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Modular forms
Let N = `1 · · · `r be a squarefree integer, with `i prime.

“Modular forms” in this talk are modular forms of weight 2 and level
Γ0(N), M2(N), though of as holomorphic functions in the complex variable
z in the upper half plane of C. We have a splitting

M2(N) = Eis2(N)⊕ S2(N)

into cusp forms and the span of Eisenstein series.

We represent them as q-series, f (z) =
∑
n≥0

an(f )qn, for q = e2πiz .

Example (When N is prime)

Eis2(N) is spanned by E2,N(z) = N−1
24 +

∑
n≥1

(∑
d |n,(N,d)=1 d

)
qn.

The least prime N with non-zero S2(N) is N = 11, spanned by
f (z) = q

∏∞
n=1(1− qn)2(1− q11·n)2.
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Congruences of Hecke eigenvalues

Consider the Hecke action by Hecke operators

Tn for (n,N) = 1, n ≥ 1 (“unramified” operators)

w` for primes ` | N, the Atkin–Lehner operator at ` (an involution)

There is a common eigenbasis of M2(N) for the Hecke action, consisting
of eigenforms, and the eigenvalues are algebraic integers.

 We can make sense of “congruences between eigenforms.”

Definition

Let f , g ∈ M2(N) be eigenforms. Let Q(f ) denote the number field
generated by the Hecke eigenvalues of f . A congruence modulo p between
f and g is a prime v of Q(f , g) dividing p such that the Hecke eigenvalues
of f and g under {Tn,w`} are equivalent modulo v .

Write “f ≡ g (mod p)” to express the existence of a cong. modulo p.
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Eisenstein congruences

We focus on congruences between Eisenstein series and cusp forms.

Definition (Eisenstein congruences)

An Eisenstein congruence modulo p is a cusp form f ∈ S2(N) that is
congruent to some Eisenstein series modulo p.

Convention: f = f (z) =
∑
n≥1

an(f )qn denotes a normalized eigenform,

meaning a1(f ) = 1. Then for (n,N) = 1, Tn · f = an(f ) · f . So we can
read the Tn-part of congruences off of q-series. E.g. an(E2,N) = σ(n).

Example

Let N = 11. Then E2,11 = 10
24 + q + 3q2 + 4q3 + · · · and

f = q − 2q2 − q3 + · · · are congruent modulo p if and only if p = 5.

(More on w` later, but wN = −1 on M2(N) when N is prime.)
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Mazur’s results on the Eisenstein ideal

Mazur’s torsion theorem (mid 1970s) says the torsion subgroup E (Q)tors
of the rational points of an elliptic curve E/Q is one of 15 options. He
proved this by analyzing Eisenstein congruences at prime level N.

The analysis was carried out by applying commutative algebra to the
Hecke algebra of weight 2 and level Γ0(N).

Let TZ denote the Z-subalgebra of EndC(M2(N)) generated by Hecke
operators.

Let T0
Z be its quotient arising from the action on S2(N).

Moduli-theoretic interpretation. We have a bijection

{normalized eigenforms ∈ M2(N)} ←→ {TZ → Q}
f 7→

(
homom. sending Tn,w` 7→ their eigenval. on f

)
.
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Commutative algebra of Hecke algebras

We have the cuspidal version as well.

{normalized eigenforms ∈ M2(N)} ←→ {TZ → Q}
{normalized eigenforms ∈ S2(N)} ←→ {T0

Z → Q}

that is, “TZ is the moduli of eigenforms.”

Let N be prime, so that there is a unique Eisenstein series E2,N . Let

TZ ⊃ IZ := ker(TZ
eigensys. of E2,N−→ Q).

We have TZ/IZ ∼= Z, with Tn 7→ σ(n) there.
Its isomorphic image I 0Z ⊂ T0

Z is Mazur’s Eisenstein ideal.

Idea (Mazur). Relate commutative algebra of I 0Z ⊂ T0
Z to Eisenstein

congruences.
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Commutative algebra to measure Eisenstein congruences

Definition

Let T := (TZ)∧(IZ,p), T
0 := (T0

Z)∧
(I 0Z ,p)

be the completions at the maximal

ideals generated by IZ and p.
Let I := IZ · T, I 0 := I 0Z · T0.

Because TZ � T0
Z are reduced finite-rank free Z-algebras, T� T0 have

the same properties/Zp.

