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Abstract. Ribet has proven remarkable results about non-optimal levels of

residually reducible Galois representations. We focus on a non-optimal level
N that is the product of two distinct primes and where the Galois deformation

ring is not expected to be Gorenstein. We prove a Galois-theoretic criterion

for the deformation ring to be as small as possible – that is, for there to be a
unique newform of level N with reducible residual representation. When this

criterion is satisfied, we deduce an R = T theorem.
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1. Introduction

1.1. Summary of the series of two papers. In this series of two papers, we
prove, under some hypotheses, an integral R = T theorem for the mod-p Galois
representation ρ̄ = 1⊕ ω. Here T is the Hecke algebra acting on modular forms of
weight 2 and level N = `0`1, p ≥ 5 is a prime number, ω is the mod-p cyclotomic
character, and R is a level N universal Galois pseudodeformation ring for ρ̄. We
adopt the following conditions on N :

• `0 is a prime number with `0 ≡ 1 (mod p), and
• `1 is a prime number with `1 6≡ 0,±1 (mod p), such that `1 is a pth power

modulo `0.

Under these conditions, a theorem of Ribet [Rib10, Rib15, Yoo19] implies that there
are newforms of level N with reducible residual Galois representation ρ̄. Moreover,
these levels exhibit two behaviors that are of particular interest:

• at such levels N , the algebra T is expected not to be Gorenstein (and this is
borne out computationally),
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• the condition on `1 is very different from the level-raising conditions for resid-
ually irreducible representations.

We study ρ̄ at such levels N as a prototype for understanding these behaviors in
more general residually reducible contexts.

The method we use to prove R = T is novel. In the paper [WWE21], similar
R = T results for the representation ρ̄ and certain squarefree levels are proven.
However, in [WWE21], the theorems include conditions that force the rings R and
T to be local complete intersections. Correspondingly, the proofs of R = T use
Wiles’s numerical criterion [Wil95, Appendix]. In this paper, the ring T is not local
complete intersection, so a new technique is required. Our method consists of first
showing that there is a surjection R � T and then showing that the rank of R is
no greater than the rank of T.

In this, the first paper, we bound the rank of R in terms of cup products and
Massey products in Galois cohomology, using similar techniques as in [WWE20]. In
particular, we show that the rank of R is at most 3 if and only if a certain numerical
invariant is non-zero. In the second paper [HWWE22], we describe this numerical
invariant in terms of algebraic number theory and use this to develop an algorithm
for computing when it vanishes. We explain how to code this algorithm into SAGE
[S+18], and compile data from computer experiments showing that the rank of R
is exactly 3 whenever the rank of T is.

1.2. Terminal result of the series of two papers. The terminal result of this
series of papers is the following. The main theorem of this paper (Theorem 1.4.3)
and of Part II are no less important, but we highlight this result as terminal because
it relies on both main theorems. It is distinguished by providing a criteria implying
that T has minimal rank that is expressed in terms of algebraic number theory,
much like the main theorem of [WWE20].

We need a few definitions to express some class fields.

• Let K = Q(ζp, `
1/p
1 ).

• Let L/Q(ζp) be the ω−1-isotypic degree p Galois extension such that (1− ζp)
splits and only the primes over `0 ramify. (For the existence and uniqueness
of L/Q(ζp), see, e.g., [CE05, Lem. 3.9].)

• Let M = KL, the composite field.
• Let M ′/M be the unique unramified degree p Galois extension such that

– M ′/Q is Galois and the natural Gal(M/Q)-action on Gal(M ′/M) is
trivial

– all primes over `0 split completely in M ′/M .
• mflat be the modulus (in the sense of ray class field theory) of M ′ that is the

product of the squares of all primes over p.
• Let M ′′/M ′ be the maximal abelian extension of exponent p such that

– the conductor of M ′′/M ′ divides mflat,
– M ′′/Q is Galois and the natural action of Gal(M ′/Q) on Gal(M ′′/M ′) is

isotypic for the modulo p cyclotomic character ω : Gal(Q(ζp)/Q)
∼−→ F×p

under the composition

Gal(M ′/Q) � Gal(Q(ζp)/Q)
ω−→ F×p .

– all primes over `0 split in M ′′/M ′.
This extension M ′′/M ′ has degree either 1 or p. The decomposition subgroup
of Gal(M ′′/Q) for any prime over `0 has order p.
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• We let n`0 be the order of the normalizer of a decomposition subgroup of
Gal(M ′′/Q) associated to a (or any) prime over `0. If the degree of M ′′/M ′

is p, then n`0 = p3(p− 1) or n`0 = 2p3. If M ′′ = M ′, then n`0 = p2(p− 1).

The claimed existence and properties of M ′ and M ′′ are guaranteed in [Part II, §6].

Theorem 1.2.1. Adopt Assumption 1.3.2. If n`0 = p2(p−1) or n`0 = 2p3, then the
Zp-rank of R is 3, there is a unique newform of level N congruent to the Eisenstein
series, and R ∼= T. If n`0 = p3(p− 1), then dimFp R/pR > 3.

If n`0 = p3(p− 1), we do not know how to prove R = T and we cannot conclude
that rkZpT > 3. However, we have computed examples where n`0 = p3(p− 1), and
in all such examples we have rkZpT > 3, which is consistent with the expectation
that R = T.

Theorem 1.2.1 follows from combining the main result of this paper (Theorem
1.4.3) with the translation of the main theorem’s conditions into algebraic number
theory that is accomplished in [Part II, §6]; in particular, the proof of Theorem
1.2.1 appears in [Part II, §6.5].

1.3. Residually reducible modularity and level raising. Let ρ̄ : GQ → GL2(Fq)
be a representation with values in a finite field. There are three questions we can
ask about the modularity of this representation:

(1) Is ρ̄ modular? That is, is there an eigenform f such that ρ̄ is isomorphic to
the residual representation of f?

(2) If ρ̄ is modular, what are its possible levels? That is, for which integer N
is there a newform f of level N such that ρ̄ is isomorphic to the residual
representation of f?

(3) If ρ̄ is modular of a given level N , does it satisfy modularity lifting? That is,
if ρ : GQ → GL2(O) is a lift of ρ̄ satisfying some conditions, is ρ isomorphic
to the Galois representation of a newform of level N?

When ρ̄ is absolutely irreducible, the answers to these questions are well under-
stood. Question (1) is the subject of Serre’s conjecture [Ser87], proven by Khare–
Wintenberger [KW09], question (2) is subject of level-raising and level-lowering re-
sults of Ribet [Rib84, Rib90] and others, and question (3) is the subject of Wiles’s
modularity theorem and the Taylor–Wiles method. Regarding (2), let us just recall
that there is an optimal level Nρ̄ that is an absolute minimum, and, for a prime `, ρ̄
is modular of level Nρ̄` if and only if ` satisfies a level-raising condition depending
only of ` and ρ̄.

When ρ̄ is reducible, though, the situation is far less clear. Even the questions
must be interpreted carefully. If ρ̄ is reducible, then for any eigenform f with
residual representation ρ̄ there will be multiple Galois-stable integral lattices in the
Galois representation of f ; there is no canonical choice of lattice. Moreover, different
lattices may have non-isomorphic residual representations. We avoid making these
non-canonical choices by working with pseudorepresentations – which essentially
keep track of the characteristic polynomial and do not depend on the choice of
lattice – rather than representations.

1.3.1. Results of Mazur and Ribet. In this paper, we focus on the most basic case,
where ρ̄ is the 2-dimensional pseudorepresentation induced by ω ⊕ 1, where ω :
GQ → F×p is the mod-p cyclotomic character. We also only study modular forms
of weight 2 and level Γ0(M) for squarefree M . This case is the subject Mazur’s
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landmark paper on the Eisenstein ideal [Maz77] when M is prime. In this case,
Mazur shows that for any prime `, ρ̄ is modular of level ` if and only if ` ≡ 1
(mod p). In particular, since ρ̄ is not modular of level 1, there is no “optimal level”
for ρ̄ that is an absolute minimum.

Ribet [Rib10] (see also [Yoo19]) initiated the study of level raising in this situa-
tion. He observed that, here too, the results are qualitatively very different from the
residually irreducible case, as witnessed by the following result (which is a special
case of what Ribet proved).

Theorem 1.3.1 (Ribet). If `0 is a prime such that `0 ≡ 1 (mod p) and `1 6≡ ±1
is another prime, then ρ̄ is modular of level `0`1 if and only of `1 is a pth power
modulo `0.

The key thing to note about this result is that, unlike in the residually irreducible
case [Rib84], the level-raising condition on the prime `1 depends not just on `1 and
ρ̄, but also on `0.

1.3.2. Interpretation in terms of congruences with Eisenstein series and Hecke alge-
bras. The trace of ρ̄(Fr`), where Fr` is an arithmetic Frobenius element Fr` ∈ GQ at
a prime ` 6= p, equals `+ 1 ∈ Fp, which is the reduction modulo p of the eigenvalue
`+ 1 of the `th Hecke operator T` on the Eisenstein series of weight 2 and level 1.
(Although this form is non-holomorphic, it has a holomorphic stabilization to any
level N with N > 1.) We can say informally that ρ̄ is modular of level N if there
is a cusp form of level N that is congruent to that Eisenstein series. However, if
N is not prime, then all Eisenstein series are oldforms. Therefore, in order to set
up a bijection between eigenforms and pseudorepresentations, we need to specify
the eigenvalues of Hecke operators at primes dividing N , thereby selecting a single
Eisenstein series.

Assumption 1.3.2. Now, and for the rest of the paper, we specialize to level
N = `0`1, where, as in Ribet’s Theorem 1.3.1, `0 and `1 are primes such that

(1) `0 ≡ 1 (mod p)
(2) `1 6≡ 0,±1 (mod p)
(3) `1 is a pth power modulo `0
(4) there is a unique cusp form f of level `0 that is congruent to the Eisenstein

series modulo p (existence is implied by condition (1), by Mazur’s theorem
[Maz77])

In this case, there is a 3-dimensional space of Eisenstein series, all having T`-
eigenvalue ` + 1 for ` - N . As in the paper [WWE21], we choose a basis of
eigenforms for the Atkin–Lehner involutions w`0 and w`1 . The possible pairs of
eigenvalues of the Eisenstein series under the Atkin–Lehner operators (w`0 , w`1)
are (−1,−1), (−1, 1), (1,−1). However, it is known that a level Γ0(N) newform f
that is congruent to any Eisenstein series must have (w`0 , w`1)-eigenvalues (−1,−1);
therefore we select that particular Eisenstein series, calling it E2,N .

Let T′ be the Zp-algebra spanned by the operators T` for ` - N acting on modular
forms of weight 2 and level N with coefficients in Zp and Atkin–Lehner eigenval-
ues (−1,−1). Let T be the completion of T′ at the maximal ideal generated by
T` − (` + 1) and p, and let T0 be the largest quotient that acts faithfully on cusp
forms. By Ribet’s Theorem 1.3.1, the Zp-rank of T is at least 3, accounting for the
contributions of the eigensystems of
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• the Eisenstein series E2,N , valued in Zp
• the unique stabilization to level N of the Zp-valued form f of level `0 specified

in (4), above, with the specified (w`0 , w`1)-eigenvalues
• the newform of level N arising from Ribet’s theorem, which has Zp-rank ≥ 1.

Remark 1.3.3. Since condition (4) above might seem somewhat abstract, we want to
emphasize that the number of cusp forms of level `0 with an Eisenstein congruence is
well understood [Mer96, CE05, Lec21, WWE20]. In particular, by Merel’s Theorem
[Mer96, Théorème 2], the assumption (4) is equivalent to the following numerical
condition:

(`0 Rank 1)

`0−1
2∏
i=1

ii is not a pth power modulo `0.

This will simplify our study of the number of new cusp forms: it is rkZp
T− 2.

1.3.3. Residually reducible modularity lifting and imposing conditions at N . By Ri-
bet’s Theorem 1.3.1, we know that ρ̄ is modular of level N , so we can ask about
modularity lifting. Let Runiv denote the universal pseudodeformation ring of ρ̄
ramified only at Np. Considering the Galois representations associated to modu-
lar forms, it is not too difficult to show that there is a surjective homomorphism
Runiv � T (see [WWE21, §4.1]).

To formulate a modularity lifting theorem, we must then define a level N quotient
RN of Runiv that parameterizes pseudodeformations that “look modular of levelN .”
We also write R for RN because the level N is fixed throughout the paper. The
putative theorem is that the induced map

R� T
is an isomorphism.

For a deformation ρ to “look modular of level N ,” we want it to satisfy the
following conditions. Such ρ are exactly those parameterized by R.

(1) det(ρ) = κcyc, the p-adic cyclotomic character (weight 2)
(2) ρ is finite-flat at p (geometricity)
(3) ρ is unramified or Steinberg at `0 and `1 (level Γ0(N))

Condition (1) is easy to formulate for pseudorepresentations, but (2) and (3) are
more involved. For condition (2), which is cohomological in nature, a robust theory
was developed in [WWE19]. Condition (3) is even more complex. Roughly, this
is for two reasons: because the Steinberg representation is reducible but indecom-
posible, and because it involves p-integrally interpolating between two conditions,
unramified and Steinberg, that do not overlap in characteristic 0.

A candidate definition of (3) was made in [WWE21] and called unramified-or-
Steinberg1. As an initial reasonableness check, it is shown there that RM � TM ;
that is, Galois representations arising from modular forms of level M are unramified
or Steinberg at the primes dividing M . Also, it was established that, in many
cases at many squarefree levels M , this is the right definition, in that RM ∼= TM .
However, in all the cases of RM ∼= TM established by the theorems of [WWE21], the

1In [WWE21], the condition is called unramified-or-(−1)-Steinberg, where the sign indicates a

choice of unramified-twist of Steinberg at each prime dividing the level. In this paper, we always
consider the trivial twist, which corresponds to sign −1 at the primes `0 and `1, so we drop the ε

from the notation.



6 CATHERINE HSU, PRESTON WAKE, AND CARL WANG-ERICKSON

rings RM and TM are local complete intersection. One of the motivations for this
paper is to provide evidence that the definition of unramified-or-Steinberg given in
[WWE21] is the right one, even in more pathological cases.

1.4. Main results: bounding the rank of R. Our main result shows that RN ∼=
T under certain, numerically verifiable conditions, thereby supplying evidence that
R ∼= T in general.

Since T is not a local complete intersection ring in general (in fact, we expect it
never is, outside the cases discussed in [WWE21]), we cannot use Wiles’s numerical
criterion [Wil95] to prove that R � T is an isomorphism. Instead, we use a new
strategy: we prove that

dimFp R/pR ≤ rankZpT.
Because R is p-adically separated, a separated version of Nakayama’s lemma then
implies that R� T is an isomorphism. As discussed above, we have made assump-
tions that ensure that rkZp

T ≥ 3. Hence our goal is to find conditions under which
dimFp

R/pR ≤ 3, for this will imply that RN ∼= T.

1.4.1. Conditions for dimFp
R/pR ≤ 3. The papers [CE05, WWE20] also bound

the dimension of a (pseudo)deformation ring in terms of number-theoretic data.
However, the situation there is greatly simplified by the fact that the tangent space
of the deformation ring is one-dimensional, so computing the dimension amounts
to determining the degree to which the tangent vector deforms.

To bound the dimension of R/pR, we follow the same basic strategy of [CE05,
WWE20], but we have to deal with the fact that the tangent space of R/pR is
two-dimensional. Roughly speaking, we find a basis of the tangent space consisting
of an “old reducible vector” (coming from level `0) and a “new irreducible vector.”
We show, using the assumption (`0 Rank 1), that the dimension of R/pR is greater
than 3 if and only if the new vector deforms to second order.

To determine when the new vector deforms to second order, we start by explicitly
describing it: as a pseudorepresentation with values in Fp[ε]/(ε2), it is given by

D1 = ω + 1 + ε(b(1)c(1) + (ω − 1)a(1)),

where

• b(1) ∈ Z1(GQ,Np,Fp(1)) is the Kummer cocycle associated to `1
• the cocycle c(1) ∈ Z1(GQ,Np,Fp(−1)) is ramified only at `0
• the cochain a(1) : GQ,Np → Fp satisfies −da(1) = b(1) ^ c(1).

To make sense of this (and to explain the notation), we think of D1 as the trace of
a generalized matrix algebra representation

(1.4.1) ρ1 =

(
ω(1 + a(1)ε) b(1)

ωc(1) 1 + d(1)ε

)
where d(1) = b(1)c(1) − a(1), and where the generalized matrix multiplication is
given by usual matrix multiplication but where the product of the off-diagonal
co-ordinates is multiplied by ε (see §4.1 below for a formal discussion of these
generalized matrix algebras). To determine if ρ1 deforms to second order, we write
down a putative deformation

(1.4.2) ρ2 =

(
ω(1 + a(1)ε+ a(2)ε2) b(1) + b(2)ε

ω(c(1) + c(2)ε) 1 + d(1)ε+ d(2)ε2

)
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with ε3 = 0 and write down the conditions the new cochains a(2), b(2), c(2), d(2) must
satisfy for ρ2 to define a map R→ Fp[ε]/(ε3). We find that, in order for ρ2 to exist
as a generalized matrix algebra representation, we must have

• a(1)|`1 = 0

and that if any deformation ρ2 exists, it can be arranged to satisfy

• a(1)|`0 = αc(1)|`0 for some α ∈ Fp,
• b(2)|`0 = βc(1)|`0 for some β ∈ Fp,

where “(−)|`” indicates restriction to the decomposition group at `. In addition,
for ρ2 to be unramified-or-Steinberg at `0, we must also have

• α2 + β = 0.

Although this construction depends on many choices, we show that the conditions
a(1)|`1 = 0 and α2 + β are independent of the choices. Actually, in §8, we show
more: that α2 + β arises from a canonical element of the 1-dimensional Fp-vector

space µp ⊗ µp, where µp ⊂ Q× are the pth roots of unity.

1.4.2. Main results. This paper’s main theorem relies on showing that there exists
ρ2 as in (1.4.2) if and only if the square of the maximal ideal of R/pR is non-zero.
Since the maximal ideal can be generated by two elements, if it is square-zero, then
we have R/pR ' Fp[x, y]/(x2, xy, y2), with Fp-dimension 3.

Theorem 1.4.3 (Theorem 7.3.3). Let p ≥ 5. The Fp-dimension of R/pR is greater
than 3 if and only if

(i) a(1)|`1 = 0 and
(ii) α2 + β = 0,

where a(1) and α2+β are as defined in Section 1.4.1. Moreover, if dimFp
R/pR = 3,

then R is a free Zp-module of rank 3 and the natural map

R� T

is an isomorphism.

The conditions (i) and (ii) may at first appear to be unusual enough that this
theorem is of no use whatsoever. However, in the sequel to this paper [HWWE22],
we translate the conditions (i) and (ii) into explicit statements about splitting
behaviors of primes in certain nilpotent extensions of Q. Moreover, we develop
algorithms to effectively compute (i) and (ii) using algebraic number theory. We
have executed these algorithms for small values of p, establishing the following

Theorem 1.4.4. Let p = 5 and `0 = 11. Then for

`1 = 23, 67, 263, 307, 373, 397, 593, 857, 967, 1013,

condition (i) of Theorem 1.4.3 holds, but condition (ii) does not. In particular, for
these values of `1, the Fp-dimension of R/pR equals 3 and R ∼= T.

For `1 = 43, 197, 683, 727, conditions (i) and (ii) of Theorem 1.4.3 both hold.
Consequently, the Fp-dimension of R/pR exceeds 3 for these values of `1.

Remark 1.4.5. For the values of p and N where we found dimFp
R/pR > 3, we also

computed dimFp
T/pT > 3. This is consistent with the expectation that R ∼= T.

To summarize Theorem 1.4.4, in all of the examples we computed, we find that
one of the following cases occurs, witnessing the main Theorem 1.4.3.
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• We compute in number field extensions and determine that both (i) and (ii) of
Theorem 1.4.3 are true. In addition, we independently compute with modular
symbols and determine that rankZp(T) ≥ 4.

• We compute in number field extensions and determine that, of the conditions
of Theorem 1.4.3, (i) is true but (ii) is false. In addition, we independently
compute that rkZp

T = 3. Theorem 1.4.3 tells us that R ∼= T in this case.

Both of these cases are consistent with the hypothesis that R ∼= T always – even
when dimFp R/pR > 3. This leads us to a broader

Conjecture 1.4.6. For any prime p and squarefree level M as in Section 1.3.3,
we have RM ∼= TM .

In other words, we conjecture that the unramified-or-Steinberg condition devel-
oped in [WWE21, §3] fully captures the “modular of level M” condition on Galois
pseudorepresentations. More precisely, the conjecture decomposes into “RεM =
TεM” as ε varies over sets of Atkin–Lehner eigenvalues, as in [WWE21, §1.9.1].

1.5. Organization of the paper. In order to organize non-canonical choices in
one place, the notion of pinning data is set up in Definition 1.7.1. Section 2 consists
of recollections from the antecedent paper [WWE21] regarding the fundamental
concepts described in the introduction above. All notation and definitions are
present in this section in order to make it reasonably self-contained, while details
and proofs are left to loc. cit.. Section 3 continues with lemmas and definitions in
arithmetic and Galois representations that extends the content of Section 2, going
beyond what appears in loc. cit.. Section 4 sets up the first-order deformation ρ1

of (1.4.1) above. Section 5 produces an explicit understanding of R up to second
order, and Section 6 applies this in order to prove the “only if” direction of the
main Theorem 1.4.3. Section 7 proves the other logical direction by constructing
by hand a level N deformation ρ2 of ρ1 as in (1.4.2). Section 8 proves that the
invariant α2 + β is canonical by showing that the pinning data does not affect it.

