The Eisenstein ideal with squarefree level

Carl Wang-Erickson

University of Pittsburgh

UCSD number theory seminar, 7 May 2020

What is a congruence of modular forms?

- Ø Mazur's Eisenstein congruences at prime level
- Eisenstein congruences at squarefree level (joint with Preston Wake)
 Reference: https://arxiv.org/abs/1804.06400
- Examples
- S A more subtle case (joint with P. Wake and Catherine Hsu)

Modular forms

Let $N = \ell_1 \cdots \ell_r$ be a squarefree integer, with ℓ_i prime.

"Modular forms" in this talk are modular forms of weight 2 and level $\Gamma_0(N)$, $M_2(N)$, though of as holomorphic functions in the complex variable z in the upper half plane of \mathbb{C} . We have a splitting

$$M_2(N) = \mathrm{Eis}_2(N) \oplus S_2(N)$$

into cusp forms and the span of Eisenstein series.

We represent them as q-series, $f(z) = \sum_{n \ge 0} a_n(f)q^n$, for $q = e^{2\pi i z}$.

Example (When *N* is prime)

Eis₂(N) is spanned by $E_{2,N}(z) = \frac{N-1}{24} + \sum_{n\geq 1} \left(\sum_{d\mid n,(N,d)=1} d \right) q^n$. The least prime N with non-zero $S_2(N)$ is N = 11, spanned by $f(z) = q \prod_{n=1}^{\infty} (1-q^n)^2 (1-q^{11\cdot n})^2$.

Congruences of Hecke eigenvalues

Consider the Hecke action by Hecke operators

• T_n for (n, N) = 1, $n \ge 1$ ("unramified" operators)

• w_{ℓ} for primes $\ell \mid N$, the Atkin–Lehner operator at ℓ (an involution) There is a common eigenbasis of $M_2(N)$ for the Hecke action, consisting of eigenforms, and the eigenvalues are algebraic integers.

 \rightsquigarrow We can make sense of "congruences between eigenforms."

Definition

Let $f, g \in M_2(N)$ be eigenforms. Let $\mathbb{Q}(f)$ denote the number field generated by the Hecke eigenvalues of f. A congruence modulo p between f and g is a prime v of $\mathbb{Q}(f, g)$ dividing p such that the Hecke eigenvalues of f and g under $\{T_n, w_\ell\}$ are equivalent modulo v.

Write " $f \equiv g \pmod{p}$ " to express the existence of a cong. modulo p.

Eisenstein congruences

We focus on congruences between Eisenstein series and cusp forms.

Definition (Eisenstein congruences)

An Eisenstein congruence modulo p is a cusp form $f \in S_2(N)$ that is congruent to some Eisenstein series modulo p.

Convention:
$$f = f(z) = \sum_{n \ge 1} a_n(f)q^n$$
 denotes a normalized eigenform,
meaning $a_1(f) = 1$. Then for $(n, N) = 1$, $T_n \cdot f = a_n(f) \cdot f$. So we can
read the T_n -part of congruences off of q -series. E.g. $a_n(E_{2,N}) = \sigma(n)$.

Example

Let
$$N = 11$$
. Then $E_{2,11} = \frac{10}{24} + q + 3q^2 + 4q^3 + \cdots$ and $f = q - 2q^2 - q^3 + \cdots$ are congruent modulo p if and only if $p = 5$.

(More on w_{ℓ} later, but $w_N = -1$ on $M_2(N)$ when N is prime.)

Mazur's results on the Eisenstein ideal

Mazur's torsion theorem (mid 1970s) says the torsion subgroup $E(\mathbb{Q})_{\text{tors}}$ of the rational points of an elliptic curve E/\mathbb{Q} is one of 15 options. He proved this by analyzing Eisenstein congruences at *prime* level *N*.

The analysis was carried out by applying commutative algebra to the Hecke algebra of weight 2 and level $\Gamma_0(N)$.

