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Abstract. We develop a Harder-Narasimhan theory for Kisin modules gen-

eralizing a similar theory for finite flat group schemes due to Fargues [Far10].

We prove the tensor product theorem, i.e., that the tensor product of semi-
stable objects is again semi-stable. We then apply the tensor product theorem

to the study of Kisin varieties for arbitrary connected reductive groups.
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1. Introduction

1.1. The study of canonical filtrations on finite flat (commutative) group schemes
plays an important role in the theory of integral models of Shimura varieties. If G is
a finite flat group scheme over SpecOK where OK is a complete discrete valuation
ring, then perhaps the most well-known filtration is the connected-étale sequence

0→ G0 → G → G ét → 0.

This sequence can be further refined by considering the largest subgroup scheme
Gmult ⊂ G0 whose Cartier dual is étale (the multiplicative part).

In [Far10], Fargues introduced a canonical filtration on 0 ⊂ G1 ⊂ . . . ⊂ Gn =
G which further refines the above sequence in the sense that G1 = Gmult and
Gn/Gn−1 = G ét. The filtration in loc. cit. arises from a Harder-Narasimhan the-
ory (HN-theory) on the category of finite flat (commutative) group schemes over
SpecOK . An HN-theory is defined by giving a map to an abelian category (G 7→
GK) together with a notion of rank and degree satisfying a number of properties
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(see Proposition 2.3.1), generalizing the original setup of vector bundles on an al-
gebraic curve [HN75]. There are distinguished objects that are called semi-stable,
meaning that their canonical HN-filtration is trivial.

The filtration constructed in [Far10] is related to the action of the Hecke op-
erators on certain rigid analytic moduli spaces of p-divisible groups associated to
Shimura varieties and canonical subgroups ([Far07, Far11]). In a different con-
text, Kisin gave a linear algebraic description of the category of finite flat group
schemes over OK [Kis06], where OK is the ring of integers of a finite extension
K/Qp. More precisely, the category of p∞-torsion finite flat group schemes over

OK is anti-equivalent to the category Mod
ϕ,[0,1]
S of Kisin modules with height in

[0, 1]. In this paper, we begin by showing that the HN-theory introduced in [Far10]

can be reinterpreted in terms of the category Mod
ϕ,[0,1]
S . In fact, the HN-theory

extends naturally to the category of Kisin modules with bounded height, denoted
ModϕS.

The advantage of working in the larger category ModϕS is that this category
has the structure of a rigid exact category (i.e., duals, tensor products, etc.). In
general, there is no good notion of tensor product between two finite flat group
schemes. Furthermore, Kisin modules with height greater than 1 are related to
Galois representations with larger Hodge-Tate weights and so this category is of
interest in its own right.

While much of the power of an HN-theory to give structure to an additive exact
category arises formally from verifying basic axioms about degree and rank (see
e.g. [Pot]), there is no known general approach to demonstrate its compatibility
with additional tensor structure. Critically, one hopes that the tensor product
of semi-stable objects is semi-stable. This final statement is known as the tensor
product theorem.

Theorem 1.1.1 (Theorem 3.1.1). The tensor product of semi-stable Kisin modules
of bounded height is again semi-stable.

Its proof is one of the main innovations of this work. It is modeled in part on
Totaro’s proof of the tensor product theorem for filtered isocrystals over a p-adic
field [Tot96], but departs significantly from Totaro’s approach. Totaro’s strategy
heavily relies on the notion of semi-stable subspaces of a tensor product vector space
V ⊗W , and the fact that the degree of a isocrystal can be calculated in terms of the
degree of a subspace with respect to a filtration on V ⊗W arising from filtrations
on V and W . Moreover, associated to any non-semi-stable (i.e. unstable) subspace
of V ⊗W is a filtration on V and a filtration on W called the Kempf filtration,
which characterizes the failure of semi-stability. The Kempf filtration also figures
in to Totaro’s strategy.

The degree of a Kisin module is not a priori related to a filtration on any vector
space. Indeed, p-torsion Kisin modules are modules over S/p = k[[u]]. In order to
build off of Totaro’s strategy, we bound the degree of a Kisin submodule P ⊂M⊗N
by the degree of P (mod u) as a subspace of M⊗N (mod u) according to a certain
filtration. Not only must we cope with the fact that this is a bound instead of an
exact formula, but the more serious obstacle is that submodules of Kisin modules
cannot be identified modulo u. To resolve this problem, we must relate semi-
stability of the generic fiber P[1/u] ⊂M[1/u]⊗N[1/u], where subobjects of P are
identifiable, to semi-stability modulo u. We will establish these algebro-geometric
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results, calling them “results of Langton type” because Langton proved the first
result of this kind in another context [Lan75]. These results build upon the full
power of geometric invariant theory, including the Kempf-Ness stratification [Kir84,
§§12-13] and adequate moduli spaces [Alp14].

It is a well-known consequence of the tensor product theorem that one can then
extend a Harder-Narasimhan theory from the setting of ‘vector bundles’ to that
of G-bundles. Theorem 1.1.1 should have applications to the study of Shimura
varieties beyond PEL-type along the lines of [Far, Far07]. However, we do not
pursue that here. Instead, in §§4-5, we discuss an application of the tensor product
theorem in a different direction. In [Lev15], the first author developed a theory of
Kisin modules with G-structure. We use the HN-theory to study moduli spaces of
Kisin modules with G-structure.

Specifically, in [Kis09], Kisin introduced a projective variety Xρ whose closed
points parametrize finite flat group schemes over SpecOK with generic fiber ρ :
Gal(K/K) → GLn(F). These were later called Kisin varieties by Pappas and
Rapoport [PR09]. More generally, if M is a étale φ-module over Fp((u)) and ν =
(a1, a2, . . . , an) ∈ Zn (K is assumed to be totally ramified over Qp), then

Xν
M(F) = {M[1/u] ∼=M |M has Hodge type ≤ ν}.

Xν
M is projective scheme parametrizing Kisin modules with generic fiber M satis-

fying height conditions given by ν. Kisin varieties resemble affine Deligne-Luzstig
varieties in form, but much less is known about their structure. The most impor-
tant question for applications to Galois deformation rings and modularity lifting is
what are the connected components of Xν

M.
It was observed in [Kis09, §2.4.15] that by considering the connected-étale se-

quence, or, more generally, the étale and multiplicative parts, one gets certain dis-
crete invariants on Xν

M (see Proposition 4.4.3). Conjecture 2.4.16 in loc. cit. asserts
that, under some hypotheses, in fact these should be the only discrete invariants.
For GL2, the conjecture says concretely that if ρ is indecomposable, then there are
at most two components: an ordinary component and a non-ordinary component.
This conjecture and a number of generalizations in dimension two were proven by
Gee, Hellmann, Imai, and Kisin [Gee06, Kis09, Hel09, Ima10, Hel11, Ima12]. Essen-
tially nothing in any generality is known beyond GL2 except over mildly ramified
fields K/Qp. One motivation for this project was to give a more conceptual expla-
nation for the conjecture, adapting it for other reductive groups as a starting point
for a systematic study of Kisin varieties beyond dimension 2.

Our first result about Kisin varieties is the following:

Theorem 1.1.2 (Proposition 5.1.5, Corollary 5.1.6). There is a decomposition

Xν
M =

⋃
Xν,P
M

by locally closed reduced subschemes such that the closed points of Xν,P
M have HN-

polygon P . Furthermore, the (normalized) HN-polygon of any M ∈ Xν
M(F) lies

above the Hodge polygon associated to ν with the same endpoint.

The theorem essentially follows from the semi-continuity of the HN-polygon in
families with constant generic fiber.

In §5, we introduce Kisin varieties Xν
P for any connected reductive group G

over F and ν a cocharacter of G, and we prove the analogous result in that set-
ting (Theorem 5.2.12). We then show that, by considering unions of certain strata
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defined group-theoretically, we can produce discrete invariants which generalize
the ordinary/non-ordinary components appearing in dimension two. See Theo-
rem 5.2.13) for details. We provide some examples in §7. In some situations,
the connected components of these Kisin varieties with G-structure can be related
to connected components of G-valued Galois deformation rings (see [Lev15, Cor.
4.4.2]).

Recently, there has been a growing interest in studying more general moduli
spaces of Kisin modules where one allows the generic fiber to vary. These moduli
were first considered by [PR09] but have been further developed by [EG15] and
joint work of the first author [CL15]. It would be interesting to understand the
behavior of the HN-filtrations on these spaces.

In §6, we apply our HN-theory, which a priori applies only to p-power torsion
Kisin modules, to flat Kisin modules M by studying the limit M/pn as n increases.
In this we follow Fargues [Far], who, analogously, showed how his theory for fi-
nite flat group schemes could address p-divisible groups. Principally, we show that
there is a distinct HN-theory on the isogeny category of Kisin modules for which
our theory is an “approximation modulo pn.” We conclude §6 by showing that
there is a relation between an HN-theory arising from de Rham filtration associ-
ated to a crystalline representation and the HN-polygon of the associated iso-Kisin
module. Thus, it appears that our HN-theory is a kind of mod p avatar of the
Hodge filtration.

During the course of this project, we were informed that Macarena Peche Iris-
sarry has obtained partial results towards the tensor product theorem. Her thesis
also includes applications to Shimura varieties.

1.2. Acknowledgements. We owe a debt to Laurent Fargues, as the influence of
his work will be clear to the reader. We also appreciate Jay Pottharst’s exposition of
the formal structure of HN-theory as well as Daniel Halpern-Leistner’s exposition
of results we needed to cull from geometric invariant theory. We would like to
recognize the mathematics departments at the University of Chicago and Brandeis
University for providing excellent working conditions as this project was carried out.
We thank Christophe Cornut for a very careful reading of the text and we thank
Madhav Nori for helpful conversations. C.W.E. would like to thank the AMS and
the Simons Foundation for support for this project in the form of an AMS-Simons
Travel Grant.

1.3. Notation. Let K/Qp be a finite extension with residue field k and uniformizer
π. Let e be the ramification degree of K/Qp, f = [k : Fp], and g = [K : Qp], so that
g = ef . Let S = W (k)[[u]] with Frobenius ϕ extending the standard Frobenius on
W (k) by ϕ(u) = up. Let E(u) be the minimal polynomial of π over W (k)[1/p], a
monic polynomial of degree e. Let F = k((u)) with separable closure F s. Especially
in §3, we will write O for the valuation ring k[[u]] of F .

We will often be interested in S-modules M with a Frobenius semi-linear endo-
morphism. Thinking of M and S as left S-modules and giving S a right S-module
structure via ϕ, let ϕ∗(M) stand for the left S-module S ⊗ϕ,S M. A Frobenius
semi-linear endomorphism of M induces a S-linear map φM : ϕ∗(M)→M that we
will write as φM, which we refer to as the linearized structure map of M.

Fix a sequence πn such that πpn = πn−1 and π0 = π. Let K∞ denote the
completion of K((πn)n).
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2. HN-theory

In this section, we develop a Harder-Narasimhan theory on the category of (tor-
sion) Kisin modules with bounded height. After some background, we demonstrate
its basic properties in §2.3 (Proposition 2.3.1). We then deduce the standard con-
sequences (i.e., HN-filtration, HN-polygon, etc.).

2.1. Categories of Kisin modules.

Definition 2.1.1. A Kisin module is a pair (M, φM) consisting of a finite S-
module M that is u-torsion free along with an isomorphism φM : ϕ∗(M)[1/E(u)] ∼=
M[1/E(u)]. A morphism of Kisin modules M→ N is a S-linear function M→ N
commuting with the structure maps φM, φN.

The additive exact category structure on Kisin modules is as follows.

Definition 2.1.2. The category of Kisin modules ModϕS inherits an additive, S-
linear structure as S-modules, where morphisms are those which are compatible
with Frobenius. We say a sequence of Kisin modules 0 → M1 → M2 → M3 → 0
strict short exact when it is exact in the category of S-modules. A strict subobject
of M is sub-Kisin module N ⊂ M which sits in a strict short exact sequence, i.e.
the S-module cokernel is u-torsion free.

We write ModϕS,fl for the full exact subcategory of Kisin modules that are flat
as S-modules.

The powers of E(u) that appear control the height of (M, φM).

Definition 2.1.3. Fix integers a < b. A Kisin module (M, φM) is said to have
height in [a, b] if

(2.1.4) E(u)aM ⊃ φM(ϕ∗(M)) ⊃ E(u)bM

in M[1/E(u)]. In particular, a Kisin module with height in [0, b] is said to be

effective. We denote the category of Kisin modules with height in [a, b] by Mod
ϕ,[a,b]
S .

Every Kisin module is an object of Mod
ϕ,[a,b]
S for some a, b. In other words, every

Kisin module has bounded height.
Effective Kisin modules may be thought of as a finite u-torsion free S-module

M with a semi-linear endomorphism M → M such that the induced linearized
endomorphism φM : ϕ∗M→M has has cokernel killed by some power of E(u). We
will reduce many claims to the effective case.

Remark 2.1.5. We define tensor products in ModϕS in the natural way. If M ∈
ModϕS is flat over S/pn, then the dual is defined to be M∗ := Hom(M,S/pn) with

Frobenius given by f 7→ ϕ ◦ f ◦ φ−1
M . The category of Kisin modules which are flat

over S/pn is a rigid exact tensor category. See [Lev13, §4.2] for details.

We will initially set up our HN-theory with effective torsion Kisin modules.

Definition 2.1.6. A torsion Kisin module with height ≤ h is an effective Kisin
module (M, φM) such that M is p-power torsion and coker(φM) is killed by E(u)h.

Denote this category by Mod
ϕ,[0,h]
S,tor .

Remark 2.1.7. The category Mod
ϕ,[0,1]
S,tor is anti-equivalent to the category of finite

flat group schemes over the maximal orderOK of K ([Kis06, Thm. 2.3.5]). Likewise,

Mod
ϕ,[0,1]
S,fl is anti-equivalent to the category of p-divisible groups over OK .



6 BRANDON LEVIN AND CARL WANG ERICKSON

Definition 2.1.8. An effective Kisin module with height ≤ 0 is called étale. Equiv-
alently, these are effective Kisin modules M where φM : ϕ∗M → M is an isomor-
phism.

One reason this terminology is appropriate is that a finite flat group scheme is
étale if and only if its corresponding torsion Kisin module is étale.

Remark 2.1.9. If M ∈ Mod
ϕ,[a,b]
S , then any ϕ-stable strict sub-S-module of M

has height in [a, b]. Consequently, the set of strict subobjects (and, later, the
HN-filtration) of a Kisin module are insensitive to changing the range of heights
allowed.

Example 2.1.10. For r ∈ Z, let (S(r), φS(r)) be the rank 1 Kisin module con-

sisting of the S-module Se and φS defined by φS(r)(e) = (c−1
0 E(u))re where

c0 = E(0)/p. These are Kisin modules of height in [r, r].

For any Kisin module M with height in [a, b] and any integer r, let M(r) :=
M⊗S(r) denote the “rth Tate twist.” This terminology is justified because S/pn(1)
corresponds to finite flat group schemes µpn under the anti-equivalence of Example
2.1.10, and hence S(1) corresponds to the multiplicative p-divisible group.

Remark 2.1.11. It is easy to see that M(r) has height in [a + r, b + r]. This will
allow us to extend proofs about effective Kisin modules to the general case.

2.2. Rank and degree of Kisin modules. Our Harder-Narasimhan theory for
ModϕS,tor will depend on a notion of rank and degree of a Kisin module, satisfying
certain axioms. We will describe this notion of rank and degree, and then describe
a few basic properties. The HN axioms will be proved in the next paragraph.

The first piece of a Harder-Narasimhan theory on ModϕS,tor is a functor to an
abelian category, which we now specify. Let OE denote the p-adic completion of
S[1/u], which inherits the Frobenius map ϕ from S. This is a complete Noetherian
local ring with residue field F = k((u)).

Definition 2.2.1. An étale OE -module (M, φM) is a pair consisting of a finite
OE -module M with a ϕ-semi-linear automorphism, its linearized version being
φM : ϕ∗M ∼→ M. This category is written ModϕOE , and the p-power torsion

full subcategory is written ModϕOE ,tor.

There is a functor GF : ModϕS → ModϕOE , which we call the “generic fiber
functor,” given by

M 7→M⊗S OE .
It restricts to a functor GF : ModϕS,tor → ModϕOE ,tor. This is a natural analog of
the generic fiber of a finite flat group scheme. We will observe that any subobject
N ⊂ GF (M) induces a strict subobject N := N ∩M ⊂ GF (M) of M, and that all
strict subobjects of M are realized in this way.

Remark 2.2.2. In fact ModϕOE ,tor is an abelian tensor category, and it is equivalent

to the abelian category of p-power torsion representations of Gal(F s/F ). By the
theory of norm fields, this is also equivalent to representations of Gal(K/K∞)
though we will not emphasize this. See [Fon90].

We may now define the rank and degree of a torsion Kisin module M; note that
the rank of M depends only upon M ⊗S OE . For any A-module M , let `A(M)
denote its length if the length is finite. Recall that g = [K : Qp].
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Definition 2.2.3. For M a torsion étale OE -module, we let the rank of M to be

rk(M) := `OE (M).

Let M be a torsion Kisin module. We define rk(M) to be rk(GF (M)). Assuming
that M is effective, let coker(φM) be the cokernel of the linearized Frobenius. We
set

deg(M) :=
1

g
`Zp(coker(φM)).

For general M, by Remark 2.1.11 we choose any r ∈ Z≥0 such that M(r) is effective,
and then set

deg(M) := deg(M(r))− r · rk(M).

The slope of M is the quotient µ(M) := deg(M)/ rk(M).