1.6. Acknowledgements. The first-named author would like to thank the Uni-
versity of Bristol and the Heilbronn Institute for Mathematical Research for its
partial support of this project. The second-named author was supported in part
by NSF grant DMS-1901867. The third-named author was supported in part by
Simons Foundation award 846912, and would like to thank the Department of
Mathematics of Imperial College London for its partial support of this project from
its Mathematics Platform Grant. We also thank John Cremona for several helpful
conversations about the computational aspects of this project. This research was
supported in part by the University of Pittsburgh Center for Research Computing
and Swarthmore College through the computing resources provided.

1.7. Notation and conventions. For a group G, write C•(G,−) for the complex
of continuous, inhomogeneous G-cochains, and Hi(G,−), Zi(G,−) and Bi(G,−)
for its cohomology, cocycles and coboundaries. Let RΓ(G,−) denote the class of
C•(G,−) in the derived category. Let x 7→ [x] denote the quotient map Zi(G,−)→
Hi(G,−). Let ^ denote the cup product on C•(G,−) and ∪ for the induced map
on H∗(G,−).

When R = Z[1/Np] or R = Qq for a prime q, we use C•(R,−) as an abbreviation
for C•(G,−) where G is the étale fundamental group of Spec(R), and similarly for
Hi(R,−), Zi(R,−), Bi(R,−), and RΓ(G,−).
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We fix an algebraic closure Q of Q. We work with the maximal subextension
Q ⊃ QS ⊃ Q that is ramified only at the places dividing S = Np∞, and let
GQ,Np := Gal(QS/Q).

For each prime number q, let Qq/Qq be an algebraic closure and let Gq :=

Gal(Qq/Qq). Let Iq ⊂ Gq be the inertia group and let Itame
q be the tame quotient.

Let µp ⊂ Q× denote the subgroup of pth roots of unity, and let ω : GQ,Np → F×p
denote the mod-p cyclotomic character. For n ∈ Z, let Fp(n) denote the Fp[GQ,Np]-
module Fp with GQ,Np acting by ωn.

Several of our constructions will depend in subtle ways on additional choices
we call pinning data. In the end (§8), we will show that the invariant α2 + β of
Theorem 1.4.3 is independent of the pinning data.

Definition 1.7.1. The following choices constitute pinning data:

• for each q ∈ {`0, `1, p}, an embedding Q ↪→ Qq,
• a primitive pth root of unity ζp ∈ Q,

• for i = 0, 1, a pth root `
1/p
i ∈ Q of `i, such that, if possible, the image of `

1/p
1

in Qp, under the fixed embedding, is in Qp. (See Lemma 3.2.2 for a discussion
of when this is possible.)

Notice that the choice of pinning data naturally induce the following further
choices of

• for each prime q dividing Np, a decomposition subgroup of q in GQ,Np and
an isomorphism between this subgroup and Gq, and

• for each n ∈ Z, isomorphisms Fp(n)
∼−→ µ⊗np .

We use these data to identify Fp(n) with µ⊗np and, for each prime q dividing Np,
Gq as a subgroup of GQ,Np and we let

Ci(Z[1/Np],−)
|q−→ Ci(Qq,−), f 7→ f |q

denote the restriction map. We use the same notation |q for the induced map on
cohomology, cocycles, and coboundaries.

2. Recollection of pseudodeformation theory

Throughout this manuscript, we retain the conventions and terminology of the
preceding work [WWE21] of the second-named and third-named authors. In this
section, we summarize these items for the convenience of the reader, specializing
them to the particular level N = `0`1 and Atkin–Lehner eigenvalues ε = (−1,−1)
specified in §1.3.2. Nothing new is proven in this section. Those readers who have
some familiarity with the ideas of [WWE21] can safely skip this section on first
reading, and refer back when necessary.

2.1. Modular forms. As in [WWE21, §2.1], we recall the following Hecke algebras
and modular forms of weight 2.

Let HN denote the Hecke algebra generated (over Z) by the action of the Hecke
operators

Tq, for q - N prime, and

w`, for ` | N prime,
(2.1.1)
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on modular forms of weight 2 and level Γ0(N). Here Tq is the standard unramified
Hecke operator, while w` is the Atkin–Lehner involution at `. It is well known that
HN is commutative, reduced, and free of finite rank as a Z-module.

As remarked in §1.3.2, the space Eis2(Γ0(N)) of Eisenstein series of weight 2 and
level Γ0(N) is 3-dimensional, and our choice of (w`0 , w`1)-eigenvalues ε = (−1,−1)
specifies a unique normalized Hecke eigenform E2,N = Eε2,N . It has Tq-eigenvalue

q + 1 for all primes q - N . The value at the cusp at infinity of Eε2,N is

a0(Eε2,N ) =
1

2
ζ(−1)

∏
`|N

(`− 1) = − 1

24

∏
`|N

(`− 1).

Now we define the Hecke algebras and Eisenstein ideals that are our primary
object of study, measuring congruences of Hecke eigenvalues between Eε2,N and
cusp forms.

• Let T denote the completion of HN at its maximal ideal (p,AnnHN
(Eε2,N )).

Its residue field is Fp, because HN/AnnHN
(Eε2,N ) ∼= Z.

• Let T0 be the cuspidal quotient of T.
• Let I := AnnHN

(Eε2,N ) · T, which we call the Eisenstein ideal. We have

T/I ∼= Zp.
• Let I0 denote the image of I in T0.
• Ohta [Oht03] has proved that

T0/I0 ∼= Zp/a0(Eε2,N )Zp.

We call (the p-part of) a0(Eε2,N ) the congruence number for congruences (modulo

p) of Hecke eigenvalues between Eε2,N and cusp forms. Our assumption that `0 ≡ 1

(mod p) implies that T0/I0 6= 0, which is equivalent to T0 6= 0.
Let M2(N ;Zp)εEis denote the module of modular forms of weight 2 and level

Γ0(N) with coefficients in Zp, subject to the condition that their Hecke eigensys-
tem under the Hecke operators of (2.1.1) are congruent modulo p to that of the
Eisenstein series Eε2,N . Let S2(N ;Zp)εEis denote the submodule of M2(N ;Zp)εEis

consisting of cusp forms. We have perfect pairings

(2.1.2) M2(N ;Zp)εEis × T→ Zp, S2(N ;Zp)εEis × T0
N → Zp.

Under the usual Fourier expansion of a modular form f(z) =
∑
n≥0 an(f)qn ∈

M2(N ;Zp)εEis, the pairing is given by (f, T ) 7→ a1(Tf).
In particular, these pairings specialize to a bijection between normalized Hecke

eigenforms in M2(N ;Zp)εEis (resp. S2(N ;Zp)εEis) and homomorphisms T → Qp
(resp. T0 → Qp) that encode their eigensystems.

We will also require the Eisenstein-congruent Hecke algebras of weight 2 and
level `0 with Atkin–Lehner sign −1, denoted T`0 , along with its cuspidal quotient
T0
`0

. This T0
`0

is the Hecke algebra studied by Mazur in [Maz77]. There are natural

surjections T � T`0 and T0 � T0
`0

, because a choice of Atkin–Lehner signature at
level N designates a stabilization of level `0 forms to level N .

In light of (2.1.2) and the fact that each of the spaces of modular forms has a
basis of Hecke eigenvectors, we have the well known

Lemma 2.1.3. The Hecke algebras T, T0, T`0 , and T0
`0

are reduced and, as Zp-
modules, finitely generated and flat.
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2.2. Galois deformation theory. The main technical feature of [WWE21] was
the development of theory of Galois representations adequate to characterize the
Galois representations associated to M2(N ;Zp)εEis. In particular, while T interpo-
lates the Hecke eigensystems, interpolating the associated Galois representations
presents technical issues addressed in [WWE21, §3].

The key new notion presented there is the unramified-or-Steinberg condition on
2-dimensional pseudorepresentations of G`, which combined over all ` | N to a
global unramified-or-Steinberg condition. Because we view this paper as a test of
these notions in a more difficult setting (where T is not Gorenstein), we carefully
recall this notion. Also, since the global unramified-or-Steinberg condition involves
the finite-flat geometricity condition on representations of Gp, we recall that theory
as well.

2.2.1. Background on pseudodeformations. We will presume that the reader is fa-
miliar with the theory of pseudorepresentations, as developed by Chenevier [Che14].
This is summarized in [WWE21, §3.1], and we recall fundamental notions here. All
of our pseudorepresentations are 2-dimensional.

Let A be a commutative ring. We write D : E → A for a pseudorepresentation,
which includes the implication that E is an A-algebra (not necessarily commuta-
tive). The data represented by this notation consists of functions

DB : E ⊗A B → B

associated functorially to commutative A-algebras B.
When H is a group, we write D : H → A as shorthand for a pseudorepresentation

D : A[H]→ A. A pseudorepresentation D : E → A is characterized by its induced
characteristic polynomial functions, which in the present 2-dimensional case are the
two functions

TrD : E → A and detD : E → A.

When the source and target of a pseudorepresentation D have a topology, D is
considered continuous when TrD and detD are continuous. When H is a profinite
group and A is a profinite ring, we will presume that a pseudorepresentation D :
H → A is continuous from A[H] to A without further comment.

2.2.2. Cayley–Hamilton representations and GMA representations. While a pseu-
dorepresentation D : G→ A may not arise from a 2-dimensional representation of
G over A, it is well-understood how to broaden the category of representations to
remedy this. This broader category consists of Cayley–Hamilton representations of
G. It is fibered over the category of pseudorepresentations and has universal ob-
jects. In this section, we overview the theory of Cayley–Hamilton representations,
referring to [WWE21, §3] for details. We also point out that the Cayley–Hamilton
representations we work with in this paper admit the structure of generalized matrix
algebras (“GMAs”).

Let A denote a commutative ring.

• We say that a pseudorepresentation D : E → A is Cayley–Hamilton if, for
every commutative A-algebra B and every element γ ∈ E ⊗A B, γ satisfies
its B-valued characteristic polynomial X2 − TrD(γ)X + detD(γ) ∈ B[X].

• A Cayley–Hamilton algebra over A is a pair (E,D : E → A), where D is a
Cayley–Hamilton pseudorepresentation.
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• AnA-valued Cayley–Hamilton representation of G is a tuple (ρ : G→ E×, E,D :
E → A), where (E,D) is a Cayley–Hamilton algebra over A and ρ is a group
homomorphism.

• The induced pseudorepresentation of a Cayley–Hamilton representation (ρ,E,D :
E → A) of G, written ψ(ρ), is the A-valued pseudorepresentation of G deter-
mined by the composition D ◦ ρ.

A generalized matrix algebra over A, or “A-GMA” for short, is a Cayley–Hamilton
algebra over A with extra data. We confine our discussion to 2-by-2 GMAs.

• The data for a (2 × 2-)GMA over A consists of two A-modules B and C
together with an A-module map m : B ⊗A C → R such that the two maps

B ⊗A C ⊗A B → B ⊗A A→ B and B ⊗A C ⊗A B → A⊗A B → B

coincide, and similarly the two maps C ⊗A B ⊗A C → C coincide. We make

an A-algebra

(
A B
C A

)
using the rule for 2× 2-matrix multiplication.

• We think of a GMA structure on a Cayley–Hamilton algebra as the idempo-
tents

(
1 0
0 0

)
and

(
0 0
0 1

)
in the above decomposition.

• When A is a Henselian local ring and a Cayley–Hamilton algebra E over
A is finitely generated as an A-module (which will always be true in our
applications, and is actually equivalent to being finitely generated as an A-
algebra), its A-GMA structures are inner-isomorphic [WWE18, Lem. 5.6.8].

• When a Cayley–Hamilton representation (ρ,E,D : E → A) of G has its
Cayley–Hamilton algebra E equipped with the structure of an A-GMA, it is
known as a GMA representation.

2.2.3. Deformation theory of pseudorepresentations. The functorial basis for defor-
mation theory of pseudorepresentations is rather straightforward in [Che14]. What
is less straightforward is the approach to applying representation-theoretic condi-
tions on pseudorepresentations that are most naturally formatted for representa-
tions. The main idea for this, developed systematically in [WWE19], is to say that a
pseudorepresentation satisfies a condition when some Cayley–Hamilton representa-
tion inducing it. In this section, we overview these deformation-theoretic concepts,
first specializing to the particular pseudorepresentation that we will deform.

• Let ω : GQ → F×p denote the modulo p cyclotomic character, which factors
throughGQ,Np. It is the reduction modulo p of the p-adic cyclotomic character
that we denote by κ : GQ → Z×p .

• Let D̄ : GQ,Np → Fp denote the pseudorepresentation ψ(ω ⊕ 1) of GQ,Np.
• When A is a commutative local ring with residue field Fp, we say that D :
GQ,Np → A deforms D̄ if the composite pseudorepresentation GQ,Np → A�
Fp equals D̄.

• Let RD̄ denote the universal pseudodeformation ring of D̄, which is known
to be Noetherian. This means that there is a universal pseudodeformation
Du
D̄

: GQ,Np → RD̄.

Now we bring Cayley–Hamilton representations into the deformation theory of
pseudorepresentations.

• When A is local with residue field F and D̄ : G→ F is a pseudorepresentation,
we say that anA-valued Cayley–Hamilton representation (ρ,E,D) ofG is over
D̄ when the pseudorepresentation D ◦ ρ : G→ A deforms D̄.
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• There exists a universal Cayley–Hamilton representation of GQ,Np over D̄,
valued in the universal pseudodeformation ring RD̄. It is written

(ρu : GQ,Np → EuD̄, E
u
D̄, D

u
ED̄

: EuD̄ → RuD̄).

• Because D̄ is multiplicity-free—that is, its associated semi-simple represen-
tation ω⊕ 1 over Fp has non-isomorphic simple summands—it is known that
any Cayley–Hamilton representation of GQ,Np over D̄ admits the structure of
a GMA representation.

2.2.4. The unramified-or-Steinberg condition. We now review the unramified-or-
Steinberg condition that was introduced in [WWE21, §3]. In [WWE21, §3], it was
called the “unramified-or-ε-Steinberg condition” or “USεN condition”, to allow for
arbitrary choice of Atkin–Lehner signs ε. For this paper, we only consider negative
Atkin–Lehner signs and we suppress the ε from the notation.

The definition is motivated by the forms of Galois representations of modular
forms at decomposition groups, as we now recall. When ` 6= p, it is known that
Galois representations ρf : GQ,Np → GL2(Qp) arising from a Hecke eigenform
(for the Hecke operators of (2.1.1)) in M2(Γ0(N)) have the following form after
restriction to a decomposition group.

• ρf |I` is non-trivial if and only if f is new at `. In other words, ρf |G`
is

unramified if and only if f is old at `.
• If f is new at ` and its w`-eigenvalue is −1, then ρf |` : G` → GL2(Qp) has

the form

(2.2.1) ρf |` '
(
κ b̃`
0 1

)
,

where b̃` : G` → Qp(1) is an element of Z1(Q`,Qp(1)) inducing a non-trivial

cohomology class in H1(Q`,Qp(1)). By Kummer theory, this cohomology
class is unique up to scalar, and consequently the ρf |` is uniquely prescribed
up to isomorphism.

Definition 2.2.2 ([WWE21, Defn. 3.4.1]). A Cayley–Hamilton representation (ρ :
G` → E,E,DE : E → A) over D̄|` is unramified-or-Steinberg at ` (or US`) if

(2.2.3) (ρ(σ)− κ(σ)) · (ρ(τ)− 1) = 0

for all (σ, τ) ∈ G` × I` ∪ I` ×G`.

The initial justification for this definition is that ρf |G`
of (2.2.1) satisfies the

US` condition. Indeed, in this case the matrix product of (2.2.3) has the form(
0 ∗
0 ∗

)
·
(
∗ ∗
0 0

)
,

and any such product is zero. Next, note that the restriction on (σ, τ)—one of σ, τ
must be in I`—implies that an unramified homomorphism satisfies US`.

The point of this definition is to interpolate the form (2.2.1) into Cayley–Hamilton
algebras, thereby giving rise to a notion of US` on Cayley–Hamilton representations
of G` over D̄|`. In particular, the formulation of US` is coordinate-free.
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2.2.5. The finite-flat condition. Since the modular forms we work with have weight
2 and no level at p, the corresponding p-adic representations of Gp should satisfy
the finite-flat condition.

Definition 2.2.4. We say that an action on Gp on a finite cardinality Zp-module
M is finite-flat provided that there exists a finite flat group scheme G/Zp such that

there exists an isomorphism of Zp[Gp]-modules M ' G(Qp).

Ramakrishna [Ram93] determined how to apply the finite-flat condition to defor-
mations of Galois representations. The crucial formal property that the finite-flat
condition satisfies is that it is stable, meaning that when M is a finite-flat Zp[Gp]-
module, then all of its subquotients are also finite-flat; and that if a finite number
of Zp[Gp]-modules Mi are finite-flat, then so is the direct sum

⊕
iMi.

Because not all pseudorepresentations arise from Galois representations as char-
acteristic polynomials, it is non-trivial to impose the finite-flat condition on pseu-
dorepresentations. This problem has been addressed in [WWE19], using a formal-
ism that works for any stable condition. It relies on the fact that every pseudorep-
resentation arises from a Cayley–Hamilton representation.

Definition 2.2.5. We call a Cayley–Hamilton representation ρ : Gp → E finite-flat
if the Zp[G]-module E, where the action of Gp on E is given by ρ composed with
the left regular action of E on E, is an inverse limit of finite-flat Zp[G]-modules.
We call a pseudorepresentation D : Gp → A finite-flat if it arises as the induced
pseudorepresentation ψ(ρ) of a Cayley–Hamilton representation ρ that is finite-flat.

In [WWE19], it is proved that any stable condition cuts out a universal Cayley–
Hamilton representation over any residual pseudorepresentation D̄ : Gp → F, and
that the coefficient ring of this Cayley–Hamilton representation is the universal
finite-flat pseudodeformation ring of D̄. In particular, this result includes the im-
plication that the finite-flat condition on pseudorepresentation cuts out a quotient
RD̄ � Rflat

D̄
of the universal pseudodeformation ring; in other words, the finite-flat

condition is a Zariski-closed condition on pseudorepresentations.
We have the following result about finite-flat representations over the residual

pseudorepresentation D̄|p.

Proposition 2.2.6. For any finite-flat Cayley–Hamilton representation ρ of Gp
over D̄|p : Gp → Fp, with coefficient ring A, there exist unique characters θi :
Gp → A×, i = 1, 2, and a GMA structure with respect to which it has the form

(2.2.7) ρ '
(
κθ1 ∗
0 θ2

)
.

The characters θi are residually trivial and unramified.

Proof. See [WWE21, §3.5]. �

However, the finite-flat condition is more strict than merely having this form: in
addition to the unramified condition on θi, there is a restriction on the extension
denoted “∗”, cutting out an A-submodule

Ext1
A[Gp](θ2, θ1(1))flat ⊂ Ext1

A[Gp](θ2, θ1(1))

consisting of finite-flat extensions of θ2 by κθ1. We will especially be interested in
the case where A = Fp and the θi are trivial. In that case, since ω = (κ mod p)
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lifts to GQ,Np, we construct

Ext1
Fp[GQ,Np](Fp,Fp(1))flat ⊂ Ext1

Fp[GQ,Np](Fp,Fp(1))

consisting of those GQ,Np-extensions of Fp by Fp(1) that are finite-flat when re-
stricted to Gp.

Later we will have use for the determination of this finite-flat subspace more
generally, over Qpi , which denotes the unique degree i unramified extension of Qp.
Let Hi := Gal(Qp/Qpi), so H1 = Gp. Let Zpi denote the ring of integers of Qpi .

Lemma 2.2.8 (Local Kummer theory). Under the canonical isomorphism

Ext1
Fp[Hi](Fp, µp) ∼= H1(Qpi , µp) ∼= Q×pi/(Q

×
pi)

p

and the canonical decomposition

Q×pi/(Q
×
pi)

p ∼= 〈p〉 ⊕ Z×pi/(Z
×
pi)

p,

the flat subspace Ext1
Fp[Hi](Fp, µp)

flat maps to Z×pi/(Z
×
pi)

p. In particular, when i = 1,

we have the Fp-basis {p, 1 +p} of Q×p /(Q×p )p, and the subspace Ext1
Fp[Gp](Fp, µp)flat

corresponds with the subspace 〈1 + p〉.

Proof. This is well known; see, for example, [Sch12, Prop. 2.2]. �

Lemma 2.2.9 (Global Kummer theory).

(1) The subspace

Ext1
Fp[[GQ,Np]](Fp, µp)flat ⊂ Ext1

Fp[[GQ,Np]](Fp, µp)

has basis {`0, `1} under the canonical isomorphisms

Ext1
Fp[[GQ,Np]](Fp, µp) ∼= H1(Z[1/Np], µp) ∼= Z[1/Np]×/(Z[1/Np]×)p.

(2) The natural map

Ext1
Fp[[GQ,Np]](Fp,Fp(1)) −→ Ext1

Fp[[Gp]](Fp,Fp(1))

has image containing a complement of Ext1
Fp[[Gp]](Fp,Fp(1))flat. The image of

the element p ∈ Z[1/Np]×/(Z[1/Np]×)p spans this complement.

Proof. Parts (1) and (2) follow directly from Lemma 2.2.8 and the fact that {p, `0, `1}
is a basis for Z[1/Np]×/(Z[1/Np]×)p. �

Here is a method to verify finite-flatness of GMA-representations in practice.

Lemma 2.2.10. Let ρ : Gp → E be a Cayley–Hamilton representation with coef-
ficient ring A. Suppose that S ⊂ E be a subalgebra containing ρ(Gp), and let V
be a faithful S-module. If the Gp-action on V induced by ρ is finite-flat, then ρ is
finite-flat.