- Let T_ℤ denote the ℤ-subalgebra of End_ℂ(M₂(N)) generated by Hecke operators.
- Let $\mathbb{T}^0_{\mathbb{Z}}$ be its quotient arising from the action on $S_2(N)$.

Moduli-theoretic interpretation. We have a bijection

{normalized eigenforms $\in M_2(N)$ } \longleftrightarrow { $\mathbb{T}_{\mathbb{Z}} \to \overline{\mathbb{Q}}$ }

 $f \mapsto (\text{homom. sending } T_n, w_\ell \mapsto \text{ their eigenval. on } f).$

Commutative algebra of Hecke algebras

We have the cuspidal version as well.

 $\{\text{normalized eigenforms } \in M_2(N)\} \longleftrightarrow \{\mathbb{T}_{\mathbb{Z}} \to \overline{\mathbb{Q}}\} \\ \{\text{normalized eigenforms } \in S_2(N)\} \longleftrightarrow \{\mathbb{T}_{\mathbb{Z}}^0 \to \overline{\mathbb{Q}}\} \\ \}$

that is, " $\mathbb{T}_{\mathbb{Z}}$ is the moduli of eigenforms."

Let N be prime, so that there is a unique Eisenstein series $E_{2,N}$. Let

$$\mathbb{T}_{\mathbb{Z}} \supset \mathit{I}_{\mathbb{Z}} := \mathsf{ker}(\mathbb{T}_{\mathbb{Z}} \overset{\mathsf{eigensys. of } E_{2,N}}{\longrightarrow} \overline{\mathbb{Q}})$$

We have $\mathbb{T}_{\mathbb{Z}}/I_{\mathbb{Z}} \cong \mathbb{Z}$, with $T_n \mapsto \sigma(n)$ there. Its isomorphic image $I_{\mathbb{Z}}^0 \subset \mathbb{T}_{\mathbb{Z}}^0$ is *Mazur's Eisenstein ideal*.

Idea (Mazur). Relate commutative algebra of $I^0_{\mathbb{Z}} \subset \mathbb{T}^0_{\mathbb{Z}}$ to Eisenstein congruences.

Commutative algebra to measure Eisenstein congruences

Definition

Let
$$\mathbb{T} := (\mathbb{T}_{\mathbb{Z}})^{\wedge}_{(I_{\mathbb{Z}},p)}, \mathbb{T}^{0} := (\mathbb{T}^{0}_{\mathbb{Z}})^{\wedge}_{(I_{\mathbb{Z}}^{0},p)}$$
 be the completions at the maximal ideals generated by $I_{\mathbb{Z}}$ and p .
Let $I := I_{\mathbb{Z}} \cdot \mathbb{T}, I^{0} := I^{0}_{\mathbb{Z}} \cdot \mathbb{T}^{0}$.

Because $\mathbb{T}_{\mathbb{Z}} \twoheadrightarrow \mathbb{T}_{\mathbb{Z}}^{0}$ are reduced finite-rank free \mathbb{Z} -algebras, $\mathbb{T} \twoheadrightarrow \mathbb{T}^{0}$ have the same properties/ \mathbb{Z}_{p} .

Moduli-theoretic interpretation. We have bijections

$$\begin{aligned} \{ \text{Eisenstein congruences} \} \cup \{ E_{2,N} \} &\longleftrightarrow \{ \mathbb{T} \to \overline{\mathbb{Q}}_p \} \\ \{ \text{Eisenstein congruences} \} &\longleftrightarrow \{ \mathbb{T}^0 \to \overline{\mathbb{Q}}_p \} \end{aligned}$$

 \mathbb{T},\mathbb{T}^0 are local rings. We say they interpolate the Eisenstein congruences.

Mazur's results on the Hecke algebras

Terminology. Today, we will call

- \mathbb{T} the "Hecke algebra"
- \mathbb{T}^0 the "cuspidal Hecke algebra"
- $I \subset \mathbb{T}$ and its isomorphic image $I^0 \subset \mathbb{T}^0$ the "Eisenstein ideal."

