The Eisenstein ideal with squarefree level

Carl Wang-Erickson

University of Pittsburgh
UCSD number theory seminar, 7 May 2020

Plan

(1) What is a congruence of modular forms?
(2) Mazur's Eisenstein congruences at prime level
(3) Eisenstein congruences at squarefree level (joint with Preston Wake)

- Reference: https://arxiv.org/abs/1804.06400
(c) Examples
(3) A more subtle case (joint with P. Wake and Catherine Hsu)

Modular forms

Let $N=\ell_{1} \cdots \ell_{r}$ be a squarefree integer, with ℓ_{i} prime.
"Modular forms" in this talk are modular forms of weight 2 and level $\Gamma_{0}(N), M_{2}(N)$, though of as holomorphic functions in the complex variable z in the upper half plane of \mathbb{C}. We have a splitting

$$
M_{2}(N)=\operatorname{Eis}_{2}(N) \oplus S_{2}(N)
$$

into cusp forms and the span of Eisenstein series.
We represent them as q-series, $f(z)=\sum_{n \geq 0} a_{n}(f) q^{n}$, for $q=e^{2 \pi i z}$.

Example (When N is prime)

$\operatorname{Eis}_{2}(N)$ is spanned by $E_{2, N}(z)=\frac{N-1}{24}+\sum_{n \geq 1}\left(\sum_{d \mid n,(N, d)=1} d\right) q^{n}$.
The least prime N with non-zero $S_{2}(N)$ is $N=11$, spanned by
$f(z)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{2}\left(1-q^{11 \cdot n}\right)^{2}$.

Congruences of Hecke eigenvalues

Consider the Hecke action by Hecke operators

- T_{n} for $(n, N)=1, n \geq 1$ ("unramified" operators)
- w_{ℓ} for primes $\ell \mid N$, the Atkin-Lehner operator at ℓ (an involution)

There is a common eigenbasis of $M_{2}(N)$ for the Hecke action, consisting of eigenforms, and the eigenvalues are algebraic integers.
\rightsquigarrow We can make sense of "congruences between eigenforms."

Definition

Let $f, g \in M_{2}(N)$ be eigenforms. Let $\mathbb{Q}(f)$ denote the number field generated by the Hecke eigenvalues of f. A congruence modulo p between f and g is a prime v of $\mathbb{Q}(f, g)$ dividing p such that the Hecke eigenvalues of f and g under $\left\{T_{n}, w_{\ell}\right\}$ are equivalent modulo v.

Write " $f \equiv g(\bmod p)$ " to express the existence of a cong. modulo p.

Eisenstein congruences

We focus on congruences between Eisenstein series and cusp forms.

Definition (Eisenstein congruences)

An Eisenstein congruence modulo p is a cusp form $f \in S_{2}(N)$ that is congruent to some Eisenstein series modulo p.

Convention: $f=f(z)=\sum_{n \geq 1} a_{n}(f) q^{n}$ denotes a normalized eigenform, meaning $a_{1}(f)=1$. Then for $(n, N)=1, T_{n} \cdot f=a_{n}(f) \cdot f$. So we can read the T_{n}-part of congruences off of q-series. E.g. $a_{n}\left(E_{2, N}\right)=\sigma(n)$.

Example

Let $N=11$. Then $E_{2,11}=\frac{10}{24}+q+3 q^{2}+4 q^{3}+\cdots$ and $f=q-2 q^{2}-q^{3}+\cdots$ are congruent modulo p if and only if $p=5$.
(More on w_{ℓ} later, but $w_{N}=-1$ on $M_{2}(N)$ when N is prime.)

Mazur's results on the Eisenstein ideal

Mazur's torsion theorem (mid 1970s) says the torsion subgroup $E(\mathbb{Q})_{\text {tors }}$ of the rational points of an elliptic curve E / \mathbb{Q} is one of 15 options. He proved this by analyzing Eisenstein congruences at prime level N.

The analysis was carried out by applying commutative algebra to the Hecke algebra of weight 2 and level $\Gamma_{0}(N)$.

- Let $\mathbb{T}_{\mathbb{Z}}$ denote the \mathbb{Z}-subalgebra of $\operatorname{End}_{\mathbb{C}}\left(M_{2}(N)\right)$ generated by Hecke operators.
- Let $\mathbb{T}_{\mathbb{Z}}^{0}$ be its quotient arising from the action on $S_{2}(N)$.