Example 2.2.4. We compute rank and degree for p-power torsion quotients of
S(r). The cokernel is isomorphic to S/E(u)r. We have that rk(S/pn(r)) = n and
deg(S/pn(r)) = rn. Thus, µ(S/pn(r)) = r.

Remark 2.2.5. It will be shown (in Proposition 6.3.7) that the degree of a Kisin
module with height in [0, 1] is the same as the degree (as defined by Fargues [Far10])
of the corresponding finite flat group scheme.

Remark 2.2.6. By [Kis09, Lem. 1.2.7], the rank of M∈ ModϕOE ,tor is equivalent to

the Zp-length of the Gal(K/K∞)-representation associated to M.

When a Kisin module is flat over S/pn, its degree can be calculated from its top
exterior power.

Lemma 2.2.7. Let M ∈ Mod
ϕ,[0,h]
S be flat over S/pn of rank d. Then deg(M) =

deg(∧dSM).

Proof. Filtering M by piM, we can reduce to the case where n = 1. There exists
basis for {ej} for M such that φM(ϕ∗(M)) is generated by umjej . Then deg(M) =

1
[k:Fp]

∑
mj = deg(∧dSM). �

In §3, we will be very interested in the behavior of Kisin modules under ten-
sor product. This basic fact about how slope adds under tensor product will be
foundational.

Proposition 2.2.8. Let M,N ∈ Mod
ϕ,[0,h]
S be flat over S/pn. Then µ(M⊗SN) =

µ(M) + µ(N).

Proof. Let d (resp. d′) be the rank of M (resp. N) over S/pn. The result follows
from Lemma 2.2.7 since

∧d+d′

S (M⊗N) ∼= (∧dSM)d
′
⊗ (∧d

′

SN)d. �

2.3. Harder-Narasimhan theory. Following [Pot], to achieve our goal of setting
up a Harder-Narasimhan formalism on torsion Kisin modules relative to torsion
étale ϕ-modules, we observe that we have

(1) An additive faithful functor GF to an abelian category, preserving strict
short exact sequences.

(2) A notion of rank on the abelian category, denoted rk.
(3) A notion of degree of a torsion Kisin module, denoted deg.
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(4) A notion of closure from the generic fiber which induces a bijection on strict
subobjects.

These structures must satisfy certain axioms, as follows; compare [Pot, §1].

Proposition 2.3.1. The notion of rank and degree of torsion Kisin modules given
in Definition 2.2.3 define a Harder-Narasimhan theory on ModϕS,tor. That is, they
satisfy the following properties.

(1) The functor GF sending torison Kisin modules to torsion étale ϕ-modules
is exact and faithful, and induces a bijection

{strict subobjects of M} ∼−→ {subobjects of M⊗S OE}
(2) Both rk and deg are additive in short exact sequences, and rk(M) = 0 ⇐⇒

M = 0.
(3) When an injection M′ ↪→M in ModϕS,tor induces an isomorphism GF (M′)

∼→
GF (M), then µ(M′) ≥ µ(M), with equality if and only if M′

∼→M.

Proof. Since OE is a flat S-module, the functor GF is exact and faithful as desired,
cf. [Kis06, Prop. 2.1.12]. Because Kisin modules are u-torsion free, GF induces a
bijection

{strict subobjects of M} ∼−→ {subobjects of GF (M)}
M′ ⊂M 7→M′ ⊗S OE ⊂M⊗S OE = GF (M)

M′ ∩M⊗ 1←[M′ ⊂ GF (M).

This proves (1).
Additivity in exact sequences of deg follows from the snake lemma, and additivity

of rk follows from the Noetherianness of OE . If rk(M) = 0, then M = 0 by
Nakayama’s lemma. This proves (2).

Now, let f : M′ ↪→M be an injective morphism which becomes an isomorphism
after inverting u, that is, the cokernel N is us-torsion for some s ≥ 1. Note that
N is also killed by some power of p, so that N has finite Zp-length. The sequence
0→ ϕ∗(M′)→ ϕ∗(M)→ ϕ∗(N)→ 0 is exact because the Frobenius map ϕ : S→
S is flat. Let φN : ϕ∗(N)→ N be the induced map. We get an exact sequence

0 −→ ker(φN) −→ coker(φM′) −→ coker(φM) −→ coker(φN) −→ 0.

Thus,

deg(M′)− deg(M) = `Zp(ker(φN))− `Zp(coker(φN)) = `Zp(ϕ∗(N))− `Zp(N).

The claim that deg(M′) ≥ deg(M) with equality if and only if f is an isomorphism
reduces to Lemma 2.3.2. �

Lemma 2.3.2. For any finite non-zero S-module N, we have `Zp(ϕ∗(N)) > `Zp(N).

Proof. Choose a filtration of N as a S-module that has simple graded pieces; each
of these graded factors is isomorphic as a S-module to k. Because the Frobe-
nius endomorphism of S is flat, this filtration induces a filtration on ϕ∗(N) with
graded pieces isomorphic to S⊗ϕ,S k, which is in turn isomorphic to the S-module
k[u]/(up), which has length p[k : Fp]. �

Now that we have verified the axioms of HN theory for our notions of degree
and rank on ModϕS,tor, standard results follow. To begin with, there are semi-stable
objects.
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Definition 2.3.3. An object M ∈ Mod
ϕ,[0,h]
S is semi-stable if for all non-zero strict

subobjects M′ ⊂M, we have µ(M′) ≥ µ(M).

Remark 2.3.4. Note that the inequality is opposite that of [Far10]. This is natural
given the anti -equivalence of Remark 2.1.7.

The following lemma allows us to always reduce to the case of height in [0, h] by
Tate twisting.

Lemma 2.3.5. Let M ∈ Mod
ϕ,[a,b]
S . Then M is semi-stable if and only if M(r) is

semi-stable for any (equivalently, for every) integer r.

Proof. For any strict subobject N ⊂M, the Tate twist N(r) ⊂M(r) is again a strict
subobject and this induces a bijection between strict subobjects. Furthermore,
µ(N(r)) = µ(N) + r and similarly for M so semistability is unaffected by the Tate
twist. �

One of the most useful consequences of the theory is that there exists a canonical
filtration whose graded pieces are semi-stable objects, and their slopes are ordered.
Note that the ordering is in the opposite direction from [Pot].

Theorem 2.3.6. (HN-filtration) Let M ∈ ModϕS,tor. There exists a unique filtra-
tion 0 = M0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mn = M by strict subobjects such that for all i,
Mi+1/Mi is semi-stable and µ(Mi+1/Mi) > µ(Mi/Mi−1).

Proof. See [Pot, Lem. 6.2]. �

Arguably, the most natural indexing for the HN filtration is by slopes.

Proposition 2.3.7. The HN-filtration is functorial when labeled by slopes. That
is, if M≤α denotes the maximal step in the HN-filtration of M ∈ ModϕS,tor with

slope ≤ α, then for any morphism M→ N in ModϕS,tor, the image of M≤α lies in

N≤α. In particular, when all of the slopes of M are strictly less than those of N,
then Hom(M,N) = 0.

Proof. A standard fact in theory of HN-filtrations (see [Pot, Lem. 6.4]) is that if N
and N′ are both semi-stable and µ(N′) < µ(N) then Homϕ(N′,N) = 0. Inducting
on the length of the HN-filtration of M, we are reduced to the case where M2 = M
so that M/M1 is semi-stable. The map induced by f from M1 to M/M1 is zero
since µ(M1) < µ(M/M1) and both are semi-stable. Thus, f(M1) ⊂M1. �

Here is one direct consequence of this functorality.

Corollary 2.3.8. Let M ∈ ModϕS,tor. Then any f ∈ EndφM
(M) respects the

HN-filtration of M.

Definition 2.3.9. Let M ∈ Mod
ϕ,[0,h]
S,tor be an effective Kisin module. As 0 is the

least possible slope of an effective M, there is a unique strict subobject M≤0 ⊂M.
We call dét(M) := rk(M≤0) the étale rank of M.

One can check that M≤0 is the maximal étale subobject of M.

Example 2.3.10. When in addition M is effective of height ≤ 1, the étale rank of
M is the same as the height of the étale part of the connected-étale exact sequence of
the corresponding finite flat group scheme. We observe that our HN-theory gener-
alizes the connected-étale exact sequence to Kisin modules. We give the proof that
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our HN-theory on Mod
ϕ,[0,1]
S,tor is anti-equivalent to Fargues’ HN-theory in Proposition

6.3.7.

While the HN axioms make ModϕS,tor very close to a abelian category (see e.g.

[Pot, Lem. 2.7]), when one restricts to objects that are semi-stable of a given slope,
this is actually an abelian category.

Proposition 2.3.11. For any slope α, the full subcategory of ModϕS,tor consisting

of semi-stable objects of slope α is an abelian, exact subcategory of ModϕS,tor that is

closed under extensions in ModϕS,tor. As Mod
ϕ,[a,b]
S,tor is closed under strict subobjects,

quotients, and extensions, the same can be said for Mod
ϕ,[a,b]
S,tor .

Proof. See [Pot, Lem. 4.12]. �

Corollary 2.3.12. Let M ∈ Mod
ϕ,[a,b]
S . If M is semi-stable, then any strict sub-

object (resp. quotient) N such that µ(M) = µ(N) is again semi-stable.

Proof. This is a direct consequence of Proposition 2.3.11. Cf. [Pot, Lem. 4.9]. �

2.4. The Harder-Narasimhan polygon. The Harder-Narasimhan polygon, i.e.
“HN-polygon,” of M encodes numerical data about the pieces of the HN-filtration.

Definition 2.4.1. For any M ∈ ModϕS,tor, define the HN-polygon of M, HN(M),

to be the convex polygon whose segments have slope µ(Mi+1/Mi) and length
rk(Mi+1/Mi). The endpoints are (0, 0) and (rk(M),deg(M)). We will often repre-
sent the HN-polygon as a piecewise linear function

HN(M) : [0, rk(M)] −→ [0,deg(M)]

such that HN(M)(0) = 0 and HN(M)(rk(M)) = deg(M).

Remark 2.4.2. Because of our normalization, the HN-polygon HN(M) need not
have integer breakpoints; instead g ·HN(M) has integer breakpoints.

The HN-polygon also expresses a bound on the possible pairs (rk(M′),deg(M′))
that can occur for subobjects M′ ⊂M.

Proposition 2.4.3. The HN-polygon of M is the convex hull of the points

{(rk(M′),deg(M′))} ⊂ R2

for all strict subobjects M′ of M. It is also the convex hull of such points for all
subobjects M′ of M.

Proof. The first claim is equivalent to the statement that for any strict subobject
N ⊂M, the point (rk(N),deg(N)) lies above HN(M). This follows from a standard
induction argument (see, for example, [DOR10, Prop. 1.3.4]). In light of Proposition
2.3.1(3), one gets the same convex hull when all subobjects M′ ⊂M are allowed. �

2.5. Base change. We work mod p for the remainder of the section. We write the
category of p-torsion Kisin modules as ModϕSFp

, i.e. they are Kisin modules over

SFp
∼= k[[u]]. It will be useful in §3 to be able to calculate degrees of Kisin modules

“after base change” in the following sense.
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Let F ′ be a finite extension of F = k((u)) of degree h. Let S′Fp denote the

valuation ring of F ′, which is finite free over S/pS (see e.g. [Ser79, Prop. II.3]) and
compatibly equipped with a Frobenius ϕ′. There is a tensor exact functor

BCF ′/F : ModϕSFp
→ ModϕS′Fp

given by M 7→ (M⊗SFp
S′Fp , φM ⊗ ϕ

′).

Set g′ = gh. For any effective M′ ∈ ModϕS′Fp
, define deg(M′) = 1

g′ `Zp(cokerφM′).

Proposition 2.5.1. Let M ∈ ModϕSFp
be an effective p-torsion Kisin module. Then

deg(M) = deg(BCF ′/F (M)).

Proof. Since S′Fp is flat over SFp , the tensor product commutes with the formation

of cokernels, using that ϕ∗(M)⊗SFp
S′Fp

∼= (ϕ′)∗(BCF ′/F (M)). �

3. The tensor product theorem

3.1. Tensor products of semi-stable Kisin modules. Here is the main result
of this section.

Theorem 3.1.1. Let M,N be semi-stable torsion Kisin modules of slope µ(M) and
µ(N) respectively. Then M⊗S N is semi-stable of slope µ(M) + µ(N).

Let us observe immediately that it suffices to prove Theorem 3.1.1 in a more
narrow case.

Lemma 3.1.2. If Theorem 3.1.1 is true for effective p-torsion Kisin modules M
and N, then its full statement is true.

Proof. By twisting by S(r) as discussed in Lemma 2.3.5, it suffices to restrict
ourselves to the case of effective Kisin modules.

The filtration of a Kisin module by its submodules pnM is decreasing, finite, and
exhaustive. Corollary 2.3.12 implies that when M is semi-stable, all of the graded
pieces of this filtration are semi-stable of identical slope. Assuming Theorem 3.1.1
for p-torsion effective Kisin modules, the tensor products griM ⊗S grj N are p-
torsion, effective, and semi-stable of slope µ(M) + µ(N). Next, notice that direct
sums of such tensor products surject onto the graded pieces of the filtration on
M ⊗S N by pn(M ⊗S N). Applying Corollary 2.3.12, we deduce that the graded
pieces of M⊗SN are semi-stable and all of them have slope µ(M) +µ(N). Finally,
by Proposition 2.3.11, this implies that M⊗S N is semi-stable. �

To summarize the proof of Theorem 3.1.1 in the effective p-torsion case, it will
be convenient to establish the standard notation that we will use in this section.
We write O for k[[u]] and write F for k((u)), the fraction field of O. Then M, N
are projective O-modules with the additional data of the semi-linear finite height
endomorphism.

We will letM := M⊗O F and N := N⊗O F , which we consider to be p-torsion
étale ϕ-modules. The notation M0 and N0 will refer to various choices of O-lattices
in M and N respectively. These will not necessarily be ϕ-stable.

Often, we will work with O-lattices modulo u, especially the O-lattices M0 and
N0. We denote by M0 the finite dimensional k-vector space M⊗O k, and, similarly,
N0 := N⊗O k.
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We will use undecorated tensor productsM⊗N , M⊗N, and M0⊗N0 to denote
the tensor product over F , O, and k respectively.

To prove Theorem 3.1.1, we must show that µ(Q′) ≥ µ(M⊗N) for all subobjects
(i.e. sub-Kisin modules) Q′ ⊂ M ⊗ N. We note that it suffices to restrict the Q′

under consideration to strict subobjects, because any subobject Q′ is contained in
a strict subobject Q, and µ(Q′) ≥ µ(Q). Because all strict subobjects Q ⊂M⊗N
arise from a sub-étale ϕ-module S ⊂M⊗N by intersection as

Q = (S ∩M⊗N) in M⊗N ,

it will suffice to prove µ(S ∩M⊗N) for all sub-étale ϕ-modules ofM⊗N . We will
often study the reduction of this Kisin module modulo u according to the lattice
M0 ⊗N0 ⊂M⊗N , which we denote by

S0 := (S ∩M0 ⊗N0)⊗O k,

where the intersection is taken in M⊗N .
With the notation in place, we will summarize the proof of Theorem 3.1.1 in the

p-torsion case. First, we relate the notion of degree of subobjects S∩M⊗N ⊂M⊗N
to the degrees of subspaces of filtered k-vector spaces. For clarity in exposition, we
will sometimes call the latter degree the “filtration degree” of S. Specifically, we
define a filtration on M0 and N0 such that the degree of S ∩M ⊗ N is bounded
below by the degree of S0 as a subspace of M0 ⊗ N0 with respect to filtration
coming from its tensor factors.

Having related the degree of a Kisin module to the degree of some subspace of a
tensor product vector space, we follow the approach of Totaro [Tot96], which relies
on geometric invariant theory to compare the slope of the subspace to the slope
of the whole tensor product. However, there are additional obstacles to overcome.
Totaro’s approach relies on the notion of a semi-stable subspace of a tensor product
vector space. While Totaro worked with filtered ϕ-modules, which lie over p-adic
fields, we must relate the semi-stability of S as a F -linear subspace ofM⊗N to the
semi-stability of S0 as a k-linear subspace of M0⊗N0. Indeed, the argument relies
on dealing with subobjects that are semi-stable as a vector subspace, and relating
degree to semi-stability. But in our case, subobjects live on the generic fiber (i.e. in
M⊗N ) while the degree is computed on the special fiber (i.e. in M0⊗N0). There
are many choices of M0, N0 such that S is semi-stable in M⊗N but S0 is not
semi-stable in M0 ⊗ N0. We resolve this problem by proving that there exists a
choice of (M0,N0) such that S0 is semi-stable. We dub this new result to be of
“Langton type,” after the work of Langton showing that a generically semi-stable
vector bundle over a curve admits an integral model such that its special fiber is
also semi-stable [Lan75].

In the case that S is not semi-stable in M ⊗ N , Totaro’s strategy relies on
studying the resulting Kempf filtration on the F -vector spaces M and N . This
canonical filtration maximizes the failure of semi-stability of S. It may be readily
shown that the Kempf filtration consists of sub-étale ϕ-modules of M and N . In
this case, we must prove a Langton type result for the Kempf filtration. There is
a final, additional complication to carry out Totaro’s strategy in the case that S is
not semi-stable. Indeed, the defect between degree and filtration degree works in
our favor when S is semi-stable; but when S is not semi-stable, it works against us.
Consequently, additional work is required to eliminate the defect in that case.
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3.2. Degree and filtrations. In this paragraph, we derive a bound (Proposition
3.2.3) on the degree of a sub-Kisin module N ⊂M contained in an étale ϕ-module
M = M ⊗O F . Namely, we bound deg(N) by the degree of N0 as a subspace of
M0 = M0/uM0 according to a certain filtration on M0. Here M0 is an arbitrary
O-lattice inM. In particular, M0 need not be ϕ-stable. In order to prove Theorem
3.1.1, it will be useful to vary M0.