Moduli-theoretic interpretation. We have bijections

{Eisenstein congruences} ∪ {E2,N} ←→ {T→ Qp}
{Eisenstein congruences} ←→ {T0 → Qp}

T,T0 are local rings. We say they interpolate the Eisenstein congruences.
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Mazur’s results on the Hecke algebras

Terminology. Today, we will call

T the “Hecke algebra”

T0 the “cuspidal Hecke algebra”

I ⊂ T and its isomorphic image I 0 ⊂ T0 the “Eisenstein ideal.”

Theorem (Mazur, case of prime N)

There exists an Eisenstein congruence modulo p (i.e. T0 6= 0) if and only if
p | N−112 . Moreover, when T0 6= 0,

1 T0/I 0 ∼= Zp/(N−112 )  N−1
12 is the “congruence number”

2 I 0 is principal (hence T0 is monogeneric/Zp)

3 (let p ≥ 3) for a prime q 6= N, Tq− (q + 1) generates I 0 if and only if
I q 6≡ 1 (mod p), and
I q is not a pth power modulo N.
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Mazur’s results on the Hecke algebras

Theorem (Mazur, case of prime N)

There exists an Eisenstein congruence modulo p (i.e. T0 6= 0) if and only if
p | N−112 . Moreover, when T0 6= 0,

1 T0/I 0 ∼= Zp/(N−112 )  N−1
12 is the “congruence number”

2 I 0 is principal (hence T0 is monogeneric/Zp)

3 (let p ≥ 3) for a prime q 6= N, Tq− (q + 1) generates I 0 if and only if
I q 6≡ 1 (mod p), and
I q is not a pth power modulo N.

Mazur’s application. For applications to rational points on the modular
curve X0(N), what was especially useful is the Gorenstein property of T0.
Gorensteinness follows from the complete intersection (“CI”) property,
which follows from T0/Zp being flat and monogeneric.
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Generalizing to squarefree level

Recall: Write N = `1 · · · `r , and

M2(N) = Eis2(N)⊕ S2(N), with dimC Eis2(N) = 2r − 1.

Definition (A-L signature ε)

In M2(N), there are exactly 2r − 1 realized possibilities for the eigenvalues
of the r -tuple of Atkin–Lehner involution (w`1 , . . . ,w`r ), denoted

ε = (ε1, · · · , εr ) ∈ {±1}×r r {(+1, . . . ,+1)}

In particular, the Eisenstein part Eis2(N) has a basis enumerated by the
A-L signatures,

{E ε2,N}ε, where w`i · E
ε
2,N = εi · E ε2,N .
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Why w`-operators instead of U`-operators?

One more frequently sees operators U` instead of w`. Their eigenvalues on
Eis2(N) are

w` : ±1, U` : 1, `.

We study w` because we view them as “desingularizing” the U`-action on
Eisenstein series:

the w`-eigenvalues on Eis2(N) are distinct modulo any odd prime p

the U`-eigenvalues on Eis2(N) degenerate modulo p that divide `− 1

Moreover, Eisenstein congruences proliferate when p | (`− 1), so using
w`-operators is a useful refinement!
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Commutative algebra - squarefree setup

Let ε be a choice of A-L signature, which singles out an Eisenstein series
E ε2,N (even modulo p for p odd).

Let I εZ ⊂ TZ be the annihilator of E ε2,N , so TZ/I
ε
Z
∼= Z. We have

I εZ = (Tn − σ(n),w` − ε`).

Let Tε := (TZ)∧(I εZ ,p)
.

I Bijection {Tε → Qp} ←→ {Eis. congruences with E ε
2,N} ∪ {E ε

2,N}.

Let Tε,0 be the completion of T0
Z at the image of (I εZ, p).

I Bijection {Tε,0 → Qp} ←→ {Eis. congruences with E ε
2,N}.

Goal. Generalize Mazur’s results on T0
prime to the squarefree level Tε,0 and

Tε.
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Results at squarefree level

Mazur’s results on T0
prime (level N):

1 the congruence number is (N − 1)/12

2 I 0prime is principal, so T0/Zp is monogeneric and complete intersection

3 Determination of which choices of single Hecke operator generate I 0

Ohta has established the analogue of (1) for odd p.

