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We continue, starting where James’s talk left off.

Again assume Tm = Zp, and assume the conjecture on the existence of the Galois representation ρχ attached
to the cuspidal and tempered system of Hecke eigenvalues χ. As previously stated, Venkatesh proves that
the free graded action of the exterior algebra on H∗ gives an isomorphism

(1)

∗∧
H1
f (GF ,Ad∗ ρ(1))∗ ⊗Qp

Hq0(Y (K),Qp)χ
∼−→ H∗(Y (K),Qp)χ.

As we will see, this is the “(` 6= p) étale realization” of a more general conjecture for motivic cohomology,
which has various realizations.

1. Motivic Hidden Action

1.1. The coadjoint motive. The (conjectural) coadjoint representation Ad∗ ρχ : GF → GL(g∗/Qp
) induced

by ρχ is part of a compatible system of Galois representations (by varying p). Thus, it is standard to
expect that there exists a “co-adjoint motive” Mcoad which induces various realizations, one of which is
Ad∗ ρχ.

To a general motive M over Q, with coefficients in Q, there should be attached various realizations, including
the following:

(i) Betti: this is a Q-vector space MB , which is the singular cohomology.

(ii) p-adic Étale: this is a Galois representation

ρM,p : GF → GL(MB ⊗Q Qp).

(iii) Hodge: this is a Q-Hodge structure based on MB

Part of the theory of motives is that there exist motivic cohomology groups of M , which are Q-vector spaces
with various regulator maps under realizations. In particular, given Mcoad, we expect a motivic cohomology
group H1

mot((Mcoad)OF ,Q(1)) and we get an étale regulator map

rét : H1
mot((Mcoad)OF ,Q(1))⊗Q Qp → H1

f (GF ,Ad∗ ρχ(1)),

which conjecturally should give an isomorphism. Here ()OF refers to a category of motives with extensions
of good reduction.
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1.2. The motivic hidden action conjecture. We are now ready to state the conjecture.

Conjecture 1.2.1 (“Hidden action”). There exists a “natural” action of

∗∧
H1

mot((Mcoad)OF ,Q(1))

on H∗(Y (K),Q)χ inducing an isomorphism

∗∧
H1

mot((Mcoad)OF ,Q(1))⊗Q Hq0(YK ,Q)χ → H∗(Y (K),Q)χ

The word “natural” is made more precise in each “realization” of this hidden action conjecture. For example,
we call the isomorphism (1) the “(` 6= p) étale realized action.”

Conjecture 1.2.2 (“Hidden action via ` 6= p étale realization”). The Q-rational structure isomorphisms

H∗(YK ,Q)χ → H∗(YK ,Qp)χ,

∗∧
H1

mot((Mcoad)OF ,Q(1))→ H1
f (GF ,Ad∗ ρχ(1))

are preserved by étale realized action (1). That is, (1) induces the top arrow of a commutative diagram∧∗
H1

mot((Mcoad)OF ,Q(1))⊗Q Hq0(YK ,Q)χ //

��

H∗(YK ,Q)χ

��∧∗
H1
f (GF ,Ad∗ ρ(1))∗ ⊗Qp H

q0(Y (K),Qp)χ
∼ // H∗(Y (K),Qp)χ.

As Venkatesh notes, the point of his paper [6] is to reach the point where this conjecture can be made (by
establishing the isomorphism (1)).

2. Hodge Case

2.1. The Hodge realization of the hidden action conjecture. See [5]: this will be covered in talks H8
and H9.

Theorem 2.1.1 ([5]). There is an `0-dimensional C-vector space a∗G and a graded action of
∧∗

a∗G on
H∗(Y (K),C)χ inducing an isomorphism

∗∧
a∗G ⊗C Hq0(Y (K),C)χ

∼−→ H∗(Y (K),C)χ.

where a∗G is the target of an R-regulator map

rR ⊗R C : H1
mot((Mcoad)OF ,Q(1))⊗QC

∼−→ aG

In analogy to Conjecture 1.2.2, we have

Conjecture 2.1.1 (“Hidden action via Hodge realization”). The isomorphism in Theorem 2.1.1 preserves
Q-rational structures.

Remark 2.1.1. Prasanna-Venkatesh explain that this implies that certain period integrals are equal to
certain L-values up to Q∗. They give some computations that reflects this. This seems to be the only
evidence for the hidden action conjecture in print at this time.
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2.2. A bit more about a∗G. What is this C-vector space a∗G? There is a group-theoretic way to define it,
but we will take the following perspective. Let

ρχ,R : WR → PGLn(C) o Gal(C/R)

be the Langlands parameter corresponding to the real part of π∞ of the automorphic representation π (with
Hecke eigensystem χ). Here WR is the Weil group of R:

C∗ o 〈j〉

where j2 = −1. There is then a coadjoint action

(Ad ρχ)∨ : WR → GL(Lie(PGLn(C))),

and aG is defined to be the vector space of fixed points of this action of WR on Lie(PGLn(C)).