Theorem (Mazur, case of prime N)

There exists an Eisenstein congruence modulo p (i.e. $\mathbb{T}^0 \neq 0$) if and only if $p \mid \frac{N-1}{12}$. Moreover, when $\mathbb{T}^0 \neq 0$, **1** $\mathbb{T}^0/l^0 \cong \mathbb{Z}_p/(\frac{N-1}{12}) \longrightarrow \frac{N-1}{12}$ is the "congruence number" **2** l^0 is principal (hence \mathbb{T}^0 is monogeneric/ \mathbb{Z}_p) **3** (let $p \ge 3$) for a prime $q \neq N$, $T_q - (q+1)$ generates l^0 if and only if $q \neq 1 \pmod{p}$, and q is not a pth power modulo N.

Mazur's results on the Hecke algebras

Theorem (Mazur, case of prime N)

There exists an Eisenstein congruence modulo p (i.e. $\mathbb{T}^0 \neq 0$) if and only if $p \mid \frac{N-1}{12}$. Moreover, when $\mathbb{T}^0 \neq 0$, **1** $\mathbb{T}^0/I^0 \cong \mathbb{Z}_p/(\frac{N-1}{12}) \longrightarrow \frac{N-1}{12}$ is the "congruence number" **1** I^0 is principal (hence \mathbb{T}^0 is monogeneric/ \mathbb{Z}_p) **1** (let $p \ge 3$) for a prime $q \neq N$, $T_q - (q+1)$ generates I^0 if and only if $q \neq 1 \pmod{p}$, and q is not a pth power modulo N.

Mazur's application. For applications to rational points on the modular curve $X_0(N)$, what was especially useful is the *Gorenstein* property of \mathbb{T}^0 . Gorensteinness follows from the complete intersection ("CI") property, which follows from $\mathbb{T}^0/\mathbb{Z}_p$ being flat and monogeneric.

Generalizing to squarefree level

Recall: Write $N = \ell_1 \cdots \ell_r$, and

 $M_2(N) = \operatorname{Eis}_2(N) \oplus S_2(N)$, with $\dim_{\mathbb{C}} \operatorname{Eis}_2(N) = 2^r - 1$.

Definition (A-L signature ε)

In $M_2(N)$, there are exactly $2^r - 1$ realized possibilities for the eigenvalues of the *r*-tuple of Atkin–Lehner involution $(w_{\ell_1}, \ldots, w_{\ell_r})$, denoted

$$\varepsilon = (\varepsilon_1, \cdots, \varepsilon_r) \in \{\pm 1\}^{\times r} \smallsetminus \{(+1, \ldots, +1)\}$$

In particular, the Eisenstein part $\operatorname{Eis}_2(N)$ has a basis enumerated by the A-L signatures,

$$\{E_{2,N}^{\varepsilon}\}_{\varepsilon}$$
, where $w_{\ell_i} \cdot E_{2,N}^{\varepsilon} = \varepsilon_i \cdot E_{2,N}^{\varepsilon}$.

Why w_{ℓ} -operators instead of U_{ℓ} -operators?

One more frequently sees operators U_{ℓ} instead of w_{ℓ} . Their eigenvalues on $\operatorname{Eis}_2(N)$ are

$$w_\ell:\pm 1, \qquad U_\ell:1,\,\ell.$$

We study w_{ℓ} because we view them as "desingularizing" the U_{ℓ} -action on Eisenstein series:

- the w_ℓ -eigenvalues on $\operatorname{Eis}_2(N)$ are distinct modulo any odd prime p
- the U_ℓ -eigenvalues on $\operatorname{Eis}_2(N)$ degenerate modulo p that divide $\ell-1$

Moreover, Eisenstein congruences proliferate when $p \mid (\ell - 1)$, so using w_{ℓ} -operators is a useful refinement!