Proof. This is a slight generalization of the argument of the second paragraph of
the proof of [WWE21, Lem. 7.1.9]. �

We will also require the delicate use of a few standard and fundamental facts
about lifts of group representations and the unobstructedness of finite-flat lifts,
which we collect in the following two statements. We state these in less than their
maximal generality, fitting our purposes.
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Lemma 2.2.11. Let G be a profinite group, let η : G→ GL2(Fp) be a representa-
tion, and let s : (A′,mA′) � (A,mA) be a surjection of local Artinian Fp-algebras
such that mA′ · ker s = 0. Let ηA be a lift of η over A� A/mA = Fp.

(1) If the set of lifts of ηA over A′ � A is non-empty, then it is a torsor over the
group

Z1(G,Ad(η))⊗Fp
ker s

under addition of coordinates.
(2) If A = Fp, then this torsor is canonically isomorphic to Z1(G,Ad(η))⊗Fp ker s

due to the base point given by the trivial lift ρ⊗Fp A of ρ to A.
(3) Conjugation of ρA′ by x ∈ ker(GL2(A′) � GL2(A)), which is canonically

isomorphic to C0(G,Ad(ρ))⊗Fp
ker s, amounts to acting by coboundary dx ∈

B1(G,Ad(ρ))⊗Fp
ker s on ρA′ (via the torsor structure of (1)).

(4) If ηA has constant determinant (that is, det ηA = det η under F×p ↪→ A×)),
then the set of constant determinant lifts of ηA over s is non-empty if and
only if the set of (unrestricted) lifts is non-empty; and if it is non-empty, it
is a torsor over the group

Z1(G,Ad0(η))⊗Fp ker s

under addition of coordinates.

Here “addition of coordinates” on ρA′ means that we add to the function ρA′ :
G → GL2(A′) the function G → Md(ker s) ⊂ GL2(A′) given by an element of
Z1(G,Ad(η))⊗Fp ker s.

Proposition 2.2.12. Let η : G → GL2(Fp) be a finite-flat representation. Let
s : (A′,mA′) � (A,mA) be a surjection of local Artinian Fp-algebras such that
mA′ · ker s = 0. Let ηA be a finite-flat lift of η over A� A/mA = Fp.

(1) The set of finite-flat lifts of ηA over s is non-empty, and admits the structure
of a torsor over the group

Z1(G,Ad(η))flat ⊗Fp
ker s,

where Z1(G,Ad(η))flat ⊂ Z1(G,Ad(η)) is a sub-vector space that contains
B1(G,Ad(η)).

(2) In particular, if A = Fp, then this torsor is non-empty and canonically iso-
morphic to Z1(Qp,Ad(η))⊗Fp

ker s.
(3) The analogue of Lemma 2.2.11(3) holds for finite-flat representations.
(4) The analogue of Lemma 2.2.11(4) holds for finite-flat representations, with

the addition that the set of constant determinant finite-flat lifts is non-empty.

Proof. The non-emptiness of the set of finite-flat lifts can be found in [CHT08, Lem.
2.4.1], for example. The remaining claims can be deduced from Lemma 2.2.11 using
[WWE20, Prop. C.4.1]. �

2.2.6. The global unramified-or-Steinberg condition. By combining the local condi-
tions, we arrive at the global condition USN .

Definition 2.2.13. Let ρ be a Cayley–Hamilton representation over D̄ : GQ,Np →
Fp. We say that ρ is unramified-or-Steinberg of level N , or USN , when

(1) for all ` | N , ρ|` is US`, and
(2) ρ|p is finite-flat in the sense of Definition 2.2.5.
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When D : GQ,Np → A is a deformation of D̄ : GQ,Np → Fp, we say that D is USN
when there exists some A-valued Cayley–Hamilton representation ρ over D̄ such
that D = ψ(ρ).

We fix notation for the universal objects satisfying USN , which were produced
in [WWE21, §3].

Definition 2.2.14.

• Let R denote the universal pseudodeformation ring of D̄ satisfying the USN
condition. It admits a natural surjection RD̄ � R.

• Likewise, there exists a universal USN Cayley–Hamilton representation of
GQ,Np over D̄, denoted

(ρN : GQ,Np → E,E,DE : E → R)

and inducing DN : GQ,Np → R, the universal USN deformation of D̄.
• We fix a Ru

D̄
-GMA structure on the universal Cayley–Hamilton algebra Eu

D̄

over D̄, which induces a GMA structure on all of the Cayley–Hamilton alge-
bras receiving a map from Eu

D̄
due to its universal property. In particular, we

get a R-GMA structure on the universal USN Cayley–Hamilton representa-
tion (ρN , E,DE) of GQ,Np over D̄, and write its matrix coordinates as

E ∼=
(
R B
C R

)
.

For γ ∈ GQ,Np, we write (
aγ bγ
cγ dγ

)
for its image in E under ρN . Letting m ⊂ R denote the maximal ideal, we
may and do assume that the GMA structure on ED̄ has been chosen such
that

(a mod m) = ω and (d mod m) = 1

as homomorphisms GQ,Np → F×p .
• We will also occasionally refer to R`0 as the universal pseudodeformation of
D̄ satisfying the (global) US`0 condition (with Atkin–Lehner sign −1 at `0).
There is a natural surjection R� R`0 .

Having completed these constructions, the crucial application is that we can
interpolate over T the Galois pseudorepresentations induced by the representa-
tions ρf : GQ,Np → GL2(Qp) associated to normalized Hecke eigenforms f ∈
M2(N ;Zp)εEis.

Proposition 2.2.15 ([WWE21, Prop. 4.1.1]). We have a surjection R� T char-
acterized by sending traces of Frobenius elements TrDN

(Frq) ∈ R for primes q - Np
to the Hecke operator Tq. Similarly, we have R`0 � T`0 .

The characterizing property of the map makes its surjectivity visible, since T is
generated by the Tq. The level `0 map is known to be an isomorphism R`0

∼= T`0
[WWE20].

Remark 2.2.16. Our hypothesis is that the local US` conditions furnish a robust
interpolation of the Steinberg shape of Galois representations of (2.2.1) into Cayley–
Hamilton algebras. Since the global USN condition simply puts together these
local conditions, we view the putative isomorphism R

∼−→ T as bearing out this
hypothesis.
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2.3. Reducibility of pseudorepresentations. A 2-dimensional pseudorepresen-
tation D : G → A is called reducible when it has the form ψ(χ1 ⊕ χ2) for some
characters χ1, χ2 : G → A×. It is well understood that reducibility is a Zariski-
closed condition, meaning that there is a reducibility ideal J red

D̄
⊂ RD̄ such that

a pseudodeformation DA : G → A of D̄ is reducible if and only if J red
D̄

vanishes
under the corresponding homomorphism RD̄ → A. And any DA becomes reducible
modulo the image of J red

D̄
in A.

When DA arises from a GMA-representation of G, there is an important ex-
pression for the reducibility ideal in terms of the GMA structure. We record the
universal USN case.

Proposition 2.3.1. The reducibility ideal J red ⊂ R is equal to the image of the
multiplication map m : B ⊗R C → R.

Another canonical ideal of R is the kernel Jmin of the composition

Jmin := ker(R� T � Zp),
that arises from the Eisenstein series E2,N . This is characterized by sending
TrDN

(Frq) ∈ R for primes q - Np to q + 1, which is the eigenvalue of Tq on E2,N .
There is an inclusion of ideals J red ⊂ Jmin because the Zp-valued pseudorepresen-
tation ψ(κ⊕ 1) associated to E2,N is reducible.

In the following lemma, we compute the quotient of R by the reducibility ideal,
which we write as Rred := R/J red.

Lemma 2.3.2. There is an isomorphism

Rred ∼=
Zp[Y ]

(Y 2, (`0 − 1)Y )
,

where Y may be taken to be aγ0
−1, and Y generates Jmin /J red. The corresponding

pseudorepresentation induced by reduction modulo p, Rred � Fp[Y ]/(Y 2), equals

Dred := ψ(ω(1 + Y a0)⊕ (1− Y a0)) : GQ,Np → Fp[Y ]/(Y 2).

Later we will use the local homomorphism ϕDred : R→ Fp[ε1] induced by Dred.

Proof. The first statement is a direct application of the presentation for Rred pro-
vided in [WWE21, Lem. 4.2.3], and the calculations needed for the second claim
are included in its proof. �

2.4. Designated generators of the universal GMA. We recall the definitions
of some useful cohomology classes and their duals from [WWE21, §3.10]. First we
need generators of the pro-p tame part of inertia groups.

Definition 2.4.1. For a prime `i not equal to p, let γi ∈ I`i denote a lift of a
topological generator of the maximal pro-p quotient of I`i , which cuts out a tamely
ramified extension of Qp and is isomorphic to Zp.

Proposition 2.4.2. The elements bγ0
and bγ1

of B generate it as a R-module, and
B is not cyclic as a R-module. Similarly, cγ0

∈ C is a generator as a R-module.

Proof. See [WWE21, Lem. 3.9.4 and 3.9.8] for the claims about generators, and see
[WWE21, Lem. 6.2.1] for the claim that B is not cyclic. �

Lemma 2.4.3. We have an inclusion of ideals Jmin 2 ⊂ J red ⊂ Jmin . The element

bγ0
· cγ0

of J red lies within its submodule Jmin 2
.
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Proof. The inclusion of ideals follows from Lemma 2.3.2 because the kernel of
R/J red = Rred � Zp = R/Jmin is square-nilpotent (similar to the proof of
[WWE21, Thm. 6.4.1]). The final claim is [WWE21, Lem. 5.2.5]. �

3. Additional arithmetic preliminaries

In this section, we continue assembling background much as in the previous sec-
tion, with the distinction that the content of this section is not found in [WWE21].
Our primary focus is a discussion of various implications from our choice of pinning
data in Definition 1.7.1 as well as the conditions in Assumption 1.3.2.

3.1. Cocycles determined by the pinning data. We fix some notation for
Galois cocycles determined by the pinning data of Definition 1.7.1.

Recall the canonical isomorphism

Z[1/Np]× ⊗Z Fp
∼−→ H1(Z[1/Np], µp)

of Kummer theory. It sends an element n ∈ Z[1/Np]× ⊗Z Fp to the class of the

cocycle σ 7→ σn1/p

n1/p for a choice n1/p ∈ Q of pth root of n. We call this element

of H1(Z[1/Np], µp) the Kummer class of n and call any cocycle in this class a
Kummer cocycle of n. Because µp 6⊂ Q×, each Kummer cocycle of n is given by

σ 7→ σn1/p

n1/p for a unique choice of n1/p ∈ Q of pth root of n. We use the isomorphism
Fp(1) ∼= µp chosen in §1.7 to value Kummer classes and cocycles in Fp(1).

Definition 3.1.1.

• Denote the Kummer classes of `0, `1, and p, respectively, by

b0, b1, bp ∈ H1(Z[1/Np],Fp(1)).

• Let
γ0 ∈ I`0 , γ1 ∈ I`1

be as in Definition 2.4.1 and fixed such that bi(γi) = 1.2

• Let
b
(1)
0 , b

(1)
1 ∈ Z1(Z[1/Np],Fp(1))

be the Kummer cocycles associated to pth roots `
1/p
0 and `

1/p
1 of `0 and `1,

respectively, chosen in §1.7. Let b(1) = b
(1)
1 .

• Let
c(1) ∈ Z1(Z[1/Np],Fp(−1))

with cohomology class c0 = [c(1)] be the unique cocycle such that
(i) c0 is ramified exactly at `0,
(ii) c0|p = 0,

(iii) c(1)(γ0) = 1, and
(iv) c(1)|`1 = 0.

A class c0 satisfying (i) and (ii) exists and is unique up to F×p -scaling by
[WWE21, Lem. 3.10.2], so property (iii) specifies c0 uniquely. This determines
c(1) up to a coboundary and, since elements of elements of B1(Q`1 ,Fp(−1))
are determined by their value on a Frobenius element in G`1 , property (iv)
specifies c(1) uniquely.

2Note that bi|I`i : I`i → Fp(1) is a well-defined homomorphism because I`i acts trivially on

Fp(1)).
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• Let

xc(1) ∈ C0(Gp,Fp(−1)) = Fp(−1)

be such that c(1)|p = dxc(1) . Concretely, for any τ ∈ Gp such that ω(τ) 6= 1,

we can define xc(1) as xc(1) = (ω(τ)− 1)−1c(1)(τ).
• Let

a0, ap ∈ Z1(Z[1/Np],Fp)
be non-zero homomorphisms ramified exactly at `0 and at p, respectively, and
such that a0(γ0) = 1. This determines a0 uniquely and determines ap up to
F×p -scaling (which is sufficient for our purposes).

Remark 3.1.2. The following choices made in Definition 3.1.1 depend only on the
pinning data of Definition 1.7.1:

• The cocycles b(1), c(1), and a0.
• The images of γi in Itame

`i
⊗Z Fp.

3.2. Cup products and congruence conditions. The conditions in this paper’s
running assumption, Assumption 1.3.2, are presented in what we think is the most
readable language. However, our methods require various implications of these
conditions that are related to the the vanishing of certain cup products among
the cohomology classes that we have just defined and/or the local vanishing of
the cohomology classes themselves. The point of this section is to record those
implications.

We emphasize that we assume p ≥ 5 throughout.

Lemma 3.2.1 (Conditions equivalent to (3) in Assumption 1.3.2). Let `0, `1 be
distinct primes such that `0 ≡ 1 (mod p) and `1 6≡ 0,±1 (mod p). The following
conditions (1)-(4) are equivalent.

(1) `1 is a pth power modulo `0.
(2) a0|`1 = 0 in H1(Q`1 ,Fp).
(3) b1|`0 ∈ H1(Q`0 ,Fp(1)) vanishes.
(4) b1 ∪ c0 = 0 in H2(Z[1/Np],Fp).

Proof. (1) ⇐⇒ (2). Let ζ
(p)
`0
∈ Q represent a primitive element for the unique

degree p subextension of Q(ζ`0)/Q. We see that (2) is true if and only if `1
splits completely in Q(ζ

(p)
`0

)/Q, which, in turn, is equivalent to a Frobenius ele-

ment Fr`1 for `1 vanishing in Gal(Q(ζ
(p)
`0

)/Q). Then the equivalence of (1) and (2)
follows from the standard fact that Fr`1 7→ `1 under the canonical isomorphism

Gal(Q(ζ`0)/Q)
∼−→ F×`0 .

(1) ⇐⇒ (3). The Kummer theory isomorphism H1(Q`0 ,Fp(1)) ∼= Q×`0/(Q
×
`0

)p

sends b1 to `1.
(3) ⇐⇒ (4). We will apply the injection H2(Z[1/Np],Fp) ↪→ H2(Q`0 ,Fp)

of [WWE20, Lem. 12.1.1] (recorded also in Lemma 3.2.8, below), reducing the
condition (4) to b1|`0 ∪ c0|`0 = 0 in H2(Q`0 ,Fp). Then (3) ⇒ (4) is clear. The
converse follows from the characterization of the `0-local cup product of Lemma
3.2.6: because c0|`0 is ramified, while b1|`0 is non-trivial and unramified, their cup
product is non-zero. �

Next, the following lemma generalizes, to odd primes p, the pattern of ramifica-
tion of the prime 2 in quadratic number fields. In particular, it establishes when
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`
1/p
i ∈ Q in the pinning data of Definition 1.7.1 can be chosen to have image in Qp

under the fixed embedding Q ↪→ Qp.

Lemma 3.2.2. Let ` be a prime, ` 6= p, and let b` ∈ H1(Q,Fp(1)) be the Kummer
class of `. The following conditions are equivalent.

(1) `p−1 − 1 is divisible by p2

(2) ap|` ∈ H1(Q`,Fp) is trivial
(3) b`|p ∈ H1(Qp,Fp(1)) is trivial
(4) b`|p ∈ H1(Qur

p ,Fp(1)) is trivial

(5) Q(`1/p)/Q is not totally ramified at p; or, what is the same, tamely ramified
at p

(6) p splits into two primes in Q(`1/p)/Q, one with ramification degree p− 1 and
one with ramification degree 1.

Proof. (1) ⇐⇒ (2). Because this proof is very similar to the proof of (1) ⇐⇒
(2) in Lemma 3.2.1, we omit it.

(1) ⇐⇒ (3). Likewise, see the proof of (1) ⇐⇒ (3) in Lemma 3.2.1.
(3) ⇐⇒ (4). This is [WWE21, Lem. B.1.1].
(4) ⇐⇒ (5). Consider b`|Q(ζp), which is a surjective homomorphism Gal(Q/Q(ζp)) �

Fp(1). We observe that both (4) and (5) are equivalent to b`|Q(ζp) being unramified
at the unique prime (1− ζp) of Q(ζp) over p.

(5) ⇐⇒ (6). The implication (6) =⇒ (5) is clear. For the converse, note that
the Galois closure of Q(`1/p)/Q is Q(`1/p, ζp)/Q, and carry out a prime decompo-
sition exercise. �

We now shift to a discussion of local cup products related to item (1) in Assump-
tion 1.3.2. Indeed, since we have assumed `0 ≡ 1 (mod p), our chosen primitive
pth root of unity ζp ∈ Q, along with the chosen embedding Q ↪→ Q`0 , induces an
isomorphism

(3.2.3) Fp(i)|`0
∼−→ Fp(j)|`0 , x 7→ x⊗ ζj−ip

of representations of G`0 for any i, j ∈ Z. We can also view this as a cup product
in cohomology, because Fp(i) = H0(Q`0 ,Fp(i)). One may readily check that cup
products with these cohomology classes result in isomorphisms

H0(Q`0 ,Fp(i))⊗Fp
Hj(Q`0 ,M)

∼−→ Hj(Q`0 ,M(i))

for any Fp[G`0 ]-module M and any i, j ∈ Z. We will also use, in what follows, that
the cup product is “bilinear under multiplication (via the cup product) by elements
of H0(Q`0 ,Fp(s)), s ∈ Z.” A concise way to precisely state this fact is that the sum
of the cup products on H1(Q`0 ,−) applied to all of the Fp(i), namely,

(3.2.4)
⊕
i∈Z

H1(Q`0 ,Fp(i))×
⊕
j∈Z

H1(Q`0 ,Fp(j))→
⊕
k∈Z

H2(Q`0 ,Fp(k)),

is graded bilinear over the graded ring
⊕

s∈ZH
0(Q`0 ,Fp(s)).

We will be particularly interested in the cup product action of Fp(i)|`0 on the
local Tate duality pairing: for i ∈ Z,

(3.2.5) H1(Q`0 ,Fp(i))×H1(Q`0 ,Fp(1− i)) −→ H2(Q`0 ,Fp(1)) ∼= Fp.

We express all of the possible twists of this pairing in the following lemma.
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Lemma 3.2.6. For any i, j ∈ Z, we have a perfect pairing

(3.2.7) H1(Q`0 ,Fp(i))×H1(Q`0 ,Fp(j))→ H2(Q`0 ,Fp(i+ j)) ∼= Fp(1− i− j)
under which

(1) the cup product of a ramified class with a non-trivial unramified class is non-
zero and

(2) the cup product of any two unramified classes is zero.

When i = j, the self-pairing (3.2.7) is alternating.

Proof. The claims (1) and (2) are straightforward for i = 0, j = 1 using class
field theory. This holds true for all i, j using graded bilinearity of (3.2.4). The
alternating property follows from (1), (2), and an extra application of duality. �

We turn from local cup products to implications for global cup products, which
we will frequently use.

Lemma 3.2.8 (Hasse principle). For i = −1, 0, 1, the map

H2(Z[1/Np],Fp(i))→ H2(Q`0 ,Fp(i))⊕H2(Q`1 ,Fp(i)), x 7→ (x|`0 , x|`1)

is injective.

Our proof for i = −1 also uses (2) in Assumption 1.3.2, i.e., `1 6≡ 0,±1 (mod p).

Proof. For i = 0,−1, the map is an isomorphism. The case i = 0 follows di-
rectly from [WWE21, Lem. B.1.2]. The case i = −1 more-or-less follows from
the argument for [WWE20, Lem. 12.1.1], but that argument is written in the set-
ting where “N” is a prime that is 1 (mod p). The same argument applies in our
setting, where N = `0`1 with `0 ≡ 1 (mod p) and `1 6≡ ±1, 0 (mod p), because
Hj(Q`1 ,Fp(−1)) = 0 for all j ∈ Z≥i, making the exact triangle

RΓ(Z[1/`0p],Fp(−1))→ RΓ(Z[1/Np],Fp(−1))→ RΓ(Q`1 ,Fp(−1))

degenerate.
The case i = 1 remains. Here the localization map

H2(Z[1/Np],Fp(i))→ H2(Q`0 ,Fp(i))⊕H2(Q`1 ,Fp(i))⊕H2(Qp,Fp(i))

has cokernel of dimension 1, since H3
(c)(Z[1/Np],Fp(1)) ∼= Fp (the target of global

duality pairings). By the theory of the Brauer group (see e.g. [Poo17, Thm. 1.5.36]),
we know that the map is injective with image consisting of the subspace summing
to zero under the isomorphisms H2(Qq,Fp(1)) ∼= Fp for q = `0, `1, p. Therefore its
projection to any two summands, such as those in the lemma, is injective. �

We conclude this section with several conditions that are equivalent to (4) in As-
sumption 1.3.2. This assumption states that the Hecke algebra T`0 , which captures
the Hecke eigensystems all of the weight 2 level Γ0(`0) modular forms congruent to
an Eisenstein series (see §2.1), is as small as possible given Mazur’s result that there
exists some cusp form congruent to an Eisenstein series. Note that this proposition
is proven in [WWE20, Thm. 1.2.1].