Moduli-theoretic interpretation. We have a bijection

$$
\left\{\text { normalized eigenforms } \in M_{2}(N)\right\} \longleftrightarrow\left\{\mathbb{T}_{\mathbb{Z}} \rightarrow \overline{\mathbb{Q}}\right\}
$$

$f \mapsto\left(\right.$ homom. sending $T_{n}, w_{\ell} \mapsto$ their eigenval. on $\left.f\right)$.

Commutative algebra of Hecke algebras

We have the cuspidal version as well.

$$
\begin{aligned}
& \left\{\text { normalized eigenforms } \in M_{2}(N)\right\} \longleftrightarrow\left\{\mathbb{T}_{\mathbb{Z}} \rightarrow \overline{\mathbb{Q}}\right\} \\
& \left\{\text { normalized eigenforms } \in S_{2}(N)\right\} \longleftrightarrow\left\{\mathbb{T}_{\mathbb{Z}}^{0} \rightarrow \overline{\mathbb{Q}}\right\}
\end{aligned}
$$

that is, " $\mathbb{T}_{\mathbb{Z}}$ is the moduli of eigenforms."
Let N be prime, so that there is a unique Eisenstein series $E_{2, N}$. Let

$$
\mathbb{T}_{\mathbb{Z}} \supset \mathbb{I}_{\mathbb{Z}}:=\operatorname{ker}\left(\mathbb{T}_{\mathbb{Z}} \xrightarrow{\text { eigensys. of } E_{2, N}} \overline{\mathbb{Q}}\right) .
$$

We have $\mathbb{T}_{\mathbb{Z}} / I_{\mathbb{Z}} \cong \mathbb{Z}$, with $T_{n} \mapsto \sigma(n)$ there. Its isomorphic image $I_{\mathbb{Z}}^{0} \subset \mathbb{T}_{\mathbb{Z}}^{0}$ is Mazur's Eisenstein ideal.

Idea (Mazur). Relate commutative algebra of $I_{\mathbb{Z}}^{0} \subset \mathbb{T}_{\mathbb{Z}}^{0}$ to Eisenstein congruences.

Commutative algebra to measure Eisenstein congruences

Definition

Let $\mathbb{T}:=\left(\mathbb{T}_{\mathbb{Z}}\right)_{\left(l_{\mathbb{Z}}, p\right)}^{\wedge}, \mathbb{T}^{0}:=\left(\mathbb{T}_{\mathbb{Z}}^{0}\right)_{\left(I_{\mathbb{Z}}^{0}, p\right)}^{\wedge}$ be the completions at the maximal ideals generated by $I_{\mathbb{Z}}$ and p.
Let $I:=I_{\mathbb{Z}} \cdot \mathbb{T}, I^{0}:=I_{\mathbb{Z}}^{0} \cdot \mathbb{T}^{0}$.
Because $\mathbb{T}_{\mathbb{Z}} \rightarrow \mathbb{T}_{\mathbb{Z}}^{0}$ are reduced finite-rank free \mathbb{Z}-algebras, $\mathbb{T} \rightarrow \mathbb{T}^{0}$ have the same properties $/ \mathbb{Z}_{p}$.

Moduli-theoretic interpretation. We have bijections

$$
\begin{array}{r}
\{\text { Eisenstein congruences }\} \cup\left\{E_{2, N}\right\} \longleftrightarrow\left\{\mathbb{T} \rightarrow \overline{\mathbb{Q}}_{p}\right\} \\
\{\text { Eisenstein congruences }\} \longleftrightarrow\left\{\mathbb{T}^{0} \rightarrow \overline{\mathbb{Q}}_{p}\right\}
\end{array}
$$

$\mathbb{T}, \mathbb{T}^{0}$ are local rings. We say they interpolate the Eisenstein congruences.

Mazur's results on the Hecke algebras

Terminology. Today, we will call

- \mathbb{T} the "Hecke algebra"
- \mathbb{T}^{0} the "cuspidal Hecke algebra"
- $I \subset \mathbb{T}$ and its isomorphic image $I^{0} \subset \mathbb{T}^{0}$ the "Eisenstein ideal."