Commutative algebra - squarefree setup

Let ε be a choice of A-L signature, which singles out an Eisenstein series $E_{2,N}^{\varepsilon}$ (even modulo p for p odd).

• Let $I_{\mathbb{Z}}^{\varepsilon} \subset \mathbb{T}_{\mathbb{Z}}$ be the annihilator of $E_{2,N}^{\varepsilon}$, so $\mathbb{T}_{\mathbb{Z}}/I_{\mathbb{Z}}^{\varepsilon} \cong \mathbb{Z}$. We have

$$I_{\mathbb{Z}}^{\varepsilon} = (T_n - \sigma(n), w_{\ell} - \varepsilon_{\ell}).$$

• Let
$$\mathbb{T}^{\varepsilon} := (\mathbb{T}_{\mathbb{Z}})^{\wedge}_{(\mathbb{I}^{\varepsilon}_{\mathbb{Z}},p)}$$
.
• Bijection $\{\mathbb{T}^{\varepsilon} \to \overline{\mathbb{Q}}_{p}\} \longleftrightarrow \{\text{Eis. congruences with } E^{\varepsilon}_{2,N}\} \cup \{E^{\varepsilon}_{2,N}\}.$

Let T^{ε,0} be the completion of T⁰_Z at the image of (I^ε_Z, p).
 Bijection {T^{ε,0} → Q
p} ↔ {Eis. congruences with E^ε{2.N}}.

Goal. Generalize Mazur's results on \mathbb{T}^0_{prime} to the squarefree level $\mathbb{T}^{\varepsilon,0}$ and $\mathbb{T}^\varepsilon.$

Results at squarefree level

Mazur's results on $\mathbb{T}^{0}_{\text{prime}}$ (level N):

- **①** the congruence number is (N-1)/12
- **2** I^0_{prime} is principal, so $\mathbb{T}^0/\mathbb{Z}_p$ is monogeneric and complete intersection
- **③** Determination of which choices of single Hecke operator generate I^0

Ohta has established the analogue of (1) for odd p.

Theorem (Ohta, stated here when $p \ge 5$)

The congruence number of $I^{\varepsilon,0} \subset \mathbb{T}^{\varepsilon,0}$ is $a_0(E_{2,N}^{\varepsilon})$, which equals

$$\frac{1}{24}\prod_{i=1}^r (\ell_i + \varepsilon_i).$$

In other words, $\mathbb{T}^{\varepsilon,0} \neq 0$ iff $p \mid a_0(E_{2,N}^{\varepsilon})$; moreover, $\mathbb{T}^{\varepsilon,0}/I^{\varepsilon,0} \cong \frac{\mathbb{Z}_p}{a_0(E_{2,N}^{\varepsilon})}$.

New results at squarefree level, Case I

We present analogues to (2) and (3) in two <u>Cases</u> ($p \ge 5$ throughout).

Case I.
$$arepsilon=(-1,-1)$$
, ${\sf N}=\ell_1\ell_2$, $\ell_1\equiv\ell_2\equiv 1 \pmod{p}$, and

 $\log_{\ell_1}(\ell_2) \neq 0$ and $\log_{\ell_2}(\ell_1) \neq 0$,

where $\log_{\ell} : \mathbb{F}_{\ell}^{\times} \twoheadrightarrow \mathbb{Z}/p\mathbb{Z}$ is a choice of surjection.

Theorem (Wake–WE, Case I.)