Proposition 3.2.9 (Conditions equivalent to item (4) in Assumption 1.3.2). As-
sume that `0 ≡ 1 (mod p) and `1 6≡ ±1 (mod p). The following are equivalent.

(1) rkZpT`0 = 2

(2) b0 ∪ c0 6= 0 in H2(Z[1/`0p],Fp)
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(3) b0 ∪ c0 6= 0 in H2(Z[1/Np],Fp)
(4) b0|`0 ∪ c0|`0 6= 0 in H2(Q`0 ,Fp)
(5) a0 ∪ c0 6= 0 in H2(Z[1/`0p],Fp(−1))
(6) a0 ∪ c0 6= 0 in H2(Z[1/Np],Fp(−1))
(7) a0|`0 ∪ c0|`0 6= 0 in H2(Q`0 ,Fp(−1))
(8) {a0|`0 , ζ∪c0|`0} is a basis for H1(Q`0 ,Fp), for any non-zero ζ ∈ H0(Q`0 ,Fp(1)).
(9) {b0|`0 , ζ ′∪c0|`0} is a basis for H1(Q`0 ,Fp(1)), for any non-zero ζ ′ ∈ H0(Q`0 ,Fp(2)).

Proof. The equivalence of (1), (2), and (5) is the content of [WWE20, Thm. 1.2.1].
Because `1 6≡ ±1 (mod p), for i = −1, 0, we have H2(Q`1 ,Fp(i)) = 0. Then Lemma
3.2.8 supplies the equivalences of (2) with (3) and (4), and (5) with (6) and (7). The
equivalence of (7), (8), and (9) follows from Lemma 3.2.6 and the fact, visible in
[WWE20, Lem. 12.1.3], that a0 ∪ ζ = b0 for some non-zero ζ ∈ H0(Q`0 ,Fp(1)). �

4. An explicit first-order deformation

We construct an irreducible first-order pseudodeformationD1 : GQ,Np → Fp[ε]/(ε2)
of D̄ : GQ,Np → Fp that satisfies the unramified-or-Steinberg (USN ) property. This
is a precursor to the constructions at second order that will be needed to prove the
main technical result (Proposition 6.4.1).

4.1. 1-reducible GMAs and n-th order pseudodeformations. When F is a
field, write F [εn] for the F -algebra F [ε]/(εn+1). For m < n, we think of F [εm] as an
F [εn]-algebra via the natural quotient map F [εn] � F [εm]. Given some algebraic
object X over F , we call a deformation of X to F [εn] an n-th order deformation of
X.

4.1.1. 1-reducible GMAs. We introduce 1-reducible GMAs as a way to model trun-
cations of a DVR-valued representations in a way that is “lattice-independent”. To
justify this, consider the following example.

Example 4.1.1. Let F be a field, G be a group, and ρ : G → GL2(F [[x]]) be a
function that can be written as

ρ(g) =

(
a(g) xb(g)
c(g) d(g)

)
for some functions a, b, c, d : G → F [[x]]. Suppose we want to check that ρ is
a homomorphism. Equivalently, we can check this in stages labeled by natural
numbers n: at each stage n, check that ρ (mod xn) is a homomorphism. This
amounts to checking some equations involving the functions a, b, c, and d, for
instance

a(gg′) ≡ a(g)a(g′) + xb(g)c(g′) (mod xn).

Note that this equation and the related equations for b(gg′) and d(gg′) only involve
b and c modulo xn−1. At stage n, only the equation for c(gg′) involves c modulo
xn.

On the other hand, another way to check that ρ is a homomorphism is to consider
the conjugate ρ′ =

(
x−1 0

0 1

)
ρ
(
x 0
0 1

)
—that is

ρ′(g) =

(
a(g) b(g)
xc(g) d(g)

)



24 CATHERINE HSU, PRESTON WAKE, AND CARL WANG-ERICKSON

—and check that ρ′ is a homomorphism. Again we can check this in stages, and
this will involve the very same set of equations as for ρ, but in a different order.
For instance, at stage n for ρ′, the equation for b(gg′) will involve b modulo xn.

In the example, if ρ is a homomorphism, then ρ and ρ′ can be thought of as
two different F [[x]]-lattices in the same F ((x))-representation. One can think of 1-
reducible GMAs as a tool for studying this kind of problem in a way that does
not favor one lattice over the other, and where one considers the minimal set of
equations at each stage. This tool is especially well-suited to studying pseudorep-
resentations (note that ρ and ρ′ have the same trace and determinant, and that the
trace and determinant of ρ modulo xn only involve b and c modulo xn−1).

Definition 4.1.2. The 1-reducible GMA over Fp[εn] is the GMA En given by

En =

(
Fp[εn] Fp[εn−1]

Fp[εn−1] Fp[εn]

)
with the multiplication map

m : Fp[εn−1]⊗Fp[εn] Fp[εn−1]→ Fp[εn]

given by the composition

Fp[εn−1]⊗Fp[εn] Fp[εn−1]
b⊗c 7→bc−−−−−→ Fp[εn−1]

x 7→εx−−−−→ Fp[εn].

The image of the multiplication map m is εFp[εn]. In particular, if ρ : G→ E×n
is a Cayley–Hamilton representation such that the induced map Fp[[G]] → En is
surjective, then the reducibility ideal of ρ is εFp[εn].

Remark 4.1.3. The following relationship between 1-reducible GMAs and their in-
duced pseudorepresentations plays an especially important role in this paper: a rep-
resentation of a group G valued in En induces a Fp[εn]-valued pseudorepresentation
of G, and we need not concern ourselves over whether this pseudorepresentation
comes from a representation of G valued in GL2(Fp[εn]). Indeed, in some cases, it
may not.

Remark 4.1.4. There is also a natural notion of k-reducible GMA Ek,n for k =
2, . . . , n, where Fp[εn−1] is replaced by Fp[εn−k] and that map x 7→ εx is replaced
by x 7→ εkx. In this case, the reducibility ideal of a surjective Cayley–Hamilton
representation Fp[[G]] → Ek,n is εkFp[εn]. This explains the naming convention—
the ‘k’ in k-reducible refers to the exponent of the uniformizer in the reducibility
ideal. We will not need this notion in this paper.

Example 4.1.5. For example, when n = 1, an element of the 1-reducible GMA
E1 over Fp[ε1] can be written uniquely as

( α0+εα1 β
γ δ0+εδ1

)
for αi, β, γ, δi ∈ Fp, and

the multiplication is (
α0 + εα1 β

γ δ0 + εδ1

)(
α′0 + εα′1 β′

γ′ δ′0 + εδ′1

)
=(

α0α
′
0 + ε(α1α

′
0 + α0α

′
1 + βγ′) α0β

′ + βδ′0
γα′0 + δ0γ

′ δ0δ
′
0 + ε(δ1δ

′
0 + δ0δ

′
1 + β′γ)

)
Example 4.1.6. Let ρ and a, b, c, d, be as in Example 4.1.1 with F = Fp and
with the variable x replaced by ε. Suppose that ρ is a homomorphism. Then, for
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every n > 0, the map

g 7→
(

a(g) (mod εn) b(g) (mod εn−1)
c(g) (mod εn−1) d(g) (mod εn)

)
gives a homomorphism G→ E×n .

4.1.2. Reduction of 1-reducible GMAs. When n ≥ m, the standard surjection Fp[εn] �
Fp[εm], ε 7→ ε, extends naturally to 1-reducible GMAs. We have a reduction map

rn,m : En � Em,

simply reducing each of the coordinates under the usual surjections Fp[εn]→ Fp[εm]
and Fp[εn−1] � Fp[εm−1], which is a Fp[εn]-algebra homomorphism. We will espe-
cially apply the case

(4.1.7) r2,1 : E2 � E1.

The reduction map rn,m is distinct from the tensor reduction map

En � En ⊗Fp[εn] Fp[εm], x 7→ x⊗ 1,

which is also a ring homomorphism. As long as n > m, the latter has the form(
Fp[εn] Fp[εn−1]

Fp[εn−1] Fp[εn]

)
�

(
Fp[εm] Fp[εm]
Fp[εm] Fp[εm]

)
,

where the target is a GMA with cross-diagonal multiplication b ⊗ c 7→ εbc. Later,
we will apply the factorization of the reduction map r2,1 : E2 � E1 into

(4.1.8) E2 �

(
Fp[εm] Fp[εm]
Fp[εm] Fp[εm]

)
� E1,

where the leftmost map is the tensor reduction map for (n,m) = (2, 1), and the
rightmost map is reduction modulo ε of the off-diagonal coordinates.

4.1.3. Convenient mappings from 1-reducible GMAs. We will have to work explic-
itly with the finite-flat property of Cayley–Hamilton representations of Gp over D̄.
We know from Proposition 2.2.6 that they must be upper-triangular, which makes
it possible to apply the test of finite-flatness in Lemma 2.2.10 in a straightforward
way. Now we contextualize it to the 1-reducible GMA, En over Fp[εn], for n ∈ Z≥1.

Lemma 4.1.9. There is an Fp[εn]-algebra embedding of the upper-triangular sub-
Fp[εn]-GMA

Un :=
( Fp[εn] Fp[εn−1]

0 Fp[εn]

)
⊂ En

into M2(Fp[εn]) given by (
a b
0 d

)
7→
(
a εb
0 d

)
,

where the map on the upper right coordinate denotes the natural multiplication-by-ε
map, written ·ε : Fp[εn−1]→ Fp[εn].

Proof. The map is clearly a morphism of Fp[εn]-modules, so it suffices to show that
it respects the multiplication. This is checked easily. �

On the other hand, we can realize some (but not all) of En within a matrix
algebra by reducing modulo εn to Fp[εn−1].



26 CATHERINE HSU, PRESTON WAKE, AND CARL WANG-ERICKSON

Lemma 4.1.10. There is an Fp[εn]-algebra homomorphism from En to M2(Fp[εn−1])
given by (

a b
c d

)
7→
(

ā b
εc d̄

)
,

where ā, d̄ ∈ Fp[εn−1] indicates reduction modulo εn.

4.2. The cochain a(1). Our goal is to produce a first-order 1-reducible GMA rep-
resentation ρ1 : GQ,Np → E×1 deforming ω ⊕ 1. We start by defining a cochain

a(1) : GQ,Np → Fp that will be used in the definition of ρ1.

Recall the cocycles b(1), c(1), a0 and ap, and the cochain xc(1) specified in Defi-

nition 3.1.1. The cohomology classes of b(1) and c(1) are b1 and c0, respectively.

Lemma 4.2.1. There is a unique cochain a(1) ∈ C1(Z[1/Np],Fp) satisfying the
following three properties:

(1) −da(1) = b(1) ^ c(1),
(2) (a(1) − b(1) ^ xc(1))|Ip = 0 in H1(Qnr

p ,Fp), and

(3) the class of a(1)|`0 in H1(Q`0 ,Fp) is on the line spanned by ζ ∪ c0|`0 for any
(equivalently, all) non-trivial ζ ∈ µp(Q`0) ∼= H0(Q`0 ,Fp(1)).

Moreover, a(1)|`0 is a cocycle, a(1)|`1 is an unramified cocycle, and the definition of
a(1) depends only on the pinning data of Definition 1.7.1.

Proof. Since b1∪c0 = 0 by Lemma 3.2.1, we know there is a cochain g ∈ C1(Z[1/Np],Fp)
such that −dg = b(1) ^ c(1). The set of such g is a torsor for Z1(Z[1/Np],Fp),
which is generated by a0 and ap.

For any −g whose coboundary is b(1) ^ c(1), we have

−dg|p = b(1)|p ^ c(1)|p = b(1)|p ^ dxc(1) = −d(b(1)|p ^ xc(1))

Hence (g − b(1)|p ^ xc(1))|p is a cocycle. Since H1(Qp,Fp) is generated by its
unramified subgroup H1

un(Qp,Fp) together with ap|p, we have

(g − b(1)|p ^ xc(1))|p ≡ yap|p (mod H1
un(Qp,Fp))

for a unique y ∈ Fp. Replacing g by g − yap, we see that the set of g satisfying (1)
and (2) is a non-empty torsor for H1(Z[1/N ],Fp) (which is spanned by a0).

By Lemma 3.2.1, the homomorphism b(1)|`0 : G`0 → Fp(1) vanishes. Hence for
any g satisfying (1) and (2), we have

−dg|`0 = b(1)|`0 ^ c(1)|`0 = 0,

so g|`0 is a cocycle. Since we assume that the equivalent conditions of Proposition
3.2.9 are true, the set {a0|`0 , c0|`0} is a basis for H1(Q`0 ,Fp). Hence there is a
unique γ ∈ Fp such that (g − γa0)|`0 is in the line spanned by c0|`0 , and we define

a(1) = g − γa0 for this γ.
Finally, since c(1)|`1 = 0, condition (1) implies that a(1)|`1 is a cocycle. In

particular, a(1)|`1 is unramified: because p - `1(`1 − 1), by local class field theory,
any homomorphism from G`1 to Fp is unramified. �

Condition (3) in Lemma 4.2.1 provides the invariant α, which we now define.

Definition 4.2.2. Let α ∈ Fp(1) be the unique element such that

[a(1)|`0 ] = α ∪ c0|`0
Observe that α depends only on the pinning data of Definition 1.7.1.
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4.3. An irreducible first-order deformation. We now produce a first-order 1-
reducible GMA representation ρ1 : GQ,Np → E×1 deforming ω ⊕ 1 and satisfying
the unramified-or-Steinberg condition USN of Definition 2.2.13. The construction
uses the cocycles b(1) and c(1) fixed in Definition 3.1.1 and the cochain a(1) defined
in Lemma 4.2.1, together with the cochain d(1) defined by

d(1) = b(1)c(1) − a(1).

Note that, since −d(b(1)c(1)) = b(1) ^ c(1) + c(1) ^ b(1), we have

(4.3.1) − dd(1) = c(1) ^ b(1).

Lemma 4.3.2. Let E1 be the 1-reducible GMA over Fp[ε1]. Let ρ1 : GQ,S → E×1
be the function given in coordinates by

(4.3.3) ρ1 =

(
ω(1 + a(1)ε) b(1)

ωc(1) 1 + d(1)ε

)
.

Then ρ1 is a homomorphism that is USN . In particular, the associated pseudorep-
resentation

D1 := ψ(ρ1), TrD1
= ω + 1 + ε(b(1)c(1) + (ω − 1)a(1)) : GQ,S → Fp[ε1]

is USN , and it induces a surjective homomorphism ϕD1
: R→ Fp[ε1].

Proof. We check the conditions one by one, recalling that the USN condition entails
a condition upon restriction to the decomposition group at every prime dividing
Np.

Homomorphism: The homomorphism condition on ρ1 can readily be checked
to be equivalent to the following equalities of 2-coboundaries: db(1) = 0,
dc(1) = 0, −da(1) = b(1) ^ c(1) and −dd(1) = c(1) ^ b(1). The first three
equations hold by definition, and the last by (4.3.1).

Finite-flat at p: Recall the element xc(1) ∈ Fp(−1) of Definition 3.1.1 that satisfies

dxc(1) = c(1)|p. Conjugating ρ1 by
( 1 0
−x

c(1) 1

)
we find that

ad(
( 1 0
−x

c(1) 1

)
)ρ1|p =

(
ω(1 + (a(1)|p − b(1)|p ^ xc(1))ε) b(1)|p

0 1− (a(1)|p − b1|p ^ xc(1))ε

)
Since a(1)|p − b(1)|p ^ xc(1) |p is an unramified element of Z1(Qp,Fp) and

b(1) induces a finite-flat extension of Fp by Fp(1) by Lemma 2.2.8, ρ1|p is
finite-flat by Lemmas 2.2.10 and 4.1.9.

Unramified-or-Steinberg at `0: Let σ, τ ∈ G`0 . Using the facts that ω|`0 = 1
and b(1)|`0 = 0, it follows that

(ρ1(σ)− ω(σ))(ρ1(τ)− 1) =

(
εa(1)(σ) 0
c(1)(σ) εd(1)(σ)

)
·
(
εa(1)(τ) 0
c(1)(τ) εd(1)(τ)

)
= 0

Unramified-or-Steinberg at `1: Let σ, τ ∈ G`1 . Using the fact that c(1)|`1 = 0,
we find that (ρ1(σ)− ω(σ))(ρ1(τ)− 1) is equal to(

εω(σ)a(1)(σ) b(1)(σ)
0 1− ω(σ) + εd(1)(σ)

)
·
(
ω(τ)− 1 + εω(τ)a(1)(τ) b(1)(τ)

0 εd(1)(τ)

)
=

(
εa(1)(σ)(ω(τ)− 1) 0

0 ε(1− ω(σ))d(1)(τ)

)
.
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If σ ∈ I`1 , then a(1)(σ) = 0 and ω(σ) = 1, so this is zero. If, on the other
hand, τ ∈ I`1 , then d(1)(τ) = 0 and ω(τ) = 1, so this is zero.

ϕD1 is surjective: We have homomorphisms b(1), c(1) : GQ(ζp) → Fp that are not
scalar multiples of each other. Therefore there exists σ ∈ GQ(ζp) such

that b(1)(σ) 6= 0 and c(1)(σ) 6= 0. Then we observe that TrD1(σ) − 2 =
εb(1)(σ)c(1)(σ), so ε is in the image of ϕD1

. �

Note that ρ1, D1 and the homomorphism R→ Fp[ε1] depend only on the pinning

data of Definition 1.7.1. This is clear since a(1), b(1), c(1), and d(1) only depend on
this data.

4.4. Relation to the universal case. Recall the universal USN Cayley–Hamilton
representation (ρN , E,DE) from Definition 2.2.14. By the universal property, the
representation ρ1 of Lemma 4.3.2 induces a homomorphism

E ⊗R Fp[ε1]→ E1,

of Cayley–Hamilton Fp[ε1]-algebras. We can assume the GMA structure on E to
be compatible with this homomorphism, in the following sense.

Proposition 4.4.1. There exists a choice of R-GMA structure on E such that

(1) E → E1 is a map of GMAs
(2) The elements (

0 bγ0

0 0

)
,

(
0 bγ1

0 0

)
,

(
0 0
cγ0

0

)
of E with respect to this GMA structure (as in Definition 2.2.14) map to the
elements (

0 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
of E1, respectively.

Proof. Apply the idempotent lifting lemma of [WWE18, Lem. 5.6.8]. �

We choose the GMA structure on E such that the conditions (1) and (2) are
satisfied. Although there may be many such choices, any of them will suffice for
our purposes. Note that the conditions (1) and (2) are determined by the pinning
data (Definition 1.7.1).

5. Computation of the pseudodeformation ring R/pR

Recall from Definition 2.2.14 that R denotes the pseudodeformation ring of ω⊕1
with the USN condition. In this section, we determine a presentation for the local
Fp-algebra R/pR. This will give us a way to distinguish between the cases rkZp

TN =
3 and rkZp

T > 3, keeping in mind that we have a surjection R� T from Proposition
2.2.15. As always, Assumption 1.3.2 is in force.

In addition to the notation, such as J red, Jmin, B and C, set up in §2, we use
the following:

• Let R̄ := R/pR, for convenience.
• If I ⊂ R is an ideal, let Ī ⊂ R̄ denotes its image in R̄. We warn the reader

that the natural surjection I/pI → Ī may not be an isomorphism.
• Let m ⊂ R be the maximal ideal. Notice that m = (Jmin , p) and that m̄ ⊂ R̄

is also maximal.
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• For a Noetherian local Zp-algebra (A, n), let tA, the tangent space of A, be the
set of local ring homomorphisms Hom(A,Fp[ε]/(ε2)), which is an Fp-vector
space. The dual vector space t∗A is identified with n/(n2, p), and called this
cotangent space of A.3 It is naturally isomorphic to the cotangent space of
Ā := A/pA.

5.1. The tangent space of R. In this section, we compute the tangent space of
R. In order to do this, we first recall Belläıche’s computation of the tangent space
of the unrestricted deformation ring RD̄ [Bel12].

Let J red
D̄
⊂ RD̄ denote the reducibility ideal and Rred

D̄
= RD̄/J

red
D̄

, and let Eu
D̄

=(RD̄ BD̄

CD̄ RD̄

)
be the RD̄-GMA structure on Eu

D̄
. On the other hand, let tirrRD̄

be the

cokernel of the natural map tRred
D̄
→ tRD̄

; define tirrR analogously as the cokernel of

tRred → tR. We will address these tangent spaces mainly through their dual, which
is the irreducible subspace of the cotangent space,

(tirrR )∗ ⊂ t∗R, (tirrRD̄
)∗ ⊂ t∗RD̄

.

The following equivalent expression of tirrR will be used pervasively.

Lemma 5.1.1. The natural maps

J̄ red/m̄J̄ red → t∗R, J̄ red
D̄ /m̄D̄J̄

red
D̄ → t∗RD̄

are injective with image equal to (tirrR )∗ and (tirrRD̄
)∗, respectively. In other words,

J̄ red/m̄J̄ red ∼= (tirrR )∗ and J̄ red
D̄ /m̄D̄J̄

red
D̄
∼= (tirrRD̄

)∗.

According to Proposition 2.3.1, the GMA-multiplication map induces a surjective
RD̄-module homomorphism

BD̄ ⊗RD̄
CD̄ � J red

D̄ , b⊗ c 7→ b · c
This induces a composite surjection

(5.1.2) BD̄/mD̄BD̄ ⊗Fp
CD̄/mD̄CD̄ � J red

D̄ /mD̄J
red
D̄ � (tirrRD̄

)∗

of Fp-vector spaces. Belläıche interprets this surjection in terms of cup products in
Galois cohomology.

