to elements of
A. �

The following conditions will be useful to show that certain Cayley-Hamilton
algebras are GMAs.

Definition 2.26. Let (A,mA) be a local ring with the usual data D : R→ A and
residue field F := A/mA.

(1) We denote by D̄ the residual pseudorepresentation D ⊗A F : R ⊗A F→ F,
and call D̄ split and D residually split if (R ⊗A F)/ ker(D̄) is a product of
matrix algebras over F.

(2) We call D̄ multiplicity-free and call D residually multiplicity-free when D̄ is
split and the semi-simple representation ρss

D̄
: R⊗AF→Md(F) has distinct

Jordan-Hölder factors.

Recall from Theorem 2.7 that (R⊗A F)/ ker(D̄) is a semi-simple F-algebra, so it
is split after a base change by a finite extension of F.

Chenevier has shown that in a certain case, a Cayley-Hamilton algebra (R,D)
may be endowed with the structure of a GMA (R, E) such that the pseudocharacter
induced by E is equal to the trace ΛD1 of D [Che14, Thm. 2.22(ii)]. We will now
remark that his proof also shows that the pseudorepresentation DE is equal to D,
generalizing [BC09a, Cor. 1.3.16] to any characteristic.

Theorem 2.27. Let (R,D) be a finitely generated Cayley-Hamilton A-algebra
where A is a Noetherian Henselian local ring. Assume that D is residually multiplicity-
free. Then (R,D) admits a structure E of a generalized matrix A-algebra such that
the pseudorepresentation induced by (R, E) is equal to D. Moreover, there is an
isomorphism

[Rep�
Ad(R, E)/Z(E)]

∼−→ RepR,D
Consequently, ψ : RepR,D → SpecA is a good moduli space.

Proof. It will suffice to prove the theorem after replacing the Cayley-Hamilton
A-algebra (R,D) with the universal Cayley-Hamilton with residual pseudorep-
resentation D̄. This is the Cayley-Hamilton RD̄-algebra (Ru, Du) where Ru =
(R ⊗A RD̄)/CH(Du) and Du is the universal pseudorepresentation deforming D̄,
Du : Ru → RD̄. Indeed, the good moduli space property claimed in the theorem
will follow because it is stable under base change (Thm. 2.19(7)).

Using the assumptions of the statement, Chenevier [Che14, Thm. 2.22(ii)] shows
that there exists a data of idempotents E of Ru inducing a generalized matrix alge-
bra (Ru, E) over RD̄. Both Du ⊗RD̄ F and DE ⊗RD̄ F are equal to D̄, as they each
arise from the product of matrix algebras Ru → (Ru ⊗RD̄ F)/ ker(Du ⊗RD̄ F) ∼=∏r
i=1Mdi(F). Consequently, DE is a deformation of D̄ with coefficients in RD̄, and

the universal property of RD̄ induces a map f : RD̄ → RD̄ induced by DE . The
desired equality Du = DE will follow from this map being the identity. This follows
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immediately from the fact that DE is RD̄-linear by construction. One concrete
way to observe this is to use the GMA structure to restrict DE and Du to the
matrix subalgebra e1R

ue1 ' Md1(RD̄), resulting in a degree d1 pseudorepresen-
tation Md1

(RD̄) → RD̄. Both restrictions equal the determinant pseudorepresen-
tations (see e.g. the proof of [Che14, Thm. 2.22]). In particular, for x ∈ RD̄, we
can compute the traces of matrices with one non-zero entry: ΛD

u

1 (xE1
1) = x and

ΛDE1 (xE1
1) = f(x), so f is the identity.

The rest of the theorem now follows from 2.24 and 2.25. �

3. Algebraic Families of Galois Representations

3.1. Formal Moduli of Representations and Pseudorepresentations of a
Profinite Group. Let G be a profinite group; we will often impose the Φp-
finiteness condition of Mazur [Maz89] on G. We wish to understand the moduli
space of continuous representations of G and how it relates to the moduli space of
continuous pseudorepresentations. We will study these representations over integral
p-adic coefficient rings for some prime p which we fix. We will not insist that these
rings are local because of the existence of positive-dimensional algebraic families of
residual representations such as the one-dimensional family

(3.1)

(
ρ̄1 ẽ1 + xẽ2

0 ρ̄2

)
with coefficients in F[x],

where ẽ1, ẽ2 are representatives of linearly-independent extension classes e1, e2 ∈
Ext1

G(ρ̄2, ρ̄1). Namely, we will let our category of coefficient rings be admissible
continuous Zp-algebras AdmZp , which is anti-equivalent to the category of affine
Noetherian Spf Zp-formal schemes [Gro60, §10.1]. We will use the category of
Spf Zp-formal schemes FSZp as coefficient spaces.

As in the previous section, we will use A as a base coefficient ring, and will let
A ∈ AdmZp be a local ring, so that A is profinite and, in particular, has a finite
residue field. Let R be a profinite continuous (non-commutative) A-algebra. When
we wish to consider the case of group representations, we may set A = Zp and
R = Zp[[G]].

Definition 3.1. Let A and R be as specified above, and let d be a positive integer.

(1) Define the functor Rep�,d
R on FSA by

X 7→ {continuous OX-algebra homomorphisms R⊗A OX −→Md(X)}.

(2) Define the groupoid RepdR, fibered over FSA, by

obRepdR(X) = {V/X a rank d vector bundle, with a

continuous OX-algebra homomorphism R⊗A OX −→ EndOX
(V )}

and morphisms being isomorphisms of this data.

(3) Define the groupoid Rep
d

R, fibered over FSA, by

obRep
d

R(X) = {E a rank d2 OX-Azumaya algebra, with a

continuous OX-algebra homomorphism R⊗A OX −→ E}

and morphisms being isomorphisms of this data.



20 CARL WANG-ERICKSON

It is not difficult to show that Rep�,d
R is representable by an affine Noetherian

Spf A-formal scheme when R satisfies a finiteness condition equivalent to the Φp
finiteness condition on profinite groups. But we will first show that all of these
groupoids are algebraizable, from which their representability by formal schemes or
formal algebraic stacks follows.

The moduli functor of continuous pseudorepresentations of a profinite algebra has
been defined and studied by Chenevier [Che14]. Firstly, he shows in [Che14, Prop.
3.3] that given any finite field-valued pseudorepresentation D̄ : R ⊗A F → F, the
natural deformation functor PsRD̄ to complete local A-algebras with residue field F
is representable by a complete local A-algebra (RD̄,mD̄), i.e. PsRD̄

∼= Spf RD̄. We
call the objects of PsRD̄ “pseudodeformations.” When certain finiteness conditions
are satisfied, RD̄ is Noetherian. Here we loosen Chenevier’s criteria for RD̄ to be
Noetherian [Che14, Prop. 3.7].

Proposition 3.2. Assume that the continuous cohomology group H1
c (G, ad ρss

D̄
) is

finite dimensional over the coefficient field of ρss
D̄

. Then RD̄ is Noetherian.

Proof. Let F represent the coefficient field of ρss
D̄

. We apply Chenevier’s strategy to
prove [Che14, Prop. 3.7] via arguing from [Che14, 2.7, 2.26, 2.35]. The one change
we make is that in [Che14, Lem. 2.7(iii)], we produce N(d) such that ker(D)N(d) = 0
using Corollary 2.16. This removes the condition that d! is invertible in F. �

Remark 3.3. Proposition 3.2 answers a question of Chenevier [Che14, Remark 2.29].
It fulfills his suggestion that some result in the spirit of Shirshov’s height theorem
would allow for the proof of the Noetherianness of RD̄ in terms of the finiteness
of cohomology at ρss

D̄
alone, instead of the stronger condition that G satisfies the

Φp finiteness condition. This result was provided by Samoilov [Sam09] (see Cor.
2.16). On the other hand, the finiteness of cohomology for every ρss

D̄
implies that

G satisfies condition Φp [Che14, Example 3.6].

The deformation theory of various D̄ will suffice to describe the entire moduli
functor of d-dimensional pseudorepresentations on formal schemes X ∈ FSZp ,

PsRd
R : X 7→ {continuous pseudorepresentations D : R⊗A OX −→ OX}

It will be helpful to establish notation about residual pseudorepresentations and
their fields of definition. There is a natural equivalence relation on continuous d-
dimensional finite field-valued pseudorepresentations of R, namely that D̄ ∼ D̄′ for
pseudorepresentations D̄ : R⊗AF→ F and D̄′ : R⊗AF′ → F′ if D̄⊗FF̄p ∼= D̄′⊗F′ F̄p.

Definition 3.4. We will let D̄ : R⊗A FD̄ → FD̄ represent a residual pseudorepre-
sentation, which is the unique representative of each equivalence class with smallest
field of definition FD̄. By Corollary 2.9(2), there exists a semi-simple representation
(V ss
D̄
, ρss
D̄

) over FD̄ inducing D̄.

Notice that the irreducible factors of ρss
D̄

need not be absolutely irreducible, i.e.

R/ ker(D̄) may not be a product of matrix algebras over F (cf. Definition 2.26).
Rather, it may be a product of matrix algebras over finite extensions of F.

Chenevier has shown that the entire moduli of pseudorepresentations is simply
a disjoint union of deformation functors of residual representations.

Theorem 3.5 ([Che14, Cor. 3.14]). Assuming that G satisfies the Φp finiteness

condition and R = Zp[[G]], the moduli functor PsRd
R on FSZp is representable by
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the disjoint union

PsRd
R
∼=
∐
D̄

PsRD̄
∼=
∐
D̄

Spf RD̄

of local Noetherian formal schemes over the set of d-dimensional residual pseu-
dorepresentations.

That is, the moduli of continuous pseudorepresentations of a profinite group
is “purely formal,” i.e. semi-local, unlike the moduli of its representations. This
means that all non-trivial positive-dimensional algebraic families of residual repre-
sentations consist of varying extension classes with a fixed semi-simplification, with
(3.1) as the archetypal example.

Because continuous representations induce continuous pseudorepresentations,
there exists a natural morphism from each of the moduli spaces of Definition 3.1
to PsRd

R, for example

ψ̂ : RepdR −→ PsRd
R.

Using the decomposition of Theorem 3.5, we may study this morphism over one
component of the base at the time. Fixing a residual pseudorepresentation D̄ :
G→ FD̄, we set RepD̄ := RepdR⊗PsRdR

PsRD̄ to be the groupoid of representations

with residual pseudorepresentation D̄, and write ψ̂ for the base change

ψ̂ : RepD̄ −→ PsRD̄ = Spf RD̄

We may analogously define Rep�
D̄

and RepD̄.

It is well-known that ψ̂ is an isomorphism when D̄ is absolutely irreducible, i.e.
when ρss

D̄
is absolutely irreducible (see [Nys96, Rou96] in the case of pseudocharac-

ters, and [Che14, Thm. 2.22(i)] for pseudorepresentations). In this case, RepD̄ is
purely formal.

3.2. Algebraization of Moduli of Representations over Moduli of Pseu-

dorepresentations. Our goal is to draw a conclusion about ψ̂ similar to Theorem
2.20. As before, our principal tool will be the universal Cayley-Hamilton algebra
of §2.2. As nothing about its construction was particular to the finitely generated
case, the universal continuous pseudodeformation of D̄

Du
D̄ : Zp[[G]]⊗Zp RD̄ −→ RD̄

induces the universal Cayley-Hamilton algebra

(3.2) E(G)D̄ := (Zp[[G]]⊗Zp RD̄)/CH(Du
D̄).

Because Du
D̄

is continuous, it factors through the profinite completion RD̄[[G]] of

Zp[[G]] ⊗Zp RD̄. Denote the factorization by D̃u
D̄

: RD̄[[G]] → RD̄ and denote the
resulting Cayley-Hamilton algebra by

Ẽ(G)D̄ := RD̄[[G]]/CH(D̃u
D̄).

As a consequence of the following important properties of the universal Cayley-
Hamilton algebra, the two definitions are identical.

Proposition 3.6. Assume that the continuous cohomology group H1
c (G, ad ρss

D̄
) is

finite-dimensional over FD̄.

(1) The natural map E(G)D̄ → Ẽ(G)D̄ is a topological isomorphism.
(2) The quotient map RD̄[[G]] � E(G)D̄ is continuous.
(3) E(G)D̄ is module-finite as an RD̄-algebra, and therefore Noetherian.
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(4) On E(G)D̄, the profinite topology, the mD̄-adic topology, and the quotient
topology from the surjection RD̄[[G]] � E(G)D̄ are equivalent.

(5) When D̄ is multiplicity-free, E(G)D̄ is a generalized matrix algebra with
canonical pseudorepresentation equivalent to Du

D̄
. In particular, when D̄ is

absolutely irreducible, E(G)D̄ 'Md(RD̄).

Proof. The two-sided ideal CH(D̃u
D̄

) ⊂ RD̄[[G]] is a two-sided ideal generated by the

image of χ[α](r1, . . . , rd) where α varies over the finite set Idd and ri vary over R,
where we are using the notation and notions of [Che14, §1.10]. For the moment, let
R denote RD̄[[G]] and let Rl, Rr be copies of R distinguished for notational purposes.

Let (rα∗ ) denote an element of R
Idd
∗ where ∗ = r, l, and let (ri) denote an element of

Rd. Now define a continuous function

R
Idd
l ×R

d ×RI
d
d
r −→ R

((rαl ), (ri), (r
α
r )) 7→

∑
α∈Idd

rαl · χ
[α]
D ((ri)) · rαr .

The image of this map is precisely the two-sided ideal generated by the image
of the χ[α], i.e. CH(D̃u

D̄
), and it is closed by the closed map lemma, proving (2).

Consequently, the quotient map RD̄[[G]] � Ẽ(G)D̄ induces a quotient topology
equivalent to the profinite topology.

We now work with Ē := Ẽ(G)D̄ ⊗RD̄ FD̄. We wish to show that Ē is finite-
dimensional over FD̄. Firstly, Theorem 2.7(1) gives us that Ē/ ker(D̄) is finite-
dimensional as a FD̄-vector space. Because Ē is a Cayley-Hamilton algebra over
a field, we may also apply Proposition 2.15 to conclude that ker(D̄) ⊂ Ē is nilpo-

tent. Because of the natural surjection
(
ker(D̄)/ ker(D̄)2

)⊗i
� ker(D̄)i/ ker(D̄)i+1

induced by multiplication, it will suffice to show that ker(D̄)/ ker(D̄)2 is finite-
dimensional. We now invoke the finiteness of H1

c (G, ad ρss
D̄

), which, by the argument

of [Che14, Prop. 3.35], contains ker(D̄)/ ker(D̄)2 as a sub-vector space.
The finiteness of the FD̄-dimension of Ē along with the fact that E(G)D̄ is clearly

mD̄-adically separated implies that E(G)D̄ is finite as a RD̄-module. This completes
(3), from which (4) follows.

Observe that the image of the composite map Zp[[G]]⊗ZpRD̄ � E(G)D̄ → Ẽ(G)D̄
is dense and is an RD̄-submodule. Since Ẽ(G)D̄ is a finite RD̄-module, we have an

isomorphism E(G)D̄
∼→ Ẽ(G)D̄, establishing part (1).

The algebra structure results of part (5) come from [Che14, Thm. 2.22], and the
equivalence of the pseudorepresentations was proved in Theorem 2.27. �

Using these results on E(G)D̄, we get a result for continuous representations
analogous to Proposition 2.12.

Theorem 3.7. Assume that dimFD̄ H
1
c (G, ad ρss

D̄
) is finite. There is a functorial

equivalence of categories between continuous representations of G with coefficients
in AdmZp with induced residual pseudorepresentation D̄ and continuous represen-
tations (VB , ρB) of E(G)D̄ with coefficients in AdmZp compatible with the universal
pseudorepresentation Du

D̄
: E(G)D̄ → RD̄. In particular, there is an isomorphism

RepD̄
∼−→ RepE(G)D̄,D

u
D̄

of Spf Zp-groupoids.
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Proof. Choose B ∈ AdmZp and (VB , ρB) ∈ RepD̄(B). The continuous homo-
morphism ρB : Zp[[G]] ⊗Zp B → EndB(VB) induces a continuous homomorphism

RD̄ → B corresponding to the pseudorepresentation ψ̂(VB), giving B the struc-
ture of an admissible RD̄-algebra. Therefore there exists a canonical continuous
map Zp[[G]] ⊗Zp RD̄ → EndB(VB) which induces ρB by applying ⊗RD̄B to the
source. This factors uniquely and continuously through the Cayley-Hamilton quo-
tient E(G)D̄ by Propositions 2.11 and 3.6(2,4), giving an object of RepE(G)D̄,D

u
D̄

.