We will work with finite-dimensional k-vector spaces V with increasing exhaus-
tive filtrations indexed by the rational numbers exactly as in [Tot96, §2]: V iα ⊂ V jα
for i ≤ j, V iα = 0 for i � 0, V iα = ∩j∈Q>iV jα , and V iα = V for i � 0. Let
griα V := V iα/V

i−ε
α for small enough ε > 0. This formulation of griα V makes sense

for all i ∈ R, and we insist that griα V 6= 0 only for i ∈ Q. All filtrations will be
assumed to be increasing filtrations indexed by Q, without further comment.

We recall the notions of slope and degree of subspaces of such a filtered vector
space. The degree of a subspace S of a vector space V with filtration α is given by

degα(S) =
∑
i∈Q

i dimk griα S,

where S is given the natural filtration of a subspace of a filtered vector space. The
slope of S, written µα(S), is then given by degα(S)/ dimk(S).

Let M be a p-torsion étale ϕ-module. This first definition depends only on the
fact that M is a finite dimensional F -vector space.

Definition 3.2.1. For any two O-lattices M,L in M, we define an increasing
sequence of sublattices F iL(M) of M,

F iL(M) = M ∩ u−iL for i ∈ Z.

An increasing filtration on M := M/uM is then given by FiliL(M) = Im(F iL(M)).

Finally, we define degL(M) to be the degree of M according to this filtration,
that is,

degL(M) =
∑
i

i dimF griL(M).

It is easy to see that if M,L are in relative position (d1, d2, . . . , dn), then degL(M) =∑
j dj . In particular, if M ⊃ L, then degL(M) = dimkM/L.
The following lemma describes the behavior of this notion of degree for strict

subobject of M, in comparison with this subobject’s interaction with the filtration
on M.

Lemma 3.2.2. Let M,L be O-lattices in M. Let S ⊂ M be a subspace. Define
O-lattices

SM = S ∩M, SL = S ∩ L

in S and consider the induced filtration FiliL(SM) = SM ∩ FiliL(M) on SM. Then

degSL(SM) ≥
∑
i

i dimk griL(SM).

Furthermore, if there exists a splitting s : M → SM of SM ⊂ M such that s(L) ⊂
SL, then the above inequality is an equality.

Proof. Choose a basis {e1, . . . , ek} for SM such that the collection {udiei} gen-
erates SL. Then degSL

(SM) =
∑
i di. A straightforward computation shows

ei ∈ FildiL (M). In particular, we have a natural map (SM,FilSL
) → (SM,FilL)
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of filtered vector spaces inducing the desired inequality, with equality if and only if
the map is strict, i.e., griSL

(SM) ∼= griL(SM).

Let m ∈ SM. For the map to be strict, we need that if udm ∈ L then udm ∈ SL

for any integer d. This follows easily if there exists such a splitting. �

Fix an O-lattice M0 ⊂ M, which is not required to be ϕM-stable. Also fix a
p-torsion Kisin module M ⊂ M whose ϕM is induced by ϕM. The following key
result bounds the degree of strict sub-Kisin modules of M by the linear-algebraic
degree of the induced subspaces of M0.

Proposition 3.2.3. Let M0 and M be as above. Let L0 = φM(ϕ∗M0), a sublattice
of M. For any sub-étale ϕ-module S ⊂M, we have

(3.2.4) deg(SM) ≥ 1

e

(
degL0

(S ∩M0) + (p− 1) degM(S ∩M0)
)
.

Proof. Let SM0
= S ∩M0 and similarly for L0. Let n be the rank of S, and choose

a basis β for SM0
. We can then write SM = x · SM0

for some x ∈ GLn(k((u))). If
A0 ∈ GLn(k((u))) is the matrix for Frobenius on SM0

with respect to β, then by
Proposition 2.2.7, deg(SM0) = 1

evalu(det(A0)). Semilinear change of basis says that

the matrix for Frobenius on SM with respect to x(β) is given by A = x−1A0ϕ(x).
Since valu(det(ϕ(x))) = pvalu(det(x)), we get

deg(SM) = deg(SM0
) +

p− 1

e
valu(det(x)).

However, valu(det(x)) is just the sum of powers of the elementary divisors of SM
relative to SM0 and so we have

deg(SM) =
1

e

(
degSL0

(SM0) + (p− 1) degSM(SM0)
)
.

Applying Lemma 3.2.2 to both factors on the right, we arrive at (3.2.4). �

Proposition 3.2.3 provides a new angle of attack at proving that the tensor
product of semi-stable Kisin modules is semi-stable. Namely, we can bring to bear
existing results on degrees of subspaces of a tensor product.

3.3. Semi-stability of subspaces of tensor products of vector spaces. For
§§3.3-3.8, we will work entirely with vector subspaces and their moduli, returning
to Kisin modules in §3.9 to finish the proof of Theorem 3.1.1. Throughout §§3.3-3.8,
we will work over a field k, which can be any perfect field, including the finite field
that k represents in this whole paper.

In this paragraph, we recall the theory of semi-stable subspaces of a tensor
product M ⊗k N of k-vector spaces M , N , following Totaro [Tot96, §2]. Loosely
speaking, semi-stable S are “generic” subspaces of M ⊗kN . Non-semi-stable S are
also called “unstable.” Unstable S are closer to “special” subspaces, for example
those subspaces of M ⊗k N of the form M ′ ⊗N ′ for subspaces M ′ ⊂M , N ′ ⊂ N .

We remark that we will work with increasing filtrations on vector spaces indexed
by i ∈ Q, in contrast with decreasing filtrations as in [Tot96].

We also note that when M and N are vector spaces and α is a filtration on
(M,N) (meaning that α is the data of increasing filtrations on both M and N),
the tensor product takes on the filtration by ` ∈ Q

(M ⊗k N)`α =
∑
i+j=`

M i
α ⊗N j

α.
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Recall from §3.2 that α then induces a filtration on any subspace S of M ⊗k N ,
which we will label as S`α.

Definition 3.3.1. Let S be a subspace of M ⊗k N , where M and N are finite-
dimensional k-vector spaces. We call S semi-stable if for all filtrations α on (M,N),
µα(S) ≥ µα(M ⊗k N). Otherwise, we call S unstable.

In other words, S is semi-stable if it is “generic enough,” i.e. its intersections
with subspaces of M ⊗k N the form M ′ ⊗N ′, where M ′ ⊂ M and N ′ ⊂ N , tend
to be small.

When S ⊂ M ⊗k N is unstable, there is a unique filtration on (M,N) that
maximizes the failure of semi-stability ([Tot96, Prop. 1]). This is known as the
Kempf filtration associated to S. The Kempf filtration’s indices will only be defined
up to scaling; indeed, we consider filtrations α, β on (M,N) to be (scalar) equivalent
if there exists x ∈ Q>0 such that M ix

α = M i
β and N ix

α = N i
β for all i ∈ Q. In order

to normalize degrees with respect to equivalent filtrations, the following natural
notion of size is natural:

|α| :=
(∑
i∈Q

i2 dim griαM +
∑
j∈Q

j2 dim grjαN

)1/2

.

We observe that |α| is non-zero when α is not trivial.

Proposition 3.3.2. Let M,N be finite dimensional vector spaces over a field K
(perhaps not perfect). Let S ⊂M ⊗KN be an unstable subspace. There is a unique
equivalence class of filtrations of (M,N), the Kempf filtration, such that

(3.3.3) f(S, α) =
µα(M ⊗K N)− µα(S)

|α|
is maximized over the set of non-trivial filtrations α on (M,N) precisely by the
Kempf filtration. Moreover, µα(M) = µα(N) = 0.

Proof. See the elementary argument of Totaro [Tot96, Prop. 1], based on the GIT
arguments of Kempf [Kem78] and Ramanan and Ramanathan [RR84]. �

3.4. Two Langton type results. Now that we have defined semi-stability of
subspaces of tensor product vector spaces, let us overview what we wish to prove
about vector spaces and lattices. The full statements appear in §3.8.

Let k be a perfect field, and let M,N be k-vector spaces. Let F = k((u)) and let
O = k[[u]]. Our goal is to show that the semi-stability of a subspace S ⊂MF⊗FNF ,
or its manner of failure as measured by the Kempf filtration, can be preserved
under some specialization of S. More precisely, consider how a choice of O-lattices
M ⊂MF , N ⊂ NF induces a sublattice S ∩M⊗O N and consequently a reduction
modulo u, S ⊂M ⊗k N . Our main results are

(1) if S is semi-stable, then there exists some reduction S that is semi-stable
(Corollary 3.8.1).

(2) if S is unstable with Kempf filtration α on (MF , NF ), then after passing

to the associated gradeds of MF and NF , there exists a reduction Sss
that

has the same Kempf filtration (Theorem 3.8.2).

We call these results “Langton type” because Langton proved the original result
like (1) in the setting of the moduli of vector bundles on an algebraic curve [Lan75].
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The goal of the next few sections is to recall results from GIT from which we will
deduce (1) and (2) as corollaries.

3.5. Background in geometric invariant theory and instability theory. We
continue using the notation of §3.4. The notion of semi-stability of S ⊂M⊗kN can
be studied geometrically when one considers it to be a property of a point of the
moduli space of s-dimensional vector subspaces of M ⊗ N , i.e. the Grassmannian
Grs(M ⊗kN). This coincides with the notion of semi-stable and unstable points in
geometric invariant theory (GIT). In this paragraph, we will provide background
in GIT. Then, in §3.6, we will return to the particular case of the Grassmannian.

Firstly, we will need to understand the relation between quotient stacks with
stability properties and their associated coarse moduli schemes. This theory was
developed by Mumford [Mum65], and we will often refer to [Alp13, Alp14] for the
geometric aspects of the theory that we particularly require.

Secondly, we will require a stratification of the quotient stack by a measure of
instability which, in the case of the Grassmannian, will be identical to the measure
of (3.3.3). This stratification is known as the Kempf-Ness stratification. The ref-
erences are [Kem78, Hes78, Kir84, Nes84]. The instability results of [Kem78] were
stated in the form of a stratification in [Hes78], and we will mainly refer to [Kir84]
to reference those works. Our exposition follows that of [HL14].

Assume we have these data.

• A projective k-scheme X, where k is a perfect field.
• An action of a reductive k-algebraic group G on X.
• An ample line bundle L on X that is G-linearized, i.e. there is a G-action on
L (by some character of G) that is equivariant for the G-action on the base X.

We are interested in understanding the quotient algebraic stack X := [X/G]. A
point x ∈ X is called semi-stable relative to L when there exists a G-equivariant
global section σ of L⊗n (for some n > 0) that does not vanish at x. To be precise,
we write σ|x for the value of σ at x, which is an element of L⊗n|x := L⊗nx /mxL⊗nx ;
σ is said to vanish at x when σ|x = 0. This results in an open locus Xss

L ⊂ X
called the semi-stable locus. As this locus is G-stable, there is also the semi-stable
quotient stack XssL = [Xss

L /G].
In general, X and XssL are not schemes. GIT yields a coarse moduli scheme for

the semi-stable locus. By definition, a coarse moduli scheme for XssL is the best-
possible quotient scheme approximating XssL (see e.g. [Mum65, Thm. 1.10]). In our
setting, the projective k-scheme

Xss
L //G := Proj

⊕
n≥0

H0(X,L⊗n)G,

is the coarse moduli scheme.

Theorem 3.5.1. Let X, G, and L be as above. There exists a morphism φ : XssL →
Xss
L //G that is uniquely characterized by the property that any morphism from XssL

to a separated scheme factors uniquely through φ. In particular, φ is universally
closed.

Any morphism φ from a stack to a separated scheme with the universal property
of the theorem is called the coarse moduli space of the stack. The crucial property
of coarse quotients, for our purposes, is that the morphism φ from the stack to its
coarse space is an adequate moduli space morphism. These morphisms are defined
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and studied in [Alp13, Alp14]. Such morphisms are universally closed and weakly
proper (see Proposition 3.7.5), by [Alp14, Main Thm.].

Here is the main input we need from this theory.

Corollary 3.5.2. Let X, G, and L be as above. Then XssL is an adequate moduli
space over the projective k-scheme Xss

L //G.

Proof. See [Alp14, p. 490]. �

Having discussed the semi-stable locus, we now discuss the Kempf-Ness strat-
ification of the unstable locus XusL := X \ XssL in X. Assume that G is split for
simplicity. By the Hilbert-Mumford numerical criterion ([Mum65, Thm. 2.1]), for
any unstable geometric point x of X, there exists a cocharacter α : Gm → G such
that

• the limit y := limt→0 α(t) · x exists, and
• the character in X∗(Gm) ∼= Z by which Gm acts via α on L|y is negative.

Notice that Gm acts on L|y by a character because y is in the fixed locus Xα of α
in X. The integer a such that this character is t 7→ ta will be written “weightαL|y.”

Define a norm on cocharacters α of G by |α| =
√
〈α, α〉, where 〈, 〉 is a Weyl

group-invariant positive definite bilinear form on the cocharacter lattice of G. Then,
for any y ∈ Xα, we define the slope

µL(y, α) :=
−weightαL|y

|α|
.

Because µL(·, α) is constant on any connected component Z ⊂ Xα, we also write
µL(Z,α) for this value. Write YZ,α for the locus of points x in X such that the limit
limt→0 α(t) ·x exists and lies in Z. In this context, we write π for the projection to
the limit π : YZ,α → Z. For x ∈ YZ,α, we define µL(x, α) := µL(π(x), α).

Now define ML : X(k̄)→ R to be the maximal slope function

ML(x) := sup{µL(y, α) | α : Gm → G, y = lim
t→0

α(t) · x exists}.

By the Hilbert-Mumford criterion, ML(x) is positive if and only if x ∈ X(k̄) is an
unstable point. The Kempf-Ness stratification on X filters its points by the value
of ML.

We construct the Kempf-Ness stratification by following this inductive procedure:
Select a pair (Zi, αi), where αi : Gm → G is a cocharacter, Zi ⊂ Xαi is a connected
component, Zi is not contained in any of the previously defined strata, and µi :=
µL(Zi, αi) is positive and maximized among all such pairs. Write Z◦i for the open
locus in Zi not intersecting existing strata, and let Y ◦Zi,αi := π−1(Z◦i ). The strata
indexed by i is then Si := G ·Y ◦Zi,αi . Notice that the sequence µi is decreasing, but
not necessarily strictly. The procedure terminates – see Theorem 3.5.4.

Let Lα denote the Levi subgroup of G centralizing α, and set Li = Lαi . Likewise,
denote by Pαi the parabolic subgroup associated to αi, i.e. the subgroup of G
generated by Li and the positive roots relative to αi. Then, for Zi as above, let
Pi := {p ∈ Pαi | $(p) · Zi ⊂ Zi}, where $ : Pαi � Lαi is the usual projection.
Then Li acts on Zi, Pi acts on Yi, and the projection map π : Yi → Zi intertwines
these actions. As a result, there is a morphism

(3.5.3) ev0 : [Yi/Pi] −→ [Zi/Li]

induced by π.
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The theory of the Kempf-Ness stratification yields

Theorem 3.5.4. Assume that X is smooth. The stratification of X into Xss and
the set {Si} consists of finitely many locally closed strata defined over k, where any
union of strata

⋃
i≤i0 Si is closed. Moreover,

Si ⊂ Si ∪
⋃

µj>µi

Sj

and the canonical morphism G ×Pi Y ◦i → Si is an isomorphism for all i, yielding
an isomorphism of quotient stacks [Si/G] ' [Y ◦i /Pi].

Proof. See [Kir84, Thm. 13.5] for the case that k = k̄. The additional properties
of the stratification are described in [Kir84, §12]. As remarked on [Kir84, p. 144],
when k is perfect, it follows from [Hes78] that the strata are defined over k. �

The final fact we record is an analogue of Corollary 3.5.2 with [Zi/Lαi ] in place of
X = [X/G]. In particular, we want to cut out the open locus Z◦i as the semi-stable
locus

Z◦i = (Zi)
ss
Li

for an appropriate Lαi-linearized ample line bundle Li on the projective F-scheme
Zi. Recall that Z◦i is the complement in Zi of Kempf-Ness strata with higher
instability measure.

Proposition 3.5.5. Using the identification of X∗(T ) with X∗(T ) arising from
〈, 〉, there exists a positive integer r such that rαi corresponds to a character of T
that extends to a character χi of Li. Let Li := L⊗r|Zi ⊗ χ−1

i . Then Z◦i = (Zi)
ss
Li .

Proof. See [Kir84, Rem. 12.21] and also [Nes84, Thm. 9.4]. �

Notice that the restriction of L⊗r to Zi will not suffice, as all points in Zi are
unstable relative to L. We can twist L⊗r|Zi by a χi and get a Li-linearized line
bundle because the kernel of χi contains the image of αi, so that this kernel acts
trivially on Zi.

3.6. The Kempf-Ness stratification of the Grassmannian of a tensor prod-
uct. Now we study the Kempf-Ness stratification of the Grassmannian of a tensor
product, explaining how the objects L, Yi, Zi, Pi, Li,Li, etc. from §3.5 are concretely
realized in this case. This will set up notation that will be applied in the proof of
Theorem 3.1.1. We will follow Totaro [Tot96, §2].

The general setup of §3.5 is now specified as follows.