Proposition 5.1.3 (Belläıche [Bel12, Theorem A and §4.1.1]). there is an exact
sequence
(5.1.4)

0→ tirrRD̄

ι−→ H1(Z[1/Np],Fp(1))⊗Fp
H1(Z[1/Np],Fp(−1))

∪−→ H2(Z[1/Np],Fp).
where the final map is the cup product. Moreover, under natural identifications
(5.1.5)
BD̄/mD̄BD̄

∼= (H1(Z[1/Np],Fp(1)))∗, CD̄/mD̄CD̄
∼= (H1(Z[1/Np],Fp(−1)))∗,

the map ι is identified with the dual of (5.1.2).

Applying the proposition to our running assumptions b1 ∪ c0 = 0 (see Lemma
3.2.1) and b0 ∪ c0 6= 0 (see Proposition 3.2.9), we have the following

Lemma 5.1.6. There is an element of f ∈ BD̄/mD̄BD̄ ⊗Fp
CD̄/mD̄CD̄ satisfying

(i) under the dualities (5.1.5), f(b0 ⊗ c0) 6= 0 and f(b1 ⊗ c0) = 0 in Fp, and
(ii) f maps to 0 under (5.1.2).

3The spaces tA and t∗A might more accurately be called the mod-p (co)tangent space of Spec(A).
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Proof. Since b0 ∪ c0 6= 0, it is not in the image of ι, so there is an element λ of
the dual of H1(Z[1/Np],Fp(1))⊗Fp H

1(Z[1/Np],Fp(−1)) such that λ(b0 ⊗ c0) 6= 0
and such that λ is zero on the image of ι. In particular, since b1 ∪ c0 is zero,
b1 ⊗ c0 is in the image of ι and λ(b1 ⊗ c0) = 0. Our identifications give an iso-
morphism between the dual of H1(Z[1/Np],Fp(1)) ⊗Fp

H1(Z[1/Np],Fp(−1)) and
BD̄/mD̄BD̄ ⊗Fp

CD̄/mD̄CD̄, and we can take f to be the image of λ under this
identification. �

Now we calculate the irreducible subspace of the cotangent space of R, as well
as minimal sets of generators for J red ⊂ R and J̄ red ⊂ R̄.

Proposition 5.1.7. The ideal J̄ red ⊂ R̄ is principal, generated by the non-zero
image of bγ1

· cγ0
under R � R̄. In particular, the image of bγ1

cγ0
in t∗R generates

the 1-dimensional subspace (tirrR )∗. In contrast, the ideal J red ⊂ R is not principal,
and is generated by {bγ0

cγ0
, bγ1

cγ0
}. Nonetheless, the image of bγ0

cγ0
in t∗R vanishes.

Proof. First, we claim that bγ0cγ0 and bγ1cγ0 generate J red. By Nakayama’s lemma,
it suffices to show that J red/mJ red is generated by the image of bγ1 ·cγ0 and bγ0 ·cγ0 =
0. This follows from the fact that {bγ0 , bγ1} generate B and {cγ0} generates C, as
recorded in Proposition 2.4.2.

Next, we claim that bγ1
cγ0

generates J̄ red, which requires us to apply Lemma
5.1.6. Just as in (5.1.2), there is a similar map for J red fitting into a commutative
diagram

BD̄/mD̄BD̄ ⊗Fp
CD̄/mD̄CD̄ // //

����

J red
D̄
/mD̄J

red
D̄

����
B/mB ⊗Fp C/mC // // J red/mJ red

Under the interpretation of BD̄/mD̄BD̄ and CD̄/mD̄CD̄ as dual vector spaces found
in (5.1.5), the leftmost vertical arrow is the dual of the inclusion of subspaces of
the Galois cohomology groups. By [WWE21, Lem. 3.10.3], we can identify these
subspaces: the basis {bγ0 , bγ1} of B/mB is dual to the basis {b0, b1} of Galois
cohomology; and {cγ0

} is a basis of C/mC, dual to {c0}.
Now consider the element f ∈ BD̄/mD̄BD̄ ⊗Fp

CD̄/mD̄CD̄ from Lemma 5.1.6.
The image of f in B/mB ⊗Fp

C/mC is of the form (xbγ0
+ ybγ1

) ⊗ cγ0
for some

x, y ∈ Fp. Since f(b0 ⊗ c0) 6= 0 and f(b1 ⊗ c0) = 0 it follows that x 6= 0 and
y = 0. Then the commutativity of the diagram and the fact that f maps to 0 in
(tirr
D̄

)∗ ⊂ t∗
D̄

imply

bγ0
· cγ0

= −x−1ybγ1
· cγ0

= 0

in t∗R. In particular, the image of bγ1 · cγ0 in R̄ generates J̄ red, due to Lemma 5.1.1
and Nakayama’s lemma.

There exists an irreducible first-order pseudodeformation D1 of ψ(ω ⊕ 1) con-
structed in Lemma 4.3.2, which is evidence that tirrR 6= 0.

In light of Lemma 5.1.1, the conclusions about J̄ red imply the conclusions about
(tirrR )∗.

It remains to show that J red is not principal. If it were principal, then because the
image of bγ1

cγ0
in J̄ red is a generator, bγ1

cγ0
∈ J red would be a generator. But bγ1

cγ0

vanishes under R � R`0 because the Galois pseudorepresentations parameterized
by R`0 are unramified at `1 (hence bγ1

maps to zero in the global level `0 R`0 -GMA).
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This would imply that the pseudorepresentation supported by R`0 is reducible,
because its reducibility ideal has a single generator which is zero. But this is
known not to be the case: the Galois representation supported by the level Γ0(`0)
cusp form f of Assumption 1.3.2(4) is irreducible. �

Now we can calculate the whole tangent space of R.

Proposition 5.1.8. The Fp-dimension of tR is 2, with a basis given by the two
maps Dred, D1 : R→ Fp[ε]/(ε2) specified in Lemma 2.3.2 and Lemma 4.3.2, respec-
tively. More precisely:

(1) The subspace tRred ⊂ tR is 1-dimensional and spanned by Dred.
(2) The space tirrR is one-dimensional and the element D1 of tR maps to a gener-

ator of it under the natural surjection tR � tirrR .

Proof. Since there is an exact sequence

0→ tRred → tR → tirrR → 0

it is enough to show (1) and (2). Part (1) follows from the isomorphisms

Rred/pRred ∼= Fp[y]/(y2)

of Lemma 2.3.2.
Part (2) follows from Proposition 5.1.7 (see the end of its proof) along with the

fact that D1 is irreducible, which is inherent to its construction in Lemma 4.3.2. �

5.2. The R-module C is torsion. In Proposition 2.4.2, we saw that C is a cyclic
R-module, generated by the element cγ0

∈ C. An important consequence of our
running assumption a0 ∪ c0 6= 0 (see Proposition 3.2.9) is that C is not a free
R-module.

Proposition 5.2.1. The R-module C is cyclic and not free. In fact, the annihilator
of C ⊗R,Dred Fp[ε1] is ε (here the tensor product is with respect to the ring map

Dred : R→ Fp[ε1] defined in Lemma 2.3.2).

Proof. Because BC = J red is non-zero, C is also non-zero.
Let C̄ := C ⊗R,Dred Fp[ε1]. We will show that C̄ is not a free Fp[ε1]-module (in

which case it must be isomorphic to Fp), which implies that C is not free as an
R-module. To set up a contradiction, assume that C̄ is a free Fp[ε1]-module; we
will show that this contradicts the assumption a0 ∪ c0 6= 0.

We know by Nakayama’s lemma and Proposition 2.4.2 that C̄ is a cyclic Fp[ε1]-
module with generator cγ0

. Because Dred is reducible, there is a quotient Fp[ε1]-
GMA of E′ = E ⊗R,Dred Fp[ε1] of the form(

Fp[ε1]
C̄ Fp[ε1]

)
∼−→
(

Fp[ε1]
Fp[ε1] Fp[ε1]

)
⊆M2(Fp[ε1])

(where we used cγ0
as a generator of C̄ to draw the isomorphism) receiving a

homomorphism from Fp[ε1][GQ] of the form(
ω(1 + εa0) 0

ω(c(1) + εc(2)) 1− εa0

)
.

The quotient map has kernel equal to the B-coordinate BE′ ⊂ E′, which is a
two-sided ideal because BE′ · CE′ = 0 (which expresses the reducibility of Dred).
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In the coordinate expression, c(1) appears because we have made a choice of
GMA coordinates of E compatible with E → E1 as in Proposition 4.4.1. The new
coordinate c(2) also appears, and the conclusion of the proof applies its existence.

We have an equality of 2-GQ,Np-cocycles valued in Fp(−1),

−dc(2) = a0 ^ c(1) + c(1) ^ (−a0).

The right hand side is in the cohomology class of 2a0 ∪ c0. But our assumption
rkZp

T`0 = 2 implies that a0 ∪ c0 6= 0 in H2(Z[1/Np],Fp(−1)) by Proposition 3.2.9.

Therefore such a c(2) cannot exist. �

5.3. The ring S := R̄/m̄3. Note that the Fp-dimension of R̄/m̄2 is 1 + dimFp
(tR),

which is 3 by Proposition 5.1.8. This implies the inequality dimFp R̄ ≥ 3, with

equality if and only if m̄2 = 0. By Nakayama’s lemma, dimFp
(R̄) = 3 if and only if

m̄3 = m̄2. Hence the key object to study is the ring R̄/m̄3, which we shall denote
by S.

Because S surjects onto R̄/m̄2 and Proposition 5.1.8 describes the 2-dimensional
cotangent space t∗R = m̄/m̄2, there are equivalences

dimFp S = 3 ⇐⇒ dimFp R̄ = 3 ⇐⇒ R̄ ∼= S ∼=
Fp[x, y]

(x2, xy, y2)
,

and Proposition 5.1.8 characterizes R̄ completely in this case. Therefore, we are
left to deal with the case that

dimFp S ≥ 4.

This section is meant to characterize S in that case.
For an ideal I in R or R̄, let IS ⊂ S denote its image in S. Note that dimFp S =

3 + dimFp(m2
S).

Proposition 5.3.1. The inclusion of ideals (J red
S )2 ⊂ mSJ

red
S is an equality.

Proof. Let CS := C ⊗R S, and likewise BS := B ⊗R S.
We claim that mSCS ⊂ J red

S CS , which we will derive from Proposition 5.2.1.
Proposition 5.2.1, translated into our current notation using S, states that the
maximal ideal of Sred kills Cred

S . Lifting this result from Sred-modules to S-modules,
we find that mSCS ⊂ J red

S CS , which is the desired result.
We derive from the equality mSCS = J red

S CS that, for all x ∈ mS , there exists
some z ∈ J red

S such that

(5.3.2) xcγ0 = zcγ0 ,

and that every element of mSCS has this form because cγ0 generates CS . We apply
this to the surjection of S-modules

CS ⊗S BS � J red
S ,

also using that cγ0
bγ1

is a generator of the principal ideal J red
S (Proposition 5.1.7).

Namely, finding that every element of mSJ
red
S = mSCSBS has the form

x(cγ0bγ1s) = (xcγ0)(bγ1s) = z(cγ0bγ1)s ∈ (J red
S )2,

for some s ∈ S, and with x and z as in (5.3.2). �

Corollary 5.3.3. Either dimFp S = 3 or dimFp S = 4. In general,

dimFp
S = dimFp

J red
S + 2 = dimFp

(J red
S )2 + 3.
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Proof. Because Sred = S/J red
S is 2-dimensional, we have dimFp

S = 2 + dimFp
J red
S

in general.
Because J red

S ⊂ mS and m3
S = 0, we have a filtration

J red
S ⊃ mSJ

red
S ⊃ m2

SJ
red
S = 0

graded by Fp-vector spaces. The principality of J red
S (Proposition 5.1.7) implies

that

dimFp

J red
S

mSJ red
S

= 1.

The equality mSJ
red
S = (J red

S )2 of Proposition 5.3.1 implies that dimFp mSJ
red
S ≤

1. �

6. Galois-theoretic implications of dimFp R/pR ≥ 4

Throughout this section, we assume that dimFp R/pR ≥ 4 (or, equivalently, that

dimFp(S) = 4, where S = R/(p,m3)) and derive consequences for Galois coho-
mology. The main results are Lemma 6.2.9 and Proposition 6.4.1, which together
essentially prove one direction of Theorem 1.4.3 from the introduction.

6.1. A GMA over S when dimFp S = 4. From now on, let y be the image of bγ1 ·
cγ0

in S, which generates the principal ideal J red
S ⊂ S. According to Corollary 5.3.3,

the Fp-dimension of J red
S is 2. Since J red

S is principal, its annihilator AnnS(J red
S ) is

also 2-dimensional. Consider the ring homomorphism

(6.1.1) S �
S

AnnS(J red
S )

∼= Fp[ε1],

where the isomorphism S/AnnS(J red
S )

∼−→ Fp[ε1] is determined by y 7→ ε. This is
possible because y2 spans (J red

S )2 = m2
S , which is non-zero in S under the assump-

tion that dimFp
S = 4 (Corollary 5.3.3).

Definition 6.1.2. We set up the following coordinates for objects within S.

• We define a Fp[ε1]-valued pseudorepresentation Dy : GQ,Np → Fp[ε1] by asso-
ciating it to the local homomorphism

ϕDy
: R� S � Fp[ε1]

determined by the isomorphism S
AnnS(Jred

S )

∼−→ Fp[ε1] above.

• We also allow ourselves to identify J red
S with Fp[ε1], as S-modules where Fp[ε1]

has structure map ϕDy , under the isomorphism

Fp[ε1]
(6.1.1)
∼−→ S

AnnS(J red
S )

∼−→ J red
S ,

where the rightmost isomorphism is determined by s 7→ ys.
• Since the image of bγ0

· cγ0
in S is in mSJ

red
S = y2S (Proposition 5.1.7), we

see that there is a unique η ∈ Fp such that

bγ0 · cγ0 = ηy2.

We call the map (6.1.1) and the following maps out of BS and CS , collectively,
coordinate maps.
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Lemma 6.1.3. Assume that dimFp
S = 4. There are surjective S-module homo-

morphisms

BS � Fp ⊕ Fp[ε1], s0bγ0
+ s1bγ1

7→ (s̄0, ϕDy
(s1)),

where s̄0 ∈ Fp is the image of s0 under the augmentation S → Fp, and

CS � Fp[ε1], scγ0
7→ ϕDy

(s).

Using these surjections BS � Fp⊕Fp[ε1] and CS � Fp[ε1] and the identification
J red
S = Fp[ε1], the GMA-multiplication map

BS ⊗S CS → J red
S

induces the map

(6.1.4) (Fp ⊕ Fp[ε1])⊗Fp[ε1] Fp[ε1]→ Fp[ε1]

given by

(u, v)⊗ z 7→ ηεuz + vz.

Proof. The only coordinate map that does not obviously exist as defined is that
of BS : BS is non-cyclic and generated by {bγ0 , bγ1}, and we must show that any
relation between the generators is sent by the coordinate map to 0. First, observe
that any relation gbγ0

+ hbγ1
= 0 ∈ BS (for g, h ∈ S) must have g, h ∈ mS , since

BS is not cyclic. Therefore, no relation gbγ0
+ hbγ1

can possibly map to something
non-zero under the coordinate map for BS , since this would imply that

0 = gbγ0cγ0 + hbγ1cγ0 = gηy2 + hy = hy in J red
S ,

for some h such that ϕDy (h) 6= 0, contradicting AnnS(y) = kerϕDy . Consequently,
the coordinate map for BS is well defined.

It remains to verify that the square of surjections

BS ⊗S CS //

��

J red
S

��
(Fp ⊕ Fp[ε1])⊗Fp[ε1] Fp[ε1] // Fp[ε1]

commutes, which we can check on the generating set {bγ0
⊗ cγ0

, bγ1
⊗ cγ0

} of BS⊗S
CS .

The coordinates of bγ0
⊗ cγ0

are (1, 0) ⊗ 1, which maps to ηε ∈ Fp[ε1]; on the
other hand, bγ0

cγ0
∈ J red

S has the form ηy2 by definition of η, which also maps to
ηε ∈ Fp[ε1] under the coordinate map for J red

S .
The coordinates of bγ1

⊗cγ0
are (0, 1)⊗1, which maps to 1 ∈ Fp[ε1]; on the other

hand, bγ1
cγ0
∈ J red

S equals y, which also maps to 1 ∈ Fp[ε1] under the coordinate
map for J red

S . �

Let E′S denote the S-GMA

(6.1.5) E′S =

(
S Fp ⊕ Fp[ε1]

Fp[ε1] S

)
where Fp[ε1] is a S-module via the map ϕDy : S → Fp[ε1], and where the GMA-
multiplication map is given by (6.1.4). By the lemma, the coordinate maps comprise
a surjective morphism of S-GMAs

E ⊗R S � E′S .
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6.2. The coordinates of a S-GMA valued Galois representation when
dimFp S = 4. Now consider the Cayley–Hamilton representation ρ′S : GQ,Np →
(E′S)× obtained as composition of the universal Cayley–Hamilton representation
ρ : GQ,Np → E× with E � E′S . We are interested in endowing it with coor-
dinates and comparing these coordinates to the 1-reducible GMA representation
ρ1 : GQ,Np → E×1 of (4.3.3).

To this end, the coordinates of E′S suffice, modulo the need for complete coordi-
nates for S, which we now supply. To introduce this definition, we point out that
{Dred, Dy} is a basis of tR according to Proposition 5.1.8, because Dred is reducible,
Dy is irreducible, and dimFp

tR = 2.

Definition 6.2.1. Let x ∈ S denote a generator for AnnS(J red
S ) whose image

x̄ ∈ t∗R = mS/m
2
S makes {x̄, ȳ} ⊂ t∗R a dual basis to {Dred, Dy}.

Here are the important properties of this choice of x; we also justify in this
lemma that such a choice of x exists.

Lemma 6.2.2. Assume dimFp
S = 4. A choice of x ∈ S as in Definition 6.2.1

induces a presentation of S,

Fp[[X,Y ]]

(X2 − µY 2, XY, Y 3)

∼−→ S, X 7→ x, Y 7→ y,

for some unique µ ∈ Fp. The possible choices of x are a torsor under the 1-
dimensional Fp-vector space (y2) = (J red

S )2.

Proof. The ideal AnnS(J red
S ) ⊂ S is contained in mS because J red

S 6= 0. On
the other hand, AnnS(J red

S ) is not contained in m2
S because dimFp

m2
S = 1 while

dimFp
AnnS(J red

S ) = 2. Therefore AnnS(J red
S ) has 1-dimensional image under the

projection mS � mS/m
2
S = t∗R. This image is complementary to (tirrR )∗ = 〈ȳ〉

because y2 6= 0, yet every element of AnnS(J red
S ) kills the generator y of J red

S ).
Similarly, AnnS(J red) ⊂ S is the kernel of ϕDy

, so there exists a generator x of

AnnS(J red
S ) such that

{x̄, ȳ} is a dual basis to {Dred, Dy}.
In particular, x and y generate S as an Fp-algebra, and we have a surjection φ :
Fp[[X,Y ]] � S via X 7→ x, Y 7→ y.

The next goal is to show the existence of µ ∈ Fp such that (X2−µY 2, XY, Y 3) ⊂
kerφ. This will suffice to prove the presentation, because the quotient if Fp[[X,Y ]]
by this ideal is 4-dimensional over Fp, like S.

Clearly Y 3 ∈ kerφ, since m3
S = 0. Likewise, we know that XY ∈ kerφ because

x ∈ S satisfies xJ red
S = 0 by definition, and y is a generator of J red

S . Finally,
the existence of µ ∈ Fp such that X2 − µY 2 ∈ kerφ follows from the principality
of J red

S = (y) and the fact that m2
S = (J red

S )2 = (y2) is 1-dimensional over Fp
(Propositions 5.1.7 and 5.3.1), since we know from the start that x2 ∈ m2

S .
The claim that the various choices of x satisfying Definition 6.2.1 are a torsor

under (y2) follows from the fact that {x, y2} is an Fp-basis for AnnS(J red), and
that the projection of gx + hy2 (g, h ∈ Fp) to t∗R equals gx̄. This also makes the
uniqueness of µ clear, since x2 only depends upon x̄. �

Combining the coordinates of S from Lemma 6.2.2 with the coordinates for the
off-diagonal parts of E′S from (6.1.5), we produce a coordinate-wise description of
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ρ′S : GQ,Np → (E′S)×.

(6.2.3) ρ′S =

(
ω(1 + ya(1)′ + y2a(2)′ + xa0) (b

(1)
0 , b(1) + yb(2)′)

ω(c(1) + yc(2)′) 1 + yd(1)′ + y2d(2)′ − xa′0

)
for some cochains

• a(1)′ , a(2)′ , d(1)′ , d(2)′ : GQ,Np → Fp,
• b(2)′ : GQ,Np → Fp(1),

• c(2)′ : GQ,Np → Fp(−1),

and cocycles a0, b(1) = b
(1)
1 , b

(1)
0 , and c(1) defined in Definition 3.1.1. The reason

that we find these previously defined cocycles among these coordinates is

• for a0: the tangent vector Dred ∈ tR is dual to x̄ ∈ t∗R, and we observe that
the pseudorepresentation induced by ρS ⊗S,ϕ

Dred
Fp[ε1] is exactly Dred (keep

in mind that ϕDred(x) = ε, ϕDred(y) = 0)
• for the remaining cocycles: the presence of dual bases of the dual vector spaces

of (5.1.5) (see the proof of Proposition 5.1.7), along with the normalization

of both the generators of BS , CS and the cocycles b(1), b
(1)
0 , and c(1) in terms

of the elements γ0, γ1 of inertia groups.