Theorem (Ohta, stated here when p ≥ 5)

The congruence number of I ε,0 ⊂ Tε,0 is a0(E ε2,N), which equals

1

24

r∏
i=1

(`i + εi ).

In other words, Tε,0 6= 0 iff p | a0(E ε2,N); moreover, Tε,0/I ε,0 ∼=
Zp

a0(E ε2,N)
.
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New results at squarefree level, Case I
We present analogues to (2) and (3) in two Cases (p ≥ 5 throughout).

Case I. ε = (−1,−1), N = `1`2, `1 ≡ `2 ≡ 1 (mod p), and

log`1(`2) 6= 0 and log`2(`1) 6= 0,

where log` : F×` � Z/pZ is a choice of surjection.

Theorem (Wake–WE, Case I.)

1 Tε is complete intersection

2 Tε,0 is not Gorenstein

3 There is an isomorphism I ε/I ε2 ∼= Zp/(`1 − 1)⊕ Zp/(`2 − 1)

4 For primes q1, q2 - N, the Hecke operators {Tqi − (qi + 1)} generate
I ε if and only if

(q1 − 1)(q2 − 1) det

(
log`1(q1) log`1(q2)
log`2(q1) log`2(q2)

)
6= 0 ∈ Fp.
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New results at squarefree level, Case I

Generators of I ε, N = `1`2 and ε = (−1,−1)

For primes q1, q2 - N, the Hecke operators {Tqi − (qi + 1)} generate I ε if
and only if

(q1 − 1)(q2 − 1) det

(
log`1(q1) log`1(q2)
log`2(q1) log`2(q2)

)
6= 0 ∈ Fp.

This neatly generalizes Mazur’s condition at prime level.

Generator of I at prime level `

Tq − (q + 1) generates the Eisenstein ideal at level Γ0(`) if and only if

(q − 1) log`(q) 6= 0 ∈ Fp.
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New results at squarefree level, Case II

Case II. ε = (−1,+1,+1, . . . ,+1), `1 ≡ 1 (mod p), `i ≡ −1 (mod p) for
2 ≤ i ≤ r .

For what levels and signatures do Eisenstein congruent newforms
exist?

There can be new congruences at any prime ` when ε` = −1. In contrast,
when ε = +1, there are new congruences only when ` ≡ −1 (mod p).

We need to set up a certain number field for each prime `i for 2 ≤ i ≤ r .
Let K`i/Q(ζp) be the unique Z/p-extension such that

ramified only at primes over `i

the prime (1− ζp) splits completely

the Gal(Q(ζp)/Q)-action on Gal(K`i/Q(ζp)) is given by ω−1, where
ω is the modulo p cyclotomic character ω : Gal(Q(ζp)/Q)

∼→ F×p .
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New results at squarefree level, Case II

Case II, meaning ε = (−1,+1, . . . ,+1), and `i ≡ −εi (mod p).

Theorem (Wake–WE, Case II.)

1 Tε is complete intersection

2 Tε,0 is Gorenstein iff I ε is principal

3 There is a SES

0→
r⊕

i=2

Zp

(`i + 1)
→ I ε/I ε2 → Zp/(`1 − 1)→ 0

4 The minimal number of generators of I ε is r − δ, where δ ∈ {0, 1}
equals 0 if and only if `1 splits completely in K`i for all 2 ≤ i ≤ r .

5 There is a sufficient condition for a (r − δ)-tuple of primes (qj) such
that {Tqj − (qj + 1)} generate I ε. It is explicit, and we omit it here.
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Implications for “multiplicity one”
Let J0(N) be the Jacobian of the closed modular curve. “Multiplicity one”
(modulo p) means that

dimFp J0(N)[p]mε = 2

where (−)mε refers to the mε = (I εZ, p) part under the TZ-action on J0(N).

Corollary (Wake–WE)

The Fp-dimension above is (#gens. of I ε) + 1. Consequently,

1 Multiplicity one fails in Case I (the #gens. is 2).

2 Multiplicity one holds in Case II iff r − δ = 1.

3 Generally, multiplicity one ⇐⇒ Tε,0 is Gorenstein.

Statement (2) confirms a conjecture of Ribet, when r = 2. (But this
requires a comparison between w -based and U-based theory!)
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Examples

Example of Case II. Let ε = (−1,+1), p = 5, `1 = 41, `2 = 19.