Functorality may be checked using the stability of the Cayley-Hamilton quotient
under base change described in Proposition 2.11.

There exists an inverse functor, associating to an admissible RD̄-algebra B with
(VB , ηB) ∈ RepE(G)D̄,D

u
D̄

the Zp-algebra B and the composite map Zp[[G]] →
E(G)D̄

ηB−→ EndB(VB). �

The following important result shows that ψ̂ is algebraizable. This allows us to

deduce further properties of ψ̂ from the study of §2. We write PsRD̄ for SpecRD̄.
Following [Gro60, §10.13], we will call a homomorphism A → B in AdmZp

“formally finitely generated” if this map is compatible with a presentation of B
as a quotient of a restricted power series ring A〈x1, . . . , xn〉, and use the term
“formally finite type” to describe the corresponding morphisms of formal schemes.

Theorem 3.8. Assume that dimFD̄ H
1
c (G, ad ρss

D̄
) is finite. The groupoids RepD̄

and RepD̄ (resp. the functor Rep�
D̄

) over Spf Zp are representable by formally finite
type formal algebraic stacks (resp. formally finite type formal scheme) over Spf RD̄
which are algebraizable of finite type over SpecRD̄ with algebraizations RepD̄ :=

RepE(G)D̄,D
u
D̄

and RepD̄ := RepE(G)D̄,D
u
D̄

(resp. Rep�
D̄ := Rep�

E(G)D̄,D
u
D̄

).

The natural morphism ψ : RepD̄ → PsRD̄ has mD̄-adic completion ψ̂ and satis-
fies the following properties.

(1) ψ is universally closed,
(2) ψ has connected geometric fibers with a unique closed point corresponding

to the unique semi-simple representation inducing the pseudorepresentation
corresponding to the base of the fiber,

(3) ψ consists of an adequate moduli space RepD̄ → ψ∗(ORepD̄ ) followed by an
adequate homeomorphism ν : ψ∗(ORepD̄ )→ SpecRD̄, and

(4) if D̄ is multiplicity free, then ψ is precisely an adequate moduli space; more-
over, it is a good moduli space.

The condition on ν in (3) means that there exist finitely many p-power torsion
nilpotents xi ∈ ψ∗(ORepD̄ ), yj ∈ RD̄ such that RD̄ is generated over ψ∗(ORepD̄ ) by
{yj} and the kernel of ν∗ : ψ∗(ORepD̄ )→ RD̄ is generated by {xi}.

Proof. Under the assumption that dimFD̄ H
1
c (G, ad ρss

D̄
) is finite, Propositions 3.2

and 3.6 tell us that RD̄ is a Noetherian ring and that the RD̄-algebra E(G)D̄ is
finite as a RD̄-module and has a GMA structure compatible with Du

D̄
when D̄

is multiplicity-free. Theorem 3.7 allows us to study representations of E(G)D̄ in
place of those of G. Then the existence and properties of each of the representation

functors Rep�
D̄, RepD̄, RepD̄ and ψ are the content of §2. More precisely, we have

these statements for RepdE(G)D̄
over PsRd

E(G)D̄
, and the condition that the induced

pseudorepresentation lies over Du
D̄

simply cuts out a connected component (namely
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SpecRD̄) of the base PsRd
E(G)D̄

. In particular, we apply Theorem 2.27 to obtain

part (4).

In order to see that the mD̄-adic completion of (RepD̄, ψ) is (RepD̄, ψ̂) (and sim-

ilarly for RepD̄, Rep�
D̄), we observe that all (non-topological) homomorphisms from

RD̄ to admissible Zp-algebras B or from E(G)D̄ to EndB(VB) are automatically
continuous, as E(G)D̄ is a finite RD̄-module with the mD̄-adic topology. �

Remark 3.9. The condition “constant residual pseudorepresentation D̄” is no real
restriction to the scope of Theorem 3.8 in view of the bijective correspondence be-
tween d-dimensional residual pseudorepresentations D̄ and connected components
of RepdG. Putting together the connected components, we can say that there is an

algebraization RepdG of RepdG of finite type over PsRd
G =

∐
D̄ SpecRD̄.

This algebraization result implies that the topology on an integral p-adic family
VA of representations of G with coefficients in A ∈ AdmZp and residual pseudorep-

resentation D̄ can always be strengthened to the mD̄-adic topology, and that there
are subrings of A that are finitely generated over RD̄ over which a model for VA
exists.

Corollary 3.10. Let A ∈ AdmZp and let (ρA, VA) ∈ RepD̄(A). Then with as-
sumptions as in Theorem 3.8,

(1) the G-action on VA remains continuous for the possibly stronger mD̄A-
adic topology on A, where A has the structure of a continuous RD̄-algebra
induced by the pseudorepresentation det ◦ρA,

(2) there exists a minimal formally finitely generated sub-RD̄-algebra A′ ⊆ A
with a model VA′ ∈ RepD̄(A′) for VA, i.e. VA ' VA′ ⊗A′ A, and

(3) there exists a minimal finitely generated mD̄-adically separated sub-RD̄-
algebra A′alg ⊆ A′ with a model VA′alg

∈ RepD̄(A′alg) such that A′ is the

mD̄-adic completion of A′alg and VA′ ' VA′alg
⊗A′alg

A′.

The corollary follows directly from the fact that ψ̂ is formally finite type and
algebraizable by the finite type morphism ψ, or, alternatively, directly from Propo-
sition 3.6. In particular, this means that the matrix coefficients of a family of
representations of G with residual pseudorepresentation D̄ generate a finite type
algebra over RD̄.

The algebraization theorem also suggests that there exists a notion of continuous
Du
D̄

-compatible representation of G valued in an arbitrary RD̄-algebra, i.e. not just
those in AdmZp . When such an algebra A is mD̄-adically separated, the mD̄-adic
topology may be used, and the usual notions of continuity may be applied. On the
other hand, there are common cases of concern where A is not mD̄-adically sepa-
rated. For example, one often wants to consider continuous Galois representations
with coefficients in Qp. However, Qp will never be mD̄-adically separated because
p ∈ mD̄ is a unit in Qp.

Definition 3.11. Let A be a RD̄-algebra. A continuous representation of G valued
in GLd(A) with residual pseudorepresentation D̄ is a group homomorphism ρ :
G → GLd(A) arising from an RD̄-algebra morphism E(G)D̄ → Md(A) compatible
with the structure morphism RD̄ → A by concatenating it with the natural map
G→ E(G)×

D̄
.
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The moduli functor Rep�
D̄ parameterizes these continuous representations. As

the image of G under ρ lies in a module-finite RD̄-subalgebra of Md(A), the mD̄-
adic topology on this subalgebra is separated and ρ is continuous with respect to
this topology.

Remark 3.12. Isomorphism classes of continuous representations of G valued in a
p-adic field E with residual pseudorepresentation D̄ are in bijective correspondence
with E-points of RepD̄. Moreover, such representations uniquely characterize RepD̄
in the following sense. Let RepD̄[1/p] represent the generic fiber of RepD̄ over
SpecZp. The p-adic field-valued representations of G control the reduced substack
RepD̄[1/p]red. Likewise, representations of G with coefficients in finite Qp-algebras
B control RepD̄[1/p]. These claims are proved in Lemma 4.17(3).

Also, notice that when D̄ is not absolutely irreducible, RepD̄ is generally non-
separated. If OE is the ring of integers of a p-adic field E, then there may be
multiple OE points inducing a single E-point, reflecting the existence of multiple
isomorphism classes of G-stable OE-lattices in an E-valued representation.

Example 3.13. Let ρ̄ : G → GLd(F) be a residual representation with induced
residual pseudorepresentation D̄ := det ◦ρ̄. Write Rρ̄ for the versal deformation
ring of ρ̄ with versal representation Vρ̄. There exists a canonical map RD̄ → Rρ̄,
and Vρ̄ is continuous with respect to the mD̄-adic topology on Rρ̄, which is often a
strictly stronger topology than its native topology. Also, there exists a canonical,
finite-type, mD̄-adically separated RD̄-subalgebra Rρ̄,alg of Rρ̄ with a canonical
mD̄-adically continuous representation Vρ̄,alg such that Vρ̄ ' Vρ̄,alg ⊗Rρ̄,alg

Rρ̄.

Remark 3.14. The influence that Galois cohomology exerts on the structure of Rρ̄
is well-understood. Analogously, appropriate Galois cohomology groups control the
structure of RepD̄, which will be explained in forthcoming work. See the following
example for a basic case.

Let us give an explicit example of a fiber of ψ, illustrating how ψ satisfies the
properties of Theorem 3.8.

Example 3.15. Let G = GQp where p > 3 and let D̄ = ψ(χ̄ ⊕ 1) over Fp, where
χ̄ is the mod p cyclotomic character. Then, using local Tate duality, we calculate
that the special fiber ψ−1(D̄) in RepD̄ consists of

• extensions of 1 by χ̄, parameterized by P1
Fp
∼= P(Ext1

G(1, χ̄)),

• the semi-simple representation χ̄⊕ 1, and
• extensions of χ̄ by 1, parameterized by the trivial projective space pt =
P0
Fp
∼= P(Ext1

G(χ̄, 1)).

Notice that the only closed point in ψ−1(D̄) is χ̄⊕1, because each of the projective
spaces are open in the fiber, in analogy to the open immersion Pn−1 ↪→ [An/Gm].

3.3. Consequences of Formal GAGA for ψ. In order to descend closed loci
under ψ, it will be helpful to know formal GAGA for ψ. By “formal GAGA for
a morphism f” we mean that the completion functor on coherent sheaves on the
domain of f is an equivalence of categories. The classical case is a proper morphism
[Gro61b, Cor. 5.1.3]. We also know formal GAGA for ψ when ψ a good moduli
space by [GZB15]. Even when ψ is not a good moduli space, it satisfies formal
GAGA under the following hypothesis.

(FGAMS)
Formal GAGA holds for adequate moduli spaces

realized as quotient stacks by GLd.
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Consequently, we have

Theorem 3.16. If D̄ is multiplicity free, or if the assumption (FGAMS) holds,
then formal GAGA holds for the morphism ψ : RepD̄ → RD̄.

Proof. If D̄ is multiplicity free, ψ is a good moduli space by Theorem 3.8, and
[GZB15] shows that formal GAGA holds for good moduli spaces. Otherwise, ψ is
an adequate moduli space followed by a finite morphism, and (FGAMS) implies
that formal GAGA holds along ψ. �

Remark 3.17. According to the authors of [GZB15], it is unclear whether to expect
that formal GAGA holds for adequate moduli spaces. However, they can prove
formal GAGA for adequate moduli spaces such as BG for G a reductive algebraic
group.

The following lemma shows how we can apply formal GAGA. The foremost use
will be to algebraize loci of Galois representations that we initially produce only
formally. (See, however, Remark 6.9.)

Lemma 3.18. Let (R,mR) be a complete Noetherian local Zp-algebra, and let X be

an algebraic stack of finite type over SpecR. Write X̂ for its mR-adic completion.
We assume that formal GAGA holds for X over SpecR.

(1) There is a natural bijective correspondence between

(a) projective morphisms Y → X and projective morphisms Ŷ → X̂,
(b) finite schematic morphisms Y → X and finite schematic morphisms

Ŷ → X̂, and
(c) closed immersions Y ↪→ X and closed immersions Ŷ ↪→ X̂.

(2) If Y is a finite type SpecR-scheme that is a presentation Y → X of X,
then
(a) Ŷ → X̂ is a fppf cover of X̂ as a map of formal algebraic stacks.

(b) Ŷ → X is a fpqc cover of X as a map of algebraic stacks.

(c) Ŷ [1/p]→ X[1/p] is a fpqc cover (as a map of algebraic stacks).

Remark 3.19. It is important to specify the notion of “projective morphism,” as
there are definitions which differ over non-local bases. A projective morphism over
a scheme S is a morphism of the form ProjOS B for some quasi-coherent sheaf
B =

⊕
i≥0 Bi of graded algebras which is generated by B1 and where B1 is finite

type. As we will work in the case of a Noetherian base, we note that this notion
of projectivity is Zariski-local on the base provided that the data of an ample line
bundle is included with the morphism (cf. [Vak14, §17.3.4]).

Proof. To prove (1), one observes that each of the possible types of schematic

morphisms over X or X̂ is controlled by coherent sheaves, whence the statements
follow from formal GAGA. The cases (b) and (c) are covered by [Gro61b, Prop.
5.4.4]. The case (a) is also controlled by coherent sheaves, as a projective morphism
Y → X is by definition Y = ProjOX B, where the quasi-coherent OX -algebra
B =

⊕
i≥0 Bi is a direct sum of coherent sheaves with multiplication law composed

of morphisms of coherent sheaves. The corresponding projective morphism to X̂ is
given by Ŷ = ProjOX̂

⊕
i≥0 B̂i.

Part (2a) is clear. Because Y is locally Noetherian, Ŷ → Y is flat. Since Y → X

is smooth, Ŷ → X is then flat as well. It is also clearly quasi-compact. The
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surjectivity of Ŷ → X may be deduced as follows: For any point z ∈ X, its closure
in the Zariski topology is realized by a closed substack Z ↪→ X (cf. [LMB00, Cor.

5.6.1(ii)]). Then there is a point of Ŷ lying over z, namely, a generic point of the

base change Ẑ ×X̂ Ŷ of the closed substack Ẑ ↪→ X̂ corresponding to Z ↪→ X by
(1c), completing the proof of (2b). Finally, (2b) implies (2c). �

4. Families of Étale ϕ-modules and Kisin Modules

After introducing notation in §4.1, we will describe the main point of this section
in §4.2.

4.1. Background for Families of GK∞-Representations of Bounded E-
height. For a reference to the following fundamental definitions in p-adic Hodge
theory, see e.g. [BC09b].

Let k be a finite field of characteristic p > 0 and W := W (k) its ring of p-
typical Witt vectors. W is the ring of integers of the finite unramified extension
K0 := W (k)[1/p] of Qp. Let K/K0 be a totally ramified extension of degree e. Fix
an algebraic closure K̄ of K, and a completion Cp of K̄ and let GK := Gal(K̄/K).

We recall the definitions of some p-adic period rings. Let OK̄ be the ring of
integers of K̄ and OCp the ring of integers of Cp. Let R = lim←−OK̄/p, where each

transition map is the Frobenius endomorphism of the characteristic p ring OK̄/p.
This is a complete valuation ring which is perfect of characteristic p and whose
residue field is k̄ and is also canonically a k̄-algebra. The fraction field FrR of R is a
complete non-archimedean algebraically closed characteristic p field. The elements
x of R are in natural bijection with sequences of elements (x(n))n≥0 of OCp such
that xp(n+1) = x(n) for all n ≥ 0. A canonical valuation on R is given by taking the

valuation v on Cp normalized so that v(p) = 1 and setting vR((x(n))n≥0) = v(x(0)).
Consider the ring W (R), and write an element of W (R) as (x0, x1, . . . , xn, . . . ).

There is a unique continuous surjective W -algebra map

θ : W (R) −→ OCp

(x0, x1, . . . ) 7→
∞∑
n=0

pnxn,(n)

lifting the projection to the first factor R→ OK̄/p onto the 0th truncation W0(R)
of the limit of truncated Witt vectors defining W (R). The natural Frobenius action
on R induces a Frobenius map ϕ on W (R) which sends (x0, x1, . . . ) to (xp0, x

p
1, . . . ).

We fix the notation S := W [[u]], the power series ring in the variable u. We
equip S with a Frobenius map denoted ϕ, which acts by the usual Frobenius map
on W and sends u to up. We think of S as the functions bounded by 1 on the
open analytic unit disk over K0, and S[1/p] as the ring of bounded functions on
the open unit disk. Fix a uniformizer π ∈ K, and elements πn

1 for n ≥ 0 such that
π0 = π and πpn+1 = πn. Write E(u) ∈W [u] for the minimal, Eisenstein polynomial
of π over K0.