• X = Grs(M ⊗k N), a projective k-scheme parametrizing s-dimensional sub-
spaces of M ⊗N . Let m = dimkM and n = dimkN .
• G = GL(M) ×GL(N), acting on subspaces of M ⊗N by translation on each

tensor factor.
• The line bundle on X

L := (∧sS∗)⊗mn ⊗
(
∧mn (M ⊗N)

)⊗s
is ample and naturally G-linearized. Here S is the universal object, a rank s
vector bundle on X.
• We fix a maximal torus T ⊂ G, and a choice of Weyl-invariant positive definite

bilinear form 〈, 〉 : X∗(T )×X∗(T )→ Z with induced norm |·| : X∗(T )→ R≥0.



A HARDER-NARASIMHAN THEORY FOR KISIN MODULES 19

The first factor of L is well-known to be ample on X, and the second factor is a
trivial line bundle that changes the G-linearization.

Remark 3.6.1. As a notational convention, we will use the undecorated tensor prod-
uct M ⊗ N to denote the base change from Spec k to X of M ⊗k N , and also its
specializations as appropriate. For example, “a point x of X corresponds to a
subspace Sx ⊂M ⊗N .”

Totaro calculates that the instability measure of GIT, written µL(x, α), is related
to the instability measure f(Sx, α) (see (3.3.3)) of the subspace Sx ⊂ M ⊗ N
corresponding to x ∈ Grs(M ⊗kN) [Tot96, Lem. 2]. Indeed, we relate cocharacters
α of G to increasing filtrations of (M,N) by assigning M i

α to the sum of isotypical
spaces for the action of α on M with weight ≤ i. The same is done for N .

To apply the calculations of [Tot96, Lem. 2], we note that in order to translate
between Totaro’s use of decreasing filtrations and our use of increasing filtrations,
one should use the relation degα S = −degdec

−α S, where “degdec
β ” refers to the degree

with respect to the decreasing filtration associated to a cocharacter β. Then Totaro
calculates that µL(x,−α) is the positive multiple

smn · f(Sx, α) = smn
µα(M ⊗k N)− µα(Sx)

|α|
=
sdegα(M ⊗k N)−mn degα(Sx)

|α|
of the normalized slope difference function f(Sx, α) according to the filtration in-
duced by α.

The upshot is that Sx is semi-stable if and only if x ∈ Xss
L . Likewise, the

Kempf-Ness stratification of the unstable locus X\Xss
L is enumerated by the Kempf

filtration of the subspaces associated to the points of this locus. We record this in
Proposition 3.6.4, below, after establishing definitions.

We now set up notation for the Kempf-Ness stratification of X, explaining how
the structures of §3.5 are realized on vector spaces when they are applied to the
Grassmannian. Because increasing filtrations associated to cocharacters α of G are
associated with the action of the cocharacter −α on X, from now on we will label
objects with α that are actually associated to −α in §3.5. For example, Pα will
denote the parabolic subgroup of G associated to the cocharacter −α.

As usual, write (M i
α, N

j
α) for the increasing filtration associated to α. Also note

that the action of α on (M,N) allows us to view griαM as a direct summand of M ,
and likewise for grjαN ⊂ N . We observe that the isotypical space of weight ` ∈ Z
of the action of α on M ⊗k N is the direct summand

(3.6.2) U` :=
⊕
i+j=`

(griαM)⊗k (grjαN) ⊂M ⊗F N.

Notice that these summands induce an isomorphism
⊕

` U`
∼= M ⊗F N .

Consequently, connected components of Xα are in bijective correspondence with
partitions s =

∑
`∈Z s` of s, where 0 ≤ s` ≤ dimU`. Each connected component is

given by the fiber product over Spec k

Z(s`) := ×`Grs`(U`),

which naturally injects into Xα.
Having enumerated the connected components of Xα, we follow §3.5 and set

Y(s`),α = {x ∈ X | lim
t→0

α−1(t) · x ∈ Z(s`)}.
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Moduli-theoretically speaking, Y(s`),α consists of those S ⊂ M ⊗ N such that

gr`α S ⊂ gr`αM ⊗ N has dimension s`. And the moduli-theoretic realization of
the morphism

(3.6.3) Y(s`),α 3 x 7→ lim
t→0

α−1(t) · x ∈ Z(s`)

sends Sx to
⊕

` gr`α Sx, where this is considered to be a subspace of M ⊗ N via
the canonical inclusion gr`α Sx ⊂ U` and isomorphism

⊕
` U`

∼= M ⊗ N . In the
sequel, we will call this operation “Kempf semi-simplifcation.” We will record an
important property of Kempf semi-simplification in Lemma 3.6.6 below.

We also fix Lα and Pα as the Levi subgroup and parabolic subgroup of G asso-
ciated to −α, as in §3.5. There is a particular subgroup of Pα associated to each
connected component Z(s`) in §3.5, but because Pα and Lα are connected, this
subgroup is always Pα.

We note that µL(x,−α) is constant over x ∈ Y(s`),α, given by the formula

smn · f(Sx, α) = µL(x,−α) =
mn ·

∑
` ` · s`
|α|

,

because
∑
` ` · s` is degα(S) and degα(M ⊗N) = 0 (Proposition 3.3.2).

Finally, we define the Kempf-Ness stratification as outlined in §3.5, producing
pairs (Zi, αi) of connected components Zi = Z(s`,i) of Xαi for i = 1, 2, . . . , N with
decreasing µi = µL(Zi,−αi). We have open subschemes Z◦i := Z◦(s`,i) ⊂ Zi and

Y ◦i := Y ◦(s`,i),αi ⊂ Y(s`,i),αi . The ith Kempf-Ness stratum is Si := G · Y ◦(s`,i),αi .
These satisfy Theorem 3.5.4, which also provides morphisms

[Si/G]
∼−→ [Y ◦i /Pαi ]

πi

−→ [Z◦i /Lαi ].

We summarize the discussion above.

Proposition 3.6.4. Let k′ be a field extension of k, and let Sx ⊂ Mk′ ⊗k′ Nk′ be
a k′-subspace, where x ∈ X(k′) is the associated point of the Grassmannian.

(1) Sx is semi-stable if and only if x ∈ Xss
L (k′).

(2) If Sx is unstable, then x ∈ Si(k
′) if and only if αi is conjugate to the

cocharacter associated to the Kempf filtration associated to Sx.

Proof. By Theorem 3.5.4, all of the strata are defined over k. For any extension
k′/k, Proposition 3.3.2 provides a unique Kempf filtration (defined over k′) if and
only if Sx is unstable. �

Remark 3.6.5. In the generality of §3.5, one can only expect the Hilbert-Mumford
criterion to produce a produce a maximal destabilizing cocharacter over perfect
fields [Kem78, §4]. (See [Hes78, §5] for a counterexample over an imperfect field.)
However, Totaro’s proof of Proposition 3.3.2 produces a Kempf filtration for Sx over
its field of definition k′ if and only if Sx is not semi-stable, even if k′ is imperfect.

It will also be important to understand the behavior of the Kempf filtration
under the operation (3.6.3).

Lemma 3.6.6. Let k′ be a field extension of k, and let Sx ⊂ Mk′ ⊗k′ Nk′ be
an unstable k′-subspace with Kempf filtration induced by the cocharacter α, i.e.
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x ∈ Y ◦(s`),α for some partition (s`) of s. Then the image y ∈ Z(s`) of x under

(3.6.3), which corresponds to the subspace

Sy :=
⊕
`

gr`α Sx ⊂
⊕
`

U`,k′ ∼= Mk′ ⊗k′ Nk′ ,

has the same Kempf cocharacter as x, namely, α. In other words, Kempf semi-
simplification preserves the Kempf cocharacter.

Proof. The isomorphism [Si/G]
∼−→ [Y ◦i /Pi] indicates that we may conjugate the

data (x, α) by an element of G in order to reduce to the case that α = αi and
(s`) = (s`,i) for some i enumerating the sequence of Kempf-Ness strata. It is
equivalent to say that x ∈ Y ◦i . By construction, the image y of x in Zi under
(3.6.3) lies in Z◦i . As Z◦i ⊂ Y ◦i , y has the same Kempf cocharacter αi as x does. �

Finally, we record that the more general statement of Proposition 3.5.5 special-
izes to this statement about the Grassmannian.

Proposition 3.6.7. Choose some z ∈ Z(s`). Then there exists a positive integer r
and a character χα ∈ X∗(Lα) such that

L(s`),α := L⊗r ⊗ χ−1
α

is an Lα-linearized ample line bundle on Z(s`). Moreover, z lies in Z◦(s`) if and only

if z is a semi-stable point relative to L(s`),α.

3.7. Valuative criteria and descent of base field. In this paragraph, we refine
the valuative criteria for universally closed morphisms of stacks to a stronger ver-
sion that holds for weakly proper morphisms of stacks. Here is a word about our
motivation for this.

Broadly speaking, we want to apply the valuative criterion for universally closed
morphisms in order to find that certain F -points of X are the generic fibers of O-
points of X in the same Kempf-Ness locus. This is too much to expect on X, but
can nearly be done on the stack quotient X = [X/G]. The obstruction is that the
valuative criterion for universally closed morphisms of finite type algebraic stacks
only holds after taking a finitely generated field extension of F , which is far too
large of an extension to be useful to us. By using the fact that Xss and [Z◦i /Lαi ]
are not only universally closed over a projective space, but also weakly proper
(Definition 3.7.3), we will prove the valuative criterion with only a finite separable
field extension of F . This will suffice for our purposes.

The following is one implication of one example among various formulations of
the valuative criterion for universally closed morphisms of algebraic stacks.

Proposition 3.7.1. Let f : X → Y be a locally finite presentation morphism of
algebraic stacks, where Y is assumed to be locally Noetherian. Assume that f is
universally closed. Let R be a complete discrete valuation ring with fraction field
K. Assume that there is a commutative diagram

SpecK //

��

X

f

��
SpecR // Y
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Then there exists a finitely generated field extension K′/K with valuation ring R′

such that there is a surjective morphism SpecR′ → SpecR and a diagram

(3.7.2) SpecK′ //

��

SpecK //

��

X

f

��
SpecR′ //

h

55

SpecR // Y

extending the first diagram.

Proof. See [LMB00, Thm. 7.3]. �

We will be able to restrict ourselves to the case that K′/K is finite by choosing
a lift of the special point of SpecR to X. The following condition will guarantee
that such points exist. Here we use |X| to denote that topological space underlying
X (see [LMB00, §5]). We also write ν for the closed point of SpecR.

Definition 3.7.3 ([ASvdW11, §2]). Call f : X → Y weakly separated if for every
valuation ring R with fraction field K, and 2-commutative diagrams

SpecK //

��

X

f

��
SpecR //

h1

<<

h2

<<

Y

such that h1(ν) and h2(ν) are closed in |XR| (where XR = X ×Y SpecR), then
h1(ν) = h2(ν) in |XR|.

Call f weakly proper if it is weakly separated, finite type, and universally closed.

It is important to note that the equality h1(ν) = h2(ν) in |XR| does not imply
that there is an isomorphism between h1 and h2, but merely an equality of points in
a topological space. Also, while [ASvdW11] is written for characteristic 0 purposes,
none of the arguments of §2 of loc. cit. depend on this assumption.

We can strengthen Proposition 3.7.1 when f is weakly proper.

Proposition 3.7.4. In the setting of Proposition 3.7.1, assume in addition that f
is weakly separated, and thus weakly proper. Then the field K′ may be taken to be
a finite separable extension of K.

Proof. By [ASvdW11, Lem. 2.7], there exists some choice of h as in (3.7.2) such
that h(ν) is a closed point of |XR′ |. Then by a slicing argument as in [ASvdW11,
Lem. 2.5], one can restrict to the case that K′/K is finite and separable. �

We are interested in using the valuative criterion for an adequate moduli space
morphism φ : X → Y over Spec k. And adequate moduli space morphisms are
weakly proper.

Proposition 3.7.5. The valuative criterion as in Proposition 3.7.4 holds for ade-
quate moduli space morphisms φ : X→ Y , where Y is a proper k-scheme.

Proof. In the case that an adequate moduli space morphism is, moreover, a good
moduli space morphism, this is verified in [ASvdW11, Prop. 2.17]. However, the
difference between adequate moduli spaces and good moduli spaces is immaterial
for this proof, as the critical property is that any geometric fiber of φ has a unique
closed point. This property is true for both good and adequate moduli space
morphisms; see e.g. [Alp14, Main Thm.]. �
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3.8. Two corollaries of Langton type. In this section we deduce the results of
Langton type outlined in §3.4 from the GIT background assembled in §§3.5-3.7.

Our first Langton type result follows from the general GIT result given in Corol-
lary 3.5.2, when applied to the Grassmannian X and its G-linearized ample line
bundle defined in §3.6. In the statement of the result, given a finite separable field
extension F ′/F , we write O′ for the integral closure of O in F ′, which is an O-finite
DVR (see §2.5). We will write u′ for its uniformizer and k′ for its residue field.

Corollary 3.8.1. Let M,N be finite dimensional k-vector spaces. Let S be a semi-
stable subspace of MF ⊗F NF . Then there exist a finite separable field extension
F ′/F and O′-lattices M ⊂MF ′ and N ⊂ NF ′ such that the reduction modulo u′ of
SF ′ ∩M⊗O′ N is a semi-stable subspace of (M ⊗k N)k′ .

Proof. By Corollary 3.5.2, we have an adequate moduli space morphism φ : XssL →
Xss
L //G whose base is a projective k-scheme. The subspace S ⊂ MF ⊗F NF cor-

responds to a F -point x of Xss
L . Taking it as a F -point of XssL for a moment, it

maps to a F -point w = φ(x) of Xss
L //G. Because Xss

L //G is a projective k-scheme,
we may apply the valuative criteria for proper morphisms of schemes and find a
unique O-point w̃ of Xss

L //G whose generic point is φ(x).
We may apply the valuative criterion of weakly proper morphisms recorded in

Proposition 3.7.4 to the data of φ, x, and w̃ because adequate moduli space mor-
phisms such as φ are weakly proper (Proposition 3.7.5). We get the field F ′ and
DVR O′ as in the statement, and a O′-point x̃ of XssL such that x̃⊗O′ F ′ ' x⊗F F ′.

By definition of a quotient stack, the data of x̃ amounts to a G-torsor G over O′
and a G-equivariant morphism G → Xss

L . Because G ' GLm ×GLn, any G-torsor
over O′ is trivial by Hilbert theorem 90 (or, GLn is special in the sense of Serre).
As a trivial O′-torsor has a O′-point, we obtain a point x̂ ∈ Xss

L (O′) that projects
to x̃ ∈ XssL (O′). Also, x̂⊗O′ F ′ is in the G(F ′)-orbit of x⊗F F ′. Let g = (gM , gN ) ∈
G(F ′) = GL(MF ′)×GL(NF ′) such that (gM , gN ) · (x⊗F F ′) = x̂⊗O′ F ′.

Finally, we translate these statements back into the language of vector spaces and
lattices. Let M0 ⊂MF ′ be the standard lattice M ⊗k O′, and define N0 similarly.
Then set M = g−1

M M0 and set N = g−1
N N0. Thus g · SF ′ in MF ′ ⊗F ′ NF ′ satisfies

the statement of the Corollary relative to the lattices (M0,N0). Translating this
relationship by g−1, we have the desired result. �

Here is the second Langton type result that we will require.

Theorem 3.8.2. Let α be a cocharacter of G, and let M =
⊕

i griαM , N =⊕
j grjαN be the resulting direct sum decompositions of M and N . For each `,

choose S` ⊂ U` ⊗k F and write S =
⊕

` S` ⊂ MF ⊗F NF . Assume that S is an
unstable subspace of MF ⊗F NF with Kempf cocharacter α. Then there exists a
finite separable field extension F ′/F and O′-sublattices

griM ⊂ griαM ⊗k F ′, grj N ⊂ grjαN ⊗k F ′

such that the reduction S (modulo u′) of SF ′∩(⊕ griM)⊗O′ (⊕ grj N) is unstable in
(M⊗kN)k′ with Kempf cocharacter α. Moreover, the Kempf filtration on (Mk′ , Nk′)
relative to S (resp. the Kempf filtration on (MF ′ , NF ′) relative to SF ′) is realized
by specializing (resp. generalizing) the filtrations

Mi =
⊕
a≤i

graM, Nj =
⊕
b≤j

grbN
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of (M,N) by strict O′-sublattices.

Proof. By Proposition 3.6.7, the locus ZssL′ = Z◦(s`) of Z(s`) on which α induces the

Kempf filtration is the semi-stable locus associated to an ample Lα-linearized line
bundle which we will refer to by L′ here. Exactly as in the proof of Corollary 3.8.1, it
follows that there exists an adequate moduli space morphism from ZssL′ := [ZssL′/Lα]
to a projective k-scheme. Then Propositions 3.7.4 and 3.7.5 may be applied to the
F -point of Z induced by the subspace S of the statement. Applying the valuative
criteria, we have F ′, O′, and a O′-point z̃ of ZssL′ such that z̃ ⊗O′ F ′ is isomorphic
to z ⊗F F ′. Again, as in the proof of 3.8.1, because Lα is a direct product of GLd
for various d, there is a point ẑ ∈ ZssL′ realizing z̃. Also, there exists l = (lM , lN ) ∈
Lα(F ′) such that l · (z ⊗F F ′) = ẑ ⊗O′ F ′.

Finally, translating this statement back to graded vector spaces and writing
griM0 for (griαM)⊗kO′ and likewise defining grj N0, we find that (l−1

M M0, l
−1
N M0)

are the desired O′-lattices in MF ′ ⊗F ′ NF ′ . �

3.9. Conclusion of the proof of Theorem 3.1.1. We now prove the tensor
product theorem, using the input from GIT summed up in §3.8.