3. “` = p étale” or “crystalline” case

This is the work of Hansen-Thorne in [2], and will be covered in talk H10. The point here is that `0 appears
in the geometry of an eigenvariety.

3.1. Finding an étale action in the GLn-eigenvariety. There is an eigenvariety X and an underlying

weight space W and a weight map X
w−→ W . The points of X are pairs x = (χ, λ), where χ is the system

of eigenvalues as before, and λ is a refinement, i.e. a choice of Hecke eigenvalues at p. The weight map
w is locally finite, and it is expected (a “non-abelian version of the Leopoldt conjecture”) of codimension
`0.

Let Tx denote the local ring O∧X,x, and Λ be the local ring O∧W,w(x), so that w induces a homomorphism

Λ→ Tx. Hansen–Thorne prove the following theorem:

Theorem 3.1.1 ([2]). Under mild assumptions, and if dim Tx = dim Λ− `0, then

(1) Λ→ Tx is surjective. Let I denote the kernel.

(2) If we let Vx = I/mΛI (“conormal module”), there exists an action∧∗
Vx ⊗Qp H

q0(Y (K, p),Qp)χ,λ
∼−→ H∗(Y (K, p),Qp)χ,λ,

where now Y (K, p) is a locally symmetric space with some specified level at p.

Under an additional “trianguline R = T” assumption, we get a natural isomorphism Vx ∼= H1
f (GF ,Ad∗ ρχ(1)).

3.2. Comparison of the two étale cases: ` 6= p vs. ` = p. We can compare the ` = p and ` 6= p étale
realizations:

• They have the same Bloch–Kato Selmer group H1
f (GF ,Ad∗ ρχ(1)).

• They have different “forms”: the ` = p case fixes a Up-eigenvalue, restricting the forms that appear.

• Most importantly, the variation (i.e. deformation) of the level differs – this variation is where the
labels “` 6= p” and “` = p” come from.

– The ` 6= p-étale action isomorphism (1) is proved using the Taylor–Wiles method: we add level
at primes ` such that pn - ` − 1, and use rings like Z/pn[Z/(` − 1)] to form the rings S∞.
These are coordinate rings for modules of forms. In particular, this is deforming a mod p Galois
representation in the p-adic direction.

– On the other hand, the ` = p-étale version uses variation in the eigenvariety – varying the level
(and weight) at p, and only at p” – and stays in characteristic 0.
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4. Derived Deformation Theory

There is a difference between derived deformation theory in characteristic zero vs. positive/mixed (i.e. ar-
bitrary) characteristic. While much of the Galois track will be dedicated to understanding the arbitrary
characteristic case, it is possible to get some flavor of what we are aiming for with a brief explanation. The
main idea is that under the Bloch–Kato conjecture,

∧∗
H1
f (GF ,Ad ρχ) is the derived deformation ring of

ρχ.

4.1. Classical deformation theory. Suppose we are given a Galois representation ρχ : GF → PGLn(Qp).
Then it is standard that first order deformations are given by

{ρ : GF → PGLn(Qp[ε]/(ε
2) : ρ ≡ ρχ mod ε (+ local conditions)}/ ∼←→ H1

(f)(GF ,Ad ρχ)

where ∼ denotes strict equivalence, and the “(local conditions)” on the Galois representations correspond
with the condition (f). We are using this notation to allow for either imposing the unramified/crystalline local
conditions, which corresponds to the Bloch–Kato Selmer group; or for imposing the empty local condition,
which corresponds to the unmodified global Galois cohomology H1(GF ,Ad ρχ).

We will write Ŝym∗Qp
V for the completed symmetric algebra of a Qp-vector space V . When a basis for

V with n elements is chosen, this induces an isomorphism Ŝym∗Qp
V ∼= QpJx1, . . . , xnK. We also let mS

denote the maximal ideal of a local ring S. Assume that the deformation problem with (local conditions) is
represented by Rcris

ρχ . Then we may express our statement on first-order deformations as follows.

Fact 4.1.1 (Tangent space). There is a canonical isomorphism

R(cris)
ρχ /m2

R
∼= Qp ⊕H1

(f)(GF ,Ad ρχ)∗ ∼= Ŝym∗Qp
H1

(f)(GF ,Ad ρχ)∗/m2

Ŝym∗ .

Fact 4.1.2 (Obstruction theory). There exists a (non-canonical) presentation of R
(cris)
ρχ as follows: there

exists a surjection

Ŝym∗Qp
H1

(f)(GF ,Ad ρχ)∗ � R(cris)
ρχ

lifting the tangent space isomorphism. Letting J denote its kernel, there is a canonical surjection

H2
(f)(GF ,Ad ρχ)∗ � J/m

Ŝym∗J.