Write π := (πn)n≥0 ∈ R, and let [π] ∈W (R) be its Teichmüller lift (π, 0, 0, . . . ).
BecauseR is canonically a k̄-algebra, we have a canonical embeddingW ↪→W (k̄) ↪→
W (R). We consider W (R) as a W [u]-algebra by sending u to [π]. Since θ([π]) = π,
this embedding extends to an embedding of S into W (R), and we will consider

1In the notation above, these would be π(n).
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W (R) and rings derived from W (R) as S-algebras via this map from now on.
From the discussion above, this map is visibly ϕ-equivariant.

We define another important element [ε] ∈ W (R). Firstly define a sequence of
pnth roots of unity

(4.1) ε0 = 1, ε1 6= 1, and εpn+1 = εn ∀n ≥ 0.

This sequence defines an element ε in R. Let [ε] ∈ W (R) be its Teichmülller lift.
Notice that θ([ε]− 1) = 0.

Let OE be the p-adic completion of S[1/u]. Then OE is a discrete valuation
ring with residue field k((u)) and maximal ideal generated by p. Write E for its
fraction field FrOE = OE [1/p]. The inclusion S ↪→ W (R) extends to an inclu-
sion OE ↪→ W (FrR), since π ∈ FrR and W (FrR) is p-adically complete. Let
Eur ⊂ W (FrR)[1/p] denote the maximal unramified extension of E contained in
W (FrR)[1/p], and OEur its ring of integers. Since FrR is algebraically closed, the
residue field OEur/pOEur is a separable closure of k((u)). If OÊur is the p-adic com-
pletion of OEur , or, equivalently, the closure of OEur in W (FrR) with respect to its
p-adic topology, set Sur := OÊur ∩W (R) ⊂ W (FrR). All of these rings are sub-
rings of W (FrR)[1/p], and are equipped with a Frobenius operator coming from
W (FrR)[1/p].

Let K∞ = ∪n≥0K(πn) and GK∞ := Gal(K̄/K∞). Clearly the action of GK∞ on
W (R) fixes the subring S, since it fixes both W and πn ∀n ≥ 0. Therefore GK∞
has an action on Sur and Eur.

Recall that for any Zp-algebra S, SA denotes the completion of S ⊗Zp A with
respect to a defining system of ideals for the topology of A. It will be important to
know that the following such rings are Noetherian.

Lemma 4.1. Let R be an admissible local Zp-algebra and let A be a formally finite
type R-algebra. The commutative rings SR, SA, OE,R, and OE,A are Noetherian.
Also, there are isomorphisms SR ' S⊗̂ZpR, OE,R ' OE⊗̂ZpR; the latter is a topo-
logical isomorphism. Each of these rings admits a unique R or A-linear extension
of the Frobenius map ϕ on S or OE .

Proof. As R, S, and OE are Noetherian, the rings S⊗̂ZpR and OE⊗̂ZpR are Noe-
therian by [Gro64, Ch. 0, Lem. 19.7.1.2]. As the ideals (p ⊗ 1) + OE ⊗Zp mR and

mROE,R of OE ⊗Zp R are identical, we have a topological isomorphism OE⊗̂ZpR '
OE,R. There is also an isomorphism of rings SR

∼→ S⊗̂ZpR, but it is not necessarily
a topological isomorphism.

By [Gro60, Prop. 10.13.5(ii)], the rings OE,A and SA are Noetherian because
Spf A→ SpfR is a formally finite type morphism of formal schemes. �

4.2. Algebraic Families of Étale ϕ-modules. In this section, we will work with
representations VA of GK∞ with coefficients in admissible Zp-algebras A with the
discrete topology, which are quotients of Z/pi[x1, . . . , xj ] for some integers i, j. Un-
like the previous sections, we will not study the most general moduli space of these
families, but simply fix such an A and study the category of A-linear represen-
tations. Later, these results will be applied to a family of GK-representations in
RepD̄, considered as a GK∞ -representation. In this section, we also fix R to be an
arbitrary Artinian (and, therefore, finite cardinality) subring of A. In §4.4, we apply
these results where R is Zp-subalgebra of A generated by characteristic polynomial
coefficients of the GK or GK∞-action.
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Our goal is to compare these families of Galois representations to étale ϕmodules.
These étale ϕ-modules are finite modules M over certain of the Noetherian rings of
Lemma 4.1 with a ϕ-semilinear automorphism. We will often write this automor-
phism as a linear automorphism ϕ∗(M)→M , where ϕ∗(M) denotes OE ⊗ϕ,OE M .
Because the mD̄-adic topology is discrete in our current setting, we have an iso-
morphism OE,A ∼= OE ⊗Zp A, with an A-linear extension ϕ of the Frobenius on
OE .

Definition/Lemma 4.2.

(1) Let ModGK∞ (A) be the category of finite A-modules with a A-linear action
of GK∞ with open kernel. Let RepGK∞ (A) be the full subcategory whose
objects are finite, projective, and constant rank as A-modules.

(2) Let Φ′M (A) be the category of finite OE,A-modules M equipped with an

A-linear isomorphism ϕ∗(M)
∼→ M , called (A-linear) étale ϕ-modules. Let

ΦM (A) be the full subcategory whose objects are finite, projective, and
constant rank as OE,A-modules.

(3) Let M be the covariant functor

M : ModGK∞ (A) −→ Φ′M (A)

VA 7→ (OEur ⊗Zp VA)GK∞ .

(4) Let Φ
′ Gal
M (A) be the essential image of M on ModGK∞ (A) in Φ′M (A), and

let ΦGal
M (A) be the essential image of M on RepGK∞ (A) in ΦM (A).

(5) Let V be the covariant functor

V : Φ
′ Gal
M (A) −→ ModGK∞ (A)

MA 7→ (OEur ⊗OE MA)ϕ=1.

It remains to be confirmed that parts (3) and (5) above are valid, e.g. that
M(VA) is finite as a OE,A-module when VA is finite as an A-module. The proof will
be given below after stating one more result.

Remark 4.3. The functor V behaves well only after restriction to the full subcat-
egory Φ

′ Gal
M (A) of Φ′M (A). In the proof of the following proposition, we will see

that the obstruction to M being essentially surjective is that MA ∈ Φ′M (A) may
not be a filtered direct limit of finite OE,R-submodules Mi such that the structure

ϕ∗(MA)
∼→ MA is the limit of such maps on Mi. Take for example A = Fp[x, x−1]

and MA free of rank one over OE,A with the map ϕ∗(MA) → MA defined by
1⊗ z 7→ xz. In fact, V (MA) = 0.

When A is Artinian, the functors M and V define an equivalence between
RepGK∞ (A) and ΦM (A) that is functorial in A; see [Kis09b, Lem. 1.2.7], which

builds upon the original case with trivial (A = Zp) coefficients [Fon90, A.1.2.6].
For more general A, this is not true, and the following result gives as much as one
can ask for.

Proposition 4.4 (Generalizing [Kis09b, Lem. 1.2.7]).

(1) The functor M : ModGK∞ (A) → Φ′M (A) is exact and fully faithful, and is

an equivalence onto the full subcategory Φ
′ Gal
M (A) with quasi-inverse V .
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(2) For W a finite A-module and VA ∈ RepGK∞ (A), there is a natural isomor-
phism

M(VA ⊗AW ) ∼= M(VA)⊗AW.
(3) If A′ is a finitely generated A-algebra, then there is a commutative diagram

of functors

ModGK∞ (A)
M //

��

Φ
′ Gal
M (A)

��
ModGK∞ (A′)

M // Φ
′ Gal
M (A′)

where the downward functors are induced by −⊗A A′.
(4) M restricts to an equivalence of categories

M : RepGK∞
∼−→ ΦGal

M (A)

with quasi-inverse

V : ΦGal
M (A)

∼−→ RepGK∞ (A).

In particular,
(a) VA is projective as an A-module of constant rank d if and only if M(VA)

is a projective OE,A-module of constant rank d.
(b) VA is free as an A-module with rank d if and only if M(VA) is a free
OE,A-module of rank d.

First we assemble useful facts about limits. We will append (−)∞ to categories
defined in Definition/Lemma 4.2 to indicate that the A-module finiteness condition
has been dropped.

Fact 4.5. In a category of modules over a ring, tensor products commute with
direct limits.

Fact 4.6. If the maps of a filtered direct limit of finite modules in Mod∞GK∞ (R)

(resp. in Φ
′∞
M (R)) are all injective, then the functor (−)GK∞ (resp. (−)ϕ=1) com-

mutes with this direct limit.

Fact 4.7. Inverse limits in ModGK∞ (R) (resp. Φ′M (R)) commute with the invariant

functor (−)GK∞ (resp. (−)ϕ=1), since it is a right-adjoint functor to the functor
giving the trivial GK∞-action to an R-module, and therefore commutes with limits.

In order to substantiate Definition/Lemma 4.2 and Proposition 4.4, A-linear
structure on the objects will be forgotten down to R-linear structure. Then, the
objects are direct limits of finite R-submodules for which the statements are known,
and we establish appropriate compatibility with the limits.

Proof (Definition/Lemma 4.2). Let VA ∈ ob ModGK∞ (A). Because the action of
GK∞ has a finite index kernel, we have a canonical isomorphism as R[GK∞ ]-
modules of VA with lim−→i

Vi, where (Vi)i∈I ∈ ob ModGK∞ (R) are the R-module-finite

R[GK∞ ]-submodules of VA. We note that the functor M (resp. V ) commutes with
injective direct limits in ModGK∞ (R) (resp. Φ′M (R)), using Facts 4.5 and 4.6 above
along with the fact that the tensor product ⊗ZpOEur (resp. ⊗OEOEur) preserves
injective maps.
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Therefore there are canonical isomorphisms in Φ
′∞
M (R) of colimits of objects of

Φ′M (R),

M(VA)
∼−→M(lim−→

i

Vi)
∼−→ lim−→

i

M(Vi),

and the fact that M is an equivalence of categories out of ModGK∞ (R) commuting
with the necessary colimits implies that there is a canonical isomorphism respecting
all structures

(4.2) VA ⊗Zp OEur
∼

OEur ,R,GK∞ ,ϕ
// M(VA)⊗OE OEur .

The A-linear structure on the left hand side then provides a canonical A-linear
structure on the right hand side, commuting with the action of OEur , GK∞ , and ϕ.
Therefore, M(VA), being the GK∞ -invariants of the right hand side, has the struc-
ture of an A-module; moreover, it is an OE,A-module with a Frobenius semi-linear
endomorphism. To complete the proof that M is well-defined in Definition/Lemma
4.2, we must show that M(VA) is finite as an OE,A-module.

Let H be the open kernel of the action of GK∞ on VA. Since H acts trivially on
VA, the canonical isomorphism above induces a canonical isomorphism

(4.3) VA ⊗Zp (OEur)H
∼−→M(VA)⊗OE (OEur)H .

Since GK∞/H is finite and (OEur)GK∞ = OE , we know that (OEur)H is finite as
a OE -module. Therefore the left hand side is finite as a OE,A-module, so that
the right hand side is as well. Therefore M(VA) is a finite OE,A-module by étale
descent. This confirms part (3) of Definition/Lemma 4.2.

Since V commutes with the same limits as M does and is quasi-inverse to M on
Φ′M (R), we observe that V defines a R-linear quasi-inverse on the essential image

Φ
′ Gal
M (A) of M . Then the finiteness of V (MA) for MA ∈ ΦGal

M (A) can be proven
in the same way that the finiteness of M(VA) was proven, using the isomorphism
(4.3). This confirms part (5) of Definition/Lemma 4.2. �

Proof (Prop. 4.4). We have proved part (1) in the argument for Definition/Lemma
4.2 that we just gave. For part (2), observe that this statement is clearly true
for free, finite rank A-modules W ; then, use the exactness of M on a finite free
presentation for a general finite A-module W . To prove part (3), write A′ as
an increasing union of its finite A-submodules A′ = lim−→Bi, and then apply part

(2) along with the arguments involving compatibility with limits in the proof of
Definition/Lemma 4.2.

For part (4), first observe that the exactness of M along with (3) implies that
M(VA) is flat over OE,A if and only if VA is flat over A. As these modules are finite
over Noetherian rings, they are projective. Having verified this equivalence, to prove
(4a) it suffices to show that if the rank of VA holds constant at d, then so does the
rank of M(VA). Since both VA and M(VA) are flat, the rank function is locally
constant. At a maximal ideal m ⊂ A, we know that the ranks dimA/m VA ⊗A A/m
and rkOE,A/m M(VA ⊗A A/m) are the same since, by (2),

M(VA)⊗A A/m ∼= M(VA ⊗A A/m)

and since A/m is a finite field, [Fon90, A.1.2.4(i)] tells us that the OE,A/m-rank of
M(VA/m) is constant and is the same as the A/m-dimension of VA/m. Because A
is p-power torsion, any maximal ideal I of OE,A contains the kernel of the factor
map OE,A → OE,A/m for some maximal ideal m of A. In other words, there exists



32 CARL WANG-ERICKSON

a natural map MaxSpecOE,A → MaxSpecA. Because every connected component
of SpecA and SpecOE,A has a closed point, we have completed the proof of (4a).

For (4b), it suffices to show that M(VA) is free when VA is free. The isomorphism
(4.3) shows that when one of VA or M(VA) is free, then VA ⊗Zp (OEur)H and

M(VA)⊗OE (OEur)H are both free (OEur,A)H -modules. Because Spec(OEur,A)H →
SpecOE,A is a finite surjective étale morphism, any vector bundle trivialized by
such a cover was already free over the base, proving the assertion. Indeed, this is
Hilbert Theorem 90 applied to this étale extension; that is, GLd is special in the
sense of Serre [Ser58, Exp. 1, §4], cf. [sga71, Exp. XI, §5]. �

4.3. Functors of Lattices and Affine Grassmannians. The assumptions on
A, R, and VA remain the same as in the previous section. We will study lattices
in the étale ϕ-module MA := M(V ∗A), where V ∗A denotes the A-linear dual of VA
with its natural GK∞ -action. Since p is nilpotent in A (choose i so that pi = 0
in A), OE,A ∼= (Z/piZ)[[u]][1/u] ⊗Zp A. Therefore SA[1/u] ∼= OE,A, and we may
consider SA-lattices within MA which are stable under the Frobenius semi-linear
endomorphism ϕ on MA. We will show in this section that the functor associating
to an A-algebra B the ϕ-stable SB-sublattices of MA⊗AB satisfying the condition
“E-height ≤ h” is represented by a projective A-scheme. We will use the affine
Grassmannian for this, generalizing the result of [Kis09b, §2.1] and [Kis08, §1],
which was done in the case that A is Artinian.

First we will briefly review the theory of the affine Grassmannian; see [Ric16, §1]
for thorough and general treatment of affine Grassmannians. Affine Grassmanni-
ans for GLd and related groups (see below) are functors of sublattices of projective,
constant rank modules. The local affine Grassmannian parameterizes these vector
bundles over the formal one-dimensional disk D which are trivialized on the punc-
tured disk. The global affine Grassmannian parameterizes these vector bundles
over the affine line A1 which are trivialized on the punctured line.

Definition 4.8. Let VA be a projective rank d A-module. Write

G = ResW/Zp GLA⊗ZpW
(V ∗A ⊗Zp W ).

Then the affine Grassmannians we will require are the following functors.

(1) The local affine Grassmannian GrlocG for G is the functor associating to
a A-algebra B the set of pairs (PD, η) where PD is a projective rank d
WB [[t]]-module and η is an isomorphism

PD ⊗WB [[t]] WB((t))
∼−→ V ∗A ⊗AWB((t)).

(2) The global affine Grassmannian GrglobG for G is the functor assigning to
an A-algebra B the set of pairs (PA1 , η), where PA1 is a projective rank d
WB [t]-module and η is an isomorphism

PA1 ⊗WB [t] WB [t][1/t]
∼−→ V ∗A ⊗AWB [t][1/t].