- **1** \mathbb{T}^{ε} is complete intersection
- **2** $\mathbb{T}^{\varepsilon,0}$ is not Gorenstein
- So There is an isomorphism $I^{\varepsilon}/I^{\varepsilon^2} \cong \mathbb{Z}_p/(\ell_1 1) \oplus \mathbb{Z}_p/(\ell_2 1)$
- Sor primes q₁, q₂ ∤ N, the Hecke operators {T_{qi} − (q_i + 1)} generate I^ε if and only if

$$(q_1-1)(q_2-1)\detegin{pmatrix} \log_{\ell_1}(q_1) & \log_{\ell_1}(q_2) \ \log_{\ell_2}(q_1) & \log_{\ell_2}(q_2) \end{pmatrix}
eq 0\in\mathbb{F}_p.$$

New results at squarefree level, Case I

Generators of I^{ε} , $N = \ell_1 \ell_2$ and $\varepsilon = (-1, -1)$

For primes $q_1, q_2 \nmid N$, the Hecke operators $\{T_{q_i} - (q_i + 1)\}$ generate I^{ε} if and only if

$$(q_1-1)(q_2-1)\detegin{pmatrix} \log_{\ell_1}(q_1) & \log_{\ell_1}(q_2) \ \log_{\ell_2}(q_1) & \log_{\ell_2}(q_2) \end{pmatrix}
eq 0\in\mathbb{F}_{
ho}.$$

This neatly generalizes Mazur's condition at prime level.

Generator of I at prime level ℓ $T_q - (q + 1)$ generates the Eisenstein ideal at level $\Gamma_0(\ell)$ if and only if $(q - 1)\log_\ell(q) \neq 0 \in \mathbb{F}_p.$ New results at squarefree level, Case II

Case II. $\varepsilon = (-1, +1, +1, ..., +1)$, $\ell_1 \equiv 1 \pmod{p}$, $\ell_i \equiv -1 \pmod{p}$ for $2 \le i \le r$.

For what levels and signatures do Eisenstein congruent newforms exist?

There can be new congruences at any prime ℓ when $\varepsilon_{\ell} = -1$. In contrast, when $\varepsilon = +1$, there are new congruences only when $\ell \equiv -1 \pmod{p}$.

We need to set up a certain number field for each prime ℓ_i for $2 \le i \le r$. Let $K_{\ell_i}/\mathbb{Q}(\zeta_p)$ be the unique \mathbb{Z}/p -extension such that

- ramified only at primes over ℓ_i
- the prime $(1-\zeta_p)$ splits completely
- the Gal(Q(ζ_p)/Q)-action on Gal(K_{ℓi}/Q(ζ_p)) is given by ω⁻¹, where ω is the modulo p cyclotomic character ω : Gal(Q(ζ_p)/Q) → F_p[×].

New results at squarefree level, Case II

Case II, meaning $\varepsilon = (-1, +1, \dots, +1)$, and $\ell_i \equiv -\varepsilon_i \pmod{p}$.

Theorem (Wake–WE, Case II.)

- **1** \mathbb{T}^{ε} is complete intersection
- **2** $\mathbb{T}^{\varepsilon,0}$ is Gorenstein iff I^{ε} is principal

There is a SES

$$0 \to \bigoplus_{i=2}^{r} \frac{\mathbb{Z}_{p}}{(\ell_{i}+1)} \to I^{\varepsilon}/I^{\varepsilon^{2}} \to \mathbb{Z}_{p}/(\ell_{1}-1) \to 0$$

• The minimal number of generators of I^{ε} is $r - \delta$, where $\delta \in \{0, 1\}$ equals 0 if and only if ℓ_1 splits completely in K_{ℓ_i} for all $2 \le i \le r$.

There is a sufficient condition for a (r – δ)-tuple of primes (q_j) such that {T_{q_j} – (q_j + 1)} generate I^ε. It is explicit, and we omit it here.

Implications for "multiplicity one"

Let $J_0(N)$ be the Jacobian of the closed modular curve. "Multiplicity one" (modulo p) means that

 $\dim_{\mathbb{F}_p} J_0(N)[p]_{\mathfrak{m}^{\varepsilon}} = 2$

where $(-)_{\mathfrak{m}^{\varepsilon}}$ refers to the $\mathfrak{m}^{\varepsilon} = (I_{\mathbb{Z}}^{\varepsilon}, p)$ part under the $\mathbb{T}_{\mathbb{Z}}$ -action on $J_0(N)$.