Proof of Theorem 3.1.1: We recall the notation F = k((u)), O = k[[u]]. The p-
torsion Kisin modules M,N are finitely generated free O-modules with a semi-
linear endomorphism of finite height, andM,N are the étale ϕ-modules arising as
M = M⊗O F , N = N⊗O F .

As discussed in §3.1, it suffices to check that

(3.9.1) µ(S ∩M⊗O N) ≥ µ(M⊗O N)

for all sub-étale ϕ-modules S ⊂M⊗F N .
To accomplish this, we use Proposition 3.2.3, which, for our present purposes,

may be read as follows. Given a Kisin module P, an O-lattice P0 ⊂ P := P⊗O F
(that is not required to be ϕ-stable), and a sub-étale ϕ-module S ⊂ P, there are
two filtrations Fil1,Fil2 on the k-vector space P0 := P⊗O k such that

(3.9.2) deg(P ∩ S) ≥ degFil(S ∩P0) := a degFil1(S ∩P0) + bdegFil2(S ∩P0),

where a, b ∈ Q>0. Equality is guaranteed when S = P, or, equivalently, when
S ∩P = P. Below we will write “degFil(P∩S)” for the right hand side, expressing
the inequality as

(3.9.3) deg(P ∩ S) ≥ degFil(P ∩ S), or, equivalently, µ(P ∩ S) ≥ µFil(P ∩ S)

with equality when P = P ∩ S.
First we establish (3.9.1) in the case that S ⊂M⊗F N is semi-stable as a vector

subspace. In this case, Corollary 3.8.1 guarantees that there exist the following
data. There is a finite separable field extension F ′/F with integral closure O′ of
O, and O′-lattices

M0 ⊂MF ′ , N0 ⊂ NF ′
such that

S0 := SF ′ ∩M0 ⊗O′ N0 ⊂M0 ⊗k′ N0

is a semi-stable subspace. As discussed in §2.5, the Kisin module structure of M,
N and the étale ϕ-module structure of M, N , S naturally extend to MO′ , NO′ ,
MF ′ , NF ′ , SF ′ . Moreover, Proposition 2.5.1 tells us that deg(P) = deg(PO′) for
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any Kisin module P over O. Therefore, we may establish (3.9.1) by writing Q for
SF ′ ∩MO′ ⊗O′ NO′ and proving

(3.9.4) µ(Q) ≥ µ(MO′ ⊗O′ NO′).

By definition of semi-stable subspace, for any filtration Fil on (M0,N0), we have
degFil(S0) ≥ degFil(M0 ⊗k′ N0). This contributes the middle inequality in

µ(Q) ≥ µFil(Q) ≥ µFil(MO′ ⊗O′ NO′) = µ(MO′ ⊗O′ NO′),
while the outer two (in)equalities come from (3.9.3). This proves (3.9.4), as desired.

It remains to prove (3.9.1) when S ⊂M⊗F N is unstable as a vector subspace.
In this case, there exists a unique Kempf filtration of (M,N ) (Proposiiton 3.3.2),
which we label by Mi

α and N j
α. The Kempf filtration minimizes the (negative)

normalized difference
µα(S)− µα(M⊗F N )

|α|
over all filtrations of α of (M,N ). Since the Kempf’s filtration is unique up to
scaling and φM⊗N : ϕ∗(M⊗F N )→M⊗F N is a linear isomorphism, we deduce
that the Mi

α and N i
α are φ-stable whenever S is. That is, they are sub-étale

ϕ-modules of M and N .
Consider now the strict sub-Kisin modules

Mi := M ∩Mi
α ⊂M, Nj := N ∩N j

α ⊂ N.

Because M and N are assumed to be semi-stable Kisin modules, we know that

(3.9.5) µ(Mi) ≥ µ(M) and µ(Nj) ≥ µ(N).

We want to arrange for each of the factors in (3.9.5) to be precisely computed
by µFil for an appropriate choice of M0 ⊂ M and N0 ⊂ N . We will do this after
semi-simplifying as follows.

The Kempf co-character α acting on (M,N ) induces a direct sum decomposition
with summands

(3.9.6) griαM⊂M, grjαN ⊂ N .
These F -linear summands are not necessarily étale ϕ-module summands. We put
a new étale ϕ-module structure on the vector spaces M and N , which we write
as Mnew, N new and call the “Kempf semi-simplification” of M, N , respectively.
Namely, each ofM,N is canonically a vector space direct sum with summands as in
(3.9.6). Here each graded piece has a étale ϕ-module structure because the Kempf
filtration consists of sub-étale ϕ-modules, resulting in an étale ϕ-module structure
on the sums. This is exactly the analogue for étale ϕ-modules of the operation
(3.6.3) on vector spaces.

Likewise, we replace M and N with their Kempf semi-simplifications

Mnew :=
⊕
i

(M ∩Mi
α)/(M ∩Mi−1

α ), Nnew :=
⊕
j

(N ∩N j
α)/(N ∩N j−1

α )

and replace S with its Kempf semi-simplification

Snew :=
⊕
`

(S ∩ (M⊗F N )`α)/(S ∩ (M⊗F N )`−1
α ).

Degree and slope of the tensor factors remains constant under semi-simplification:

deg(M) = deg(Mnew), deg(N) = deg(Nnew).
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By Lemma 3.9.8, we have

deg(S ∩ (M⊗O N)) ≥ deg(Snew ∩ (Mnew ⊗O Nnew)),

where the left hand intersection is taken inM⊗FN and the right hand intersection
is taken in Mnew ⊗F N new. Consequently, we may proceed toward our goal of
establishing (3.9.1) after replacing the former objects by their “new” Kempf semi-
simplified version. Going forward, we drop “new” from our notation and use “old”
to refer to the objects before Kempf semi-simplification.

Notice that after Kempf semi-simplification, S ⊂ M ⊗F N is a subspace of
precisely the form required to apply Theorem 3.8.2. Moreover, Lemma 3.6.6 ensures
that we may use the α as the Kempf cocharacter for S, just as we did before Kempf
semi-simplifying.

Applying Theorem 3.8.2, we may fix O′-lattices

griM0 ⊂ griαMF ′ , grj N0 ⊂ grjαNF ′

for all i, j, such that when we write M0 := ⊕i griM0 and N0 := ⊕j grj N0, the

Kempf filtration on (M0,N0) arising from the unstable subspace

S0 := SF ′ ∩M0 ⊗O′ N0 ⊂M0 ⊗k′ N0

consists of subspaces

M
i

0 :=Mi
α,F ′ ∩M0 ⊂M0, N

j

0 := N j
α,F ′ ∩N0 ⊂ N0.

We will now apply the comparison of deg and degFil given in (3.9.3) as a con-
sequence of Proposition 3.2.3. Because M0 and N0 arise as direct sums with sum-
mands griM0, grj N0 matched to the summands griMO′ and grj NO′ , and because
each element Mi, Nj of the filtration on (M,N) consists of direct sums of certain
of these summands, Proposition 3.2.3 guarantees that we have equality in (3.9.3).
Consequently, we may combine these equalities with the fact that Mold is semi-
stable (as recorded in (3.9.5)) and that deg(Mi) = deg((Mi)old) to conclude

(3.9.7) µ(Mi
O′) = µFil(M

i
O′) ≥ µFil(MO′) = µ(MO′),

and the analogous inequality for NO′ ,N
j
O′ in place of MO′ ,M

i
O′ .

Now we apply [Tot96, Prop. 2], which gives some c > 0 such that for any filtration
β on (M0,N0), we have

µβ(S0)− µβ(M0 ⊗k′ N0) ≥

c ·

∑
i

(µβ(M
i

0)− µβ(M0)) dimk′M
i

0 +
∑
j

(µβ(N
j

0)− µβ(N0)) dimk′ N
j

0

 .

Taking the sum of these inequalities over the two factors adding up to µFil in (3.9.2),
the very same inequality is true when we replace µβ with µFil. Because each factor

µβ(M
i

0) − µβ(M0) is equal to µ(Mi
O′) − µ(MO′) by applying (3.9.7), the right

hand side of the inequality is positive. Consequently, the left hand side is positive.
Writing Q for SF ′ ∩MO′ ⊗O′ NO′ , we can then apply (3.9.3) to conclude

µ(Q) ≥ µFil(Q)
def
= µFil(S0) ≥ µFil(M0 ⊗k′ N0)

def
= µFil(MO′ ⊗O′ NO′) = µ(MO′ ⊗O′ NO′),

establishing (3.9.4) to complete the proof. �
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We thank Christophe Cornut for pointing out the need for the following lemma
in the proof of Theorem 3.1.1.

Lemma 3.9.8. Let P be an étale ϕ-module with lattice P ⊂ P and a separated
increasing filtration

0 = P0 ⊂ P1 ⊂ · · · ⊂ Pn = P
by sub-étale ϕ-modules. Let S ⊂ P be an arbitrary sub-étale ϕ-module. Define

Snew :=

n⊕
i=1

(Pi ∩ S)/(Pi−1 ∩ S), Pnew :=

n⊕
i=1

(Pi ∩P)/(Pi−1 ∩P).

Then

deg(S ∩P) ≥ deg(Snew ∩Pnew).

Proof. The lattice S ∩P can be filtered by intersection with the Pi, making for a
composition series with Jordan-Hölder factors

Qi :=
S ∩P ∩ Pi

S ∩P ∩ Pi+1
.

We have deg(S ∩P) =
∑n

1 deg(Qi).
Likewise, the ith graded piece of the intersection Snew ∩Pnew is

Xi :=
Pi ∩ S
Pi+1 ∩ S

∩ Pi ∩P

Pi+1 ∩P
∼=

(Pi ∩ S + Pi+1) ∩ (P ∩P + Pi+1)

Pi+1
,

where the left hand intersection is taken in Pi/Pi+1. We have deg(Snew ∩Pnew) =∑n
1 deg(Xi).
Given i, observe that there is a natural morphism of Kisin modules f i : Qi → Xi.

One may quickly check that f i is both injective and induces an isomorphism on the
generic fiber, implying that coker(f i) has finite cardinality. The desired inequality
follows from Proposition 2.3.1(3). �

4. HN-filtrations in families

In this section, we study the behavior of HN-polygons and HN-filtrations in
families of Kisin modules. The main result is that in families with constant generic
fiber, the HN-polygon is upper semicontinuous (Theorem 4.3.2). We also study the
HN-filtration over Artinian deformations in preparation for §6.

4.1. Kisin modules with coefficients. Let A be a finitely generated Zp-algebra
where p is nilpotent. To begin, we define Kisin modules with coefficients in A.
Write SA := S⊗Zp A.

Definition 4.1.1. A Kisin module over A (with bounded height) or A-Kisin mod-
ule is a finite SA-module MA that is projective of constant rank, together with
an A-linear Kisin module structure map φMA

: ϕ∗(MA)[1/E(u)]
∼→ MA[1/E(u)]

satisfying the height condition (2.1.4) for some a, b ∈ Z. Denote this additive exact
rigid tensor category by ModϕSA .

Likewise, we will use étale ϕ-modules with coefficients in A. We write OE,A for
OE ⊗Zp A.
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Definition 4.1.2. An étale ϕ-module over A or étale OE,A-module is a finite OE,A-
moduleMA that is projective of constant rank, together with an A-linear structure
of an étale ϕ-module φMA

: ϕ∗(MA)
∼→MA. Denote this additive exact rigid tensor

category by ModϕOE,A .

Notice that even when A is a finite field A = F, the constant rank condition on
Kisin modules seems a priori stronger than merely insisting on projectivity. This
is the case because SF ∼= (F ⊗Fp k)[[u]], which is a product of rings of the form
F′[[u]] where F′ is a finite field. However, by the argument of e.g. [Kis09, Lem.
1.2.7(4)], it turns out that a projective SA-module with a Kisin module structure
compatible with A is constant rank whenever SpecA is connected. So the constant
rank condition is not serious. The same discussion applies to étale ϕ-modules.

Only briefly in §6 will we consider Kisin modules with A-structure that are not
projective as SA-modules, and we will call these “generalized A-Kisin modules.”
By the comments above, when A = F is a finite field, then every Kisin module with
F-structure is automatically projective of constant rank over SF, as they must be
u-torsion free.

4.2. p-torsion Kisin modules in families. Our HN-theory for Kisin modules
from §2 can be applied to A-Kisin modules when A has finite cardinality, because
in this case an A-Kisin module is an object of ModϕS,tor when the A-structure is
forgotten. We will begin in the case that A = F is a finite extension of Fp.

Proposition 4.2.1. For any MF ∈ ModϕSF
, consider the HN-filtration

MF,0 = 0 ⊂MF,1 ⊂MF,2 ⊂ . . . ⊂MF,n = MF

with MF,i ∈ ModϕS (see Theorem 2.3.6). Then, each MF,i ∈ ModϕSF
.

Proof. By Corollary 2.3.8, for every a ∈ F, the endomorphism of MF induced by a
preserves the HN-filtration. Equivalently, by the comments of §4.1, each MF,i is an
F-Kisin module. �

Remark 4.2.2. A consequence of Proposition 4.2.1 is that one can work in the a
priori smaller category ModϕSF

and one gets the same HN-filtration.

Proposition 4.2.3. If A is any finite F-algebra and MF ∈ ModϕSF
, then the HN-

filtration of MF ⊗SF SA is given by

0 ⊂MF,1 ⊗F A ⊂MF,2 ⊗F A ⊂ . . . ⊂MF,n ⊗F A = MF ⊗F A.

In particular, the HN-filtration consists of objects of ModϕSA .

Proof. If NF is any semi-stable object with slope µ(NF), then, as a S-module,
NF⊗FA is a direct sum of finitely many copies of NF. The direct sum of two semi-
stable objects of slope µ is semi-stable with slope µ (Proposition 2.3.11). Thus,
NF⊗FA is semi-stable with µ(NF⊗FA) = µ(NF). Thus, the base change MF,i⊗FA of
the HN-filtration has the properties of Definition 2.3.6, which uniquely characterize
the HN-filtration.

Because MF,i are projective of constant rank over SF, the same holds for MF,i⊗F
A over SA. �

Next, we renormalize the HN-polygon so that if F′ is a finite extension of F, then
HNF(MF) = HNF′(MF ⊗F F′).
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Definition 4.2.4. Let MF ∈ ModϕSF
. We set

HNF(MF)(x) :=
1

[F : Fp]
HN(MF)([F : Fp]x)

such that the endpoints of HNF(MF) are (0, 0) and 1
[F:Fp] (rk(MF),deg(MF)).

Note that the slopes of HNF(MF) are the same as those of HN(MF), but the
lengths of the segments are scaled by the factor [F : Fp]−1.

Proposition 4.2.5. For any MF ∈ ModϕSF
and any finite field extension F′/F,

HNF(MF) = HNF′(MF ⊗F F′).

Moreover, the breakpoints of HNF(MF) lie in (Z, 1
gZ).

Proof. This follows directly from Proposition 4.2.3. �

4.3. Families with constant generic fiber. Fix an étale OE,F-module MF. We
now address the behavior of HN-filtrations in families of Kisin modules with con-
stant generic fiber MF. This is a F-algebra A and an A-Kisin module MA such
that MA ⊗SA OE,A 'MF ⊗F A.

Let ΣMF denote the F-stable subobjects of MF ⊗F F. Any element of ΣMF is
defined over some finite extension of F.

Let F′ be any finite extension of F. If MF′ is a Kisin module over F′ with generic
fiber MF ⊗F F′, then we have a map

PMF′ : ΣMF → Q2

as follows: any N ∈ ΣMF is defined over a some finite field F′′ which we can assume
contains F′. We take PMF′ (N) to be

1

[F′′ : Fp]
(

rk(MF′ ⊗F′ F′′ ∩NF′′),deg(MF′ ⊗F′ F′′ ∩NF′′)
)
,

which is independent of our choice of F′′ by Proposition 4.2.5.

Lemma 4.3.1. For any Kisin module MF′ ∈ ModϕSF′
, HNF′(MF′) is the convex

hull of the image of PMF′ .

Proof. Initially, let’s restrict to subobjects of ΣMF which are defined over F′, i.e., F′-
subobjects ofMF⊗FF′. The values of PMF′ on these subobjects lie above HNF′(MF′)
by Proposition 2.4.3. Furthermore, by Proposition 4.2.1, the HN-filtration on MF′

is given by strict F′-subobjects; these come from F′-subobjects ofMF⊗FF′ (Propo-
sition 2.3.1(1)). From this, we deduce that the breakpoints of HNF′(MF′) lie in the
image of PMF′ .

It remains to show that for N ∈ ΣMF possibly not defined over F′, PMF′ (N )
lies above HNF′(MF′). This follows from the same argument as in Proposition
2.4.3 using that the HN-filtration is stable under finite base change (Proposition
4.2.5). �

Theorem 4.3.2. (Semi-continuity) Let A be a finite type F-algebra. Let MA ∈
ModϕSA be an A-Kisin module of rank n. Assume also that MA has constant generic

fiber MF. Let P0 : [0, n] → R be a convex polygon. Then the set of points x ∈
(SpecA)(F) such that HNk(x)((MA)x) ≥ P0 is Zariski closed.
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Proof. For each point x ∈ (SpecA)(F), we get a function PMx
: ΣMF → Q2 as

in the discussion before Lemma 4.3.1. Let Qx denote the projection of PMx onto
the second coordinate. We claim then that for any N ∈ ΣMF , the integer valued
function Qx(N ) of x is upper semi-continuous.

By Proposition 4.2.5, it is harmless to take a finite extension of the residue field,
so we may assume that N is defined over F. Consider NA = MA ∩ (N ⊗F A) ⊂
MF ⊗F A which is stable under φMA

. Let cA denote the cokernel of φMA
|NA

. The
formation of both NA and cA commute with base change on A since everything in
sight is SA-flat. In particular,

NA ⊗A,x F′ = Mx ∩ (N ⊗F F′) ⊂MF ⊗F F′

for any x : A→ F′.
Since for any x : A → F′, Qx(N ) is the F′-dimension of (cA)x, to prove the

claim, it suffices to show that cA is a coherent A-module. But this follows from
the fact that cA ⊂ coker(φMA

) (apply the snake lemma and use that everything is
well-behaved over OE,A).