We observe that there is a natural functor

(4.4) GrglobG −→ GrlocG

given by restriction from a line to the disc, i.e. ⊗WB [t]WB [[t]]. In fact, this restriction
is an isomorphism [PZ13, Prop. 6.2]. It is not difficult to deduce that this map is
an isomorphism from published results. When W = Zp and VA is free, this is the
result of [BL95]. When VA is not free, we can verify the result on a Zariski cover
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of SpecA trivializing VA, and deduce the result from base change from SpecZp to
SpecA. The result over Zp, for arbitrary W , follows from [PZ13, Prop. 6.2].

We also want to know that GrG is ind-projective over SpecA with a canonical
ample line bundle. Like before, we will reduce to the case A = Zp by replacing
SpecA with a Zariski cover trivializing VA. The fact that GrResW/Zp GLd is ind-

proper over SpecZp is given in e.g. [PZ13, Prop. 6.3]. We thank Brandon Levin for
explaining the following construction of the canonical ample line bundle. Let H be
the linear automorphism group of Lie(ResW/Zp GLd). H is a general linear group
over Zp, and the “determinant” line bundle Ldet of [Lev16, Definition 4.3.4] is ample
on GrH . Even though the adjoint action homomorphism ResW/Zp GLd → H may
not be injective, the pullback of Ldet along the induced morphism GrResW/Zp GLd →
GrH is ample on both fibers over SpecZp by [Lev16, Prop. 4.3.6]. Because we
already know GrResW/Zp GLd/ SpecZp is ind-proper, it is therefore ind-projective as

well. By base change from Zp to A, we know that GrG is ind-projective over SpecA
locally on the base. And because the ample line bundle was canonically constructed,
it interpolates over all of SpecA. Because we have this canonical ample line bundle,
ind-projectivity is preserved under gluing a Zariski cover in light of Remark 3.19.

We summarize what we have proved in the following

Theorem 4.9. Let S be a locally Noetherian scheme, and let V be a projec-
tive, coherent, constant rank OS-module. Then GrResW/Zp GLWA (V⊗ZpW ) is an ind-

projective S-scheme with a canonical ample line bundle.

The functor of sublattices that arises in our study is not identical to the global nor
the local affine Grassmannian, but it is scheme-theoretically isomorphic. In what
follows, we write ŜB for the u-adic completion of SB ; they are both Noetherian
(Lem. 4.1).

Proposition 4.10. If VA is an object of RepGK∞ (A), projective of constant rank

d, and MA := M(V ∗A) is the corresponding OE,A-module in ΦGal
M (A), then there

exist equivalences of functors on A-algebras

(1) The global affine Grassmannian GrglobG for G/A.
(2) The functor FVA associating to a finitely generated A-algebra B the SB-

sublattices of MB := MA ⊗A B
(3) The local affine Grassmannian GrlocG for G/A.

induced by tensoring

(4.5) GrglobG

⊗WB [u]SB // FVA
⊗SB

WB [[u]]
// GrlocG

which factors the composite isomorphism (4.4).

Remark 4.11. We will see in the proof that the natural isomorphisms between the
affine Grassmannians and FVA is not canonical. This is not a new phenomenon that
arises when A is no longer Artinian as it was in [Kis08]; bases were implicitly chosen
there as well. However, because of the nature of its construction, the canonical
ample line bundle on FVA does not depend on the choice of basis.

Proof. We will prove the case W = Zp. First let us assume that VA is free of rank
d, so that MA is as well, by Proposition 4.4(4). We observe that the two morphisms
in (4.5) factor (4.4), and therefore it will suffice to show that the latter morphism
⊗SBB[[u]] is a monomorphism of functors.
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Choose a basis forMA. For any finitely generated A-algebra B, let MB ∈ FVA(B)
denote the SB-lattice generated by the induced basis of MB = MA ⊗A B. As
remarked in [Lev16, Example 2.2.7], we note that FVA(B) is a direct limit over
n ≥ 0 of functors of lattices NB ⊂ MB satisfying u−nMB ⊇ NB ⊇ unMB . This
filtered direct limit exists for each of the global/local affine Grassmannian functors
as well as FVA , and is compatible with and unchanged by the tensor maps of (4.5).
Therefore the latter map of (4.5) is an isomorphism.

In the case that VA is a projective, rank d A-module trivialized by a Zariski cover
Spec Ã→ SpecA, Proposition 4.4(2,4) implies that the same cover trivializes MA.

Therefore the argument above applies after base change to Spec Ã, and by descent
we have the statement of the proposition. �

The functor of S-lattices of E-height at most h for VA is defined on the category
of A-algebras as follows, where h is a non-negative integer. Recall that MA :=
M(V ∗A), and is equipped with an OE,A-linear isomorphism ϕ : ϕ∗(MA)

∼→MA.

Definition 4.12. For B an A-algebra, MB = MA⊗AB has a B-linear isomorphism
ϕ∗(MB)

∼→MB . Choose a non-negative integer h. A SB-lattice in MB of E-height
≤ h is a SB-sublattice MB of the OE,B-module MB such that MB is stable by ϕ
and the cokernel of the induced injective map ϕ∗(MB)→MB is killed by E(u)h.

Write L≤hVA (B) for the set of SB-lattices of E-height at most h in MB . It is
naturally a functor on A-algebras (cf. [Kis08, p. 517]), and is a subfunctor of FVA .

In the case that A is Artinian, L≤hVA is represented by a projective A-scheme [Kis09b,
Prop. 2.1.7] (see also [Kis08, Prop. 1.3]). The same proof will apply in the non-
Artinian case.

Proposition 4.13 (Generalizing [Kis09b, Prop. 2.1.7]). The functor L≤hVA is repre-

sented by a projective A-scheme L≤hVA with a canonical ample line bundle. If A→ A′

is finitely generated and VA′ = VA ⊗A A′, then there is a canonical isomorphism

L≤hVA ⊗A A
′ ∼→ L≤hVA′ compatible with the canonical ample line bundle.

Proof. Proposition 4.10 gives us that L≤hVA is a subfunctor of FVA . The desired result
is Zariski-local on SpecA by Remark 3.19, allowing us to assume that VA is free.
Then MA is free over OE,A as well by Proposition 4.4(4b). Choosing a basis for MA

(which induces a choice of isomorphism of FVA with the affine Grassmannian), one
can follow the proof of [Kis09b, Prop. 2.1.7], checking that the ϕ-stable condition

is a Zariski-closed and finite type condition in the affine Grassmannian. Then L≤hVA
is projective with a canonical ample line bundle arising as the restriction of the
canonical ample line bundle on the affine Grassmannian (Theorem 4.9 and Remark
4.11). The compatibility with base change A→ A′ follows from Proposition 4.4(2-
3). �

Write ΘA for the projective map ΘA : L≤hVA → SpecA. Write M for the universal

sheaf of Θ∗A(SA)-modules on L≤hVA and M̂ for its u-adic completion.
Next we will compare M with Galois representations, showing that the global

sections of the universal SA-lattice in MA, with its Frobenius semi-linear structure,
can recover VA in a similar fashion to the correspondence between VA and MA =
M(VA) in Proposition 4.4, but without losing u-integrality.
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Lemma 4.14 (Generalizing [Kis08, Lem. 1.4.1]). Set Ã := ΘA∗(OL≤hVA
). There is

a canonical Ã-linear GK∞-equivariant isomorphism

(4.6) VÃ := VA ⊗A Ã
∼−→ HomSÃ,ϕ

(ΘA∗(M),Sur
Ã

).

This was proved in [Kis08, Lem. 1.4.1] in the case of Artinian A, and the proof
of this general case, like that of Proposition 4.4, will depend on showing that the
proof of the Artinian case can be made compatible with limits.

We will require the result [Fon90, B.1.8.4] of Fontaine : if N is a finite S-module
with a Frobenius semi-linear endomorphism of bounded E-height, then the natural
Zp[GK∞ ]-linear map

(4.7) HomS,ϕ(N,Sur) −→ HomS,ϕ(N,OEur).

induced by the inclusion Sur ↪→ OEur is an isomorphism. When, in addition, N has
R-linear structure, then taking R-linear maps induces a canonical R[GK∞ ]-linear
isomorphism

(4.8) HomSR,ϕ(N,Sur
R )

∼−→ HomSR,ϕ(N,OEur,R).

Proof. Let M∗A denote the OE,A-dual of MA := M(V ∗A), equipped with the induced
structure of an object of ΦGal

M (A). Using the canonical isomorphism

HomOE,Ã(M∗
Ã
,OEur,Ã) ∼= MÃ ⊗OE,Ã OEur,Ã

and applying (−)ϕ=1 to the canonical isomorphism (4.2), we have a canonical iso-
morphism

(4.9) VÃ
∼−→ (M∗

Ã
⊗OE,Ã OEur,Ã)ϕ=1 ∼−→ HomOE,Ã,ϕ(MÃ,OEur,Ã).

It remains to show that the rightmost factor of (4.9) and the rightmost factor of
(4.6) are canonically GK∞ -equivariantly isomorphic.

The arguments given in [Kis08, Lem. 1.4.1] apply verbatim in the present case

to show that ΘA∗(M) is a finite ΘA∗Θ
∗
A(SA) = S ⊗A Ã = SÃ-module, with the

additional structure of a SÃ-lattice in ΘA∗(M) ⊗S OE of E-height ≤ h, where

ΘA∗(M) ⊗S OE is naturally isomorphic to MA ⊗A Ã in ΦGal
M (Ã). It remains to

show that HomSÃ,ϕ
(ΘA∗(M),Sur

Ã
) ∼= HomOEur,Ã,ϕ

(ΘA∗(M)⊗S OE ,OEur,Ã).

Choose now some Vi ⊂ VÃ, an R[GK∞ ]-submodule, finite as an R-module (i.e. an

object of ModGK∞ (R)), such that the natural map Vi⊗RÃ→ VÃ is a surjection. Let
Mi = M(Vi) ⊂ M(VÃ) = MÃ be the corresponding OE,R-submodule; Proposition

4.4 givesMi the structure of an object of Φ
′ Gal
M (R) such that the canonical Φ

′ Gal
M (A)-

morphism Mi ⊗R Ã→MÃ is surjective. Let N be the intersection

N := ΘA∗(M) ∩Mi ⊂MÃ,

which we observe is a SR-submodule of MÃ. We have the natural surjection N⊗R
Ã� ΘA∗(M).

Upon applying ⊗RÃ, the isomorphism (4.8) induces an Ã-linear isomorphism

HomSR,ϕ(N,Sur
Ã

)
∼−→ HomSR,ϕ(N,OEur,Ã).

Then tensor-Hom adjunction results in an isomorphism

HomSÃ,ϕ
(N⊗R Ã,Sur

Ã
)
∼−→ HomSÃ,ϕ

(N⊗R Ã,OEur,Ã).

Finally, because the map Sur
Ã
→ OE,Ã inducing this isomorphism may be checked

to be an injection, an element of the left hand side factors through the quotient
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ΘA∗(M) if and only if its image on the right hand side factors through ΘA∗(M).

That is, we may replace N ⊗R Ã by ΘA∗(M) in the equation. The adjunction
HomSÃ,ϕ

(ΘA∗(M),OEur,Ã) ∼= HomOEur,Ã,ϕ
(ΘA∗(M)⊗S OE ,OEur,Ã) completes the

proof. �

4.4. A Universal Family of Kisin Modules in Characteristic 0. While the
previous parts of §4 have been carried out over a fixed discrete coefficient ring A,
we now fix a residual pseudorepresentation D̄ of GK and let A be a formally finitely
generated RD̄-algebra with a GK-representation VA with induced pseudorepresen-
tation compatible with the RD̄-algebra structure of A.

The results above can be applied to (VA ⊗RD̄ RD̄/m
i
D̄

)|GK∞ for each i ≥ 1 and

extend to the limit, where R above may be set to be the image of RD̄ in A/mi
D̄
A.

For example, the functor M generalizes to this setting naturally from the above,
since the map of limits

(4.10) MA = (OEur ⊗̂ZpV
∗
A)GK∞

∼−→ lim←−(OEur ⊗Zp V
∗
A ⊗A A/(mD̄A)i)GK∞

is an isomorphism by Fact 4.7 and the fact that the ideal (p ⊗ 1) + OEur ⊗ mD̄A
(for which the left side is the completion) is equal to OEur ⊗Zp mD̄A (for which the
right side is the completion). This means that MA is a projective OE,A-module of
rank d as expected.

For B an A-algebra such that mi
D̄
· B = 0 for some i ≥ 1, set L≤hVA (B) =

L≤hVA/(mD̄A)i
(B).

Corollary 4.15. The functor L≤hVA on A-algebras B such that mi
D̄
·B = 0 for some

i ≥ 1 is represented by a projective A-scheme L≤hVA .

Proof. By Proposition 4.13 and Remark 3.19, this functor is represented by a pro-
jective formal scheme with a ample line bundle compatible with its limit structure.

By applying formal GAGA 3.18(1a), we conclude that L≤hVA is the mD̄-adic comple-
tion of a projective A-scheme. �

We now study the the map ΘA : L≤hA → SpecA, showing that it is a closed
immersion in equi-characteristic zero.

Proposition 4.16 (Generalizing [Kis08, Prop. 1.6.4]). Let A and VA be as specified
above. Then

(1) The map ΘA : L≤hVA → SpecA is a closed immersion after inverting p.

(2) If A≤h is the quotient of A corresponding to the scheme-theoretic image of
ΘA, then for any finite W (F)[1/p]-algebra B, a continuous A→ B factors
through A≤h if and only if VB = VA ⊗A B is of E-height ≤ h.

Part (1) expresses the uniqueness of S-lattices of E-height ≤ h in characteristic
zero [Kis06, Prop. 2.1.12]. According to part (2), scheme-theoretic image of ΘA has
the property we expect.

Proposition 4.16 follows from the arguments in the case of local A, done in [Kis08,
Prop. 1.6.4]. These arguments apply immediately to the case of non-local A, once
Lemma 4.17 is established. The reason that the arguments apply verbatim is that
they need only address the B-points of ΘA, where B is an Artinian Qp-algebra.
Indeed, Lemma 4.17 verifies that closed loci in SpecA[1/p] are characterized entirely
by their behavior on B-points.
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We establish the following notation: let B be an Artinian local Qp-algebra with
residue field E. Let IntB denote the set of finitely generated OE-subalgebras of B0,
the preimage of OE via B � E.

Lemma 4.17. Let A be a formally finitely generated R-algebra, where R is a local
admissible Zp-algebra with maximal ideal mR. Then

(1) A[1/p] is Jacobson and Noetherian,
(2) all residue fields of A[1/p] at maximal ideals are finite extensions of Qp,
(3) a quotient A′ of A[1/p] is characterized by those homomorphisms from

A[1/p] to finite Qp-algebras which factor through A′,
(4) a finite A[1/p]-module V is projective if and only if V ⊗A B is projective

for every finite Qp-algebra B receiving a homomorphism A→ B,
(5) the image of A in a residue field from part (2) is an order in its ring of

integers, and
(6) the image of A in a finite local Qp-algebra B with residue field E lies in

some C ∈ IntB.

Statements (1), (2), (3), and (4) are true for Aalg, a finitely generated mR-adically
separated R-algebra with completion A, in the place of A.

Proof. Because A is Noetherian, A[1/p] is also Noetherian. Every maximal ideal
of A has a finite characteristic p residue field, so p is in the Jacobson radical of A.
Then [Gro66, Cor. 10.5.8] implies that A[1/p] is Jacobson, proving (1) for A.

Statement (2) follows directly from [dJ95, Lem. 7.1.9], which gives a natural
bijection between the maximal ideals m of A[1/p] and the points of the associated
rigid analytic space and, furthermore, implies that the respective residue fields are
isomorphic. Because all maximal ideals of A have characteristic p, the image of A
in the p-adic field E = A[1/p]/m is not a field, but generates E upon adjoining 1/p.
Statement (5) follows. Finally, it is clear that (5) implies (6).