Corollary (Wake–WE)

The \mathbb{F}_p -dimension above is $(\#gens. of I^{\varepsilon}) + 1$. Consequently,

- Multiplicity one fails in Case I (the #gens. is 2).
- 2 Multiplicity one holds in Case II iff $r \delta = 1$.
- **§** Generally, multiplicity one $\iff \mathbb{T}^{\varepsilon,0}$ is Gorenstein.

Statement (2) confirms a conjecture of Ribet, when r = 2. (But this requires a comparison between *w*-based and *U*-based theory!)

Examples

Example of Case II. Let $\varepsilon = (-1, +1)$, p = 5, $\ell_1 = 41$, $\ell_2 = 19$.

We find the number field K_{19} and check that 41 splits completely in it. Hence \mathbb{T}^{ε} (and I^{ε}) has two generators. Using Sage, we find

$$\frac{\mathbb{T}^{\varepsilon}}{5\mathbb{T}^{\varepsilon}} \cong \frac{\mathbb{F}_{5}[x,y]}{(y^{2}-2x^{2},xy)},$$

where $x = T_2 - 3$ and $y = T_{11} - 12$.

Also, \mathbb{T}^{ε} is complete intersection, $\mathbb{T}^{\varepsilon,0}$ is not Gorenstein, multiplicity one fails, and the congruence number is $\frac{1}{24}(41-1) \cdot (19+1)$.

Examples

Example of Case I. Let $\varepsilon = (-1, -1)$, p = 5, $\ell_1 = 11$, $\ell_2 = 41$. The theorem applies, since

- 11 is not a 5th power modulo 41, and
- 41 is not a 5th power modulo 11.

We get that \mathbb{T}^{ε} and I^{ε} have two generators, $\mathbb{T}^{\varepsilon,0}$ is not Gorenstein, multiplicity one fails, and the congruence number is $\frac{1}{24}(11-1)(41-1)$.

What primes (q_1, q_2) give generators $\{T_{q_i} - (q_i + 1)\}$ of I^{ε} ? Among $q \in \{2, 3, 7, 13\}$, we get

$$\log_{\ell_i}(q) = 0 \iff \ell_i = 41 \text{ and } q = 3.$$

Thus for $q \in \{2, 7, 13\}$, we get that

$$\begin{pmatrix} \log_{11}(q) & \log_{11}(3) \\ \log_{41}(q) & \log_{41}(3) \end{pmatrix}$$

has non-zero determinant $\in \mathbb{F}_5$, and (q,3) give generators of I^{ε} .

Proofs of the theorems: comparison with Galois representations

We know the shape of the 2-dim. *p*-adic $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -representations ρ_f associated to new eigenforms $f \in M_2(N)$: when restricted to a decomposition group G_ℓ at a prime $\ell \mid Np$,

$$ho|_{\mathcal{G}_\ell}\simeq
u(-arepsilon_\ell)\otimes egin{pmatrix}\kappa&*\&0&1\end{pmatrix},\quad ext{ where }$$

- κ is the p-adic cyclotomic character
- $\nu(\alpha)$ is the unramified character of G_{ℓ} sending $\operatorname{Frob}_{\ell} \mapsto \alpha$.
- * denotes a non-trivial extension

Method.

- **(**) Produce a ring R^{ε} that parameterizes $G_{\mathbb{Q}}$ -**pseudo**reps. as above
- **2** Verify Wiles's numerical criterion to prove $R^{\varepsilon} \cong \mathbb{T}^{\varepsilon}$.
 - Byproduct: \mathbb{T}^{ε} is complete intersection.
- Selate arithmetic properties to structure of R^ε, deducing theorems about T^ε, T^{ε,0}.