Theorem (Mazur, case of prime N)
There exists an Eisenstein congruence modulo p (i.e. $\mathbb{T}^{0} \neq 0$) if and only if $p \left\lvert\, \frac{N-1}{12}\right.$. Moreover, when $\mathbb{T}^{0} \neq 0$,
(1) $\mathbb{T}^{0} / \iota^{0} \cong \mathbb{Z}_{p} /\left(\frac{N-1}{12}\right) \rightsquigarrow \frac{N-1}{12}$ is the "congruence number"
(2) I^{0} is principal (hence \mathbb{T}^{0} is monogeneric $/ \mathbb{Z}_{p}$)
(3) (let $p \geq 3)$ for a prime $q \neq N, T_{q}-(q+1)$ generates I^{0} if and only if $q \not \equiv 1(\bmod p)$, and q is not a pth power modulo N.

Mazur's results on the Hecke algebras

Theorem (Mazur, case of prime N)

There exists an Eisenstein congruence modulo p (i.e. $\mathbb{T}^{0} \neq 0$) if and only if $p \left\lvert\, \frac{N-1}{12}\right.$. Moreover, when $\mathbb{T}^{0} \neq 0$,
(1) $\mathbb{T}^{0} / I^{0} \cong \mathbb{Z}_{p} /\left(\frac{N-1}{12}\right) \rightsquigarrow \frac{N-1}{12}$ is the "congruence number"
(2) I^{0} is principal (hence \mathbb{T}^{0} is monogeneric $/ \mathbb{Z}_{p}$)
(3) (let $p \geq 3)$ for a prime $q \neq N, T_{q}-(q+1)$ generates I^{0} if and only if
$q \not \equiv 1(\bmod p)$, and
q is not a pth power modulo N.

Mazur's application. For applications to rational points on the modular curve $X_{0}(N)$, what was especially useful is the Gorenstein property of \mathbb{T}^{0}. Gorensteinness follows from the complete intersection ("Cl") property, which follows from $\mathbb{T}^{0} / \mathbb{Z}_{p}$ being flat and monogeneric.

Generalizing to squarefree level

Recall: Write $N=\ell_{1} \cdots \ell_{r}$, and

$$
M_{2}(N)=\operatorname{Eis}_{2}(N) \oplus S_{2}(N), \quad \text { with } \operatorname{dim}_{\mathbb{C}} \operatorname{Eis}_{2}(N)=2^{r}-1
$$

Definition (A-L signature ε)

In $M_{2}(N)$, there are exactly $2^{r}-1$ realized possibilities for the eigenvalues of the r-tuple of Atkin-Lehner involution ($w_{\ell_{1}}, \ldots, w_{\ell_{r}}$), denoted

$$
\varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{r}\right) \in\{ \pm 1\}^{\times r} \backslash\{(+1, \ldots,+1)\}
$$

In particular, the Eisenstein part $\operatorname{Eis}_{2}(N)$ has a basis enumerated by the A-L signatures,

$$
\left\{E_{2, N}^{\varepsilon}\right\}_{\varepsilon}, \quad \text { where } w_{\ell_{i}} \cdot E_{2, N}^{\varepsilon}=\varepsilon_{i} \cdot E_{2, N}^{\varepsilon} .
$$

Why w_{ℓ}-operators instead of U_{ℓ}-operators?

One more frequently sees operators U_{ℓ} instead of w_{ℓ}. Their eigenvalues on $\mathrm{Eis}_{2}(N)$ are

$$
w_{\ell}: \pm 1, \quad U_{\ell}: 1, \ell .
$$

We study w_{ℓ} because we view them as "desingularizing" the U_{ℓ}-action on Eisenstein series:

- the w_{ℓ}-eigenvalues on $\operatorname{Eis}_{2}(N)$ are distinct modulo any odd prime p
- the U_{ℓ}-eigenvalues on $\operatorname{Eis}_{2}(N)$ degenerate modulo p that divide $\ell-1$

Moreover, Eisenstein congruences proliferate when $p \mid(\ell-1)$, so using w_{ℓ}-operators is a useful refinement!

Commutative algebra - squarefree setup

Let ε be a choice of A-L signature, which singles out an Eisenstein series $E_{2, N}^{\varepsilon}$ (even modulo p for p odd).