Consider two quotient rings A′ and A′′ of A[1/p]. Assume that the functors
of points HomQp(A′,−) and HomQp(A′′,−) are identical after restriction to finite
Qp-algebras B. Applying (1) and (2), this assumption implies that for any closed
point of SpecA′ corresponding to maximal ideals m ⊂ A[1/p] and m′ ⊂ A′, there is
a corresponding maximal ideal m′′ ⊂ A′′ and there is an isomorphism of complete

local rings Â′m′ ' Â′′m′′ as quotient rings of Â[1/p]m. Therefore, for any maximal

ideal m of A[1/p], we have A′ ⊗A[1/p] Â[1/p]m ' A′′ ⊗A[1/p] Â[1/p]m. Because

A[1/p] ↪→
∏

m⊂A[1/p] Â[1/p]m is faithfully flat, this implies that A′ = A′′ by descent,

as desired, proving (3). Because faithfully flat morphisms are descent morphisms
for the flat property, and flatness is equivalent to projectivity for finite modules
over Noetherian rings, we also have (4).

To prove (1) and (2) for Aalg, consider that (1) and (2) apply to R[1/p], and
that Aalg[1/p] is finitely generated over R[1/p]. The Hilbert basis theorem and
the nullstellensatz for Jacobson rings provide statements (1) and (2) for Aalg[1/p].
Properties (3) and (4) follow. �

We now show that there exists a family of S-lattices of E-height ≤ h with
coefficients in A≤h which are universal in characteristic 0 in the sense of part (4)
below. Only the construction of [Kis08] needs to be modified.

Proposition 4.18 (Generalizing [Kis08, Cor. 1.7]). There exists a finite SA≤h-
module MA≤h with the following structures and properties.
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(1) MA≤h is equipped with a linear map ϕ∗(MA≤h) → MA≤h whose cokernel
is killed by E(u)h.

(2) MA≤h ⊗Zp Qp is a projective SA≤h [1/p]-module.

(3) For any finite W (FD̄)[1/p]-algebra B, any map f : A≤h → B and any
C ∈ IntB through which f factors, there is a canonical, ϕ-compatible iso-
morphism of S⊗Zp B-modules

MA≤h ⊗A≤h B
∼−→MC ⊗C B,

where MC is the unique S-lattice of E-height ≤ h in MC = MA ⊗A C.
(4) There is a canonical isomorphism

VA≤h ⊗Zp Qp
∼−→ HomS

A≤h [1/p],ϕ(MA≤h ⊗Zp Qp,Sur
A≤h [1/p]).

Proof. Let L̂≤hVA be the mD̄-adic completion of L≤hVA . Then

Θ̂SA : L̂≤hVA ×Spf A Spf SA → Spf SA

is a projective morphism of Spf(A)-formal schemes, and its base is Noetherian by

Lemma 4.1. By Corollary 4.15, there exists a universal Kisin module M̂ on the mD̄-

adic completion L̂≤hVA of L≤hVA . Relative to the formal scheme L̂≤hVA ×Spf ASpf SA, it is

a locally free coherent sheaf. Applying formal GAGA for ΘSA , M̂ is the completion
of a finite locally free module M on the projective SA-scheme

ΘSA : SpecL≤hVA ×SpecA SpecSA → SpecSA.

The scheme theoretic image of ΘSA is SA≤h . We set

MA≤h := ΘSA∗(M).

With this work done, the proofs of part (1), (2), (3) and (4) may be repeated
from [Kis08, Cor. 1.7]. For part (4), we remark that just as in loc. cit., there is a
canonical isomorphism

VÃ
∼−→ HomSÃ,ϕ

(Θ̂SA∗(M̂),Sur
Ã

)

produced by combining Lemma 4.14, which gives this isomorphism when Ã is re-
placed by Ã/mi

D̄
A for each i ≥ 1, and the theorem on formal functions [Gro61b,

Thm. 4.1.5]. Then the right side is de-completed by formal GAGA, and (4) then

follows from the fact that the kernel and cokernel of A≤h → Ã are p-torsion. �

5. Period Maps and (ϕ,N)-modules in Families

So far, we have cut out loci of GK∞-representations with E-height ≤ h. In this
section and in §6, we refine this locus to cut out semi-stable GK-representations
with Hodge-Tate weights in [0, h]. In order to do this, we will construct a family
of (ϕ,N)-modules from the family of Kisin modules already produced. The locus
will be cut out in characteristic 0, but the construction relies on the family having
an integral model.

In §5.1 we will set up notation and prove lemmas so that we can use the required
period rings in families. In §5.2 we will carry out the constructions needed to cut
out the semi-stable locus; the result will appear in §6.
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5.1. Background and Notation. We now change notation, writing A◦ for what
we called A above, and writing A for what we called A[1/p] above. Also, assume
that A◦ is p-torsion free. We also make analogous notation changes to RD̄ as
follows.

Formerly: A RD̄/(p-tors) A[1/p] RD̄[1/p]
Henceforth: A◦ R◦ A R

For S a Zp-algebra we write SA := SA◦ [1/p], where we recall that SA◦ is
the mD̄A-adic completion of S ⊗Zp A

◦. We will use the canonical isomorphism

SA/uSA
∼→WA

∼= W [1/p]⊗Qp A.
Let O := lim←−n(W [[u, un/p]][1/p]), which is the ring of rigid analytic functions on

the open disk of radius 1 (cf. [Kis06, §1.1.1]), including S[1/p] as the dense subring
of bounded functions. The Frobenius endomorphism ϕ has a unique continuous
extension from S[1/p] to each ring W [[u, un/p]][1/p], and therefore to O as well.

In order to study families over A of ϕ-modules over O, we need to define the
correct notion of the ring of coefficients. Two candidate definitions end up being
the identical:

(5.1) OA := lim←−
n

(W [[u, un/p]]A)
∼−→ lim←−

n

(WA◦ [[u, u
n/p]][1/p]).

While it is clear that these rings are isomorphic when A◦ is local, we prove the
isomorphism here in the general case.

Lemma 5.1. The natural inclusions

W [[u, un/p]]A ↪→WA◦ [[u, u
n/p]][1/p], n ≥ 1,

induce the isomorphism (5.1).

Proof. Write Bn := W [[u, un/p]]A and Cn := WA◦ [[u, u
n/p]][1/p], with the canonical

map Bn ↪→ Cn that we get from considering an element of Bn as a power series in
u. Since the maps making up these limits are injective, it will suffice to show for
f ∈ C2n that its image in Cn under the inclusions making up the limit lies in the
image of Bn in Cn. With f ∈ C2n chosen, write it as

f =
∑
m≥0

fm
um

pbm/2nc

where, for some fixed N ≥ 0, fm ∈ p−N (W ⊗Zp A
◦) ⊆W ⊗Zp A for all m ≥ 0. We

rewrite it as

f =
∑
m≥0

fmp
bm/nc−bm/2nc um

pbm/nc
.

Because p ∈ mD̄A
◦, the coefficient fmp

bm/nc−bm/2nc of un/pbm/nc lies in (mD̄A
◦)i(n)

where limn→+∞ i(n) = +∞. This means that f lies in the image of Bn in Cn, which
is what we wanted to prove. �

We observe that OA has an A-linear Frobenius endomorphism compatible with
the natural map SA → OA.

There are natural maps from SA and OA to other period rings in families. First
we recall the period rings and some properties; see e.g. [BC09b] for a reference.
Let Acris be the p-adic completion of the divided power envelope of W (R) (see
§4.1) with respect to ker(θ), and let B+

cris := Acris[1/p]. The action of ϕ on W (R)
extends to an action on Acris. Also recall from §4.1 that we have fixed a map
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S ↪→ W (R) sending u to [π]. The resulting map S[1/p] ↪→ B+
cris extends uniquely

to a continuous inclusion O ↪→ B+
cris, because S[1/p] is dense in O, and the eth

power of the image [π] of u in W (R) is in the divided power ideal (ker θ, p) for Acris.
Define B+

dR to be the ker(θ)-adic completion of W (R)[1/p], where θ is extended to
a map θ : W (R)[1/p] � Cp, and let BdR be its fraction field.

Recall from §4.1 the definition of [π], the image of u in W (R), and [ε] of (4.1).
Write `u, t ∈ B+

dR for the elements defined by

`u = log [π] :=

∞∑
i=1

(−1)i−1

i

(
[π]− π
π

)i
, t = log[ε] :=

∞∑
i=1

(−1)i+1 ([ε]− 1)i

i
;

one can check that these series converge in B+
dR.

We may now define several more period rings: Bcris := B+
cris[1/t] ⊂ BdR, B+

st :=
B+

cris[`u] ⊂ B+
dR, and Bst := Bcris[`u]. We can and will think of B+

st as a polynomial

ring over B+
cris, for `u is transcendental over the fraction field of Bcris. One computes

that Frobenius ϕ acts as ϕ(`u) = p`u and ϕ(t) = pt.
Equip B+

st with an endomorphism N by formal differentiation d/d`u of the vari-
able `u with coefficients in B+

cris, i.e. so that N(B+
cris) = 0. Extend ϕ to B+

st as well,
with ϕ(`u) = p`u. We note that ϕ and N define endomorphisms of the polynomial
subring K0[`u] ⊂ B+

st , and that pϕN = Nϕ on Bst.
There is an exhaustive, decreasing filtration on each of Acris, B

+
cris, written

FiliAcris,FiliB+
cris,

induced by their inclusion in the filtered ring B+
dR, such that Fil0Acris = Acris and

Fil0B+
cris = B+

cris. The filtration on B+
dR is given by

FiliB+
dR := (ker θ)i, i ≥ 0.

In fact, t ∈ Fil1B+
dR and t 6∈ Fil2B+

dR, so also t ∈ Fil1Acris, and t is a generator for

the maximal ideal of B+
dR.

There is an action of GK on these rings arising from its action on OK̄/p to a
continuous action on R, W (R), and the derivative rings above. In particular, it
will be useful to know the action of GK on t is given by σ(t) = χ(σ) · t where χ
represents the p-adic cyclotomic character. It is also well-known that B+

st is stable
under GK ; this also follows from the following calculation (see [WE13, Lem. 4.6.4]),
which we will need later.

Lemma 5.2. The map β given by

β(σ) := σ(`u)− `u for σ ∈ GK
is a 1-cocycle β : GK → Zp(1) with respect to the cyclotomic character, belonging
to the cohomology class associated to π by Kummer theory. When β(σ) 6= 0, it
generates the maximal ideal of B+

dR.

As this maximal ideal generates the filtration on B+
dR, if β(σ) 6= 0 then

(5.2) β(σ) ∈ Fil1B+
cris, β(σ) 6∈ Fil2B+

cris.

We will use the following families of period rings over A. Define B+
cris,A :=

Acris,A◦ [1/p], where Acris,A◦ is, as usual, the mD̄A
◦-adic completion of Acris⊗Zp A

◦.

For any A-algebra B, we write B+
cris,B for B+

cris,A ⊗A B. Set B+
st,A := B+

cris,A[`u]

and B+
st,B := B+

st,A ⊗A B. The map ϕ extends to each of these rings B-linearly,
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with N again acting as formal differentiation with respect to `u here. In particular,
N(B+

cris,B) = 0. Analogous notation is used for the elements of the filtration on

these rings: denote by FiliAcris,A◦ the mD̄A
◦-adic completion of FiliAcris ⊗Zp A

◦,

and for any A-algebra B let FiliB+
cris,B := FiliAcris,A◦ ⊗A◦ B.

It will be important to know in the construction of (5.4) that there is a canonical
inclusion OA ↪→ B+

cris,A extending the map O ↪→ B+
cris discussed above, and also a

map Sur
A ↪→ B+

cris,A. By Lemma 5.1, it will suffice to show that for large enough n,

W [[u, un/p]]A◦ ↪→ Acris,A◦ .

In order to construct the map, it will suffice to draw, for sufficiently large n, maps

W [[u, un/p]]⊗Zp A
◦/(mD̄A

◦)j ↪→ Acris ⊗Zp A
◦/(mD̄A

◦)j

for each j ≥ 1. We will get such maps by showing, for large enough n, the existence
of maps

W [[u, un/p]] ↪→ Acris.

Indeed, these maps exist for n ≥ e because the eth power of u maps to a divided
power ideal for Acris relative to W (R), as mentioned above. With the construction
complete, Lemma 5.3 implies that this map will remain injective after tensoring with
A◦ and completing with respect to the mD̄A

◦-adic topology. This same construction
gives us a canonical map Sur

A ↪→ B+
cris,A.

We will now record some lemmata to ensure that the large rings B+
cris, Acris, and

so forth behave well in families.

Lemma 5.3 ([Kis08, Lem. 2.3.1]). Let R be a Noetherian ring that is I-adically

complete and separated for some ideal I ⊂ R. For any R-module M , denote by M̂
its I-adic completion. If M is a flat R-module, then

(1) For any finite R-module N , the natural map

N ⊗R M̂ → ̂N ⊗RM

is an isomorphism.

(2) M̂ is flat over R. If M is faithfully flat over R, then so is M̂ .

(3) The functor M 7→ M̂ preserves short exact sequences of flat R-modules.

Lemma 5.3 is given in [Kis08] in the case that R is local, but its proof is valid
for any adically complete Noetherian ring.

The following lemma requires some generalization from the local case.

Lemma 5.4 (Generalizing [Kis08, Lem. 2.3.2]). Let R be a admissible Zp-algebra,
I-adically complete and separated. Also, assume that R is p-torsion free.

(1) For i ≥ 0, the ideal FiliAcris,R of Acris,R is a faithfully flat R-module.

(2) For i ≥ 0, FiliAcris,R/Fili+1Acris,R is a faithfully flat R-module, which is

isomorphic to the I-adic completion of (FiliAcris/Fili+1Acris)⊗Zp R.

(3) For any R[1/p]-algebra B, i ≥ 1, and σ ∈ GK , B+
cris,B/(β(σ)B+FiliB+

cris,B)

is a flat B-module. If β(σ) 6∈ FiliB+
cris, then β(σ) 6∈ FiliB+

cris,B.

(4) Let B◦ be a finite continuous R-algebra with ideal of definition J . Then the
J-adic completion of Acris ⊗Zp B

◦ is canonically isomorphic to Acris,R ⊗R
B◦.
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(5) The map

Acris,R →
∏
q

Acris,R/q

is injective, where q runs over ideals of R such that R/q is a finite flat
Zp-algebra.

(6) If 0 6= f ∈ Acris, then f is not a zero divisor in Acris,R.

Proof. Parts (1), (2), (3), (4), and (6) are proved by the same arguments as the
corresponding parts of [Kis08, Lem. 2.3.2], where for part (4) the the fact that
f : R → B◦ is finite and continuous implies that f is adic, i.e. that f(I) ·B◦ is an
ideal of definition for the J-adic topology of B◦.

To prove part (5), consider that if 0 6= f ∈ Acris,R, we may fix some n such that
0 6= f ∈ Acris,R/In = Acris ⊗Zp R/In. There is an injective map

R/In ↪→
∏
m

(R/In)∧m

with m varying over the maximal ideals of R/In, which are in natural bijective
correspondence with the maximal ideals of R. Because Acris is Zp-flat, there exists
some maximal ideal m′ ⊂ R such that the projection of f to Acris,(R/In)∧

m′
is

non-zero. Then there exists a positive integer a such that the projection of f
to Acris,R/(In+m′a) is non-zero. Notice that f naturally projects from Acris,R to
Acris,(R/In)∧

m′
, which then projects to Acris,R/(In+m′a). Therefore the images of f in

Acris,(R/In)∧
m′

and Acris,R∧
m′

are non-zero. Because the statement of (5) is known in

the case that R is local [Kis08, Lem. 2.3.2(5)], we apply this case to R∧m′ to produce
an ideal q ⊂ R∧m′ with the desired property. Then the kernel of the surjective
composite R → R∧m′ → R∧m′/q is an ideal of R with the desired property. �

The following lemma will be useful to construct loci cutting out conditions real-
ized over a family of period rings.

Lemma 5.5 (Generalizing [Kis08, Lem. 2.3.3]). Let M be an A◦-module and x ∈
Acris,A◦ ⊗A◦ M . The set of A◦-submodules N ⊂ M such that x ∈ Acris,A◦ ⊗A◦ N
has a smallest element N(x).

Proof. Assume that mn
D̄
·M = 0 for some n ≥ 1, and choose some x ∈ Acris,A◦ ⊗A◦

M . Therefore there is a natural isomorphism of A◦-modules

Acris,RD̄
⊗RD̄ M

∼−→ Acris,A◦ ⊗A◦ M.