Thus, by Nakayama’s lemma, the minimal number of generators of J is at most dimH2
(f)(GF ,Ad ρχ). It is

sometimes said that the “expected” Krull dimension of R
(cris)
ρ is

dimH1
(f)(GF ,Ad ρχ)− dimH2

(f)(GF ,Ad ρχ).

This dimension is actually conjectured for two-dimensional irreducible representations in place of ρχ, when
F = Q and with the trivial local conditions, which amounts to conjecturing that these deformation rings are
complete intersection rings. In general, with the unramified/crystalline condition, this difference is −`0. So
when `0 > 0, we can only expect this “expected” dimension to make sense in some derived way.

For example, if we do impose the unramified/crystalline condition on our deformation ring, then the Bloch–
Kato conjecture predicts that H1

f (GF ,Ad ρχ) = 0; assuming this, we have vector spaces of dimension `0

H2
f (GF ,Ad ρχ) ∼= H1

f (GF ,Ad∗ ρχ(1))∗,

where the isomorphism uses a version of global Tate duality due to Nekovár [4]. Since H1
f (GF ,Ad ρχ) = 0,

the classical crystalline deformation ring is trivial: R(cris) = Qp. Therefore it loses the information about the
deformation problem, namely, at least that of H2

f (GF ,Ad ρχ).
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4.2. Motivation. This motivates the need for a “derived” deformation theory that takes into account all
of the higher cohomology groups of the adjoint representation. To do derived deformation theory, we need
to

(1) Define a broader category of rings to work with, such that they carry extra derived information
(examples include simplicial rings, differential graded rings).

(2) Define the derived deformation problem, which properly extends the classical deformation problem
to this larger category of rings.

For the moment, we will focus on issue (1) and ignore issue (2). For a discussion of issue (2) in the charac-
teristic zero case, see e.g. the paper of Kapranov [3].

4.3. Derived deformation theory in characteristic zero. In characteristic zero, it suffices to use commu-
tative differential graded algebras as coefficient rings. Given the proper definition (2), the derived crystalline
deformation ring is (up to quasi-isomorphism)

Rcris, char 0
ρχ

∼= Ŝym∗Qp
ΣH∗f (GF ,Ad ρχ)∗

where Σ denotes suspension. Here we are using R to denote a derived deformation ring, in contrast to the
classical deformation ring denoted by R.

In degree −1, this gives (H2
f )∗, in degree 0 it gives (H1

f )∗ and in degree 1 it gives (H0
f )∗, so we recover all

of the relevant cohomological data from this representing ring. In fact, in our case Hi
f (GF ,Ad ρχ) = 0 for

i ≥ 3, so actually

Rcris, char 0
ρχ = Ŝym∗Qp

ΣH2
f (Ad ρχ)∗ =

∗∧
H1
f (GF ,Ad ρ∗χ(1)),

because a free commutative differential graded algebra generated in an odd degree is an exterior algebra. That
is, upon the Bloch–Kato conjecture’s prediction that H1

f (GF ,Ad ρχ) = 0, the exterior algebra that appeared
at the outset of this talk is the derived deformation ring. Likewise, the duality between this exterior algebra
and the derived Hecke algebra in the first talk is a derived generalization of “R = T.”

Remark 4.3.1. This is compatible with a a philosophy attributed to Deligne: “every characteristic zero
(classical) deformation problem comes from a differential graded Lie algebra.” In fact there is a dg-Lie
algebra structure on H∗(f)(GF ,Ad ρ). This is “Koszul dual” (in the sense of the bar equivalence) to the

commutative differential graded object Rcris, char 0
ρχ .

4.4. Motivation for the homotopy background in the Galois track. We will spend a good deal of
the Galois track developing background to do derived deformation theory in mixed characteristic. Why do
we need to do this when the content of étale hidden action conjecture (in particular,

∧∗
H1
f (GF ,Ad ρ∗χ(1)))

seems to be entirely in characteristic zero? The reason is that, as discussed above in §3.2, we use the Taylor–
Wiles method to prove that (1) is an isomorphism (the main result of [6]). This involves mixed characteristic
rings.

It is well-understood that commutative differential graded algebras do not suffice as coefficient rings for
derived deformation problems, once we no longer want to work over Q. The basic problem is that d(xp) = 0
in characteristic p. An alternative approach is needed.

Homotopical algebra supplies various frameworks for derived deformation theory in mixed characteristic.
Following [1], we will use simplicial commutative rings. Homotopy algebra background will be given In
talks G5, G6, and G7. This will then be applied toward derived deformation problems in G8, and derived
deformation problems for Galois representations in talk G9.
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