We return to the proof of the theorem. By Lemma 4.3.1, HNx(Mx) ≥ P0 if and
only if Qx(N ) ≥ P0(rkOE,F′ (N )) for all N ∈ ΣMF and F′ is a field over which N is
defined. For each N , this is a closed condition on SpecA and so applying this for
all N proves the theorem. �

4.4. Étale rank. The first segment of the HN-polygon is of particular interest, as
we will show that it cuts out a discrete invariant in mod p families of effective Kisin
modules with constant generic fiber. Without loss of generality we will work with
effective Kisin modules M, for which the first segment has length being the étale
rank dét(M) of Definition 2.3.9.

As in Theorem 4.3.2, we continue to let A represent a F-algebra, and let F′
denote field extensions of F.

Definition 4.4.1. Let MA ∈ Mod
ϕ,[0,h]
SA

be a family of effective Kisin modules of

rank n with constant generic fiber MF. For each point x : A → F′, define dét
MA

(x)

to be dét((MA)x)/[F′ : Fp], the F′-étale rank of (MA)x.

Corollary 4.4.2. Let MA be a family of effective Kisin modules with rank n and
constant generic fiber. For each nonnegative integer d, the set of points where
dét
MA

(x) ≤ d is closed.

Proof. Consider the polygon P0 starting from (0, 0) whose breakpoints are (d, 0)
and (n, 1

g ). For any x, if HNκ(x)((MA)x) ≥ P0, then since MA is effective, making

all slopes of (MA)x to be ≥ 0, dét
MA

(x) ≤ d.

Conversely, if dét
MA

(x) = d′ ≤ d, then HNκ(x)((MA)x) lies above the poly-

gon with breakpoints (d′, 0) and (n, 1
[F:Fp] deg((MA)x)) which lies above P0 since

1
[F:Fp] deg((MA)x) ≥ 1

g . The corollary now follows from Theorem 4.3.2. �

For a family with height [0, d], the function dét
MA

(x) is not just lower semicontin-
uous but is fact locally constant, as was first observed in [Kis09]:

Proposition 4.4.3. Let MA ∈ Mod
ϕ,[0,h]
SA

be a family of Kisin modules of rank n.

Then for any nonnegative integer d, the set of points x of SpecA where dét
MA

(x) = d
is open and closed.
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Proof. This is the main content in the proof of [Kis09, Prop. 2.4.14]. �

Proposition 4.4.3 will be important when we consider Kisin varieties in the next
section. Roughly speaking, one expects generalizations of the étale rank to account
for most of the discrete invariants (see Remarks 5.2.14 and 5.2.16).

5. Applications to Kisin varieties

The goal of this section is to apply the tensor product theorem to the study
of Kisin varieties for a reductive group G, called G-Kisin varieties. We specify
the objects of interest in Proposition 5.2.6. The main result is the construction of
certain discrete invariants for G-Kisin varieties coming from HN-polygons (Theorem
5.2.13). For simplicity, we assume for this section that K/Qp is totally ramified;
that is, k = Fp.

5.1. Kisin varieties for GLn. First, we review the theory of (closed) Kisin vari-
eties for GLn. These varieties were originally constructed in [Kis09] (see §2.4.4).
Kisin was working in the height [0, 1] setting, however, the construction does not de-
pend in any way on this. They were called Kisin varieties in [PR09] and studied in
greater generality(see §6). In form, Kisin varieties resemble affine Deligne-Lusztig
varieties but for a different Frobenius.

Definition 5.1.1. For ν = (a1, a2, . . . , an) with ai ∈ Z and ai+1 ≥ ai, a projective
Kisin module (M, φM) over F′/F of rank n has Hodge type ν if there exists a basis
{ei} of M such that uaiei generates the image of φM. We define the Hodge polygon
Pν to be convex polygon interpolating (i, a1 + a2 + . . .+ ai).

We denote the usual Bruhat order (on dominant cocharacters of GLn) by ν′ ≤ ν.

Namely, (a′1, a
′
2, . . . , a

′
n) ≤ (a1, a2, . . . , an) if

∑d
i=1 a

′
i ≥

∑d
i=1 ai for all d ≥ 1 and∑n

i=1 a
′
i =

∑n
i=1 ai. Note that ν′ ≤ ν if and only if we have an inequality of Hodge

polygons Pν′ ≥ Pν that have equal end-points..

Proposition 5.1.2. Let (M, φM) be an étale OE -module of rank n over F. There
exists a reduced closed F-subscheme Xν

M of the affine Grassmannian of M such
that for any F′/F

Xν
M(F′) = {F′[[u]]-lattices M ⊂M⊗ F′ |M has Hodge type ≤ ν}.

We call this the (closed) Kisin variety associated to (M, φM, ν).

Proof. See [Kis09, Prop. 2.4.6] or [PR09, §6.a.2]. �

Remark 5.1.3. Notice that the height of a Kisin module corresponding to a point of
Xν
M is in [ba1e c, d

an
e e], where ν = (a1, . . . , an). Because an affine Grassmannian is

ind-projective and the bound on height discussed in Remark 5.1.3 makes Xν
M finite

type and closed in the affine Grassmannian, Xν
M is projective, cf. [Kis08, Prop.

1.3].

Remark 5.1.4. One reason we are interested in Xν
M and its connected components

is the following. If MF arises from reduction of a crystalline representations with

p-adic Hodge type (µψ) ∈ (Zn)Hom(K,Qp) with µψ dominant, then the Hodge type
of MF is less than or equal to ν =

∑
ψ∈Hom(K,Qp) µψ. This is a consequence of local

model diagram of [CL15, Thm. 5.3] combined with the description of the special
fiber of the local model in Thm. 2.3.5 of loc. cit. (see also Prop. 5.4 of loc. cit.).
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Motivated by modularity lifting techniques, one is interested in the connected
components of the moduli space of crystalline representations with p-adic Hodge
type (µψ). In the Barsotti-Tate case, the connected components Xν

M are known
to be the same as connected components of the crystalline deformation ring, e.g.
[Kis09, §2.5].

Proposition 5.1.5. For any point in M ∈ Xν
M(F) defined over F′, the (scaled)

HN-polygon lies above the Hodge polygon Pν , i.e., g · HNF′(M)(x) ≥
∑
i≤x ai, and

they have the same endpoints.

Proof. We write F for F′ for convenience. By Proposition 4.3.1, it suffices to show
that for any strict F-subobject N ⊂ M we have g deg(N) ≥

∑
i≤rk(N) ai. Let

d = rkSF(N). Consider ∧dSF
(N) ⊂ ∧dSF

(M). An elementary calculation shows that

u
∑
i≤d ai(∧dSF

(M)) ⊃ φ(ϕ∗(∧dSF
(M))).

In particular, the Frobenius on ∧d(N) is divisible by u
∑
i≤d ai and so by adapting

Lemma 2.2.7 to work over SF in place of S, we have deg(N) = deg(∧d(N)) ≥
1
g

∑
i≤d ai. The endpoints of HNF(M) and Pν are the same because the F-length of

coker(φM) is
∑
i ai. �

Corollary 5.1.6. There is a decomposition

Xν
M =

⋃
P

Xν,P
M

into locally closed reduced subschemes indexed by concave polygons P such that each

closed point x of Xν,P
M corresponds to a κ(x)-Kisin module Mx with HN-polygon

HNκ(x)(Mx) equal to P .

Proof. This follows from Theorem 4.3.2. �

Remark 5.1.7. (1) By Proposition 5.1.5, there are finitely many possible HN-
polygons appearing in the decomposition in Corollary 5.1.6.

(2) It is clear that the closure of Xν,P
M in Xν

M is contained in
⋃
P ′≥P X

ν,P ′

M by

semi-continuity, but it is not equal in general (see Proposition 4.4.3).

For any Kisin variety, there is an natural generalization of étale rank which was
first introduced in [Hel09, Defn. 4.2] for GL2. One replaces the length of the initial
horizontal segment of HNF(M) for an effective Kisin module (as discussed in §4.4)
with the largest dmax ≥ 0 such that g · HNF(M)(x) = Pν(x) for x ∈ [0, dmax] and
such that the slope is constant.

Corollary 5.1.8. Let ν = (a1, a2, . . . , an), and let dmax be largest integer such that
admax

= a1. For any d ≤ dmax, let Sd = {P | g ·P (d) = a1d, g ·P (d+1) > a1(d+1)}.
Then the union ⋃

P∈Sd

Xν,P
M

is a union of connected components of Xν
M.

Proof. If we take M′ = (M, u−a1φM), then there is a natural identification

Xν
M = Xν′

M′
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with ν′ = ν − (a1, . . . , a1). Furthermore, by the same argument as in Lemma
2.3.5, if M ∈ Xν

M(F) has HN-polygon P = HNF(M), then M′ = (M, u−a1φM) has
HN-polygon given by P ′(x) = P (x)− a1

g x. By Proposition 4.4.3 we are done. �

Remark 5.1.9. By applying Corollary 5.1.8 to all the exterior powers ofM, one can
produce further discrete invariants. For example, the largest integer ` such that
g · HN(M)(x) = Pν(x) for x ∈ [0, `] (not necessarily of constant slope) is also a
discrete invariant. The complete description of such invariants is given in Theorem
5.2.13.

5.2. Kisin varieties for a reductive group. Let G be a connected split reductive
group over F with maximal torus T and Borel subgroup B ⊃ T . Let X∗(T ) (resp.
X∗(T )) denote the cocharacters (resp. weights) of the torus T . Let ∆ ⊂ X∗(T )
denote the set of simple positive roots, and let ∆∨ ⊂ X∗(T ) denote the set of simple
coroots. We will use ≤ to denote the usual Bruhat order on dominant cocharacters.

Let X+
∗ (T )Q denote the subset of (rational) dominant cocharacters, i.e.,

X+
∗ (T )Q = {λ ∈ X∗(T )Q | 〈α, λ〉 ≥ 0, α ∈ ∆}.

Recall the partial ordering on X+
∗ (T )Q defined in [RR96, Lem. 2.2]:

Definition 5.2.1. Let λ, λ′ ∈ X+
∗ (T )Q then λ ≺ λ′ if

λ′ − λ =
∑

α∨∈∆∨

nα∨α
∨

for nα∨ ∈ Q with nα∨ ≥ 0.

Equivalently, ≺ defines a partial ordering on conjugacy classes of rational cochar-
acters for any connected reductive group G. For GLn, this is same ordering as the
partial ordering on polygons [RR96, Prop. 2.4(iv)]. Note that if ν′ ≤ ν in the
Bruhat order then ν′ ≺ ν, but the converse does not hold in general.

Proposition 5.2.2. Let λ, λ′ ∈ X+
∗ (T )Q. Then λ ≺ λ′ if and only if either of the

following equivalent statements are true:

(1) ρ(λ) ≺ ρ(λ′) for all representation ρ : G→ GL(V );
(2) 〈χ, λ′ − λ〉 ≥ 0 for all dominant weights χ ∈ X∗(T ).

Proof. See [RR96, Lem. 2.2] as well as [AB83, (12.9) and Prop. 12.18]. �

We now introduce Kisin modules with G-structure, which we call “G-Kisin mod-
ules,” and the corresponding Kisin varieties. We refer the reader to [Lev15, §2] for
background. For convenience, we work mod p since this is all we need for the
application. We also continue to assume that K/Qp is totally ramified.

Definition 5.2.3. Let A be any F-algebra, then a G-Kisin module over A (with
bounded height) is a G-bundle PA over SA := S ⊗Zp A together with an isomor-
phism φPA : ϕ∗(PA)[1/u] ∼= PA[1/u]. Denote the category of such objects by
GModϕSA .

Since we working mod p, inverting u is the same as inverting the Eisenstein
polynomial E(u). Because of our assumption that k = Fp, SF′ is complete local
ring with finite residue field F′. Since G is connected, any G-bundle over SF′ is
trivial by Lang’s theorem. The following is the analogue of the relative position of
M and φ(ϕ∗(M)) introduced in the previous section.
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Definition 5.2.4. Let PF ∈ GModϕSF
. We say that PF has Hodge type λ ∈ X∗(T )

if for any choice of trivialization β of PF, we have

(φPF)β ∈ G(F[[u]])λ(u)G(F[[u]]).

where (φPF)β denotes the matrix for Frobenius with respect to β and λ(u) ∈
T (F((u))) is induced by λ : Gm → T .

Definition 5.2.5. An étale OE -module with G-structure over A is a G-bundle P
on SpecOE ⊗Zp A together with an isomorphism φP : ϕ∗(P) ∼= P.

We can now define the G-analogue of Kisin varieties.

Proposition 5.2.6. Let (P, φP) be an étale OE -module with G-structure over F
and let ν ∈ X∗(T ). There exists a projective scheme over F such that for any F′/F,

Xν
P(F′) = {PF′ [1/u] ∼= P ⊗F F′ | PF′ ∈ GModϕSF′

has Hodge type ≤ ν}.

Proof. Kisin varieties for reductive groups were first introduced in §6.1.2 of [PR09].
Details of the construction appears in [Lev15, Prop. 3.3.9]. For the convenience of
the reader, we include a sketch of the argument.

Fix a lattice PF,0 over SpecSF of P and let g0 ∈ G(F((u))) be the Frobenius on
PF,0. Then Xν

P is a closed subscheme of the affine Grassmannian GrG of “lattices”
in PF,0[1/u]. Let S(ν) ⊂ GrG denote the closed Schubert variety corresponding
to ν. For any lattice PF = gPF,0 with g ∈ G(F((u))), the condition of having
Hodge type ≤ ν is given by g−1g0ϕ(g) ∈ G(F[[u]])ν′(u)G(F[[u]]) for ν′ ≤ ν or,
equivalently, g−1g0ϕ(g)(PF,0) ∈ S(ν) ⊂ GrG. Since S(ν) is closed, this defines
a closed subscheme of GrG. The fact that Xν

P is a scheme (as opposed to an
ind-scheme) can be deduced from the GLn case (described in Remark 5.1.3) by
embedding G in some GLn. �

By the Cartan decomposition for G(F((u))), any G-Kisin module over F has a
Hodge type λ which is well-defined up conjugation. If PF has Hodge type λ, then
define the Hodge vector of PF to be dominant representative for the conjugacy class
of λ in X∗(T ).

It is a well-known consequence of the tensor product Theorem 3.1.1 that the HN-
theory for ModϕSF

carries over to the category of G-bundles GModϕSF
. We briefly

recall how to do this, referring to [DOR10] for the details of each step.

Proposition 5.2.7. If MF and NF are semi-stable of slope α and β, then MF⊗SF

NF is semistable of slope α + β. If MF is semi-stable, then Symr
SF

(MF) and∧r
SF

(MF) are also semi-stable.

Proof. Both Symr
SF

(MF) and
∧r

SF
(MF) are subquotients of ⊗rSF

MF with the same
slope so the first part implies the second part using Corollary 2.3.12.

For the first part, we have that MF ⊗SF NF is a quotient of the tensor prod-
uct MF ⊗S NF (without coefficients) which is semi-stable of the desired slope by
Theorem 3.1.1 and so we can again apply Corollary 2.3.12. �

Let M be a Kisin module with bounded height. As before we have an HN-
filtration

0 = M0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mn = M

on M. We index the filtration in the natural way following Proposition 2.3.7,
namely, for any α ∈ Q, we have M≤α =

⋃
i,µ(Mi/Mi−1)≤αMi. We will write FiltSF
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to refer to the additive exact⊗-category of finite projective SF-modules increasingly
filtered by strict submodules and indexed as above. The tensor product theorem
tells us that the HN-filtration yields an ⊗-functor ModϕSF

→ FiltSF . Exactness
if not obvious but in the context of Kisin module with G-structure, it is exact
(Theorem 5.2.9).

Proposition 5.2.8. (1) Let MF,NF be Kisin modules with bounded height.
The HN-filtration on MF ⊗SF NF is induced by the HN-filtrations on MF
and NF respectively.

(2) Let M∨F = HomSF(MF,SF). The HN-filtration on M∨F is dual to the HN-
filtration on MF.

Proof. See [DOR10, Prop. 1.3.6]. �

Let PF be a G-Kisin module over F. This induces an exact ⊗-functor

RepF(G)→ ModϕSF

which we denote V 7→ PF(V ).

Theorem 5.2.9. The HN-filtration on PF(V ) for all V ∈ RepF(G) induces an
exact ⊗-functor FHN : RepF(G)→ FiltSF on PF.

Proof. The only remaining issue is whether FHN is strict in exact sequences. The
same argument as in [DOR10, Thm. 5.3.1] works here as well. �

Choose a G-bundle trivialization of PF. The filtration FHN modulo u gives rise
to a filtration on the fiber functor, i.e., a tensor exact functor

ωHNG : RepF(G)→ FiltF.

Definition 5.2.10. Associated to ωHNG is a conjugacy class of rational cocharacters
in X∗(T )Q. Define the HN-vector λHN of PF to be the dominant representative for
this conjugacy class.

Proposition 5.2.11. Let PF be G-Kisin module over F. If PF has Hodge type ν,
then g · λHN ≺ ν.