Because the statement was shown to be true when A◦ is local in [Kis08, Lem.
2.3.3], we may apply the statement, with RD̄ in place of A◦, to the left hand
side. Here we are using the assumption that n exists as above, since this implies
that Acris,RD̄

⊗RD̄ M ∼= Acris,A◦ ⊗A◦ M . As a result, there exists a smallest RD̄-
submodule P of M such that x ∈ Acris,RD̄

⊗RD̄ P . We claim that the image N(x)
of the natural map

P ⊗RD̄ A
◦ →M

is the smallest A◦-submodule of M with the required property. Clearly it contains
x. If there were a A◦ submodule N with the property, then N ⊃ P since N is
also a RD̄-module with the property. But then N must contain N(x), which is the
A◦-span of P . This shows that N(x) is the smallest A◦-submodule of M with the
property.
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The proof of [Kis08, Lem. 2.3.3] deduces the Lemma in the case that A◦ is local
from the case that M has finite length. The same proof works in this setting, so we
briefly sketch it. Assume that M is a finitely generated A◦-module, as the general
case will follow. Denote by xn the image of x in Acris,A◦⊗A◦M/mD̄

nM , and denote
by N(xn) the submodule of M/mD̄

nM obtained from the argument above. One
then observes that the image of N(xn+1) in M/mD̄

nM is N(xn), and that the limit
N(x) := lim←−nN(xn) is the desired submodule of M (using Lem. 5.3(1)). �

5.2. Period Maps in Families. Suppose now that VA◦ has an A◦-linear action of
GK such that its restriction to GK∞ has E-height ≤ h, in the sense that (A◦)≤h =
A◦ (cf. Prop. 4.16(2)). Write VA := VA◦ ⊗A◦ A. We will now follow [Kis08, §2.4]
in constructing a period map (5.4) comparing the family VA of GK-representations
to a family of (ϕ,N)-modules. Using the results of §4, we can compare VA|GK∞ to
a family of Kisin modules. We will produce a family of (ϕ,N)-modules from Kisin
modules, and add additional structure needed to descend GK∞-representations to
GK-representations. Our goal is to produce Ast, the maximal quotient of A over
which VA is semi-stable with Hodge-Tate weights in [0, h].

Proposition 4.18 has produced MA◦ , a finite SA◦ -module, such that MA :=
MA◦ ⊗Zp Qp is a projective, rank d SA-module with a ϕ-semilinear, A-linear en-
domorphism ϕ : MA →MA such that the induced SA-linear map ϕ∗(MA)→MA

has cokernel killed by E(u)h. One part of the period map comes from Prop. 4.18(4),
which provides a canonical, GK∞ -equivariant isomorphism

(5.3) ι : VA
∼−→ HomSA,ϕ(MA,S

ur
A ).

The following lemma supplies the other half of the period map, comparing VA
with the candidate family of (ϕ,N)-modules DA. Indeed, we write

MA := MA ⊗SA OA, and DA :=MA/uMA,

each of which have a natural induced action of ϕ. Denote by Ŝ0,A the completion
of K0[u]⊗Qp A at the ideal (E(u)). We also define λ :=

∏∞
n=0 ϕ

n(E(u)/E(0)) ∈ O.

Lemma 5.6 ([Kis08], Lem. 2.2). There is a unique, ϕ-compatible, WA-linear map
ξ : DA →MA, whose reduction modulo u is the identity on DA.

The induced map DA ⊗WA
OA →MA has cokernel killed by λh, and the image

of the map DA ⊗WA
Ŝ0,A →MA ⊗OA Ŝ0,A is equal to that of

ϕ∗(MA)⊗OA Ŝ0,A →MA ⊗OA Ŝ0,A.

Proof. The proofs of [Kis08, Lem. 2.2 and Lem. 2.2.1] go through verbatim. None
of it depends on A◦ being local. They are a generalization of [Kis06, Lem. 1.2.6],
where A◦ = Zp. Additional detail may be found in [WE13, Lem. 4.7.1]. �

We may now produce the period map from ξ and ι as follows. The map ι induces
a SA-linear, ϕ-equivariant map

MA −→ HomA(VA,S
ur
A ); m 7→ (v 7→ 〈m, ι(v)〉).

Applying ⊗SAOA to it and composing it with ξ, we have a ϕ-equivariant map

DA
ξ−→MA −→ HomA(VA,S

ur
A )⊗SA OA −→ HomA(VA, B

+
cris,A).
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Tensoring the composition of these maps by ⊗AB, where B is any A-algebra, there
is a B+

cris,B-linear map

(5.4) DB ⊗WB
B+

cris,B → HomA(VA, B
+
cris,A)⊗A B ∼= HomB(VB , B

+
cris,B).

We see that the right hand side has an action of GK , and the left hand side
has an action of GK∞ through the action on B+

cris,B . This map is GK∞-equivariant

because GK∞ acts equivariantly on the inclusions S ↪→ O ↪→ B+
cris and because ι

above is GK∞ -equivariant. In order to extend the action of GK∞ on the left hand
side of (5.4) to an action of GK , we suppose that there is a WB-linear map

N : DB → DB

which satisfies the identity pϕN = Nϕ. Then the action of GK on DB ⊗WB
B+

cris,B

is

(5.5) σ(d⊗ b) =

( ∞∑
i=0

N i(d)⊗ β(σ)i

i!

)
σ(b) = exp(N ⊗ β(σ)) · d⊗ σ(b)

for σ ∈ GK . One can check that this action of GK commutes with ϕ.
In order to parameterize semi-stable representations, we must work with B+

st .
Recall that we adjoin `u to B+

cris,B to get B+
st,B = B+

cris,B ⊗K0 K0[`u] with a B-
linear action of N and ϕ. Consider the composite of the isomorphisms

(5.6) DB ⊗K0
K0[`u]

∼→ (DB ⊗K0
K0[`u])N=0⊗K0

K0[`u]
(`u 7→0)⊗1−→ DB ⊗K0

K0[`u]

where the first map is the inverse to the natural isomorphism

(DB ⊗K0 K0[`u])N=0 ⊗K0 K0[`u]
∼−→ DB ⊗K0 K0[`u]

induced by polynomial multiplication in K0[`u]. Tensoring (5.6) by B+
cris,B over

WB and tensoring (5.4) by K0[`u] over K0, we obtain the composite map

(5.7) DB ⊗WB
B+

st,B

(5.6)−→ DB ⊗WB
B+

st,B

(5.4)−→ HomB(VB , B)⊗B B+
st,B .

We claim that (5.4) is GK-equivariant if and only if (5.7) is equivariant when
GK is regarded as acting trivially on DB . A key observation is that the an inverse

to the bijection (D ⊗K0 K[`u])N=0 `u 7→0−→ D is given by d 7→ exp(−N ⊗ `u) · d.
The following lemma is an important step toward the comparison of semi-stable

Galois representations and filtered (ϕ,N)-modules in families.

Lemma 5.7 (Generalizing [Kis08, Lem. 2.4.6]). For each A-algebra B, the maps
(5.4) and (5.7) are injective, and their cokernels are flat B-modules.

Proof. First we note that it suffices to prove the assertions only for (5.4), and for
B = A. Indeed, the case for general B arises from the case B = A by applying
⊗AB, and this map will remain injective after ⊗AB if the cokernel for B = A is a
flat A-module.

Lemma 5.4(5) immediately reduces the injectivity claim to the case that A◦ is
finite over Zp, which was proved in [Kis08, Lem. 2.4.6].

To show that the cokernel of (5.4) is flat, it suffices to show that (5.4) remains
injective after applying ⊗AA/I for any finitely generated ideal I of A. If we had
started our proof with A/I in the place of A, we would still have the injectivity
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statement for A/I, just as we proved it for A above. Therefore it only remains to
show that

DA ⊗WA
B+

cris,A ⊗A A/I
(5.4)⊗AA/I−→ HomA(VA, B

+
cris,A)⊗A A/I

is injective provided that

DA/I ⊗WA/I
B+

cris,A/I

(5.4)−→ HomA/I(VA/I , B
+
cris,A/I)

is injective. This is precisely what Lemma 5.4(4) tells us – indeed, the sources and
targets are isomorphic, respectively – completing the proof. �

Now we can produce Ast, the maximal quotient of A over which VA is semi-stable
with Hodge-Tate weights in [0, h]. This means that for any A-algebra B which is
finite as a Qp-algebra, the representation VA ⊗A B is semi-stable with Hodge-Tate
weights in [0, h] if and only if A→ B factors through Ast.

Proposition 5.8 (Generalizing [Kis08, Prop. 2.4.7]). The functor which to an A-
algebra B assigns the collection of WB-linear maps N : DB → DB which satisfy
pϕN = Nϕ and such that (5.4) is compatible with the action of GK is representable
by a quotient Ast of A.

Proof. We may freely assume that VA is a free rank d A-module. In this case,
the construction of Ast in [Kis08, Prop. 2.4.7] of a finitely generated A-algebra
Ast representing the functor of the statement generalizes to this setting, since the
ingredients, Lemmas 5.5 and 5.3 and the map (5.4), generalize. We sketch the
argument to demonstrate these dependencies.

Firstly, the functor assigning to B the set of WB-linear maps N : DB → DB

satisfying pϕN = Nϕ is representable by a finitely generated A-algebra AN .
Write ηB for the map of (5.4), and for d ∈ DAN and σ ∈ GK set

δσ(d) = ηAN (σ(d))− σ(ηAN (d)),

which are elements of Q := HomAN (VAN , B
+
cris,AN

). We wish to show that the

vanishing of this map for all σ, d is cut out by an ideal of A. Choose a B+
cris,AN

-

basis for Q and let x1, . . . , xr be the coordinates of δσ(d) with respect to the basis.
Applying Lemma 5.5 with M = AN and x = xi for xi varying over a B+

cris,AN
-basis

for Q, the span of the resulting ideals of AN is the kernel of the quotient Ast of
AN . Then, because Q is a faithfully flat AN -module by Lemma 5.3(1), AN → B
will factor through Ast if and only if ηB is compatible with the action of GK .

With this construction complete, the same proof of [Kis08, Prop. 2.4.7] shows
that A → Ast is surjective, replacing appeals to [Kis08, Lem. 2.4.6 and Lem.
2.3.2(3)] with Lemma 5.7 and Lemma 5.4(3), respectively. �

6. Algebraic Families of Potentially Semi-Stable Galois
Representations

We will maintain the notation for A,A◦, etc. established in §5.1, but we drop
the assumption of §5.2 that the family VA◦ of representations of GK has E-height
≤ h. We have studied the period map

DA ⊗WA
B+

cris,A −→ HomA(VA, B
+
cris,A)

of a family of GK-represetations with bounded E-height and demonstrated that
it is injective with flat cokernel, and also GK-equivariant over a Zariski-closed
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locus. In this section, we will show that these properties allow for the construc-
tion of Zariski-closed loci of crystalline and semi-stable Galois representations with
bounded Hodge-Tate weights. In addition, loci corresponding to a given Hodge
type or potentially semi-stable Galois type will be cut out. We will conclude by
stating these results for the universal spaces of Galois representations Rep�

D̄
and

RepD̄, producing algebraic versions of these spaces, and drawing conclusions about
their geometry in equi-characteristic 0.

6.1. Families of Semi-stable Galois Representations with Bounded Hodge-
Tate Weight. The following theorem shows that a semi-stability condition with
bounded Hodge-Tate weights cuts out a closed locus and that the corresponding
period maps interpolate along this locus. We have followed the techniques of Kisin
[Kis08]; see [HH13] for another approach.

Theorem 6.1 (Generalizing [Kis08, Thm. 2.5.5 and Prop. 2.7.2]). If h is a non-
negative integer, then there exists a quotient Ast,h of A with the following properties.

(1) If B is a finite Qp-algebra, and ζ : A → B a map of Qp-algebras, then
ζ factors through Ast,h if an only if VB = VA ⊗A B is semi-stable with
Hodge-Tate weights in [0, h].

(2) There is a projective WAst,h-module DAst,h of rank d equipped with a Frobe-
nius semi-linear automorphism ϕ and with a WAst,h-linear automorphism
N such that for all ζ : A→ B factoring through Ast,h, there is a canonical
isomorphism

DB = DAst,h ⊗Ast,h B
∼−→ HomB[GK ](VB , B

+
st ⊗Qp B)

respecting the action of ϕ and N .
(3) Suppose that A = Ast,h. Then the map

(6.1) DA ⊗WA
Bst,A −→ HomA(VA, Bst,A)

induced from (5.7) by setting B = A and tensoring by ⊗B+
st,A

Bst,A is an

isomorphism compatible with ϕ,N , and the action of GK . In particular,

(6.2) DA
∼−→ HomA[GK ](VA, B

+
st,A).

Proof. For parts (1) and (2), one may apply the arguments of [Kis08, §2.5], as
these are matters of points valued in finite Qp-algebras and the constructions of
the appropriate quotients of A have been made. We will give a sketch of these
arguments for the convenience of the reader.

If VB is semi-stable with Hodge-Tate weights in [0, h], then it has E-height
≤ h, and ζ factors through SpecA◦,≤h[1/p] = SpecA≤h. The theory of [Kis06,

Cor. 1.3.15] (summarized in [Kis08, §2.5]) gives a finite free S[1/p]-module M̃B

associated to D̃B = HomB[GK ](VB , B
+
st,B), equipped with a Frobenius semi-linear

map of E-height ≤ h and satisfying certain additional properties. Such lattices
are unique ([Kis06, Prop. 2.1.12]), so M̃B may be identified with the specialization
of the universal such lattice, MB = MA ⊗A B. This induces a map N on DB =
MB/uMB . Checking that this map N is compatible with the action of GK in the
sense of Proposition 5.8, it follows that A≤h → B must factor through Ast,≤h.

Conversely, if A≤h → B factors through Ast,h, then (5.7) is injective and com-
patible with Galois actions by Proposition 5.8. Comparing dimensions, it is in fact
an isomorphism, making VB semi-stable. Its Hodge-Tate weights are in [0, h] by
[Kis06, Lem. 1.2.2].
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Part (2) follows from the identification of DB with D̃B for each map Ast,h → B
where B is a finite Qp-algebra, implying that DB is projective. The projectivity
of DAst,h as a WAst,h -module is implied by the projectivity of this module after
⊗W

Ast,h
WB for each such B. Indeed, it suffices to check projectivity over Ast,h,

which is equivalent to projectivity after base extension to each B by Lemma 4.17(4).
We must fully explain the proof of part (3). By part (2) and Lemma 5.7, (6.1)

is an injective map of projective Bst,A-modules of rank d. Therefore it will suffice
to show that this map induces an isomorphism on top exterior powers, and we may
freely restrict ourselves to the case that d = 1.

In the one-dimensional case, VA◦ arises by extension of scalars ⊗RD̄A
◦ [Che14,

Prop. 3.13]; this is the case because 1-dimensional representations are identical
to 1-dimensional pseudorepresentations. It is then evident that (6.1) arises by
⊗Bst,R

Bst,A from the same map where A is replaced by R, and that it suffices to
prove that (6.1) is an isomorphism when A = R. This was done in [Kis08, Prop.
2.7.2]. Then (6.2) is an isomorphism by Lemma 6.2. �

We need the following lemma in order to find the GK-invariants in Bst,A.

Lemma 6.2 (Generalizing [Kis08, Lem. 2.7.1]). For i ≥ 0 there is an isomorphism

WA · ti
∼→ HomA[GK ](A(i), B+

st,A)

induced by multiplication by p−ri for ri defined below, where A(i) denotes A with
GK acting via the ith power of the p-adic cyclotomic character χ. In particular, if
Bst,A := B+

st,A[1/t], then BGKst,A = WA.

Proof. The key part of the proof of the local case in [Kis08, Lem. 2.7.1] is that the
χi-isotypic part of Acris,A◦ is given by WA◦ · ti/pri where ri is the greatest non-
negative integer such that ti/pri is in Acris. Applying this to Acris,RD̄ , which we

may do because RD̄ is local, it follows that the χi-isotopic part of Acris,RD̄ ⊗RD̄ A
◦

is WRD̄ · t
i/pri ⊗RD̄ A◦ ' WA◦ · ti/pri . Because the action of GK on Acris,A◦ is

continuous (where the topology is the mD̄-adic topology), the closure of WA◦ ·ti/pri
in Acris,A◦ is the χi-isotypic part. However, this module is already closed.