- Let $I_{\mathbb{Z}}^{\varepsilon} \subset \mathbb{T}_{\mathbb{Z}}$ be the annihilator of $E_{2, N}^{\varepsilon}$, so $\mathbb{T}_{\mathbb{Z}} / I_{\mathbb{Z}}^{\varepsilon} \cong \mathbb{Z}$. We have

$$
I_{\mathbb{Z}}^{\varepsilon}=\left(T_{n}-\sigma(n), w_{\ell}-\varepsilon_{\ell}\right) .
$$

- Let $\mathbb{T}^{\varepsilon}:=\left(\mathbb{T}_{\mathbb{Z}}\right)_{\left(I_{\mathbb{Z}}^{\varepsilon}, p\right)}^{\wedge}$.
- Bijection $\left\{\mathbb{T}^{\varepsilon} \rightarrow \overline{\mathbb{Q}}_{p}\right\} \longleftrightarrow\left\{\right.$ Eis. congruences with $\left.E_{2, N}^{\varepsilon}\right\} \cup\left\{E_{2, N}^{\varepsilon}\right\}$.
- Let $\mathbb{T}^{\varepsilon, 0}$ be the completion of $\mathbb{T}_{\mathbb{Z}}^{0}$ at the image of $\left(I_{\mathbb{Z}}^{\varepsilon}, p\right)$.
- Bijection $\left\{\mathbb{T}^{\varepsilon, 0} \rightarrow \overline{\mathbb{Q}}_{p}\right\} \longleftrightarrow\left\{\right.$ Eis. congruences with $\left.E_{2, N}^{\varepsilon}\right\}$.

Goal. Generalize Mazur's results on $\mathbb{T}_{\text {prime }}^{0}$ to the squarefree level $\mathbb{T}^{\varepsilon, 0}$ and \mathbb{T}^{ε}.

Results at squarefree level

Mazur's results on $\mathbb{T}_{\text {prime }}^{0}($ level N):
(1) the congruence number is $(N-1) / 12$
(2) $I_{\text {prime }}^{0}$ is principal, so $\mathbb{T}^{0} / \mathbb{Z}_{p}$ is monogeneric and complete intersection
(3) Determination of which choices of single Hecke operator generate I^{0}

Ohta has established the analogue of (1) for odd p.

Theorem (Ohta, stated here when $p \geq 5$)

The congruence number of $I^{\varepsilon, 0} \subset \mathbb{T}^{\varepsilon, 0}$ is $a_{0}\left(E_{2, N}^{\varepsilon}\right)$, which equals

$$
\frac{1}{24} \prod_{i=1}^{r}\left(\ell_{i}+\varepsilon_{i}\right)
$$

In other words, $\mathbb{T}^{\varepsilon, 0} \neq 0$ iff $p \mid a_{0}\left(E_{2, N}^{\varepsilon}\right)$; moreover, $\mathbb{T}^{\varepsilon, 0} / I^{\varepsilon, 0} \cong \frac{\mathbb{Z}_{p}}{a_{0}\left(E_{2, N}^{\varepsilon}\right)}$.

New results at squarefree level, Case I

We present analogues to (2) and (3) in two Cases ($p \geq 5$ throughout).
Case I. $\varepsilon=(-1,-1), N=\ell_{1} \ell_{2}, \ell_{1} \equiv \ell_{2} \equiv 1(\bmod p)$, and

$$
\log _{\ell_{1}}\left(\ell_{2}\right) \neq 0 \quad \text { and } \quad \log _{\ell_{2}}\left(\ell_{1}\right) \neq 0
$$

where $\log _{\ell}: \mathbb{F}_{\ell}^{\times} \rightarrow \mathbb{Z} / p \mathbb{Z}$ is a choice of surjection.
Theorem (Wake-WE, Case I.)
(1) \mathbb{T}^{ε} is complete intersection
(2) $\mathbb{T}^{\varepsilon, 0}$ is not Gorenstein
(3) There is an isomorphism $I^{\varepsilon} / I^{\varepsilon 2} \cong \mathbb{Z}_{p} /\left(\ell_{1}-1\right) \oplus \mathbb{Z}_{p} /\left(\ell_{2}-1\right)$
(3) For primes $q_{1}, q_{2} \nmid N$, the Hecke operators $\left\{T_{q_{i}}-\left(q_{i}+1\right)\right\}$ generate I^{ε} if and only if

$$
\left(q_{1}-1\right)\left(q_{2}-1\right) \operatorname{det}\left(\begin{array}{ll}
\log _{\ell_{1}}\left(q_{1}\right) & \log _{\ell_{1}}\left(q_{2}\right) \\
\log _{\ell_{2}}\left(q_{1}\right) & \log _{\ell_{2}}\left(q_{2}\right)
\end{array}\right) \neq 0 \in \mathbb{F}_{p}
$$