Next, we are interested in identifying a(1)′ with the a(1) constructed in Lemma
4.2.1, which implies the similar identification of d(1)′ with d(1) = b(1)c(1) − a(1).
This will produce a surjection from ρ′S onto the ρ1 : GQ,Np → E×1 constructed in
Lemma 4.3.2 and implies that Dy = D1 := ψ(ρ1). The key is the comparison of

differential equations: the homomorphism property of ρ′S implies that a(1)′ satisfies
the differential equation

(6.2.4) − da(1)′ = b(1) ^ c(1),

which a(1) also satisfies (Lemma 4.2.1). We note that the fact that ρ′S has constant

determinant ω implies that d(1)′ = b(1)c(1) − a(1), just as in the discussion of d(1)

in §4.3.
There are even more differential equations implied by the fact that ρ′S is a ho-

momorphism,

−dc(2)′ = c(1) ^ a(1)′ + d(1)′ ^ c(1)(6.2.5)

−da(2) = a(1) ^ a(1) + b(1) ^ c(2) + (b(2) + ηb
(1)
0 ) ^ c(1) + µa0 ^ a0(6.2.6)

−db(2) = a(1) ^ b(1) + b(1) ^ d(1).(6.2.7)

In particular, the 2-cocycles on the right-hand-sides of these equations are cobound-
aries.

Lemma 6.2.8. The two 1-cochains a(1), a(1)′ : GQ,Np → Fp are equal. Conse-
quently, Dy = D1 : GQ,Np → Fp[ε1].

Proof. Lemma 4.2.1 has listed characterizing properties (1)-(3) of a(1). We will

show that a(1)′ satisfies them as well.
Property (1) is satisfied in (6.2.4).
We will deduce property (2) from the finite-flat property that ρ′S |p, which it

satisfies because it is a quotient GMA of the universal USN GMA over D̄. By
design, the 0-cochain xc(1) ∈ C0(Z[1/Np],Fp(−1)) conjugates c(1) so that it vanishes
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on Gp, in the sense that the conjugation of ρ′S by

(
1 0
x 1

)
is upper-triangular

on Gp modulo the ideal generated by the image of yCS in the C-coordinate. Then

Proposition 2.2.6 implies the vanishing of (a(1)′+b(1) ^ xc(1))|Ip , which is property
(2).

Because of the injection H2(Z[1/Np],Fp(−1)) ↪→ H2(Q`0 ,Fp(−1)) of Lemma

3.2.8 and the vanishing of b(1) at `0, equation (6.2.5) implies that a(1)′ |`0 is a cocycle

and (2c(1) ^ a(1)′)|`0 is a 2-coboundary. Since the cup product on H1(Q`0 ,Fp) ×
H1(Q`0 ,Fp) is alternating in the sense of Lemma 3.2.6, we conclude that [a(1)′ |`0 ]

and [c(1)|`0 ] ∪ [ζ] are colinear in H1(Q`0 ,Fp) for any choice of ζ ∈ H0(Q`0 ,Fp(1)),
which is property (3).

To deduce that Dy = D1, observe that the equality a(1)′ = a(1) implies that the
pseudorepresentation φ(ρ′S) : GQ,Np → S induces D1 via

S → Fp[ε1], x 7→ 0, y 7→ ε,

while, on the other hand, this map S → Fp[ε1] is exactly the same as ϕDy
. �

There are even more implications of the differential equations implied by the
existence of ρ′S . In particular, (6.2.7) has the following consequence about the

restriction a(1)|`1 (note that a(1)|`1 is a cocycle since da(1) = b(1) ^ c(1) and
c(1)|`1 = 0).

Lemma 6.2.9. There exists a cochain b(2) satisfying (6.2.7) if and only if a(1)|`1 = 0.
In particular, if dimFp(S) = 4, then a(1)|`1 = 0.

Proof. Since a(1)|`1 is an element ofH1(Q`1 ,Fp), which is Tate-dual toH1(Q`1 ,Fp(1)),

and since b(1)|`1 is a basis for H1(Q`1 ,Fp(1)), the cup product a(1)|`1 ∪ b(1)|`1 van-

ishes in H2(Q`1 ,Fp(1)) if and only if a(1)|`1 = 0.

The existence of a cochain b(2) satisfying (6.2.7) is equivalent to

(6.2.10) a(1) ∪ b(1) + b(1) ∪ d(1)

vanishing in H2(GQ,Np,Fp(1)). By Lemma 3.2.8, it is equivalent that the image

of (6.2.10) vanishes in H2(Q`0 ,Fp(1)) and H2(Q`1 ,Fp(1)). Since b(1)|`0 = 0 in
H1(Q`0 ,Fp(1)), it is enough to consider the restriction of (6.2.10) to H2(Q`1 ,Fp(1)).

Since d(1) = b(1)c(1) − a(1) and c(1)|`1 = 0, it follows that d(1)|`1 = −a(1)|`1 .
Restricting (6.2.10) to G`1 then gives

a(1)|`1 ∪ b(1)|`1 − b(1)|`1 ∪ a(1)|`1 ,

which vanishes if and only if a(1)|`1 ∪ b(1)|`1 = 0 by the skew-symmetry of cup
product. �

6.3. The invariant β′ ∈ Fp(2). The assumption dimFp
(S) = 4 implies the equa-

tion (6.2.6). We use (6.2.6) to define an element β′ ∈ Fp(2).

Lemma 6.3.1. Assume dimFp
(S) = 4. There is a unique element β′ ∈ Fp(2) such

that

(6.3.2) (b(2) + ηb
(1)
0 )|`0 = β′ ∪ c(1)|`0 .

Proof. By Lemma 3.2.6, it is enough to show that the cup product

(b(2) + ηb
(1)
0 )|`0 ∪ c(1)|`0
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vanishes in H2(Q`0 ,Fp). This follows from (6.2.6) by restriction to H2(Q`0 ,Fp).
Indeed, recall from Lemma 3.2.1 that b(1)|`0 = 0. Since −da(1) = b(1) ^ c(1),
this implies that a(1)|`0 is a cocycle. By the skew-symmetry of cup product on
cohomology, (6.2.6) then implies

(b(2) + ηb
(1)
0 )|`0 ∪ c(1)|`0 = 0.

in H2(Q`0 ,Fp). �

6.4. Implications of the USN property of ρ′S. The fact that ρ′S is unramified-
or-Steinberg at `0 implies a relationship between the invariants α ∈ Fp(1), defined
in Definition 4.2.2, and β′ ∈ Fp(2), defined in Lemma 6.3.1.

Proposition 6.4.1. Assume dimFp S = 4. Then

(1) α2 + β′ = 0 in Fp(2).
(2) the invariant µ ∈ Fp set up in Lemma 6.2.2 is zero.

In particular, the presentation of S from Lemma 6.2.2 takes the form

Fp[[X,Y ]]

(X2, XY, Y 3)
.

Remark 6.4.2. Since α depends only on the pinning data of Definition 1.7.1, part
(1) implies that β′ depends only on this data as well.

Proof. Since ρ′S is obtained as a quotient of the universal USN Cayley–Hamilton
representation E, it is also USN . Let σ ∈ G`0 and τ ∈ I`0 . By Definition 2.2.2, the
fact that ρ′S is USN implies that

(6.4.3) (ρ′S(σ)− ω(σ))(ρ′S(τ)− 1)

vanishes in E′S . Consider the top-left coordinate of (6.4.3) in terms of the GMA

decomposition (6.2.3) of ρ′S . Using the facts that ω|`0 = 1 and b(1)|`0 = 0, and the
formula for multiplication in E′S given in (6.1.4), the top-left coordinate in (6.4.3)
equals

(6.4.4)
(
a(1)(σ)a(1)(τ) + (b(2)(σ) + ηb

(1)
0 (σ))c(1)(τ)

)
y2 + a0(σ)a0(τ)x2.

Recall from the presentation given in Lemma 6.2.2 that x2 = µy2 in S. Using the
relations

a(1)|`0 = α ^ c(1)|`0 , (b(2) + ηb
(1)
0 )|`0 = β′ ^ c(1)|`0

that define α and β′, (6.4.4) then simplifies to

(6.4.5)
(

(α2 + β′)c(1)(τ)c(1)(σ) + µa0(τ)a0(σ)
)
y2.

Since (6.4.3) vanishes in E′S , this implies that (6.4.5) vanishes in S.
The vanishing of (6.4.5) in S for arbitrary σ ∈ G`0 and τ ∈ I`0 implies

(α2 + β′)c(1)(τ)c(1)|`0 + µa0(τ)a0|`0 = 0,

for all τ ∈ I`0 . Since a0|`0 and c(1)|`0 are linearly independent in H1(Q`0 ,Fp) by
Proposition 3.2.9, this implies

(α2 + β′)c(1)(τ) = 0 and µa0(τ) = 0

for all τ ∈ I`0 . Since c(1)|I`0 and a0|I`0 are nonzero, this gives the result. �
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Since µ = 0 in the presentation for S of Lemma 6.2.2, there is a ring homomor-
phism

D2 : S → Fp[ε2], x 7→ 0, y 7→ ε

whose composition with the quotient Fp[ε2]→ Fp[ε1] is D1. There is also a homo-
morphism of Fp[ε2]-GMAs E′S ⊗S Fp[ε2] → E2, where E2 is the 1-reducible GMA
over Fp[ε2] of Definition 4.1.2.

Corollary 6.4.6. Assume dimFp S = 4. The map

Υ2 : Fp ⊕ Fp[ε1]→ Fp[ε1]

given by Υ2(u, v) = ηεu+ v induces a map of Fp[ε2]-GMAs

E′S ⊗S Fp[ε2]

(
D2 Υ2

Id D2

)
−−−−−−→ E2.

In particular, there is an USN Cayley–Hamilton representation ρ2 : GQ,Np → E×2
that deforms ρ1 along the map r2,1 : E2 � E1 of (4.1.7).

Proof. Given that µ = 0, the fact that
(
D2 Υ2

Id D2

)
is ring homomorphism is a simple

computation using the formula (6.1.4) for multiplication in E′S . The representation
ρ2 is obtained as the composition of ρ′S with E′S ⊗S Fp[ε2]→ E2. �

7. Constructing a second-order USN deformation ρ2

In this section, we prove the remaining implication of Theorem 1.4.3. Through-
out the section, we assume a(1)|`1 = 0. Under this assumption, we construct an
invariant β ∈ Fp(2), and show that if α2 + β = 0, then dimFp

R/pR > 3. In partic-

ular, if α2 +β = 0, we can apply the constructions of the previous section to obtain
another invariant β′ ∈ Fp(2), and we prove that β′ = β.

The proof of dimFp R/pR > 3 involves constructing an explicit USN deformation
using the 1-reducible GMAs of Definition 4.1.2. We do this in steps, first construct-
ing an arbitrary deformation, and then imposing the local conditions one at a time.
We show that the assumption a(1)|`1 = 0 implies that a deformation exists. Next,
we impose the finite-flat condition, which we show limits the set of deformations
enough that there is a well-defined invariant β ∈ Fp(2). Finally, we show that the
unramified-or-Steinberg condition is satisfied if α2 + β = 0.

7.1. Construction of a second-order 1-reducible GMA representation with-
out local conditions. Recall the Cayley–Hamilton representation

ρ1 =

(
ω(1 + εa(1)) b(1)

ωc(1) 1 + εd(1)

)
: GQ,Np → E×1

of Lemma 4.3.2. Let Π2 denote the set of second-order 1-reducible Cayley–Hamilton
deformations of ρ1:

Π2 = {ρ2 : GQ,Np → E×2 | r2,1 ◦ ρ2 = ρ1},
where r2,1 is the reduction map of 1-reducible GMAs r2,1 : E2 � E1 of (4.1.7).

Lemma 7.1.1. The set Π2 is in bijection with the set quadruples of cochains
a(2), d(2) : GQ,Np → Fp, b(2) : GQ,Np → Fp(1), and c(2) : GQ,Np → Fp(−1)
that satisfy

(i) −da(2) = a(1) ^ a(1) + b(1) ^ c(2) + b(2) ^ c(1)

(ii) −db(2) = a(1) ^ b(1) + b(1) ^ d(1)
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(iii) −dc(2) = c(1) ^ a(1) + d(1) ^ c(1)

(iv) −dd(2) = d(1) ^ d(1) + c(1) ^ b(2) + c(2) ^ b(1).

This set is non-empty if and only if a(1)|`1 = 0. Moreover, if it is non-empty,

(1) Π2 admits the structure of a torsor under the group

Z2 := Z1(Z[1/Np],Fp)× Z1(Z[1/Np],Fp)× Z1
b × Z1(Z[1/Np],Fp(−1)),

where

Z1
b := ker

(
Z1(Z[1/Np],Fp(1))→ H1(Q`0 ,Fp(1))

〈Fp(2)|`0 ∪ [c(1)]|`0〉

)
and the action of (a, d, b, c) ∈ Z2 on (a(2), d(2), b(2), c(2)) ∈ Π2 has the form

(a, d, 0, 0) · (a(2), d(2), b(2), c(2)) = (a(2) + a, d(2) + d, b(2), c(2))

(0, 0, b, c) · (a(2), d(2), b(2), c(2)) =

(a(2) + σ(b, c), d(2) − σ(b, c) + b · c(1) + b(1) · c, b(2) + b, c(2) + c)

where σ : Z1
b × Z1(Z[1/Np],Fp(−1))→ C1(Z[1/Np],Fp) is a choice of linear

map such that −dσ(b, c) = b ^ c(1) + b(1) ^ c.
(2) For every (a(2), d(2), b(2), c(2)) ∈ Π2, the restriction b(2)|`0 is a cocycle whose

cohomology class is a multiple of c0|`0 = [c(1)]|`0 .

Proof. Every element ρ2 of Π2 can be written in the form

(7.1.2) ρ2 =

(
ω(1 + a(1)ε+ a(2)ε2) b(1) + b(2)ε

ω(c(1) + c(2)ε) 1 + d(1)ε+ d(2)ε2

)
: GQ,Np → E×2 ,

for some cochains a(2), b(2), c(2), d(2). The fact that ρ2 is a homomorphism implies
the equations (i)-(iv). Conversely, given cochains satisfying (i)-(iv), the function
ρ2 defined by (7.1.2) is an element of Π2. This gives the desired bijection. Now we
show that there are cochains satisfying (i)-(iv) if and only if a(1)|`1 = 0.
Coboundary condition (ii). Note that (ii) is the same equation as (6.2.7). By
Lemma 6.2.9, there is a cochain b(2) satisfying (ii) if and only if a(1)|`1 = 0. The
set of cochains b(2) satisfying (ii) is a torsor for Z1(Z[1/Np],Fp(1)); however, we

will see that condition (i) can only be satisfied for a subset of the cochains b(2)

satisfying (ii).
This shows that a(1)|`1 = 0 is necessary for Π2 to be non-empty. Now assume

a(1)|`1 = 0, and we will show this is sufficient.
Coboundary condition (iii). There is a cochain satisfying (iii) if

c(1) ∪ a(1) + d(1) ∪ c(1) = 0

in H2(GQ,Np,Fp(−1)). By Lemma 3.2.8, we only have to check this vanishing after
restriction to H2(Q`1 ,Fp(−1)) and H2(Q`0 ,Fp(−1)). The `1-local restriction van-

ishes because a(1)|`1 = d(1)|`1 = 0. Since d(1)|`0 = −a(1)|`0 , the `0-local restriction
is

c(1)|`0 ∪ a(1)|`0 − a(1)|`0 ∪ c(1)|`0 ,
which vanishes because a(1)|`0 = α ∪ c(1)|`0 . The set of cochains satisfying (iii) is a
torsor for Z1(Z[1/Np],Fp(−1)).
Coboundary condition (i). Note that condition (i) is similar to (6.2.6); this argument
follows the same line as in the proof Lemma 6.3.1.
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Let b(2) and c(2) be arbitrary cochains satisfying (ii) and (iii), respectively. There
is a cochain a(2) satisfying (i) if

(7.1.3) a(1) ^ a(1) + b(1) ^ c(2) + b(2) ^ c(1)

vanishes in H2(GQ,Np,Fp). By Lemma 3.2.8 and since H2(Q`1 ,Fp) = 0, it is enough
to check this vanishing after restriction to H2(Q`0 ,Fp).

Recall from Lemma 3.2.1 that b(1)|`0 = 0. Since −da(1) = b(1) ^ c(1), this
implies that a(1)|`0 is a cocycle. Likewise, differential equation (ii) implies that
b(2)|`0 is a cocycle. By the skew-symmetry of cup product, (7.1.3) vanishes if and
only if

b(2)|`0 ^ c(1)|`0
vanishes in H2(Q`0 ,Fp). This happens for some choices of b(2), but not others:

recall that the set of choices of b(2) satisfying (ii) is a torsor for Z1(Z[1/Np],Fp(1)).

Indeed, since H2(Q`0 ,Fp) has Fp-dimension 1 and is spanned by [b
(1)
0 ]|`0 ∪ [c(1)]|`0

by Proposition 3.2.9, there is a constant γ ∈ Fp such that

[b(2)|`0 ] ∪ [c(1)]|`0 = γ[b
(1)
0 ]|`0 ∪ [c(1)|`0 .

This shows that (7.1.3) vanishes if b(2) is replaced by b(2)−γb(1)
0 . Moreover, the set

of choices for b(2) satisfying (ii) and such that (7.1.3) vanishes is a torsor for the set
of b ∈ Z1(Z[1/Np],Fp(1)) such that [b]|`0 ∪ [c(1)]|`0 = 0. By Tate duality (Lemma
3.2.6), this is same as b belonging to the subgroup Z1

b .

In summary, the set of b(2) that satisfy (ii) and such that (i) has a solution is a
torsor for Z1

b ; this is holds for any choice of c(2). For any such b(2), the set of a(2)

that satisfy (i) is a torsor for Z1(Z[1/Np],Fp).
Coboundary condition (iv). The same analysis as for (i) applies to (iv).

Combining these analyses, we deduce that

• Π2 is non-empty if and only if a(1)|`1 = 0
• There is an action of Z1

b × Z1(Z[1/Np],Fp(−1)) on Π2 that acts by addition

on the b(2) and c(2)-coordinates
• And there exists a linear choice of σ, namely

Z1
b × Z1(Z[1/Np],Fp(−1)) 3 (b, c) 7→ −d−1(b ^ c(1) + b(1) ^ c)

where d−1 is an arbitrarily chosen linear section of the boundary map d :
C1(Z[1/Np],Fp) � B2(Z[1/Np],Fp). Under this definition of σ, one can
compute that the differential equations (i) and (iv) are satisfied by (0, 0, b, c) ·
(a(2), b(2), c(2), d(2)). (See the origin of the formula for the d(2)-coordinate in
the proof of Lemma 7.1.4, below.)

• There is an action of Z1(Z[1/Np],Fp)⊕2 that acts by addition on the a(2) and

d(2)-coordinates and fixes the b(2) and c(2)-coordinates,

which amounts to claim (1). Claim (2) follows from the analysis of coboundary
condition (i) above. �

We will frequently use the bijection between Π2 and the set of quadruples of
cochains (a(2), d(2), b(2), c(2)) satisfying (i)-(iv) without comment. Let Πdet

2 denote
the subset of Π2 consisting of elements with constant determinant ω,

Πdet
2 := {ρ2 ∈ Π2 | det(ρ2) = ω}.
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Lemma 7.1.4. Assume a(1)|`0 = 0. Then Πdet
2 is non-empty, an element ρ2 ∈ Π2

is completely determined by its cochains a(2), b(2) and c(2), and Πdet
2 is a torsor for

the subgroup Zdet
2 ⊂ Z2 under the action of Z2 on Π2 of Lemma 7.1.1, where

Zdet
2 := {(a, d, b, c) ∈ Z2 | a+ d = 0} ⊂ Z2.

Proof. Let a(2), b(2), and c(2) be cochains satisfying equations (i), (ii) and (iii),
respectively, of Lemma 7.1.1. A straightforward calculation shows that the only
choice of cochain d(2) such that the resulting representation ρ2 satisfies det(ρ2) = ω
is

d(2) = b(1)c(2) + b(2)c(1) − a(1)d(1) − a(2).

Moreover, a computation shows that this choice of d(2) satisfies equation (iv). The
action of an element (a, b, c, d) ∈ Z2 fixes the determinant if and only if a+ d = 0.
This follows from the equations for the action of Z2 given in Lemma 7.1.1. �

7.2. The finite-flat at p condition on ρ2. We continue to assume that a(1)|`1 =
0; consequently, Πdet

2 is non-empty by Lemma 7.1.4. Consider the subset of Π2,

Πdet,p
2 = {ρ2 ∈ Πdet

2 | ρ2|p is finite-flat} ⊂ Π2.

Proposition 7.2.1. Assume a(1)|`1 = 0. Then Πdet,p
2 is non-empty, and the possi-

bilities for b(2)-coordinates of ρ2 ∈ Πdet,p
2 is contained in a torsor under the subgroup

of Z1(Z[1/Np],Fp(1)) spanned by coboundaries and b(1). In particular, there is a

unique β ∈ Fp(2) such that, for every ρ2 ∈ Πdet,p
2 ,

[b(2)|`0 ] = β ∪ [c(1)]|`0 ∈ H1(Q`0 ,Fp(1)),

where b(2) is the cochain associated to ρ2.

Remark 7.2.2. In fact, the phrase “contained in” in the proposition can be replaced
by “equal to,” but we do not have a use for that result.

Remark 7.2.3. Lemma 7.1.1(2) already implies that some such β exists for any
single ρ2 ∈ Π2; our supplemental work will be to show that there is only one β that

appears among ρ2 ∈ Πdet,p
2 .