With this fact in place, the proof of loc. cit. supplies the rest of the argument. �

6.2. p-adic Hodge Type. Our remaining goal is to find loci corresponding to
more refined p-adic Hodge theoretic conditions, namely, a certain Hodge type or
being potentially semi-stable of a certain Galois type. In fact, these conditions will
cut out connected components (in equi-characteristic 0). First we will address the
Hodge type, following [Kis08, §2.6] and [Kis09a, §A.4]. For this, we fix an finite
extension field E of Qp and suppose that A admits the structure of an E-algebra.

Definition 6.3. Suppose we are given a finite dimensional E-vector space DE

with a filtration of DE,K := DE ⊗Qp K by E ⊗Qp K-submodules such that the

associated graded is concentrated in degrees [0, h]. Let v := {DE ,FiliDE,K , i =

0, . . . , h}. If B is a finite E-algebra and VB ∈ RepdGK (B) such that VB is a de
Rham representation, then we say that VB is of p-adic Hodge type v if the Hodge
filtration on the associated filtered (ϕ,N)-module has the same graded degrees as
v. That is, VB has all its Hodge-Tate weights in [0, h] and for i = 0, . . . , h there is
an isomorphism of B ⊗Qp K-modules

gri HomB[GK ](VB , BdR ⊗Qp B)
∼−→ griDE,K ⊗E B.
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Theorem 6.4 ([Kis08, Cor. 2.6.2]). With v as above, there exists a quotient Ast,v

of Ast,h corresponding to a union of connected components of SpecAst,h with the
following property: if B is a finite E-algebra and ζ : A→ B is a map of E-algebras,
then ζ factors through Ast,v if and only if VB = VA ⊗A B is semi-stable of p-adic
Hodge type v.

The proof from [Kis08, Cor. 2.6.2] does not require any generalization to account
for A◦ being non-local, in light of Lemma 4.17. However, we will sketch the proof
in order to incorporate the erratum to loc. cit. given in [Kis09a, §A.4].

Proof. By applying parts (1) and (2) of Thm. 6.1, the later parts of the proof of
[Kis08, Cor. 2.6.2] explains that the finite A-module

Fili ϕ∗(MA)/(E(u)ϕ∗(MA) ∩ Fili ϕ∗(MA))

realizes the ith part of the Hodge filtration of DB ⊗K0
K when specialized to any

finite Qp-algebra B. Therefore, because these pieces of the filtration are projec-
tive B-modules, the A-module is projective by Lemma 4.17(4). Because the rank
of a finite projective module is locally constant, SpecAv is a union of connected
components of SpecA. One may then set Ast,v := Ast,h ⊗A Av. �

6.3. Galois Type. Next we will study families of potentially semi-stable GK-
representations, following [Kis08, §2.7.5]. We stipulate that B is an Artinian local

E-algebra with residue field E. Let VB ∈ RepdGK (B). Following [Fon94], set

D∗pst(VB) = lim−→
K′

HomB[GK′ ]
(VB , Bst ⊗Qp B),

where K ′ runs over finite field extensions of K.
Let K̄0 ⊂ K̄ denote the maximal unramified extension of K0, and let GK0

⊂ GK
be the inertia group of GK . Then D∗pst(VB) is a B⊗Qp K̄0-module with a Frobenius
semi-linear Frobenius automorphism ϕ, a nilpotent endomorphism N such that
pϕN = Nϕ, and a B ⊗Qp K̄0-linear action of GK0 which has open kernel and
commutes with ϕ and N .

Following [Kis08, §2.7] along the line of reasoning of [Kis09b, Lem. 1.2.2(4)], we
see that D∗pst(VB) is finite and free as a B⊗Qp K̄0-module. Since the action of GK0

commutes with the action ϕ, the traces of elements of GK0
are contained in B, and

D∗pst descends to a representation of GK0
on a finite free B-module P̃B . Because

characteristic zero representations of finite groups are rigid, this representation
must be an extension of scalars from a representation PB of GK0

over E.
We have associated to a potentially semi-stable d-dimensional representation VB

of GK over B a representation of the inertia group of K over E which reflects the
failure of VB to be semi-stable. We will call this the “Galois type” of VB , as follows.

Fix an algebraic closure Q̄p of Qp.

Definition 6.5. Let T : GK0 → GLd(Q̄p) be a representation with open kernel.
We say that VB is potentially semi-stable of Galois type T provided that PB defined
above is isomorphic to T over Q̄p.

It is equivalent to say that for any γ ∈ GK0 , the trace of T (γ) is equal to the
trace of γ on D∗pst(VB).

Let v be a p-adic Hodge type as in Definition 6.3; fix a representation

T : GK0
→ EndE(DE)

∼−→ GLd(E).
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Theorem 6.6 (Generalizing [Kis08, Thm. 2.7.6 and Cor. 2.7.7]).

(1) There exists a quotient AT,v of A such that for any finite E-algebra B, a
map of E-algebras ζ : A → B factors through AT,v if and only if VB =
VA ⊗A B is potentially semi-stable of Galois type T and Hodge type v.

(2) There exists a quotient AT,vcr of A such that for any finite E-algebra B, a
map of E-algebras ζ : A → B factors through AT,vcr if and only if VB =
VA ⊗A B is potentially crystalline of Galois type T and Hodge type v.

These constructions may be repeated verbatim from [Kis08, Thm. 2.7.6 and Cor.
2.7.7]. We will give a sketch.

Proof. Let L/K be a finite Galois extension such that IL ⊆ kerT . Theorem 6.4
gives the existence of a quotient Apst,v of A such that ζ factors through Apst,v if
and only if VB |GL is semi-stable with Hodge type v. One then applies Theorem
6.1(3) and studies the action of the inertia subgroup IL/K , which is L0-linear and
commutes with ϕ, and therefore has trace function in Apst,v. As this inertia group
is finite, its trace function is locally constant on SpecApst,v. The condition that its
trace is T therefore cuts out a union of connected components of Apst,v, as desired.

For the second result, first produce AT,v as above, and then take the quotient
corresponding to the equation N = 0, where N is the endomorphism of DAst,h

defined in Theorem 6.1(3). �

6.4. Universal Families of Representations, and Algebraization. We will
summarize what we have proved by producing universal spaces of potentially semi-
stable Galois representations with bounded Hodge-Tate weights. These can then
be algebraized using Theorem A, under some assumptions. In particular, let C be
one of the following conditions on representations of GK over a finite Qp-algebra.

(1) Crystalline with Hodge-Tate weights in the range [a, b].
(2) Semi-stable with Hodge-Tate weights in the range [a, b].
(3) Any of the above two conditions, with fixed Hodge type v.
(4) Any of the above three conditions after restriction to GL, for some finite

field extension L/K.
(5) Condition (4) with L/K a Galois extension, and in addition, a particular

Galois type T .

We will use the following notation for the universal spaces, in analogy with §5.1.

Formerly: Rep
(�)

D̄
Rep

(�)

D̄
Rep

(�)

D̄
[1/p] Rep�

D̄
[1/p]

Henceforth: Rep
(�),◦
D̄

Rep
(�),◦
D̄

Rep
(�)

D̄
Rep�

D̄

Consider the case where A◦ is the coordinate ring ofRep◦,�
D̄

, the universal formal
moduli scheme of framed representations of GK with residual pseudorepresentation

D̄. This admits an action of ĜLd, the mD̄-adic completion of GLd ⊗Z RD̄. The
results from the previous sections produce a quotient of AC of A = A◦[1/p] of
representations satisfying condition C. The ideal IC ⊂ A such that A/IC = AC is

stable under the action of ĜLd; this is the case because the B-valued points in the
C-locus of SpecA, where B is a finite Qp-algebra, are obviously preserved by the

action of ĜLd, and these points characterize the C-locus by Lemma 4.17(3).
The kernel I◦,C ⊂ A◦ of the natural map A◦ → AC cuts out a quotient A◦,C :=

A◦/I◦,C such that A◦,C [1/p]
∼→ AC and therefore A◦,C has the same property on

B-points. Moreover, I◦,C is ĜLd-stable. We summarize our discussion in this
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Theorem 6.7. Given any of the conditions C above, there is a closed substack

Rep◦,C
D̄

of Rep◦
D̄

, formally of finite type over Spf RD̄, such that for any finite Qp-

algebra B and representation VB of GK with residual pseudorepresentation D̄, there
exists a model VB′ for VB, where B′ ∈ IntB, such that the corresponding map

ζ : Spf B′ → Rep◦
D̄

factors through Rep◦,C
D̄

if and only if VB has property C.

The statement of the theorem is an example of the way that we think of the
“generic fiber” over Qp of a Spf Zp-formal stack while considering the formal stack
only as a limit of algebraic stacks over SpecRD̄/m

i
D̄

. The theorem expresses that
the locus of such points has an integral model and is GLd-stable, as RepD̄ is a

quotient stack of Rep◦,�
D̄

= Spf A◦.

Proof. Without loss of generality we may assume that B is local. Choose a basis
for VB , so that we have a corresponding map A → B. If VB satisfies C, it factors
through AC . By Lemma 4.17(4), there exists B′ ∈ IntB and a natural map A◦,C →
B′ such that the resulting representation VB′ satisfies VB′ ⊗B′ B ∼= VB , as desired.

Conversely, if there exists B′ ∈ IntB and a GK-representation VB′ such that the

corresponding map Spf B′ → Rep◦
D̄

factors through Rep◦,C
D̄

, then it is clear that
VB′ ⊗B′ B satisfies condition C.

Consequently, Rep◦,C
D̄

may be taken to be the quotient stack [Spf A◦,C/ĜLd]. �

Recall from Theorem 3.8 that there exists a algebraic model of Rep◦D̄ of Rep◦
D̄

given by representations of the associated universal Cayley-Hamilton algebra. When
formal GAGA holds for ψ : Rep◦D̄ → SpecRD̄ (see §3.3), we can algebraize the uni-
versal family of potentially semi-stable representations.

Corollary 6.8. Assume that either

(1) D̄ is multiplicity-free, or assume
(2) the algebraization hypothesis (FGAMS) of §3.3 is true.

Then there is a closed substack Rep◦,C
D̄

of Rep◦D̄ such that for any finite Qp-algebra

B, and representation VB of GK with residual pseudorepresentation D̄, the corre-

sponding map ζ : SpecB → Rep◦D̄ factors through Rep◦,C
D̄

if and only if VB has
property C.

Proof. In either case, formal GAGA holds for ψ : RepD̄ → RD̄ by Theorem
3.16. We apply Lemma 3.18(1c) to find a natural corresponding closed immer-

sion Rep◦,C
D̄

↪→ Rep◦D̄ to the closed immersion Rep◦,C
D̄

↪→ Rep◦
D̄

. �

Remark 6.9. In the corollary above, we have invoked formal GAGA for ψ produce

an RD̄-algebraic universal family of potentially semi-stable representations Rep◦,C
D̄

after first producing a formal version. However, if one freely invokes formal GAGA
from the start, it is possible to carry out the construction of algebraic universal
families of potentially semi-stable Galois representations in Theorem 6.7 directly.
That is, using formal GAGA for ψ freely, it is possible to carry out all of the work of
§4.4 and §5 with the mD̄-adically separated finitely generated RD̄-subalgebra A◦alg ⊂
A◦ of Corollary 3.10 in place of A◦. For example, even the Cauchy sequence used to
construct the map ξ of Lemma 5.6 can be shown to be have algebraic coefficients,
i.e. defining a map DAalg

⊗WAalg
OAalg

→MAalg
, where OAalg

= OR ⊗R Aalg.

In this sense, once we know formal GAGA, the construction of Rep◦,C
D̄

is not
merely algebro-geometric, but is natural in that all of the semi-linear algebraic data
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and period maps exist algebraically relative to RD̄. However, we have constructed
potentially semi-stable loci in the formal setting first, so that Theorem 6.7 is not
conditional on assumption (FGAMS).

Here are some geometric properties of the generic fiber over Zp of these algebraic
stacks of representations, deduced from established ring-theoretic properties of equi-
characteristic zero deformation rings of Galois representations.

Proposition 6.10. For any of the properties C as above, RepCD̄, Rep�,C
D̄

, and

Rep�,C
D̄

are reduced and locally complete intersection. They are also formally
smooth over Qp on a dense, open substack.

(1) When C is a potentially crystalline condition, each of these spaces is for-
mally smooth over Qp.

(2) When C has a fixed p-adic Hodge type v, Rep�,C
D̄

and Rep�,C
D̄

are equi-

dimensional of dimension d2 + dimE adDE,K/Fil0 adDE,K .

In view of [Gro64, Ch. 0, Thm. 22.5.8], the formal smoothness of these spaces
over Qp is equivalent to their being regular. We will work with the latter condition
in the proof.

Proof. Bellovin [Bel16] proves that for any p-adic field-valued representation ρ sat-
isfying C, the complete local ring ring parameterizing liftings of ρ with property C
is complete intersection and reduced. It is also equi-dimensional of the dimension
given in the statement of part (2) by [Kis08, Thm. 3.3.4] when C has a fixed Hodge
type v. As these rings are the complete local rings of the closed points of the excel-

lent Jacobson scheme Rep�,C
D̄

, we know that Rep�,C
D̄

is reduced and locally complete
intersection. Indeed, see [GM78, Cor. 3.3] for the openness of the complete intersec-

tion locus of an excellent ring. We also know that Rep�,C
D̄

is equi-dimensional as in
statement (2) when C implies a fixed p-adic Hodge type. Because being complete
intersection and reduced is local in the smooth topology, these properties hold for

RepCD̄ as well. By the main result of [Val76], the coordinate ring of Rep�,◦,C
D̄

is

excellent, and therefore so is the coordinate ring of Rep�,C
D̄

. The arguments above
may then be applied in this case as well.

Kisin in [Kis08, Thms. 3.3.4 and 3.3.8] and [Kis09a, Thm. A.2] proves the generic
regularity statement and part (1) of the proposition above, but with the generic
fiber of a framed deformation ring R�

VF
of a residual representation VF in place of

RepD̄. We will deduce our claim from this case. First, let us prove generic regularity

in SpecA for A = A◦[1/p] where Spf A◦ = Rep�,◦,C
D̄

. The arguments for generic
regularity in [Kis08] are statements 3.1.6, 3.2.1, and 3.3.1 of loc. cit. Their validity
and their application in the proof of [Kis08, Thm. 3.3.4] generalize verbatim from
the case that A◦ is a complete Noetherian local Zp-algebra to the case that A◦ is
topologically finite type over Zp, with the exception of Prop. 3.3.1 of loc. cit. We
deduce the non-local case of this statement in Lemma 6.11 below. This gives us

the generic regularity of Rep�,C
D̄

.
In particular, Kisin’s arguments identify the singular locus with the support of

a finite A-module H2(DA) produced out of DA and its structure maps ϕ,N . This

construction may be carried out over RepCD̄ to produce a coherent sheaf H2(DD̄).
As the support of H2(DD̄) is nowhere dense after changing base to the fpqc cover

Rep�,C
D̄

(Lemma 3.18(2c)), it is also nowhere dense in RepCD̄, showing that RepCD̄ is
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regular on a dense, open substack. This can also be seen by noting that complete

local rings at closed points in Rep�,C
D̄

are formally smooth over RepCD̄. �

We freely employ the notation of [Kis08, §3] and [Kis09b, §2.3] in the following

Lemma 6.11 (Generalizing [Kis08, Prop. 3.3.1]). Let f : Spf A◦ → Rep◦
D̄

be

formally smooth and let C be one of the conditions above, so that AC is a quotient
of A parameterizing representations with condition C. Then for a closed point
x ∈ AC corresponding to a maximal ideal m = mx ⊂ AC , the morphism Spf ÂCm →
ModF,ϕ,N is formally smooth.