New results at squarefree level, Case I

Generators of $I^{\varepsilon}, N=\ell_{1} \ell_{2}$ and $\varepsilon=(-1,-1)$
For primes $q_{1}, q_{2} \nmid N$, the Hecke operators $\left\{T_{q_{i}}-\left(q_{i}+1\right)\right\}$ generate I^{ε} if and only if

$$
\left(q_{1}-1\right)\left(q_{2}-1\right) \operatorname{det}\left(\begin{array}{ll}
\log _{\ell_{1}}\left(q_{1}\right) & \log _{\ell_{1}}\left(q_{2}\right) \\
\log _{\ell_{2}}\left(q_{1}\right) & \log _{\ell_{2}}\left(q_{2}\right)
\end{array}\right) \neq 0 \in \mathbb{F}_{p} .
$$

This neatly generalizes Mazur's condition at prime level.
Generator of I at prime level ℓ
$T_{q}-(q+1)$ generates the Eisenstein ideal at level $\Gamma_{0}(\ell)$ if and only if

$$
(q-1) \log _{\ell}(q) \neq 0 \in \mathbb{F}_{p}
$$

New results at squarefree level, Case II

Case II. $\varepsilon=(-1,+1,+1, \ldots,+1), \ell_{1} \equiv 1(\bmod p), \ell_{i} \equiv-1(\bmod p)$ for $2 \leq i \leq r$.

For what levels and signatures do Eisenstein congruent newforms exist?
There can be new congruences at any prime ℓ when $\varepsilon_{\ell}=-1$. In contrast, when $\varepsilon=+1$, there are new congruences only when $\ell \equiv-1(\bmod p)$.

We need to set up a certain number field for each prime ℓ_{i} for $2 \leq i \leq r$. Let $K_{\ell_{i}} / \mathbb{Q}\left(\zeta_{p}\right)$ be the unique \mathbb{Z} / p-extension such that

- ramified only at primes over ℓ_{i}
- the prime $\left(1-\zeta_{p}\right)$ splits completely
- the $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right)$-action on $\operatorname{Gal}\left(K_{\ell_{i}} / \mathbb{Q}\left(\zeta_{p}\right)\right)$ is given by ω^{-1}, where ω is the modulo p cyclotomic character $\omega: \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right) \xrightarrow{\sim} \mathbb{F}_{p}^{\times}$.

New results at squarefree level, Case II

Case II, meaning $\varepsilon=(-1,+1, \ldots,+1)$, and $\ell_{i} \equiv-\varepsilon_{i}(\bmod p)$.
Theorem (Wake-WE, Case II.)
(1) \mathbb{T}^{ε} is complete intersection
(2) $\mathbb{T}^{\varepsilon, 0}$ is Gorenstein iff I^{ε} is principal
(3) There is a SES

$$
0 \rightarrow \bigoplus_{i=2}^{r} \frac{\mathbb{Z}_{p}}{\left(\ell_{i}+1\right)} \rightarrow I^{\varepsilon} / I^{\varepsilon 2} \rightarrow \mathbb{Z}_{p} /\left(\ell_{1}-1\right) \rightarrow 0
$$

(9) The minimal number of generators of I^{ε} is $r-\delta$, where $\delta \in\{0,1\}$ equals 0 if and only if ℓ_{1} splits completely in $K_{\ell_{i}}$ for all $2 \leq i \leq r$.
(5. There is a sufficient condition for a ($r-\delta$)-tuple of primes $\left(q_{j}\right)$ such that $\left\{T_{q_{j}}-\left(q_{j}+1\right)\right\}$ generate I^{ε}. It is explicit, and we omit it here.