We will prove the first claim of Proposition 7.2.1, that Πdet,p
2 is non-empty, using

a series of lemmas to produce an element of Πdet
2 that is finite-flat at p.

Just as in the proof that ρ1 is finite-flat in Lemma 4.3.2, it will be convenient to
change the basis of ρ2 ∈ Πdet

2 in order to test the finite-flat condition of ρ2|p. Recall

the element xc(1) ∈ Fp(1) of Definition 3.1.1 satisfying dxc(1) |p = c(1)|p. Define

ρ′2 := ad(
( 1 0
−x

c(1)+yε 1

)
)ρ2 for y ∈ Fp to be chosen later, and write ρ′2 as

(7.2.4) ρ′2 =

(
ω(1 + a(1)′ε+ a(2)′ε2) b(1)′ + b(2)′ε

ω(c(1)′ + c(2)′ε) 1 + d(1)′ε+ d(2)′ε2

)
.

Explicitly:

• a(1)′ = a(1) + b(1) ^ xc(1)

• b(1)′ = b(1)

• c(1)′ = c(1) − dxc(1)

• d(1)′ = d(1) − xc(1) ^ b(1)

and

• a(2)′ = a(2) + b(2) ^ xc(1) + b(1) ^ y
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• b(2)′ = b(2)

• c(2)′ = c(2) − xc(1) ^ a(1) + d(1) ^ xc(1) − xc(1) ^ b(1) ^ xc(1) − dy
• d(2)′ = d(2) − xc(1) ^ b(2) − y ^ b(1).

Just as in the proof of Lemma 4.3.2, we have

• a(1)′ |p and d(1)′ |p are unramified homomorphisms

• c(1)′ |p = 0.

Because ρ′2 is also a homomorphism, the primed cochains also satisfy equations
(i)-(iv) of Lemma 7.1.1.

Lemma 7.2.5. Assume a(1)|`1 = 0. There exists ρ2 ∈ Πdet
2 such that ρ2|p is

upper-triangular (in the sense that c(2)′ |p = 0).

Proof. Let ρ2 ∈ Πdet
2 be arbitrary. We will find an element (a,−a, b, c) ∈ Zdet

2 such
that ρ2,new := (a,−a, b, c) · ρ2 has the desired property.

By equation (iii) of Lemma 7.1.1 applied to c(2)′ ,

−dc(2)′ |p = c(1)′ |p ^ a(1)′ |p + d(1)′ |p ^ c(1)′ |p = 0

since c(1)′ |p = 0. Hence c(2)′ |p is a cocycle.

Sublemma 7.2.6. The Fp-dimension of H1(Qp,Fp(−1)) is 1. The localization
map H1(Z[1/Np],Fp(−1))→ H1(Qp,Fp(−1)) is surjective.

Proof. The first claim is a standard consequence of Tate local duality and local
Euler characteristics at p; in particular, the Euler characteristic of H•(Qp,Fp(−1))
is −1. For the second claim, consider the exact sequence

0→ H1
(p)(Z[1/Np],Fp(−1))→ H1(Z[1/Np],Fp(−1))→ H1(Qp,Fp(−1))

coming from the definition of H•(p) as a cone. The Euler characteristic of global

cohomology H•(Z[1/Np],Fp(−1)) is −1 by the global Euler characteristic formula.
We also know from the proof of Lemma 3.2.8 that dimFp

H2(Z[1/Np],Fp(−1)) = 1.

Therefore dimFp
H1(Z[1/Np],Fp(−1)) = 2. The desired surjectivity follow from the

fact that H1
(p)(Z[1/Np],Fp(−1)) has dimension 1. Indeed, c0 is a basis for it, as

discussed in Definition 3.1.1. �

By the sublemma, there exists z ∈ Z1(Z[1/Np],Fp(−1)) such that z|p = −c(2)′ |p.
Let ρ2,new = (0, 0, 0, z) · ρ2. It has c

(2)
new = c(2) + z. By the formula for c(2)′ in terms

of c(2) (given after (7.2.4)), we also have c
(2)′

new = c(2)′ + z. Therefore c
(2)′

new|p = 0, as
desired. �

Let ρ2 ∈ Πdet
2 be as in Lemma 7.2.5. Then

(7.2.7) ρ′2|p =

(
ωχ2 (b(1)′ + b(2)′ε)|p

0 χ−1
2

)
: Gp → E×2 ,

where

χ2 = (1 + a(1)′ε+ a(2)′ε2)|p : Gp → Fp[ε2]×.

Indeed, since ρ′2|p is upper-triangular, χ2 is a homomorphism, and since det(ρ′2) =

ω, the lower-right coordinate of ρ′2|p must be χ−1
2 . Let χ1 : Gp → Fp[ε1]× denote the

character χ1 := χ2 ⊗Fp[ε2] Fp[ε1], which equals 1 + a(1)′ε. We want to characterize
the finite-flat at p property of ρ2, bootstrapping from the fact that its reduction ρ1
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is finite-flat at p. To this end, we induce two representations η2 and η1 associated
to an element of Πdet

2

Definition 7.2.8. Assume that ρ2 ∈ Πdet
2 has the property that ρ′2|p is upper-

triangular. Then there are two associated representations

η2 =

(
ωχ2 εb(1)′ + ε2b(2)′

0 χ−1
2

)
: Gp → GL2(Fp[ε2])

given by ρ′2|p composed with the embedding of Lemma 4.1.9, and

(7.2.9) η1 =

(
ω(1 + εa(1)′) b(1)′ + εb(2)′

ωεc(1)′ 1 + εd(1)′

)
: GQ,Np → GL2(Fp[ε1])

given by ρ′2 composed with the map E2 →M2(Fp[ε1]) of Lemma 4.1.10.

Remark 7.2.10. Note that

η1|p =

(
ωχ1 b(1)′ |p + εb(2)′ |p

0 χ−1
1

)
.

Also, be aware that η1 does not equal the reduction of η2 modulo ε2. Rather, one ob-
tains η1 from η2 by “dividing the extension class εb(1)′+ε2b(2)′ ∈ Ext1

Fp[ε2][Gp](χ
−1
2 , ωχ2)flat

by ε,” which will be made rigorous in the proof of Lemma 7.2.11.

Lemma 7.2.11. Assume that ρ2 ∈ Πdet
2 has the property that ρ′2|p is upper-

triangular, and let η2 and η1 be the associated representations of Definition 7.2.8.
The following are equivalent:

(1) The Cayley–Hamilton representation ρ2|p is finite-flat.
(2) The homomorphism η2 is finite-flat.
(3) The homomorphism η1|p : Gp → GL2(Fp[ε1]) is finite-flat and χ2 is unrami-

fied.

Proof. The equivalence of (1) and (2) follows from the embedding of Lemma 4.1.9
along with Lemma 2.2.10.

Now we assume (2) and prove (3). By Proposition 2.2.6, χ2 is unramified. We
will show that η1|p is isomorphic to a subquotient representation of η2. This implies
that η1|p is finite-flat, since the finite-flat property is stable, as discussed in §2.2.5.

From the exact sequences

0→ εωχ2 → ωχ2 → ω → 0, 0→ ε2χ−1
2 → χ−1

2 → χ−1
1 → 0

there is a commutative diagram of Ext groups over Fp[ε2][Gp] with exact rows and
columns

Ext1(χ−1
1 , εωχ2)

��
0 // Ext1(χ−1

2 , εωχ2) //

��

Ext1(χ−1
2 , ωχ2) //

��

Ext1(χ−1
2 , ω)

0 // Ext1(ε2χ−1
2 , εωχ2) // Ext1(ε2χ−1

2 , ωχ2)

The representation η2 defines a class in Ext1(χ−1
2 , ωχ2), written as εb(1)′ + ε2b(2)′ .

The fact that this class is a multiple of ε implies that η2 maps to zero under both
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the horizontal and the vertical map out of Ext1(χ−1
2 , ωχ2) in the diagram. By a

diagram chase, there is a class W ∈ Ext1(χ−1
1 , εωχ2) mapping to η2. This W is

a subquotient of η2, so it is finite-flat. Moreover, a computation of the maps in
the diagram in coordinates, as in [WWE20, Appendix C], shows that there is an
Fp[ε1]-basis for W such that the action of Gp on W is given by η1|p. In particular,
η1|p is isomorphic to W as a Fp[Gp]-module, so it is finite-flat.

Finally, we assume (3) and prove (2). By Proposition 2.2.12 (the formal smooth-
ness of the finite-flat deformation functor), there is a finite-flat representation
η2,lift : Gp → GL2(Fp[ε2]) of the form

η2,lift =

(
ω(1 + εa(1)′ + ε2a

(2)′

lift ) b(1)′ + εb(2)′ + ε2b
(3)′

lift

0 1 + εd(1)′ + ε2d
(2)′

lift

)

=

(
ωχ2,1,lift b(1)′ + εb(2)′ + ε2b

(3)′

lift

0 χ2,2,lift

)
.

deforming η1|p. Let ε · η2,lift denote the homomorphism

ε · η2,lift =

(
ωχ2,1,lift εb(1)′ + ε2b(2)′

0 χ2,2,lift

)
: Gp → GL2(Fp[ε2]),

which represents the class in Ext1
Fp[ε2][Gp](χ

−1
2,2,lift, ωχ2,1,lift) that is the ε-multiple of

the class of b(1)′+εb(2)′+ε2b(3)′ . By [WWE20, Rem. C.3.2], since η2,lift is finite-flat,
ε · η2,lift is too.

Finally, since χ2, χ2,1,lift, and χ2,2,lift are all unramified characters, it follows
that

a = a(2)′ − a(2)′

lift , and d = d(2)′ − d(2)′

lift

are unramified cocycles. Then η2 is obtained from the finite-flat representation
ε · η2,lift by adding the cocycle

(
a 0
0 d

)
∈ Z1(Gp,EndFp(ω⊕ 1)), which is in the finite-

flat subspace. By Proposition 2.2.12, this implies that η2 is also finite-flat. �

Lemma 7.2.12. Assume a(1)|`1 = 0. There exists ρ2 ∈ Πdet
2 such that

• ρ′2|p is upper-triangular (equivalently, c(2)′ |p = 0), and
• the associated homomorphism η1 as in Definition 7.2.8 is finite-flat.

Proof. Let ρ2 ∈ Πdet
2 be such that ρ2|p is upper-triangular (which exists by Lemma

7.2.5). We will find an element (0, 0, b, 0) ∈ Zdet
2 such that ρ2,new := (0, 0, b, 0)·ρ2 has

η1,new being finite-flat. This ρ2,new|p is still upper-triangular because c
(2)′

new = c(2)′ .

Let η =
(
ω b(1)′

0 1

)
= (η1 mod ε); it is finite-flat at p by Lemma 2.2.8. The

lift η1 of η over Fp[ε1] � Fp can and will be considered to be an element of

Z1(Z[1/Np],Ad0(η)) by Lemma 2.2.11. We want to examine its coordinates so
we set up the following notions.

The filtration of Fp[GQ,Np]-modules

0→ Fp(1)
ι→ η

π→ Fp → 0

induces a filtration of Ad0(η),

0 ⊂ HomFp
(Fp,Fp(1)) ⊂ U ⊂ Ad0(η),
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where U := {f ∈ Ad0(η) | π ◦ f ◦ ι = 0} and

U

HomFp(Fp,Fp(1))
' Fp,

Ad0(η)

U
∼= HomFp

(Fp(1),Fp) ∼= Fp(−1).

For any subgroup G ⊂ GQ,Np, it is exactly the cochains in C1(G,Ad0(η)) that lie in
C1(G,U) that are upper-triangular. Therefore we are interested in Z1(Qp, U), and
its finite-flat subspace Z1(Qp, U)flat. We also want to use the subspace of global
lifts that are upper-triangular upon restriction to Gp,

Z1(Z[1/Np],Ad0(η))p-UT = ker

(
Z1(Z[1/Np],Ad0(η))→ Z1(Qp,Ad0(η|p))

Z1(Qp, U)

)
.

Sublemma 7.2.13. There is a commutative diagram induced by the filtrations
above with exact rows

0 // Z1(Z[1/Np],Fp(1))
ιQ //

��

Z1(Z[1/Np],Ad0(η))p-UT

��
0 // Z1(Qp,Fp(1))

ιp // Z1(Qp, U)
κp // Z1(Qp,Fp)

0 // Z1(Qp,Fp(1))flat //

OO

Z1(Qp, U)flat //

OO

Z1(Qp,Fp)flat //

OO

0

where

ι∗ : b 7→
(

0 b
0 0

)
, κ∗ :

(
a

(1)′

p b
(2)′

p

0 −a(1)′

p

)
7→ a(1)′

p .

Proof. The commutativity follows directly from the filtrations. The exactness of
the top two rows follows from standard long exact sequences in Galois cohomology,
for G = GQ,Np, Gp,

0→ H0(G,Fp)→ H1(G,Fp(1))→ H1(G,U)→ H1(G,Fp),
and the observation that the kernel of H1(G,Fp(1))→ H1(G,U) arises from cocy-
cles being sent to coboundaries that are non-zero. The exactness of the third row
follows from direct calculation of ιp and κp. The final claim of the lemma follows
from Proposition 2.2.12 and the exactness of the rows of the diagram. �

Since η1|p is upper-triangular, η1 ∈ Z1(Z[1/Np],Ad0(η))p-UT. Moreover κp(η1|p) =

a(1)′ |p is in Z1(Qp,Fp)flat = Z1
unr(Qp,Fp) because a(1)′ |p is unramified by construc-

tion (see Lemma 4.2.1).
Consider the diagram in the sublemma. Since κp(η1|p) ∈ Z1(Qp,Fp)flat, the

snake lemma implies that the class of η1|p is in the image of

Z1(Qp,Fp(1))

Z1(Qp,Fp(1))flat

ιp−→ Z1(Qp, U)

Z1(Qp, U)flat
.

By Lemma 2.2.9, the image of Z1(Z[1/Np],Fp(1)) generates
Z1(Qp,Fp(1))

Z1(Qp,Fp(1))flat . This

implies that there is b ∈ Z1(Z[1/Np],Fp(1)) such that ιp(b|p)+η1|p is in Z1(Qp, U)flat.
The commutativity of the diagram implies that ιp(b|p) = ιQ(b)|p.

Let b ∈ Z1(Z[1/Np],Fp(1)) be such that ιQ(b)|p + η1|p is in Z1(Qp, U)flat and
let ρ2,new := (0, 0, b, 0) · ρ2 ∈ Πdet

2 . By construction, η1,new = η1 + ιQ(b), and
η1,new|p = η1|p + ιQ(b)|p is finite-flat. �
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Lemma 7.2.14. Assume a(1)|`1 = 0. Then Πdet,p
2 is non-empty.

Proof. Let ρ2 ∈ Πdet
2 be as in Lemma 7.2.12. We claim that there is a cocycle

a ∈ Z1(Z[1/Np],Fp) such that (a(2)′ + a)|p is unramified. Assume this claim,

and let ρ2,new = (a,−a, 0, 0) · ρ2. As this action only changes a(2) and d(2), the
representation η1,new for ρ2,new is identically equal to η1, so it is finite-flat. The
character χ2,new for ρ2,new is given by

χ2,new =
(

1 + εa(1)′ + ε2(a(2)′ + a)
)
|p

and it is unramified because (a(2)′ + a)|p is unramified. By Lemma 7.2.11, ρ2,new|p
is finite-flat.

It remains to prove the claim that there is a cocycle a ∈ Z1(Z[1/Np],Fp) such

that (a(2)′ + a)|p is unramified. The fact that χ2 is a character implies

−da(2)′ |p = a(1)′ ^ a(1)′ .

This is the same as the coboundary of 1
2 (a(1)′ |p)2, so the difference a′ := 1

2 (a(1)′ |p)2−
a(2)′ |p is a cocycle. Since the map

Z1(Z[1/Np],Fp)→
Z1(Qp,Fp)
Z1

un(Qp,Fp)

is surjective, there is a ∈ Z1(Z[1/Np],Fp) such that a′ − a|p is unramified. Thus,

since a(1)′ |p is unramified, it follows that

(a(2)′ + a)|p =
1

2
(a(1)′ |p)2 + (a′ − a|p)

is unramified. �

Let

(Z1
b )flat := Z1

b ∩ Z1(Z[1/Np],Fp(1))flat ⊂ Z1(Z[1/Np],Fp(1)).

Proposition 7.2.15. For every pair of elements of Πdet,p
2 , the difference between

their b(2)-entries is contained in (Z1
b )flat. Moreover, (Z1

b )flat is the span of b(1) and
B1(Z[1/Np],Fp(1)). In particular, b|`0 = 0 for all b ∈ (Z1

b )flat.

Remark 7.2.16. In fact, the set of differences of the Proposition is equal to (Z1
b )flat,

but we have no need of this result.

Proof. Let ρ2, ρ2,alt ∈ Πdet,p
2 . By Lemma 7.2.11, both η1|p and η1,alt|p are finite-flat.

As in the proof of Lemma 7.2.12, and with the notation used there, η1 and η1,alt

are identified with elements of Z1(Z[1/Np],Ad0(η))p−UT . Since they have equal

coordinates other than b(2)′ , the difference b(2)′ − b
(2)′

alt is in Z1(Z[1/Np],Fp(1)).
As η1|p and η1,alt|p are finite-flat, the commutativity of the diagram in Sublemma

7.2.13 implies that b(2)′−b(2)′

alt ∈ Z1(Z[1/Np],Fp(1))flat. On the other hand, Lemma

7.1.1(2) implies that b(2)′ − b(2)′

alt ∈ Z1
b . This proves that b(2) − b(2)

alt ∈ (Z1
b )flat, as

desired.
When x ∈ Fp(1) is a basis, then {dx, bp, b(1), b

(1)
0 } is a basis for Z1(Z[1/Np],Fp(1)).

By Lemma 2.2.9, {dx, b(1), b
(1)
0 } is a basis for the subspace Z1(Z[1/Np],Fp(1))flat.

Since b(1)|`0 = 0 and dx|`0 = 0, both b(1) and dx are in (Z1
b )flat. But, by Lemma

3.2.1 and Proposition 3.2.9, b
(1)
0 is not in Z1

b , so {dx, b(1)} is a basis for (Z1
b )flat. �
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The main result of this section, Proposition 7.2.1, follows immediately from
Lemma 7.2.14 and Proposition 7.2.15.

7.3. The USN condition on ρ2. Finally, consider the subset ΠUSN
2 of Πdet,p

2 con-
sisting of those ρ2 which satisfying the USN condition. This subset is cut out by
local conditions as

ΠUSN
2 = {ρ2 ∈ Πdet,p

2 | ρ2|`i is US`i for i = 0, 1}.
Indeed, the USN condition is simply the combination of the finite-flat condition at
p along with the two US`i conditions at `i, and the constant determinant condition
actually follows from the USN condition according to [WWE21, Prop. 3.8.3].

Recall α ∈ Fp(1) from Definition 4.2.2. If a(1)|`1 = 0, then β ∈ Fp(2) as in
Proposition 7.2.1 is defined.

Proposition 7.3.1. If a(1)|`1 = 0 and α2 + β = 0, then ΠUSN
2 = Πdet,p

2 , and, in

particular, ΠUSN
2 is non-empty.

Proof. By Proposition 7.2.1, Πdet,p
2 is non-empty. Let ρ2 ∈ Πdet,p

2 . We will first
show that, if α2 +β = 0, then ρ2|`0 is US`0 . Let σ, τ ∈ G`0 . It suffices to show that

(ρ2(σ)− ω(σ))(ρ2(τ)− 1)

is zero in E2. Using the facts that ω|`0 = 1 and b(1)|`0 = 0, this product, written
in coordinates, is(

a(1)(σ)ε+ a(2)(σ)ε2 b(2)(σ)ε
c(1)(σ) + c(2)(σ)ε d(1)(σ)ε+ d(2)(σ)ε2

)
·
(
a(1)(τ)ε+ a(2)(τ)ε2 b(2)(τ)ε
c(1)(τ) + c(2)(τ)ε d(1)(τ)ε+ d(2)(τ)ε2

)
=

(
(a(1)(σ)a(1)(τ) + b(2)(σ)c(1)(τ))ε2 0
(c(1)(σ)a(1)(τ) + d(1)(σ)c(1)(τ))ε (c(1)(σ)b(2)(τ) + d(1)(σ)d(1)(τ))ε2

)
.

Using the equations that

a(1)|`0 = α ^ c(1)|`0 , d(1)|`0 = −a(1)|`0 , b(2)|`0 = β ^ c(1)|`0 ,
all instances of a(1), d(1), and b(2) can be replaced by appropriate multiples of c(1),
and the formula simplifies to

(ρ2(σ)−ω(σ))(ρ2(τ)−1) =

(
(α2 + β)c(1)(σ)c(1)(τ)ε2 0

0 (α2 + β)c(1)(σ)c(1)(τ)ε2

)
which vanishes by the assumption α2 + β = 0. This implies that ρ2|`0 is US`0 .

It remains to show that ρ2|`1 is US`1 . To do so, it will be convenient to change c(2)

by adding an element of B1(Z[1/Np],Fp(−1)) to it. This amounts to conjugating
ρ2 by an element of E×2 , which does not affect whether the US`1 -condition holds.