Proof. By Proposition 5.2.2, it suffices to check the claim for any representation V
of G. Since both the Hodge and HN-polygons are functorial in representations of
G, we are reduced to Proposition 5.1.5. �

Theorem 5.2.12. Let P = PF[1/u] for PF ∈ GModϕSF
. There is a decomposition

Xν
P =

⋃
gλ≺ν

Xν,λ
P

by locally closed reduced subschemes indexed by dominant λ ∈ X∗(T )Q such that

the closed points of Xν,P
M are G-Kisin modules with HN-vector λ.

Proof. By construction, the HN-vector of PF ∈ Xν
P(F) is determined by the HN-

polygons of the collection {PF(V )}V ∈RepF(G). For any representation ρ : G →
GL(V ), we have an induced map

ρ∗ : Xν
P → X

ρ(ν)
P(V ).
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The desired locally closed subscheme is then given by Xν,λ
P⋂

ρ

ρ−1
∗ (X

ρ(ν),Pρ(λ)
P(V ) )

where Pρ(λ) is the polygon associated to the rational conjugacy class of ρ(λ). The
intersection is only a finite intersection since the conjugacy class of a fixed λ is
determined by its image under finitely many representations of G. �

We end with generalization of Corollary 5.1.8 which includes as a special case
the construction in [Kis09, §2.4.13].

Theorem 5.2.13. For any dominant weight χ ∈ X∗(T ), let Sχ denote the collec-
tion of λ ∈ X+

∗ (T )Q such that 〈χ, ν − gλ〉 = 0. Then,

Xν
P,χ :=

⋃
λ∈Sχ

Xν,λ
P

is both open and closed in Xν
P .

Proof. Let Vχ denote the representation of G with highest weight χ. Let ρ : G →
GL(V ∗χ ) be the dual representation and set M = P(V ∗χ ). Consider the induced
map on Kisin varieties

ρ∗ : Xν
P → X

ρ(ν)
M .

The dual representation has lowest weight −χ. In particular, if we choose a dom-
inant representative for ρ(ν), then ρ(ν) = (〈−χ, ν〉, . . .) and similarly for the HN-
vector of any P ∈ Xν

P . The condition that 〈χ, ν − gλ〉 = 0 is exactly the condition
that ρ(λ) ∈ Sd for some d ≥ 1 where Sd is as in Corollary 5.1.8. Thus,⋃

λ∈Sχ

Xν,λ
P = ρ−1(

⋃
d≥1

X
ρ(ν)
M,d)

which is open and closed. �

Now, assume that the adjoint group Gad is simple of rank `. Then we can make
Theorem 5.2.13 more concrete. Let Σ = {χi}1≤i≤` denote the fundamental weights,
then for any subset J ⊂ Σ, we can define an open and closed subscheme

Xν
P,J := (

⋂
i∈J

Xν
P,χi) ∩ (

⋂
i/∈J

(Xν
P\Xν

P,χi)).

Note that if G is not simply connected, the fundamental representations may not
be defined on G but the representation with highest weight nχi will be for some
integer χ and so Xν

P,χi as defined in Theorem 5.2.13 still makes sense.

Remark 5.2.14. We expect that the Xν
P,J captures all discrete invariants which

arise from HN-polygons.

Remark 5.2.15. If one consider the case of G = GLn, the fundamental representa-
tions are exterior powers of the standard representation and so Theorem 5.2.13 is
equivalent to the local constancy of the étale rank (Proposition 4.4.3).

Remark 5.2.16. Even when G = GL2, the HN-polygon alone is not sufficient to
capture all connected components. For example, when ρ is unramified of dimension
two with distinct characters, the Kisin variety can have two ordinary components
in addition to a non-ordinary component (see [Hel09, Thm. 1.2]). Thus, we do not
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conjecture that the Xν
P,J are connected, though one might expect this to be true

under suitable hypotheses on P.

6. HN-theory applied to flat Kisin modules

Recall that a “flat” Kisin module is a Kisin module whose underlying S-module
is flat. In this section, our goal is to deduce consequences about flat Kisin modules
from the Harder-Narasimhan theory for torsion Kisin modules that we developed
in §2. One nice consequence is that one gets distinguished representatives of an
isogeny class whose HN-polygon doesn’t change under reduction mod p (Theorem
6.4.4). In §6.5, we show that if M is a flat Kisin module, then our HN-filtration on
M/pnM is an approximation to the HN-filtration which comes from Hodge-Tate
filtration on p-adic representations of ΓK = Gal(K/K). In particular, see Theorem
6.5.4.

6.1. Deformation theory. As suggested above, the main case of interest in when
we have a flat Kisin module M, and we study M/pnM for n ≥ 1 deforming M/pM.
In this paragraph, we will give a brief indication of what can be said about defor-
mations of a p-torsion Kisin module to an A-Kisin module for general A. Afterward
we will focus only on the case A = Zp/pn.

Let A be a local Artinian Zp-algebra with residue field A/mA ∼= F, a finite
extension of Fp. Recall that ModϕSA refers to the category of A-Kisin modules

(MA, φMA
), and the underlying SA-module MA is projective of constant rank.

Definition 6.1.1. Let MF ∈ ModϕSF
. A deformation of MF to A is an A-Kisin

module MA ∈ ModϕSA such that there is a ModϕSF
-isomorphism MA ⊗A F 'MF.

Here we give the following general description of the behavior of HN-filtrations
under deformation to Artinian local A as above.

Proposition 6.1.2. Fix a Kisin module MF ∈ ModϕSF
with its HN-filtration

MF,0 = 0 ⊂MF,1 ⊂MF,2 ⊂ . . . ⊂MF,n = MF,

into strict subobjects in ModϕSF
. Let MA be a deformation of MF to A. Then the

HN-filtration on MA into objects of ModϕS,tor

MA,0 = 0 ⊂MA,1 ⊂MA,2 ⊂ . . . ⊂MA,m = MA,

consists of generalized A-Kisin modules and µ(MA) = µ(MF). Moreover,

(6.1.3) µ(MF,1) = µ(MA,1) and µ(MF,n) = µ(MA,m).

In particular, MF is semi-stable if and only if MA is semi-stable.

Recall the terminology “generalized A-Kisin module” from §4.1. In particular,
the MA,i need not be projective SA-modules.

Proof. The argument in the beginning of the proof of Proposition 4.2.1 applies with
A in the place of F to show that each MA,i is A-stable.

Let mA ⊂ A be the maximal ideal, and let I ⊂ A be an ideal such that mA ·I = 0.
Notice that we have a short exact sequence of A-Kisin modules

(6.1.4) 0 −→ I ·MA −→MA −→MA/I −→ 0,

Using the fact that MA is flat over SA and the SA-module structure on I ·MA

factors through SF, we have a canonical isomorphism of Kisin modules I ·MA '
I ⊗F MF.
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First we prove that µ(MA) = µ(MF) and also prove that MF is semi-stable if and
only if MA is semi-stable. We induct on the order of nilpotence i of the maximal
ideal mA ⊂ A. When i = 1, there is nothing to prove. Assuming the result for some
i and assuming that mi+1

A = 0, we have that I = miA satisfies mA · I = 0. Then
(6.1.4) is an extension of Kisin modules of identical slope, so the extension has the
same slope. Then, we know from Proposition 2.3.11 that MA is semi-stable if and
only if I ·MA and MA/I are semi-stable.

Similarly, (6.1.3) can be proved by induction on the order of nilpotence of the
maximal ideal of A. Thus we begin our proof by letting MA be some deformation
of MF to A, letting I ⊂ A be an ideal such that mA · I = 0, and assuming (6.1.3)
for MA/I := MA ⊗A A/I.

Let µ = µ(MA,1) be the least slope of the HN-filtration of MA. Then µ <

µ(MF,1) is impossible, because in this case Proposition 2.3.7 implies that M≤µA
maps to 0 in MA/I , meaning that M≤µA ⊂ MF ⊗F I, which is clearly not possible
as the least slope of any submodule is also µ(MF,1). We may then conclude that
µ = µ(MF,1), because MF,1 ⊗F I ⊂ I ·MA ⊂ MA has slope µ(MF,1). Therefore,
the first step MA,1 in the HN-filtration of MA has slope µ(MF,1).

Similarly, let µ = µ(MA,m) be the greatest slope of MA, and write µ′ for

µ(MF,n). Assuming µ > µ′, then I ⊗F MF maps to 0 in MA/M
≤µ′
A by Propo-

sition 2.3.7, as all of the slopes of MA/M
≤µ′
A are strictly greater than those of MF.

This makes MA/M
≤µ′
A a quotient of MA/I . However, all of the slopes of MA/I are

≤ µ′ by the induction hypothesis, a contradiction.
To see that µ = µ′, note that MA surjects onto MF/MF,n−1, while Proposition

2.3.7 would imply that the image of the surjection is 0 if all of the slopes of MA

are < µ′. �

6.2. The limit of HN-polygons. In order to understand the implications of this
Harder-Narasimhan theory to flat Kisin modules M, we will study the behavior
of HN-polygons of M/pn as n varies. Here we will assume that M is flat as a
S-module and use the fact that M/pn is an extension of M/pn−m by M/pm. We
begin with this general lemma about the behavior of HN-polygons under extension,
following Fargues [Far10, §4].

Definition 6.2.1. Given functions f : [0, r] → [0, d], f ′ : [0, r′] → [0, d′], let
f ∗ f ′ : [0, r + r′]→ [0, d+ d′] be defined by

x 7→ inf f(a) + f ′(b)

where the infimum is taken over (a, b) ∈ [0, r]× [0, r′] such that a+ b = x.

One can check that f ∗ f ′ is convex when f and f ′ are convex.

Lemma 6.2.2. Let 0 → M′ → M → M′′ → 0 be a short exact sequence of Kisin
modules. Then

HN(M) ≥ HN(M′ ⊕M′′) = HN(M′) ∗HN(M′′),

Moreover, there are some cases where HN(M) can be determined from HN(M′)
and HN(M′′) (see [Pot, Lem. 7.4]).

Proof. The inequality is [Pot, Lem. 7.4(a)]. The equality follows from the fact that
the HN-filtration of a direct sum of objects consists of the direct sum of each part
of the HN-filtration (indexed by slopes). �
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Now we may define the normalized HN-polygon of a flat Kisin module, in analogy
to Fargues’ definition of a normalized HN-polygon of a p-divisible group ([Far10,
§4.2, Thm. 2]).

Theorem 6.2.3. The sequence of functions from [0, rkS M] to [0,deg(M/p)] given
by

x 7→ 1

n
HN(M/pn)(nx)

converges uniformly increasingly as n→∞ to a continuous convex function

HN(M) : [0, rkS M] −→ [0,deg(M/p)]

such that HN(M)(0) = 0 and HN(M)(rkS M) = deg(M/p).

Proof. The uniform increasing convergence of functions (fn)n≥1 satisfying the prop-
erty fn+m ≥ fn ∗ fm for all n,m ≥ 1 is shown in [Far, §4.1, Prop. 2]. By Lemma
6.2.2 applied to the exact sequence

0 −→M/pmM
·pn−→M/pn+mM −→M/pmM −→ 0,

the functions fn = HN(M/pn)(nx)/n satisfy this property. �

It will be useful to know that this limit does not change under an isogeny, i.e. a
strict map M→ N of flat Kisin modules whose kernel and cokernel p-power torsion
Kisin modules (i.e., u-torsion free).

Lemma 6.2.4 (cf. [Far, Prop. 3, §4]). When M and M′ are isogenous flat Kisin
modules, HN(M) = HN(M′).

Proof. We may assume that our isogeny is an injection f : M′ ↪→M with cokernel
N, a p-power torsion Kisin module. Writing P for the flat Kisin module P :=
(M⊕M′)/(f⊕ idM′)(M

′). We see that for large enough n, we have exact sequences

0→ N→ P/pn →M/pn → 0, 0→M′/pn → P/pn → N→ 0.

Using Lemma 6.2.2 and the leftmost exact sequence, we find that

HN(P/pn) ≥ HN(N) ∗HN(M/pn).

Let C ≥ 0 be an upper bound on HN(M/pn)(x)− HN(N)(x) for x ∈ [0, rkN] and
all n ≥ 1. We may select C that satisfies this inequality for all n ≥ 1 because
the slopes of M/pn are uniformly bounded. We deduce that HN(P/pn)(nx) ≥
HN(M/pn)(nx)− C for all x ∈ [0, rkM].

The inclusion M′/pn ↪→ P/pn implies that HN(M′/pn) ≥ HN(P/pn), in light
of Proposition 2.4.3 and the fact that any strict subobject of M′/pn is a strict
subobject of P/pn. Altogether, one has

1

n
HN(M′/pn)(nx) ≥ 1

n
HN(M/pn)(nx)− C

n
,

so HN(M′) ≥ HN(M).
Because isogeny is a symmetric relation, the lemma follows. �
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6.3. An intrinsic notion of degree of a flat Kisin module. We may now define
a notion of degree of a flat Kisin module, which will be shown to be compatible
with the limit HN polygon discussed in Theorem 6.2.3. First we recall this standard
result from commutative algebra, often applied in Iwasawa theory.

Proposition 6.3.1. Let M be a finitely generated torsion S-module. Then M is
pseudo-isomorphic to a module of the form

(6.3.2)

n⊕
i=1

S

(fhii )

where fi varies over distinguished polynomials (i.e. generators of the height 1 primes
of S) and a pseudo-isomorphism is a morphism of S-modules with finite cardinality
kernel and cokernel.

We also require the notion of characteristic ideal of a torsion S-module.

Definition 6.3.3. Let M be a S-module pseudo-isomorphic to the module of
(6.3.2). Then the characteristic ideal char(M) of M is the ideal of S generated by∏n
i=1 f

hi
i .

Because the cokernel of φM is guaranteed to be E(u)-power torsion by definition
of Kisin modules, all of the distinguished polynomials fi appearing in its charac-
teristic ideal are equal to E(u). This allows us to make the following definition of
degree.

Definition 6.3.4. The degree degS(M) of a flat effective Kisin module (M, φM)
is the non-negative integer characterized by the equality

char(coker(φM)) = (E(u)degS(M)).

This notion of degree may be extended to flat non-effective Kisin modules by
twisting as Definition 2.2.3.

Compatibility between degS(M) and deg(M/pn) takes the following form.

Proposition 6.3.5. Let M be a flat Kisin module. Then

degS(M) = deg(M/pn)/n and µS(M) = µ(M/pn)

for all n ∈ Z≥1.

Proof. Because coker(φM) has a two-step projective resolution by φM itself, it has
homological dimension 1. Consequently, as it is E(u)-power torsion, it has no
p-torsion, and the quasi-isomorphism of Proposition 6.3.1 is an injection

(6.3.6) coker(φM) ↪→
m⊕
i=1

S

(E(u)hi)
=: T

with finite cardinality cokernel C. One then checks that the cokernel of the induced
injective map φM/pn : ϕ∗M/pn →M/pn is naturally isomorphic to coker(φM)/pn.

The exact sequence

0 −→ C[pn] −→ coker(φM)/pn −→ T/pn −→ C/pn −→ 0

allows us to check that `Zp(coker(φM)/pn) = `Zp(T/pn). Recalling that degS(M) =∑m
i=1 hi, we calculate

g · deg(M/pn) = `(cokerφM/pn) = `(coker(φM)/pn) = `(T/pn) = g degS(M)n,
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where the last inequality follows from the fact that S/(E(u)hi , pn) is length nehi
as a OK-module. The equality of slopes follows from rkS(M) = rk(M/p) and
rk(M/pn) = n rk(M/p). �

As a consequence of Proposition 6.3.5, we can show that our Harder-Narasimhan

theory restricted to Mod
ϕ,[0,1]
S,tor is the same as that on finite flat group schemes from

[Far10]. Let G 7→ M(G) denote the anti-equivalence from the category from p∞-

torsion finite flat group schemes over OK to Mod
ϕ,[0,1]
S as in Remark 2.1.7.

Proposition 6.3.7. Let G be a finite flat group scheme. If Gi is the HN-filtration
on G from [Far10], the M(Gi) is the HN-filtration of M(G).

Proof. It suffices to compare the degrees of G and M(G). We can write G = ker(Ψ :
G1 → G2) where Ψ is an isogeny of p-divisible groups. For some n� 0, we have

0→ G → G1[pn]→ G2[pn]→ 0.

Using the behavior of degree in exact sequence, we reduce to the case of Gi[pn], i.e.,
truncated Barsotti-Tate groups. By [Far10, Ex. 2], deg(Gi[pn]) = ndi where di is
the dimension of Gi.

Let Mi = M(Gi). Since Mi is a flat Kisin module with height in [0, 1], each hi in
(6.3.6) is either 0 or 1. If d′i is the number of non-zero hi, then deg(Mi/p

n) = nd′i.
By comparison of Hodge-Tate weights ([Tat67, Cor. 2]), we conclude that di = d′i
and hence µ(Gi[pn]) = µ(Mi/p

n). �

We may now define a new Harder-Narasimhan theory on the isogeny category
of flat Kisin modules. Recalling the formal setup of §2.3, the target of the generic
fiber functor will be the category of étale ϕ-modules over E , where E := OE [1/p].
Definition 6.3.8. An étale ϕ-module over E is a finite dimensional E-vector space
D equipped with a semi-linear endomorphism ϕ such that there exists a ϕ-stable
OE -latticeM⊂ D that is an étale ϕ-module overOE . We write the abelian category
of such objects as ModϕE .

The category ModϕE is equivalent to the category Qp-linear continuous represen-
tations of GK∞ , cf. Remark 2.2.2.

Definition 6.3.9. The rank rkS(M) of a flat Kisin module (M, φM) is the di-
mension over E of the étale ϕ-module M ⊗S E . The slope is given by µS(M) :=
degS(M)/ rkS(M).