Implications for "multiplicity one"

Let $J_{0}(N)$ be the Jacobian of the closed modular curve. "Multiplicity one" (modulo p) means that

$$
\operatorname{dim}_{\mathbb{F}_{p}} J_{0}(N)[p]_{\mathfrak{m}} \varepsilon=2
$$

where $(-)_{\mathfrak{m}^{\varepsilon}}$ refers to the $\mathfrak{m}^{\varepsilon}=\left(I_{\mathbb{Z}}^{\varepsilon}, p\right)$ part under the $\mathbb{T}_{\mathbb{Z}}$-action on $J_{0}(N)$.

Corollary (Wake-WE)

The \mathbb{F}_{p}-dimension above is $\left(\#\right.$ gens. of $\left.I^{\varepsilon}\right)+1$. Consequently,
(1) Multiplicity one fails in Case I (the \#gens. is 2).
(2) Multiplicity one holds in Case II iff $r-\delta=1$.
(3) Generally, multiplicity one $\Longleftrightarrow \mathbb{T}^{\varepsilon, 0}$ is Gorenstein.

Statement (2) confirms a conjecture of Ribet, when $r=2$. (But this requires a comparison between w-based and U-based theory!)

Examples

Example of Case II. Let $\varepsilon=(-1,+1), p=5, \ell_{1}=41, \ell_{2}=19$.
We find the number field K_{19} and check that 41 splits completely in it. Hence \mathbb{T}^{ε} (and I^{ε}) has two generators. Using Sage, we find

$$
\frac{\mathbb{T}^{\varepsilon}}{5 \mathbb{T}^{\varepsilon}} \cong \frac{\mathbb{F}_{5}[x, y]}{\left(y^{2}-2 x^{2}, x y\right)}
$$

where $x=T_{2}-3$ and $y=T_{11}-12$.
Also, \mathbb{T}^{ε} is complete intersection, $\mathbb{T}^{\varepsilon, 0}$ is not Gorenstein, multiplicity one fails, and the congruence number is $\frac{1}{24}(41-1) \cdot(19+1)$.

Examples

Example of Case I. Let $\varepsilon=(-1,-1), p=5, \ell_{1}=11, \ell_{2}=41$.
The theorem applies, since

- 11 is not a 5 th power modulo 41, and
- 41 is not a 5 th power modulo 11 .

We get that \mathbb{T}^{ε} and I^{ε} have two generators, $\mathbb{T}^{\varepsilon, 0}$ is not Gorenstein, multiplicity one fails, and the congruence number is $\frac{1}{24}(11-1)(41-1)$.

What primes $\left(q_{1}, q_{2}\right)$ give generators $\left\{T_{q_{i}}-\left(q_{i}+1\right)\right\}$ of I^{ε} ? Among $q \in\{2,3,7,13\}$, we get

$$
\log _{\ell_{i}}(q)=0 \Longleftrightarrow \ell_{i}=41 \text { and } q=3
$$

Thus for $q \in\{2,7,13\}$, we get that

$$
\left(\begin{array}{ll}
\log _{11}(q) & \log _{11}(3) \\
\log _{41}(q) & \log _{41}(3)
\end{array}\right)
$$

has non-zero determinant $\in \mathbb{F}_{5}$, and $(q, 3)$ give generators of I^{ε}.

Proofs of the theorems: comparison with Galois

 representationsWe know the shape of the 2-dim. p-adic $G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-representations ρ_{f} associated to new eigenforms $f \in M_{2}(N)$: when restricted to a decomposition group G_{ℓ} at a prime $\ell \mid N p$,

$$
\left.\rho\right|_{G_{\ell}} \simeq \nu\left(-\varepsilon_{\ell}\right) \otimes\left(\begin{array}{cc}
\kappa & * \\
0 & 1
\end{array}\right), \quad \text { where }
$$

- κ is the p-adic cyclotomic character
- $\nu(\alpha)$ is the unramified character of G_{ℓ} sending $\mathrm{Frob}_{\ell} \mapsto \alpha$.
- * denotes a non-trivial extension

Method.

(1) Produce a ring R^{ε} that parameterizes $G_{\mathbb{Q}}$-pseudoreps. as above
(2) Verify Wiles's numerical criterion to prove $R^{\varepsilon} \cong \mathbb{T}^{\varepsilon}$.

- Byproduct: \mathbb{T}^{ε} is complete intersection.
(3) Relate arithmetic properties to structure of R^{ε}, deducing theorems about $\mathbb{T}^{\varepsilon}, \mathbb{T}^{\varepsilon, 0}$.