Note that ω|I`1 = 1 and that a(1)|`1 , d(1)|`1 , and c(1)|`1 are zero. By equation

(iii) in Lemma 7.1.1, c(2)|`1 is a cocycle. Since H1(Q`1 ,Fp(−1)) vanishes, c(2)|`1 is

a coboundary. Therefore, by adding an element of B1(Z[1/Np],Fp(−1)) to c(2) if

necessary, we may and do assume c(2)|`1 = 0.
With this assumption, ρ2|`1 can be written in coordinates as

ρ2|`1 =

(
ωχ b(1)|`1 + b(2)|`1ε
0 χ−1

)
where χ = 1 + a(2)|`1ε2 : G`1 → Fp[ε2]× is a homomorphism. Since χ has order
dividing p and the pro-p-abelian quotient of G`1 is generated by Frobenius, χ is
unramified.
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Let σ ∈ G`1 , τ ∈ I`1 . Then χ(τ) = 1 and ω(τ) = 1, so

(ρ2(σ)− ω(σ))(ρ2(τ)− 1) =(
ω(σ)(χ(σ)− 1) b(1)(σ) + b(2)(σ)ε

0 χ−1(σ)− ω(σ)

)
·
(

0 b(1)(τ) + b(2)(τ)ε
0 0

)
This equals zero because ω(σ)(χ(σ) − 1) ∈ ε2Fp[ε2], which annihilates the B-
coordinate Fp[ε1]. On the other hand

(ρ2(τ)− ω(τ))(ρ2(σ)− 1) =(
0 b(1)(τ) + b(2)(τ)ε
0 0

)
·
(
ω(σ)χ(σ)− 1 b(1)(σ) + b(2)(σ)ε

0 χ−1(σ)− 1

)
.

This equals zero similarly, because χ−1(σ)− 1 ∈ ε2Fp[ε2]. Therefore, for all σ, τ ∈
G`1 × I`1 ∪ I`1 ×G`1 ,

(ρ2(σ)− ω(σ))(ρ2(τ)− 1) = 0

and so ρ2|`1 is US`1 . �

Corollary 7.3.2. Assume a(1)|`1 = 0 and α2 + β = 0. Then dimFp R/pR > 3.

Proof. By Proposition 7.3.1, ΠUSN
2 is non-empty. Let ρ2 ∈ ΠUSN

2 , let D2 = ψ(ρ2) :
GQ,Np → Fp[ε2] be the associated pseudorepresentation, and let φ2 : R → Fp[ε2]
be the local homomorphism induced by D2 using the universal property of R. By
construction, the composition of φ2 with the quotient Fp[ε2] � Fp[ε1] is the map
φ1 of Lemma 4.3.2. Since φ1 is surjective, this implies that φ2 is surjective.

Recall the notation S = R/(p,m2) of Section 5.3; since S is a quotient of R/pR,
it is enough to show that dimFp(S) > 3. The map φ2 induces a surjective local-
ring homomorphism φ2 : S � Fp[ε2]. Any element y ∈ mS such that φ2(y) = ε
has φ2(y2) = ε2 6= 0, so y2 ∈ m2

S is non-zero. Since dimFp
(R/(p,m2)) = 3 by

Proposition 5.1.8, this implies

dimFp
(S) = 3 + dimFp

(m2
S) > 3. �

Combining this corollary with Proposition 6.4.1, we can prove the main theorem.

Theorem 7.3.3. The Fp-dimension of R/pR is greater than 3 if and only if

(1) a(1)|`1 = 0 in H1(Q`1 ,Fp) and
(2) α2 + β = 0 in Fp(2)|`0 .

Moreover, if dimFp
R/pR = 3, the surjection R → T of Proposition 2.2.15 is an

isomorphism of reduced finite flat Zp-algebras of rank 3.

Proof. We prove the final statement first. Suppose dimFp
R/pR = 3. Since R is

complete and separated as a Zp-module, Nakayama’s lemma implies that there is a
surjection of Zp-modules Z3

p � R. On the other hand, T is a free Zp-module, and
Ribet’s Theorem 1.3.1 implies that rkZp

T ≥ 3. The surjectivity of the composition

Z3
p � R� T

then implies that rkZp
T = 3, so the composition is an isomorphism. This implies

that R� T is an isomorphism.
Now we prove the first statement. One implication is immediate from Corollary

7.3.2. Conversely, assume dimFp
R/pR > 3. Since dimFp

R/(p,m2) = 3 by Proposi-

tion 5.1.8, this implies dimFp
S > 3 where S = R/(p,m3). By Corollary 5.3.3, this

implies dimFp
S = 4. By Lemma 6.2.9, this implies (1).
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It remains to show that (2) holds when dimFp
S = 4. Let ρ2 ∈ ΠUSN

2 be the
element constructed in Corollary 6.4.6. By the construction and by Proposition
7.2.1, the element β′ ∈ Fp(2) defined in Lemma 6.3.1 is equal to β. Since α2+β′ = 0
by Proposition 6.4.1, this implies (2). �

8. The invariant α2 + β is canonical

In this section, we prove that α2 +β is a canonical element of µ⊗2
p , when it exists.

That is, we will show that it does not depend on the pinning data of Definition
1.7.1. This improves upon Theorem 7.3.3, which only implies that the vanishing of
α2 + β is independent of the pinning data of Definition 1.7.1.

8.1. Formulation and outline of the proof. First, we must make precise what
we mean by “α2 + β is a canonical element of µ⊗2

p ”. Up until this point, we have

defined α2 + β as an element of Fp(2), not of µ⊗2
p . Note the difference: µp ⊂ Q is

the group of pth roots of unity, and a choice of primitive pth root of unity ζ ∈ Q
defines an isomorphism

(8.1.1) φζ : Fp(2)→ µ⊗2
p , 1 7→ ζ ⊗ ζ

of Fp[GQ]-modules. Since the pinning data includes a choice primitive pth root of

unity ζ ∈ Q, for any choice of pinning data, we have an element φζ(α
2 + β) ∈ µ⊗2

p .

When we say that α2 +β is a canonical, we mean that the φζ(α
2 +β) is independent

of the choice of pinning data.

Theorem 8.1.2. Make Assumption 1.3.2.

(1) The condition a(1)|`1 = 0 does not depend on the pinning data.
(2) If a(1)|`1 = 0, then there is an element δ ∈ µ⊗2

p such that, for each choice of

pinning data, α2 +β = φ−1
ζ (δ), where ζ ∈ Q is the primitive pth root of unity

given in the pinning data.

We explain the main ideas of the proof. The pinning data is mainly used in the
paper in two ways: first, as a normalization factor to choose a particular Galois
cohomology class that is only canonical up to scalar, and, second, to select cocycles
within those normalized cohomology classes. Since α and β and defined in terms
of these cocycles, their values could depend on pinning data. However, in a sense,
we can think of α and β as being “ratios” of pairs of cocycles, and we show that,
for most changes to the pinning data that affect the normalization, both elements
in the pair are scalar by the same factor, and, as a result, the ratios α and β are
unchanged. The only change of the pinning data that affects α2 + β is changing
the primitive pth root of unity ζ, and we show that change behaves as expected for
an element of µ⊗2

p : changing ζ to ζa multiplies α2 + β by a−2.
The second kind of effect of the pinning data is to change the choice of cocycle

within a cohomology class. This kind of change amounts to conjugating the repre-
sentations ρ1 and ρ2. By Lemma 7.1.1, the condition a(1)|`1 = 0 can be interpreted
in terms of the existence of a deformation ρ2 of ρ1, and this is unaffected by con-
jugation. In general, conjugation changes the value of α and β, but we show that
the quantity α2 + β is left unchanged.

To prove the theorem, we analyze the effect of changing each datum indepen-
dently. In Section 8.2, we prove a general lemma about how α and β change under
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conjugation. In each of the remaining parts, we focus on a single changes to the
pinning data, and compute its effect. We will use the following notation scheme:

• We maintain the same notation α, β, ρ1, ρ2, a(1), b(1), . . . , as in the earlier
parts of the paper, computed with respect the pinning data fixed in Definition

1.7.1. Here ρ2 denotes an arbitrary element of Πdet,p
2 , assuming it exists.

• We use primed notation α′, β′, ρ′1, ρ′2, a(1)′ , b(1)′ , . . . , for the same objects
computed with respect to the altered pinning data under consideration at the
time.

In particular, be warned that the meaning of the primed objects is variable (and
they also differ from the primed objects considered in Section 7.2).

8.2. Coordinate-wise calculation of conjugation of ρ1 and ρ2. In this section,
we compute the affect of conjugation on the representations ρ1 and ρ2 and their
constituent cochains.

Let M ∈ E×2 be an element of the form

M =

(
A0 +A1ε+A2ε

2 B0 +B1ε
C0 + C1ε 1 +D1ε+D2ε

2

)
with Ai, Bi, Ci, Di ∈ Fp, such that det(M) = A0, and also write M as M =

(
A B
C D

)
.

The usual formula for inverting a 2× 2-matrix is valid in E2:

M−1 = A−1
0

(
D −B
−C A

)
and for N =

(
a b
c d

)
∈ E2, the conjugation M−1NM is given by

M−1NM = A−1
0

(
ADa− εABc+ εCDb− εBCd D2b+BD(a− d)− εB2c
A2c+AC(d− a)− εC2b ADd− εCDb− εBCa+ εABc

)
Let M1 ∈ E×1 be the image of M under the map E2 → E1, and let ρ1,M and

ρ2,M denote the conjugates of ρ1 and ρ2 (if it exists)

ρ1,M (σ) = M−1
1 ρ1(σ)M1, ρ2,M (σ) = M−1ρ2(σ)M.

Write these in coordinates as

ρ2,M =

(
ω(1 + a

(1)
M ε+ a

(2)
M ε2) b

(1)
M + b

(2)
M ε

ω(c
(1)
M + c

(2)
M ε) 1 + d

(1)
M ε+ d

(2)
M ε2

)
and similarly for ρ1,M . Using the explicit formula for conjugation above, we can
express these new cochains in terms of the original ones.

Lemma 8.2.1. Let M ∈ E×2 and ρ1,M , ρ2,M be as above. Then

b
(1)
M = A−1

0

(
b(1) +B0(ω − 1)

)
(8.2.2)

c
(1)
M = A0(c(1) +A−1

0 C0(ω−1 − 1)(8.2.3)

a
(1)
M = a(1) −B0c

(1) +A−1
0 C0ω

−1b(1) −A−1
0 B0C0(ω−1 − 1)(8.2.4)

b
(2)
M = A−1

0

(
b(2) + (D1 +A−1

0 A1 +B0C0)b(1)

+ (B1 −A−1
0 A1B0 +B2

0C0)(ω − 1) +B0(ωa(1) − d(1))−B2
0ωc

(1)
)
.

(8.2.5)

Using this lemma, we can see how changes to the pinning data that cause ρ1 and
ρ2 to be replaced by conjugates affect the values of a(1)|`1 and α2 + β.
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Lemma 8.2.6. Consider a change to the pinning data that does not alter the de-
composition group at `0 or the primitive pth root of unity ζ, and let G′`1 denote the
decomposition group at `1 that is part of this new data. Suppose that the represen-
tation ρ′1 computed with this respect to this new data is of the form ρ′1 = ρ1,M for
some M ∈ E×2 as above. Then

(1) a(1)′ |G′`1 = 0 if and only if a(1)|`1 = 0.

(2) if a(1)|`1 = 0, then α′2 + β′ = A−2
0 (α2 + β).

Proof. For part (1), note that, by Lemma 7.1.1, a(1)|`1 = 0 if and only if ρ1 has
a deformation ρ2. If a(1)|`1 = 0, then ρ2 exists, and ρ2,M gives a deformation of

ρ′1 = ρ1,M , so a(1)′ |G`1
= 0. This argument is symmetric, so the other implication

follows.
Now suppose a(1)|`1 = 0, so ρ2 exists and we can define ρ′2 = ρ2,M , and β and

β′ are defined. Then α and β are defined by the formulas

a(1)|`0 = α ∪ c(1)|`0 , b(2)|`0 = β ∪ c(1)|`0
and similarly for α′ and β′. Since both pinning data have the same primitive pth
root of unity ζ, we can and do use ζ to identify twists of Fp with Fp. In this way,
we can think of α and β as elements of Fp and think of this cup product as scalar
multiplication.

Noting that ω|`0 = 1, d(1)|`0 = −a(1)|`0 , and b(1)|`0 = 0, the formulas of Lemma
8.2.1 give

a(1)′ |`0 = a(1)|`0 −B0c
(1)|`0

c(1)′ |`0 = A0c
(1)|`0

b(2)′ |`0 = A−1
0 (b(2)|`0 + 2B0a

(1)|`0 −B2
0c

(1)|`0).

Rearranging to write everything in terms of c(1)′ |`0 gives

a(1)′ |`0 = A−1
0 (α−B0)c(1)′ |`0

b(2)′ |`0 = A−2
0 (β + 2B0α−B2

0)c(1)′ .

In other words,

α′ = A−1
0 (α−B0), β′ = A−2

0 (β + 2B0α−B2
0)

so α′2 + β′ = A−2
0 (α2 + β), as desired. �

In the next section, we will see that, for any such change to the pinning data, we
have ρ′1 = ρ1,M for an element M with A0 = det(M) = 1. Then the lemma implies
Theorem 8.1.2 for these types of changes. Finally, we will deal with changes to the
decomposition group at `0 and changes to ζ by separate arguments.

8.3. Changes that affect ρ1 by conjugation. In this section, we consider the
changes to the pinning data of the types allowed in Lemma 8.2.6. We maintain
the same notation ρ1,M as in the previous section. We will often rely on Definition

3.1.1, which describes how the cocycles b
(1)
0 , b(1), c(1), and a0 as well as the elements

γ0 ∈ I`0 and γ1 ∈ I`1 and the 0-cochain xc(1) are determined by the pinning data.
We also frequently use Lemma 4.2.1, which describes the cochain a(1).
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Lemma 8.3.1 (Change of decomposition group at `1). Let G′`1 ⊂ GQ,Np be another
choice of decomposition group at `1, and let ρ′1 be the representation obtained by
this change to the pinning data. Then ρ′1 = ρ1,M where

M =

(
1 0
C0 1

)
for some C0 ∈ Fp.

In particular, this change does not affect the condition a(1)|`1 = 0 and does not
change the value of α2 + β.

Proof. The cocycle b(1) and the class c0 of the cocycle c(1) do not depend on the
choice of decomposition group at `1, so b(1)′ = b(1) and c(1)′ − c(1) is a coboundary.
Therefore

c(1)′ = c(1) + C0(ω−1 − 1)

for some C0 ∈ Fp. This implies

xc(1)′ = xc(1) + C0.

It remains to show that

a(1)′ = a(1) − C0ω
−1b(1).

This follows from Lemma 4.2.1, as the defining properties (1)-(3) are easily checked

with these values of b(1)′ , c(1)′ , and xc(1)′ . (Alternatively, properties (1) and (2)
correspond to properties of the resulting map ρ′1 (that it be a homomorphism and
be finite-flat at p, respectively) that are unchanged by conjugation.) The last
statement is clear from Lemma 8.2.6. �

Next we consider the choice of decomposition group at p and the choice of root

`
1/p
1 of `1 (or equivalently, the choice of cocycle b(1) in the class b1). These cannot be

considered completely independently because we insist that b(1)|p = 0 when b1|p = 0
(note that the condition b1|p = 0 is independent of the choice of decomposition
group).

Lemma 8.3.2 (Change of decomposition group at p and change of root `
1/p
1 of `1).

Let G′p ⊂ GQ,Np be a choice of decomposition group at p and let b(1)′ be a choice of

cocycle in the class b1 of b(1) that satisfies

b(1)′ |G′p = 0

if b1|p = 0. Let ρ′1 be the representation obtained by this change to the pinning data.
Then ρ′1 = ρ1,M where

M =

(
1 B0

0 1

)
for some B0 ∈ Fp.

In particular, this change does not affect the condition a(1)|`1 = 0 and does not
change the value of α2 + β.

Proof. The cocycles b(1)′ and b(1) have the same class, so b(1)′ = b(1) + B0(ω − 1)
for some B0 ∈ Fp. The cocycle c(1) does not depend on the choice of decomposition

group at p or on the choice of root `
1/p
1 of `1, so c(1)′ = c(1). It remains to show

that

a(1)′ = a(1) −B0c
(1).
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This follows from Lemma 4.2.1 just as in the last lemma. The last statement is
clear from Lemma 8.2.6. �

Changing the root `
1/p
0 of `0 only changes the cocycle b

(1)
0 and does not affect

b(1) or c(1), and consequently does not change a(1), α, or β.

8.4. Change of decomposition group at `0. Changing the decomposition group
at `0 changes the element γ0 ∈ I`0 that is used to normalize c(1). Hence it will scale
c(1) by a factor. However, the following lemma shows that it changes a(1) and b(2)

by the same factor.

Lemma 8.4.1. Let G′`0 ⊂ GQ,Np be another choice of decomposition group at `0,
and let ρ′1 be the representation obtained by this change to the pinning data. Then
there is an element A ∈ F×p such that

b(1)′ = b(1)

c(1)′ = Ac(1)

a(1)′ = Aa(1).

In particular, this change does not affect the condition a(1)|`1 = 0.

If, moreover, a(1)|`1 = 0, then there is deformation ρ′2 ∈ Π′
det,p
2 such that

b(2)′ = Ab(2).

In particular, this change does not alter the value of α or β.

Proof. The cocycle b(1) does not depend on the choice of decomposition group at
`0, so b(1)′ = b(1). Let σ ∈ GQ be such that G′`0 = σ−1G`0σ.

A computation with cocycles4 shows that, for all τ ∈ G`0 :

b
(1)
0 (σ−1τσ) = ω(σ)−1

(
b
(1)
0 (τ) + b

(1)
0 (σ)(ω(τ)− 1)

)
In particular, letting A0 = ω(σ) and γ′0 = σ−1γA0

0 σ, it follows that b(1)(γ′0) = 1.

The cocycle c(1)′ is normalized so that c(1)′(γ′0) = 1. Formula (8.2.3) applied
with M1 = ρ1(σ) gives

c(1)(γ′0) = A2
0

so c(1)′ = A−2
0 c(1). Letting A = A−2

0 , this gives c(1)′ = Ac(1).
Now we claim that

a(1)′ = Aa(1).

This follows from Lemma 4.2.1. Finally, if a(1)|`1 = 0, then we claim that

ρ′2 =

(
ω(1 +Aa(1)ε+A2a(2)ε2) b(1) +Ab(2)ε

ω(Ac(1) +Ac(2)ε) 1 +Ad(1)ε+A2d(2)ε2

)
is in Π′

det,p
2 . In order to prove the claim, we apply the implication (3) ⇒ (1) of

Lemma 7.2.11. The η′1 produced from ρ′2 via (7.2.9), considered as an element of
Z1(Z[1/Np],Ad0(η′)) via Lemma 2.2.11 where η′ = η1 (mod ε), has coordinates

A ·
(
a(1) b(2)

c(1) d(1)

)
. Since the subset of finite-flat at p lifts of η′ is a subspace containing(

a(1) b(2)

c(1) d(1)

)
, it contains η′1 as well.

4Note that this is the the same as the conjugation formula (8.2.2), and can also be proven in
the same way.
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Finally, since a(1), c(1), and b(2) are all scaled by the same factor, the values of
α and β are left unchanged. �

8.5. Changing the root of unity. Finally, we check that changing the root of
unity alters α2 + β in the expected way.

Lemma 8.5.1. Let ζ ′ ∈ Q denote another choice of primitive root of unity and let
A ∈ F×p be such that ζ = ζ ′A. Let ρ′1 be the representation obtained by this change
to the pinning data. Then

b(1)′ = Ab(1)

c(1)′ = Ac(1)

a(1)′ = A2a(1).

In particular, this change does not affect the condition a(1)|`1 = 0.

If, moreover, a(1)|`1 = 0, then there is deformation ρ′2 ∈ Π′
det,p
2 such that

b(2)′ = A3b(2).

In particular, α′ = Aα and β′ = A2β, and

φζ′(α
′2 + β′) = φζ(α

2 + β).

where φζ is as in (8.1.1)

Proof. Recall that b(1) is defined by the equation

σ`
1/p
1

`
1/p
1

= ζb
(1)(σ)

for all σ ∈ GQ,Np. Replacing ζ by ζ ′A, it follows that b(1)′ = Ab(1). Similarly

b
(1)′

0 = Ab
(1)′

0 .

The cocycle c(1)′ is a scalar multiple of c(1), normalized such that c(1)′(γ′0) = 1

where γ′0 ∈ I`0 satisfies b
(1)′

0 (γ′0) = 1. Since b
(1)
0 (γ0) = 1 and b

(1)′

0 = Ab
(1)
0 , we can

choose γ′0 = γA
−1

0 . Given that c(1)(γ0) = 1, this shows that c(1)′ = Ac(1).

The fact that a(1)′ = A2a(1) follows immediately from Lemma 4.2.1. Similarly,
it is easy to see that b(2)′ = A3b(2) satisfies differential equation (ii) in Proposition
7.3.1, and the fact that the resulting ρ2 is finite-flat is clear.

The equations α′ = Aα and β′ = A2β follow immediately from the definitions
and, since φζ = A2φζ′ , this shows that

φζ′(α
′2 + β′) = φζ′(A

2(α2 + β)) = φζ(α
2 + β). �
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[HWWE22] Catherine Hsu, Preston Wake, and Carl Wang-Erickson. Explicit non-Gorenstein
R = T via rank bounds II: Computation. Preprint, available at http://www.math.

pitt.edu/~caw203/pdfs/RR3-Part2.pdf. To appear Res. Number Theory as part of

the proceedings of the Fifteenth Algorithmic Number Theory Symposium (ANTS-
XV), 2022.

[KW09] Chandrashekhar Khare and Jean-Pierre Wintenberger. Serre’s modularity conjecture.

I. Invent. Math., 178(3):485–504, 2009.
[Lec21] Emmanuel Lecouturier. Higher Eisenstein elements, higher Eichler formulas and rank

of Hecke algebras. Invent. Math., 223(2):485–595, 2021.

[Maz77] B. Mazur. Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ.

Math., (47):33–186 (1978), 1977.
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