Beyond complete intersection cases

We suspect we have addressed all complete intersection cases... \rightsquigarrow what lies beyond? Simplest case. $p \ge 5$, $N = \ell_1 \ell_2$, $\varepsilon = (-1, -1)$,

 $\ell_1 \equiv 1 \pmod{p}$, but $\ell_2 \not\equiv \pm 1 \pmod{p}$.

Theorem (A particular case of a more general result of Ribet) There is a new Eisenstein congruence at level N with A-L sig. (-1, -1) $\iff \log_{\ell_1}(\ell_2) = 0 \in \mathbb{F}_p.$

When this new Eisenstein congruence exists, $\mathbb{T}_N^{\varepsilon}$ is <u>not Gorenstein</u>. (So we can't hope to apply the numerical criterion to prove $R_N^{\varepsilon} = \mathbb{T}_N^{\varepsilon}$.)

With C. Hsu and P. Wake, we study the simplest non-Gorenstein case.

Non-Gorenstein " $R = \mathbb{T}$ "

Assume $\log_{\ell_1}(\ell_2) = 0$ and consider the *strict* surjection $\mathbb{T}_N^{\varepsilon} \twoheadrightarrow \mathbb{T}_{\ell_1}$. We understand Mazur's prime level setting: $R_{\ell_1} \cong \mathbb{T}_{\ell_1}$ there.

For simplicity assume $\operatorname{rank}_{\mathbb{Z}_p} \mathbb{T}^0_{\ell_1} = 1$, so $\mathbb{T}^0_{\ell_1} \cong \mathbb{Z}_p$. Then $\operatorname{rank}_{\mathbb{Z}_p} \mathbb{T}_{\ell_1} = 2$.

An argument for $R_N^{\varepsilon} \cong \mathbb{T}_N^{\varepsilon}$ (Hsu–Wake–WE)

- Since $\mathbb{T}_{N}^{\varepsilon} \twoheadrightarrow \mathbb{T}_{\ell_{1}}$ is strict, $\operatorname{rank}_{\mathbb{Z}_{p}} \mathbb{T}_{N}^{\varepsilon} \geq 3$.
- It is easy to produce $R_N^{\varepsilon} \twoheadrightarrow \mathbb{T}_N^{\varepsilon}$
- Prove that an <u>arithmetic condition</u> implies that dim_{𝔽p} R^ε_ℕ/pR^ε_ℕ ≤ 3.

Put together, the <u>arithmetic condition</u> implies $R_N^{\varepsilon} \cong \mathbb{T}_N^{\varepsilon}$, a non-Gorenstein case of $R_N^{\varepsilon} \cong \mathbb{T}_N^{\varepsilon}$.

Sufficient condition for non-Gorenstein $R_N^{\varepsilon} \cong \mathbb{T}_N^{\varepsilon}$

What is this <u>arithmetic condition</u> that we prove to imply that $R_N^{\varepsilon} \cong \mathbb{T}_N^{\varepsilon}$, under the assumptions above?

- We start with the \mathbb{Z}/p -extension $K_{\ell_1}/\mathbb{Q}(\zeta_p)$ defined above.
- Let $M := \mathcal{K}_{\ell_1}(\ell_2^{1/p})$
- Let $C := \operatorname{Cl}_M / p \operatorname{Cl}_M$ be the *p*-cotorsion of its ideal class group.
- Take the Galois co-invariants $C_{Gal(M/\mathbb{Q})}$, which we can show to be 1-dimensional/ \mathbb{F}_p .

<u>Arithmetic condition.</u> ℓ_2 is inert in the \mathbb{Z}/p -extension of M cut out by $C_{\text{Gal}(M/\mathbb{Q})}$. (Ongoing work: simplify the condition.)

Reason for interest in the non-Gorenstein rings " $R = \mathbb{T}$ "

The techniques above allow us to understand a non-Gorenstein case of " $R = \mathbb{T}$ " very explicitly. These cases are difficult in general, so we hope to obtain some general/theoretical insight.