Proof. Let VA◦ be the rank d GK-representation corresponding to f with specializa-
tion Vx at x to a representation with coefficients in the p-adic residue field E = A/m.
By Lemma 4.17(3), the map A◦ → E factors through its ring of integers OE ⊂ E,
giving a choice of GK-stable lattice V ◦x ⊂ Vx. Let VF denote V ◦x ⊗OE F, where F
is the residue field of OE . Let DVF denote its deformation groupoid as in [Kis08,
§3]. Note that DVF → RepD̄, as a morphism of groupoids on complete Noether-
ian W (F)-algebras with residue field F, is schematic. Then, using the notation of

[Kis09b, §2.3], we observe that there is an isomorphism of ÂRW (F),(OE)-groupoids
DVF,(V ◦x ) ' RepD̄,(V ◦x ). Following the arguments of [Kis09b, §2.3], one may check

that the complete local Zp-algebra A′◦ given by Spf A′◦ = Spf A◦ ×RepD̄ DVF has

a map x′ : A′ = A′◦[1/p] → E factoring x : A → E and that Âmx → Â′mx′ is an
isomorphism. This is all we need to reduce the proof to the case that A◦ is local,
which then follows by [Kis08, Prop. 3.3.1]. �

7. Potentially Semi-stable Pseudodeformation Rings

7.1. Potentially Semi-Stable Pseudorepresentations. We must clarify what
it means to ask if a pseudorepresentation satisfies some property which, a priori,
only applies to representations.

Definition 7.1. Let K be a full subcategory of the category of perfect fields which
is closed under finite extensions, let D be a setoid of pseudorepresentations fibered
over K,2 and let Rep be a groupoid of representations fibered over K. Let P be a
full subcategory of Rep of representations with property P such that if V ∈ P(K),
then its semisimplification V ss and any finite base change V ⊗K K ′ are each in P.

Then a pseudorepresentation D ∈ D over K ∈ K has property P if, given a finite
extension K ′/K such that there exists a semi-simple representation V ssD ∈ Rep(K ′)
such that ψ(V ssD ) = D ⊗K K ′ (which exists by Cor. 2.9), V has property P .

For example, one can let K be the category of p-adic fields, let D and Rep be
the continuous pseudorepresentations and representations of GQp over p-adic fields,
and let the property P be “crystalline,” or any of the conditions of §6.4.

While it seems possible to emulate Definition 7.1 over non-fields or non-perfect
fields if appropriate conditions on P are imposed, we do not pursue this here.

We now return to the case of C being a potentially semi-stable condition as in the
previous section. Recall that R = RD̄[1/p] and that RepCD̄ exists unconditionally
when D̄ is multiplicity-free.

2That is, given a morphism of fields E → E′ ∈ K and an E-valued pseudorepresentation D ∈ D,
the base change D ⊗E E′ is in D.
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Theorem 7.2. If RepCD̄ exists, there exists a canonical quotient RC of R with the
property that for any finite field extension E of W (F)[1/p], the map z : R → E
factors through RC if and only if the semi-simple representation associated to the
pseudorepresentation corresponding to z satisfies the condition. This quotient RC

is reduced.

Proof. We have from Corollary 6.8 that there is a closed subscheme RepCD̄ of RepD̄.

Because ψ is universally closed, the scheme-theoretic image SpecRC of RepCD̄ under

ψ defines a closed subscheme of SpecR, and ψ restricted to RepCD̄ is a good moduli

space over SpecR because RepCD̄ is realizable as a quotient stack [Rep�,C
D̄

/GLd]

with GIT quotient ring RC = Γ(O
Rep�,C

D̄

)GLd .

Having constructed the quotient RC of R, we show that it has the desired prop-
erty. Choose a closed point ζ : SpecE → RC . By Theorem 3.8(2), there exists a
unique closed point z in the fiber of ψ in RepD̄ over ζ, with residue field some finite
extension E′/E, corresponding to the unique semi-simple representation inducing

ζ. Because RepCD̄ ↪→ RepD̄ is a closed immersion, we must have z ∈ RepCD̄.

When RepCD̄ is reduced, then RC is also [Alp13, Thm. 4.16(viii)]. Then, the
uniqueness of RC follows from Lemma 4.17 and the fact that it is reduced. �

Corollary 7.3. If RepCD̄ exists, there exists a quotient RC
D̄

of RD̄ with the property
that for any finite field extension E of W (F)[1/p], the map z : RD̄ → E factors
through RC

D̄
if and only if the semi-simple representation associated to the pseu-

dorepresentation corresponding to z satisfies the condition. There is a unique such
quotient which is reduced, namely the image of RD̄ in RC .

Proof. One may take RC
D̄

to be any quotient of RD̄ such that it realizes RC after
inverting p. �

The generic fiber SpecRC is pseudo-rational when C is a crystalline condition.

Definition 7.4 ([Sch08, §6.1]). A Noetherian local ring (R,m) is called pseudo-
rational if it is analytically unramified, normal, Cohen-Macaulay, and for any pro-
jective birational map f : Y → SpecR with Y normal, the canonical epimorphism
between the top cohomology groups δ : Hd

m(R) → Hd
Z(Y ) is injective, where Z is

the closed fiber f−1(m) and d the dimension of R. A Noetherian ring A is called
pseudo-rational if Ap is pseudo-rational for every prime ideal p in A.

The notion of “pseudo-rational” is a generalization, to rings over which no res-
olution of singularities exists, of the notion of rational singularities for finite type
algebras over a characteristic zero field. The work [Sch08] of Schoutens is a gener-
alization of the Hochster-Roberts theorem to this setting.

Corollary 7.5. If the condition C implies potentially crystalline, RC is pseudo-
rational. In particular, it is reduced, normal, and Cohen-Macaulay.

Proof. Write S for the coordinate ring of the regular affine scheme Rep�,C
D̄

, so

that RC = SGLd ↪→ S is an inclusion of the invariant subring by the action of basis
change. Therefore the map RC ↪→ S is cyclically pure (also known as ideally closed),
cf. [Alp13, Remark 4.13]. The main theorem [Sch08, Thm. A] states that a cyclically
pure subring of a regular Noetherian equi-characteristic zero ring is pseudo-rational.
Therefore RC is pseudo-rational, and hence also formally unramified, normal, and
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Cohen-Macaulay [Sch08, §4]. Formally unramified is equivalent to reduced, since
RC is finitely generated over the excellent ring RD̄. �

Remark 7.6. Reducedness and normality of RC are clear from the regularity of S
without resorting to Schoutens’ result. Cf. also [Alp13, Thm. 4.16(viii)].

There is often interest in understanding the connected components of potentially
semi-stable deformation rings. It is no more complicated to study the connected
components of potentially semi-stable pseudodeformation rings. Using the fact

that each of the maps Rep�
D̄ → RepD̄ → SpecR and Rep�

D̄
→ RepD̄ is surjective

with connected geometric fibers (cf. [Alp13, Thm. 4.16(vii)], Thm. 3.8(2)), the
analysis of the geometrically connected components of RC amounts to analysis of

the geometrically connected components of the affine scheme Rep�
D̄.

Corollary 7.7. There is a natural bijective correspondence between the geometri-

cally connected components of each of Rep�,C
D̄

, Rep�,C
D̄

, RepCD̄, and SpecRC .

7.2. Global Potentially Semi-stable Pseudodeformation Rings. In this sec-
tion, we will assume that all algebraizations of stacks of potentially semi-stable
representations exist. Let F/Q be a number field, let S be a finite set of places of
F containing those over p, and take D̄ : GF,S → F to be a global Galois pseudorep-
resentation ramified only at places in S. As GF,S satisfies Mazur’s Φp finiteness
condition, the universal ramified-only-at-S pseudodeformation ring RD̄ of global
Galois representations is Noetherian (Thm. 3.5). Fix decomposition subgroups
Gv ⊂ GF,S for places v ∈ S. In analogy to a common construction in the case
of deformations of Galois representations, we want to find a quotient RC

D̄
of RD̄,

C = (Cv)v∈S , parameterizing pseudodeformations which satisfy certain conditions
Cv at each v ∈ S, such as a condition Cv coming from p-adic Hodge theory when
v | p.

In the case of deformations of a irreducible Galois representation ρ̄ : GF,S →
GLd(F), one may accomplish this construction using the natural maps Rvρ̄ → Rρ̄
from a local deformation ring to a global deformation ring (usually discussed as a
“deformation condition” to avoid unnecessary technical complications when ρ̄|Gv is

not irreducible), and the quotients Rvρ̄ → RCvρ̄ corresponding to the condition Cv
on representations of Gv deforming ρ̄|Gv . Then one sets

RCρ̄ := Rρ̄ ⊗(
⊗
v∈S R

v
ρ̄)

(
⊗v∈SRCvρ̄

)
in order to obtain a deformation ring parameterizing representations of GF,S de-
forming ρ̄ with conditions Cv upon restriction to Gv.

In contrast, one does not want to do the same construction with pseudodefor-
mation rings (as if D̄ replaced ρ̄ in each place in the line above), even though the

corresponding maps Rv
D̄
→ RD̄ and Rv

D̄
→ RCv

D̄
exist. The reason is that if ρ̄ is

irreducible but ρ̄|Gv is not, then a deformation D : GF,S → E of D̄ (where E/Qp is
a finite extension) such that D|Gv is reducible may have information about exten-
sions between the Jordan-Hölder factors of D|Gv , while D|Gv lacks this information.
If a condition C is sensitive to the extension classes in a representation, then we
may get too large of a quotient in this way.

Instead, the following construction is appropriate: fixing D̄ as above, we have
the Noetherian moduli stack Rep◦D̄ of representations of GF,S inducing residual
pseudorepresentation D̄; it is algebraizable of finite type over SpecRD̄ via ψ. There
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are also analogous local spaces Rep◦,v
D̄
→ Rv

D̄
. If C = (Cv)v∈S is a collection

of conditions on representations of Gv for v ∈ S cutting out closed immersions

Rep◦,Cv
D̄

↪→ Rep◦,v
D̄

, we may set

(7.1) Rep◦,C
D̄

:= Rep◦D̄ ×(×v∈SRep◦,v
D̄ )

(
×v∈SRep◦,Cv

D̄

)
,

the universal moduli stack of representations of GF,S satisfying condition C and
inducing residual pseudorepresentation D̄.

Having constructed this space, we may construct the pseudodeformation ring
parameterizing pseudodeformations with property C.

Definition 7.8. Let RC
D̄

be the quotient of RD̄ associated to the scheme-theoretic
image of the universally closed composition map

(7.2) Rep◦,C
D̄

↪→ Rep◦D̄
ψ−→ SpecRD̄.

Theorem 7.9. Given a residual pseudorepresentation D̄ : GF,S → F, let C =
(Cv)v∈S be a collection of conditions on finite Qp-algebra valued points of RepD̄.

Assume that each Cv cuts out a closed immersion RepCv
D̄
→ RepvD̄ for each v ∈ S.

Then there exists a quotient RC
D̄

of RD̄ such that for any finite extension E/Qp
and closed point z : SpecE → SpecRD̄, z factors through SpecRC

D̄
↪→ SpecRD̄ if

and only if Dz satisfies C, i.e. the corresponding semi-simple representation V ss
z of

GF,S satisfies C.

Proof. After possibly allowing a finite extension of the coefficient field E′/E, there
exists a unique representation V ss

z of GF,S over E′ inducing Dz. Recall that V ss
z

induces the unique closed point ζ of RepD̄ lying over z ∈ SpecRD̄. Therefore,

because ψ : RepD̄ → SpecRD̄ is universally closed and RepCD̄ ↪→ RepD̄ is a closed

immersion, we must have ζ ∈ RepCD̄ if and only if z ∈ SpecRC
D̄

. This means that
V ss
z satisfies C, i.e. its restriction to Gv satisfies Cv for all v ∈ S. �

7.3. Example: Ordinary Pseudodeformation Rings. The first local deforma-
tion conditions commonly dealt with were “ordinary” [Maz89] and “flat” [Ram93].
The constructions of this paper result in a “flat pseudodeformation ring” since flat
is equivalent to “crystalline with Hodge-Tate weights in [0, 1]” [Bre00, Kis06]. How-
ever, because the ordinary condition allows for arbitrary Hodge-Tate weights, it is
not included in these constructions. Here, we will construct an ordinary pseudode-
formation ring in the 2-dimensional case; this should be compared with the ordinary
pseudodeformation ring of [CV03, §3]. There are several notions of “ordinary;” we
use the following one.

Definition 7.10. Let K be a p-adic local field. We call a 2-dimensional rep-
resentation of GK ordinary when it is reducible and there exists an unramified
1-dimensional quotient.

For simplicity we will address representations of GQ,S where p ∈ S, and cut
out a locus of representations satisfying ordinariness with respect to a choice of
decomposition group with its inertia group at p, GQ,S ⊃ Gp ⊃ Ip. We will find
a quotient of RD̄ parameterizing ordinary pseudorepresentations. Obviously, the
ordinary condition is sensitive to extension classes, so that a 2-dimensional pseu-
dorepresentation D of GQ,S such that D|Gp ' det ◦(ψ ⊕ χ) where ψ is unramified
is not necessarily ordinary.



56 CARL WANG-ERICKSON

We let D̄ arise from the sum of two characters ψ̄, χ̄ valued in F×, writing
D̄ = det(ψ̄ ⊕ χ̄) and stipulating that ψ̄|Ip = 1 so that the set of ordinary pseudo-

deformations of D̄ is not empty. We also assume that ψ̄|Gp 6= χ̄|Gp .

Remark 7.11. One may naturally ask if there is a reasonable generalization of the
ordinary condition to n-dimensional representations. For simplicity, assume that D̄
splits into a sum of characters of GQ,S . In this setting, ordinary will mean totally
reducible when restricted to Gp (no condition on the inertia action). By observing
the following construction, one can see that this will be possible if the residual
characters are pairwise distinct after restriction to Gp, generalizing the “residually
p-distinguished” condition ψ̄|Gp 6= χ̄|Gp .

Lemma 7.12. With the assumptions above, there exists a closed substack Repord
Gp,D̄

of RepGp,D̄ parameterizing representations of Gp with induced residual pseudorep-

resentation D̄ that are ordinary.

Proof. We will use Theorem 3.7 and consider representations of E(Gp)D̄. As D̄ is
multiplicity free, Theorem 2.27 gives us a generalized matrix algebra structure on
E(Gp)D̄: the data of two idempotents, e1 associated to the factor χ̄ of ρ̄ss

D̄
= ψ̄⊕ χ̄

and e2 associated to ψ̄. We write the generalized matrix algebra in the form

E(Gp)D̄ =

(
RD̄ B
C RD̄

)
and consider the affine scheme Rep�

Ad(E(Gp)D̄, E) of adapted representations (Def-
inition 2.22), whose coordinate ring is generated by B and C over RD̄. Those
representations which are ordinary and upper triangular are cut out by the ideal
generated by (B, ρ22(Ip) − 1), where ρ22(Ip) − 1 represents non-trivial image of
inertia in the lower right coordinate. Likewise, if χ̄|Ip = 1, it is also possible to be
ordinary and lower triangular, and this is cut out by the ideal (C, ρ11(Ip)−1). The
ordinary locus is therefore cut out by the ideal (B, ρ22(Ip) − 1) ∩ (C, ρ11(Ip) − 1).

Using Proposition 2.24, the image of this closed subscheme of Rep�
Ad(E(Gp)D̄, E)

in RepGp,D̄ is the locus of ordinary representations of Gp with residual pseudorep-

resentation D̄. �

We may now define the moduli stack Repord
D̄ of GQ,S-representations that are

ordinary at p by setting

Repord
D̄ := RepD̄ ×RepGp,D̄

Repord
Gp,D̄

,

just as in (7.1), and then construct the global ordinary pseudodeformation ring Rord
D̄

by Definition 7.8. Because D̄ is multiplicity-free, ψ is a good moduli space (Thm.

3.8(4)). The restriction of ψ to Repord
D̄ → SpecRord

D̄
is a good moduli space as well

(Thm. 2.19(7)), and Rord
D̄

is precisely the associated GIT quotient ring.

Corollary 7.13. Let E be a p-adic field with ring of integers O. With the data
D̄, ψ̄, χ̄ as above, choose a pseudorepresentation Dz : GQ,S → O ⊂ E deforming
D̄, so that there is a corresponding morphism z : SpecE → SpecRD̄. Then z
factors through Rord

D̄
if and only if Dz is ordinary in the sense that the associated

semi-simple representation V ss
z is ordinary.

Proof. Combine Lemma 7.12 and Theorem 7.9. �
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See [WWE15a] for a deformation-theoretic definition of ordinary pseudorepre-
sentation.
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