We find the number field K19 and check that 41 splits completely in it.
Hence Tε (and I ε) has two generators. Using Sage, we find

Tε

5Tε
∼=

F5[x , y ]

(y2 − 2x2, xy)
,

where x = T2 − 3 and y = T11 − 12.

Also, Tε is complete intersection, Tε,0 is not Gorenstein, multiplicity one
fails, and the congruence number is 1

24(41− 1) · (19 + 1).
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Examples
Example of Case I. Let ε = (−1,−1), p = 5, `1 = 11, `2 = 41.
The theorem applies, since

11 is not a 5th power modulo 41, and

41 is not a 5th power modulo 11.

We get that Tε and I ε have two generators, Tε,0 is not Gorenstein,
multiplicity one fails, and the congruence number is 1

24(11− 1)(41− 1).

What primes (q1, q2) give generators {Tqi − (qi + 1)} of I ε?
Among q ∈ {2, 3, 7, 13}, we get

log`i (q) = 0 ⇐⇒ `i = 41 and q = 3.

Thus for q ∈ {2, 7, 13}, we get that(
log11(q) log11(3)
log41(q) log41(3)

)
has non-zero determinant ∈ F5, and (q, 3) give generators of I ε.
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Proofs of the theorems: comparison with Galois
representations
We know the shape of the 2-dim. p-adic GQ = Gal(Q/Q)-representations
ρf associated to new eigenforms f ∈ M2(N): when restricted to a
decomposition group G` at a prime ` | Np,

ρ|G`
' ν(−ε`)⊗

(
κ ∗
0 1

)
, where

κ is the p-adic cyclotomic character

ν(α) is the unramified character of G` sending Frob` 7→ α.

∗ denotes a non-trivial extension

Method.
1 Produce a ring Rε that parameterizes GQ-pseudoreps. as above
2 Verify Wiles’s numerical criterion to prove Rε ∼= Tε.

I Byproduct: Tε is complete intersection.

3 Relate arithmetic properties to structure of Rε, deducing theorems
about Tε,Tε,0.
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Beyond complete intersection cases

We suspect we have addressed all complete intersection cases...
 what lies beyond?
Simplest case. p ≥ 5, N = `1`2, ε = (−1,−1),

`1 ≡ 1 (mod p), but `2 6≡ ±1 (mod p).

Theorem (A particular case of a more general result of Ribet)

There is a new Eisenstein congruence at level N with A-L sig. (−1,−1)
⇐⇒ log`1(`2) = 0 ∈ Fp.

When this new Eisenstein congruence exists, TεN is not Gorenstein. (So we
can’t hope to apply the numerical criterion to prove RεN = TεN .)

With C. Hsu and P. Wake, we study the simplest non-Gorenstein case.
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Non-Gorenstein “R = T”

Assume log`1(`2) = 0 and consider the strict surjection TεN � T`1 . We
understand Mazur’s prime level setting: R`1

∼= T`1 there.

For simplicity assume rankZp T0
`1

= 1, so T0
`1
∼= Zp. Then rankZp T`1 = 2.

An argument for Rε
N
∼= TεN (Hsu–Wake–WE)

Since TεN � T`1 is strict, rankZp TεN ≥ 3.

It is easy to produce RεN � TεN
Prove that an arithmetic condition implies that dimFp R

ε
N/pR

ε
N ≤ 3.

Put together, the arithmetic condition implies RεN
∼= TεN , a non-Gorenstein

case of RεN
∼= TεN .
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Sufficient condition for non-Gorenstein Rε
N
∼= TεN

What is this arithmetic condition that we prove to imply that RεN
∼= TεN ,

under the assumptions above?

We start with the Z/p-extension K`1/Q(ζp) defined above.

Let M := K`1(`
1/p
2 )

Let C := ClM/pClM be the p-cotorsion of its ideal class group.

Take the Galois co-invariants CGal(M/Q), which we can show to be
1-dimensional/Fp.

Arithmetic condition. `2 is inert in the Z/p-extension of M cut out by
CGal(M/Q). (Ongoing work: simplify the condition.)

Reason for interest in the non-Gorenstein rings “R = T”

The techniques above allow us to understand a non-Gorenstein case of
“R = T” very explicitly. These cases are difficult in general, so we hope to
obtain some general/theoretical insight.
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