Beyond complete intersection cases

We suspect we have addressed all complete intersection cases... \rightsquigarrow what lies beyond?
Simplest case. $p \geq 5, N=\ell_{1} \ell_{2}, \varepsilon=(-1,-1)$,

$$
\ell_{1} \equiv 1 \quad(\bmod p), \quad \text { but } \quad \ell_{2} \not \equiv \pm 1 \quad(\bmod p)
$$

Theorem (A particular case of a more general result of Ribet)
There is a new Eisenstein congruence at level N with $A-L$ sig. $(-1,-1)$ $\Longleftrightarrow \log _{\ell_{1}}\left(\ell_{2}\right)=0 \in \mathbb{F}_{p}$.

When this new Eisenstein congruence exists, $\mathbb{T}_{N}^{\varepsilon}$ is not Gorenstein. (So we can't hope to apply the numerical criterion to prove $R_{N}^{\varepsilon}=\mathbb{T}_{N}^{\varepsilon}$.)
With C. Hsu and P. Wake, we study the simplest non-Gorenstein case.

Non-Gorenstein " $R=\mathbb{T}$ "

Assume $\log _{\ell_{1}}\left(\ell_{2}\right)=0$ and consider the strict surjection $\mathbb{T}_{N}^{\varepsilon} \rightarrow \mathbb{T}_{\ell_{1}}$. We understand Mazur's prime level setting: $R_{\ell_{1}} \cong \mathbb{T}_{\ell_{1}}$ there.

For simplicity assume rank $\mathbb{Z}_{p} \mathbb{T}_{\ell_{1}}^{0}=1$, so $\mathbb{T}_{\ell_{1}}^{0} \cong \mathbb{Z}_{p}$. Then rank $\mathbb{Z}_{p} \mathbb{T}_{\ell_{1}}=2$.
An argument for $R_{N}^{\varepsilon} \cong \mathbb{T}_{N}^{\varepsilon}$ (Hsu-Wake-WE)

- Since $\mathbb{T}_{N}^{\varepsilon} \rightarrow \mathbb{T}_{\ell_{1}}$ is strict, rank $_{\mathbb{Z}_{p}} \mathbb{T}_{N}^{\varepsilon} \geq 3$.
- It is easy to produce $R_{N}^{\varepsilon} \rightarrow \mathbb{T}_{N}^{\varepsilon}$
- Prove that an arithmetic condition implies that $\operatorname{dim}_{\mathbb{F}_{p}} R_{N}^{\varepsilon} / p R_{N}^{\varepsilon} \leq 3$.

Put together, the arithmetic condition implies $R_{N}^{\varepsilon} \cong \mathbb{T}_{N}^{\varepsilon}$, a non-Gorenstein case of $R_{N}^{\varepsilon} \cong \mathbb{T}_{N}^{\varepsilon}$.

Sufficient condition for non-Gorenstein $R_{N}^{\varepsilon} \cong \mathbb{T}_{N}^{\varepsilon}$

What is this arithmetic condition that we prove to imply that $R_{N}^{\varepsilon} \cong \mathbb{T}_{N}^{\varepsilon}$, under the assumptions above?

- We start with the \mathbb{Z} / p-extension $K_{\ell_{1}} / \mathbb{Q}\left(\zeta_{p}\right)$ defined above.
- Let $M:=K_{\ell_{1}}\left(\ell_{2}^{1 / p}\right)$
- Let $C:=\mathrm{Cl}_{M} / p \mathrm{Cl}_{M}$ be the p-cotorsion of its ideal class group.
- Take the Galois co-invariants $C_{\operatorname{Gal}(M / \mathbb{Q})}$, which we can show to be 1-dimensional $/ \mathbb{F}_{p}$.
Arithmetic condition. ℓ_{2} is inert in the \mathbb{Z} / p-extension of M cut out by $C_{\mathrm{Gal}(M / \mathbb{Q})}$. (Ongoing work: simplify the condition.)

Reason for interest in the non-Gorenstein rings " $R=\mathbb{T}$ "
The techniques above allow us to understand a non-Gorenstein case of " $R=\mathbb{T}$ " very explicitly. These cases are difficult in general, so we hope to obtain some general/theoretical insight.