This rank is equal to the rank of M as a S-module.
When we try to verify the Harder-Narasimhan axioms listed in Proposition 2.3.1

for the additive exact category of flat Kisin modules (as opposed to its isogeny
category), we find that they are not quite true. Namely, non-strict subobjects
inducing the same generic fiber do not necessarily have strict inequality in the
degree. To have an HN-theory, we pass to isogeny category.

Proposition 6.3.10. Let rank and degree be as defined above.

(1) The functor ⊗SE sending flat Kisin modules to étale ϕ-modules over E is
exact and faithful, and induces a bijection

{strict subobjects of M} ∼−→ {subobjects of M⊗S E}
(2) Both rkS and degS are additive in short exact sequences, and rkS(M) =

0 ⇐⇒ M = 0.
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(3) If an injection M′ ↪→ M induces an isomorphism M′ ⊗S E
∼−→ M ⊗S E,

then M′[1/p]
∼→M[1/p] and degS(M′) = degS(M).

Proof. We see in [Kis06, Prop. 2.1.12] that ⊗SOE is fully faithful between the exact
categories of flat Kisin modules and flat étale OE -modules. Then, applying ⊗OEE is
clearly faithful and exact. E is a flat S-module just as OE is, and M is now assumed
to be S-flat just as M was assumed to be u-torsion free before. The bijection from
strict subobjects to subobjects follows from the fully faithful property of ⊗SOE
along with [Kis06, Lem. 2.1.15].

One may quickly check that rkS and degS are additive in short exact sequences.
Let M′ ↪→ M be an injection of flat Kisin modules as in (3) with cokernel N.

Clearly N is a torsion S-module, and by loc. cit., N is p-power torsion. Moreover,
the two-step presentation of N by flat S-modules implies that it has homological
dimension 1, and consequently has no u-torsion.

Just as in the proof of Proposition 2.3.1, we derive an exact sequence

0 −→ ker(φN) −→ coker(φM) −→ coker(φM′) −→ coker(φN) −→ 0

from the snake lemma. Because N and ϕ∗N have characteristic ideals that are pow-
ers of (p), the same is true for coker(φN) and ker(φN), as characteristic ideals are
multiplicative in exact sequences. Therefore the powers of (E(u)) in the character-
istic ideals of coker(φM′) and coker(φM) are identical, i.e. degS(M′) = degS(M),
as desired. �

It follows from Proposition 6.3.10 that the essential image of the isogeny category
ModϕS⊗Qp in ModϕE is an abelian category equipped with a notion of rank and
degree. Consequently, the identity functor from ModϕS⊗Qp to itself satisfies the
Harder-Narasimhan axioms for rkS and degS. Indeed, note that rkS(M) and
degS(M) depend only upon M[1/p] when M is a flat Kisin module.

Consequently, we have the standard result that there is a unique filtration

(6.3.11) 0 = M[1/p]0 ⊂M[1/p]1 ⊂ . . . ⊂M[1/p]r = M[1/p]

such that µS(M[1/p]i+1/M[1/p]i) > µS(M[1/p]i/M[1/p]i−1).

Lemma 6.3.12. Let M be a flat Kisin module. The following are equivalent.

(1) M/p is semi-stable.
(2) M/pn is semi-stable for all n ≥ 1.
(3) For any p-power torsion quotient Kisin module N of M, µ(N) ≤ µS(M).

Proof. The equivalence of (1) and (2) follows from Proposition 6.1.2.
By Proposition 6.3.5, we have µ(M/pn) = µS(M). Any p-power torsion Kisin

module of M is a quotient Kisin module of M/pn for some n. We immediately get
the equivalence of (2) and (3). �

Definition 6.3.13. Call a flat Kisin module M semi-stable when any of the equiv-
alent conditions of Lemma 6.3.12 are true.

Remark 6.3.14. Notice that one can immediately derive the tensor product theorem
for flat Kisin modules from the equivalence of Lemma 6.3.12 and the tensor product
theorem for p-torsion Kisin modules (Theorem 3.1.1).

This notion of semi-stability is different than the notion native to the isogeny
category given in (6.3.11), and they have the following relation to each other.
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Proposition 6.3.15 (cf. [Far, Prop. 5]). Let M be a flat Kisin module. The
following statements are equivalent.

(1) The isogeny class of M has a semi-stable member, which we call N.
(2) For any strict subobject M′[1/p] of M[1/p], µS(M′) ≥ µS(M), i.e. M[1/p]

is semi-stable in ModϕS⊗Qp.

Proof. We have observed that the slope of a flat Kisin module depends only on its
isogeny class. Assuming (1) and choosing a strict subobject M′ ⊂ M, it follows
that µS(M′) = µS(M′[1/p]∩N), where this intersection is taken after choosing an
isomorphism N[1/p] 'M[1/p]. Because N is semi-stable, so is N/p. Consequently,
deg((M′[1/p] ∩N)/p) ≥ deg(N/p). Then (2) follows, by using Proposition 6.3.5 to
calculate degrees of flat Kisin modules by calculating their degree modulo p.

Assuming (2), it follows that HNS(M[1/p]) is a line segment. In the case that M
is not semi-stable, then deg(M/pn) is not semi-stable for all n ≥ 1. Consequently,
there exist p-power torsion quotient Kisin modules of M with all HN-slopes strictly
greater than µS(M). Consider the inverse system of all such quotients of M. We
claim that the HN-rank of these quotients is bounded above. For if it is not bounded
above but the number of generators as a S-module is bounded above, there exists a
p-torsion free quotient Kisin module M′′ of M, realizable as a quotient of the inverse
limit of the inverse system. We then have that µS(M′′) > µS(M), because we can
calculate these slopes modulo p, and µ(M′′/p) > µ(M/p) by assumption. Using
the additivity of degS in exact sequences, we deduce that M is not semi-stable, a
contradiction.

There is a unique maximal element P to the inverse system we have defined.
This is the case because the bound on the rank of members of the system implies
that all of them are quotients of M/pn for some sufficiently large n. Then, P is the
quotient of M/pn by the largest step of the HN-filtration with slopes ≤ µS(M).
By Proposition 2.3.7, all elements of the inverse system are quotients of P.

Now consider the kernel Kisin module N of the surjection M � P. We know
that µS(M) = µS(N) = µ(N/pn), and that any quotient of N/pn has slope no
more than µS(M). Consequently, N/pn is semi-stable and, by Lemma 6.3.12, N is
semi-stable and isogenous to M, as desired. �

6.4. Flat Kisin modules of type HN. Not all flat Kisin modules have a filtration
by strict semi-stable subobjects satisfying the axioms of the HN-filtration (since, a
priori, the filtration lives in the isogeny category). Those which do are called type
HN, following [Far].

Definition 6.4.1. A flat Kisin module M is said to be of type HN when there
exists an increasing filtration Mi by strict subobjects such that each graded piece
Mi/Mi−1 is a semi-stable flat Kisin module and

(6.4.2) µ(M1/M0) < µ(M2/M1) < · · · < µ(Mr/Mr−1).

The following observation will be useful.

Lemma 6.4.3. A flat Kisin module M is of type HN if and only if HN(M) =
HN(M/p).

Proof. If M is of type HN, then Lemma 6.3.12 implies that the reduction modulo pn

of the filtration (6.4.2) has the properties of the canonical HN-filtration of M/pn

for every n ≥ 1. It follows that HN(M) = HN(M/p). Conversely, HN(M) =
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HN(M/p) implies that the increasing sequence of HN polygons of Theorem 6.2.3
is a constant sequence. It follows that rk((M/pn)≤µ) = n rk((M/p)≤µ for any µ
and all n ≥ 1, and that (M/pn)≤µ is an extension of M/pn−1 by M/p. Setting
M≤µ := lim←−n(M/pn)≤µ, one can easily check that M≤µ/M<µ is a flat semi-stable

Kisin module, so that the M≤µ realize the filtration of Definition 6.4.1. �

A generalization of Proposition 6.3.15 is to show that

Theorem 6.4.4. Any flat Kisin module is isogenous to a flat Kisin module of type
HN.

The theorem will follow from this generalization of [Far, §3, Lem. 1].

Lemma 6.4.5. Let (Mi)
r
i=1, (M′i)

r−1
i=1 , (Qi)

r−1
i=1 be sequences of flat Kisin modules

such that M = M1. For each i = 1, . . . , r − 1, assume that we have an isogeny
M′i →Mi and an exact sequence

(6.4.6) 0 −→Mi+1 −→M′i −→ Qi −→ 0.

Then M is isogenous to a flat Kisin module N with an increasing filtration such
that Fil0 N = 0, FilrN = N, and for i = 1, . . . , r − 1,

FiliN/Fili+1 N ' Qi, and FilrN/Filr−1 N 'Mr.

Proof. Using induction on r, and applying the result for r − 1 to the flat Kisin
module M2, we have an isogeny N2 ↪→ M2 and a filtration on N2 such that
FiliN2/Fili+1 N2 = Qi for i = 2, . . . , r and Fil1 N2 = 0. We can now construct N
lying in a diagram

0 //M2
//

��

M′1 //

��

Q1
//

∼
��

0

0 // N2
// N // Q1

// 0

by defining it to be the quotient of M′1 ⊕ N2 by the diagonal image of M2. The
desired filtration on N is the pullback of the filtration on N2. �

Proof of Theorem 6.4.4. We will apply Lemma 6.4.5, where the Qi will be semi-
stable flat Kisin modules and the Mi arise from the HN-filtration (6.3.11) on M.
The maximal slope graded factor grrM = M/Mr−1 induces a quotient flat Kisin
module M � grrM. By Proposition 6.3.15, grrM is isogenous to a semi-stable
Kisin module Qr via Qr ↪→ grrM. Now let M′r be the kernel of Mr → grrM/Qr.
We see that we have a short exact sequence of the form (6.4.6) where i = r.

We iterate this same argument, applying it to Mi in the place of M = Mr for i
from r− 1 to 1. The hypotheses of Lemma 6.4.5 are verified, so because the Qi are
semi-stable flat Kisin modules, we have shown that M is isogenous to a flat Kisin
module of type HN. �

This HN-polygon is the limit of the HN-polygons of the pn-torsion quotients of
a flat Kisin module.

Proposition 6.4.7. When M is a flat Kisin module, we have an equality of poly-
gons HNS(M[1/p]) = HN(M).
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Proof. First we remark that we may replace M with an isogenous flat Kisin module
of type HN. Such a replacement exists by Theorem 6.4.4. The polygon HNS(M[1/p])
remains the same by Proposition 6.3.10(3), and HN(M) remains the same by
Lemma 6.2.4.

By Lemma 6.4.3, HN(M) = HN(M/p). The argument of Lemma 6.4.3 also
implies that HN(M/p) = HNS(M[1/p]). �

6.5. Comparison with the Hodge-Tate polygon. In this paragraph, we show
that the HN-polygon of a flat Kisin module is a generalization of the Hodge-Tate
polygon of a Hodge-Tate p-adic ΓK-representation. A priori, the p-adic Galois
representations to which this HN-polygon applies are the ΓK∞ -representations of
bounded E-height, as this category is equivalent to the isogeny category of flat
Kisin modules. In the case that a ΓK∞ -representation arises from a crystalline ΓK-
representation ρ (and consequently has finite E-height), the HN-polygon lies above
the Hodge-Tate polygon of ρ, generalizing an equality in the p-divisible group case
due to Fargues [Far, §9.4]. Note that in this crystalline case, ρ is characterized by
ρ|ΓK∞ [Kis06, Thm. 0.2].

First we recall various definitions. Let Cp be the completion of an algebraic
closure of K, which admits a natural K-linear action of ΓK . Let t be a basis
vector for Cp, the base change to Cp of the Qp-linear cyclotomic character with
the natural semi-linear action of ΓK . Let BHT =

⊕
i∈Z Cp(i) ' Cp(t, 1/t) be the

Z-graded Hodge-Tate period ring.
When V is a continuous Qp-linear representation of ΓK , V is called Hodge-Tate

when dimK(V ⊗Qp BHT )ΓK = dimQp V . Such representations form an abelian
category. We call i ∈ Z a Hodge-Tate weight of V with multiplicity mi > 0 when
dimK(V ⊗Qp Cp(−i))ΓK = mi, and we set degHT (V ) =

∑
i∈Z i ·mi.

Definition 6.5.1 ([Far, §9.2]). The Hodge-Tate polygon of a Hodge-Tate p-adic
ΓK-representation is the HN-polygon arising from the HN-theory on the category
of Qp-linear Hodge-Tate ΓK-representations induced by setting the degree of V to
be degHT (V ). We write HN(HT (V )) for this polygon.

As a result, a Hodge-Tate ΓK-representation V has a canonical increasing filtra-
tion

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vm = V

such that µ(Vi/Vi−1) < µ(Vi+1/Vi). One can also associate to V a decreasingly
filtered K-vector space

DHT (V ) := (V ⊗Qp BHT )ΓK ,

where the filtration arises from the Z-grading of BHT , observing that deg(V ) =
−deg(DHT (V )).

Recall that a filtered ϕ-module over the p-adic field K refers to a finite dimen-
sional K0-vector space D with a Frobenius semi-linear isomorphism ϕD : D → D
(an isocrystal) along with a decreasing filtration Fil•D on DK := D ⊗K0

K.
When V is Hodge-Tate and also has finite E-height, then DHT (V ) can be recov-

ered in another way. Firstly, we write M = M(V ) for a member of the isogeny class
of flat Kisin modules associated to V |ΓK∞ . Recall that a filtered ϕ-module over the
p-adic field K refers to a finite dimensional K0-vector space D with a Frobenius
semi-linear isomorphism ϕD : D → D (an isocrystal) along with a decreasing filtra-
tion Fil•D on DK := D ⊗K0

K. There is a filtered isocrystal D = D(M) associated
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to M[1/p] following [Kis06, §1.2.5]. We will use homomorphisms S → K0 (in-
duced by the quotient S �W (k) modulo u) and S→ K (induced by the quotient
S � OK modulo E(u)) to write down D(M). Namely, D(M) := (D,ϕD,Fil•D),
where D = M ⊗S K0, ϕD = ϕM ⊗S K0, and the decreasing filtration on DK is
constructed in [Kis06, §1.2.7].

We have now produced a filtered K-vector space in two ways starting with a
Hodge-Tate and finite E-height representation V of ΓK : DHT (V ) and D(M(V ))K .
When V is crystalline, these two filtered vector spaces are canonically isomorphic.

Proposition 6.5.2. Let V be a crystalline Qp-linear ΓK-representation. There is
a canonical isomorphism of filtered vector spaces DHT (V ) ' D(M(V ))K .

Proof. Under the assumption that V is crystalline, there exists a weakly admissible
filtered isocrystal D′ = Dcris(V ). Then D′K is canonically isomorphic to DHT (V )
and D′ is also canonically isomorphic to D(M(V )) [Kis06, Cor. 1.3.15]. �

Remark 6.5.3. In general, we do not know how to relate the filtered vector spaces
DHT (V ) and D(M(V ))K for arbitrary V that are Hodge-Tate and have finite E-
height. So we take the approach that D(M(V ))K is a replacement of the Hodge
filtration for any representation V of ΓK∞ of finite E-height.

We work in the category of p-adic representations of bounded E-height, Repbh
K∞ ,

which is equivalent to ModϕS⊗Qp. Consequently, we may apply the HN-theory on

ModϕS⊗Qp of (6.3.11) to Repbh
K∞ .

When one restricts to flat Kisin modules with height in [a, a + 1], all of which
arise from a crystalline representation, Fargues has shown that HN(M(V )[1/p]) =
HN(HT (V )) [Far, §9.4]. The following theorem is as much as we expect in general.

Theorem 6.5.4. Let V be a Qp-linear crystalline ΓK-representation. Then

HN(M(V )[1/p]) ≥ HN(HT (V )).

Proof. We know that degS(M(W )) = degHT (W ) for all crystalline ΓK-representations
W . Consequently, the end-points of the polygons are the same. The theorem will
follow from showing that the lattice of sub-ΓK-representations of V injects into the
lattice of strict subobjects M(V ). This follows directly from [Kis06, Cor. 1.3.15],
which states that V 7→M(V )[1/p] is a fully faithful functor from crystalline repre-
sentations to the isogeny category of Kisin modules of bounded height. �

Remark 6.5.5. In analogy with Proposition 5.1.5, it is clear that we can prove
the comparison of polygons “HN over Hodge” for the Hodge-Tate HN-theory of
Definition 6.5.1 that yields HN(HT (V )). As a result, the inequality of Theorem
6.5.4 can be extended by the comparison HN(HT (V )) ≥ Pµ, where µ is the Hodge
type of V . This is a lift to characteristic 0 of the mod p “HN over Hodge” result
for Kisin modules in Proposition 5.1.5. Notice also that both the HN and Hodge
polygons increase when transitioning from characteristic p to characteristic 0: see
Theorem 6.2.3 and Remark 5.1.4.

7. Examples of HN-polygons

In this section, we give some examples of what the different components con-
structed in Theorem 5.2.13 correspond to concretely beyond GL2. We will assume
for simplicity that K = Qp.
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In the following figures, for different Hodge polygons ν, we draw the set of all
possible HN-polygons.

• For anyM of the appropriate dimension, the strata of Xν
M will be indexed by

this finite set of polygons.
• The Hodge polygon ν appears in black.
• We color the polygons the same if the corresponding strata can appear on the

same component of Xν
M according to Theorem 5.2.13.

Remark 7.0.1. For a particular étale φ-module M or étale φ-module with G-
structure P, not all strata will appear. In other words, the Xν

P,J appearing in
Xν
P can be empty. However, in the figures, we include all possibilities which could

potentially occur.

Figure 1. Components for GL3, ν = (0, 0, 1)

(0,0)

Partially ordinary 

Non−ordinary

(3,1)

Ordinary

Figure 2. Components for GL3, ν = (−1, 0, 1)

(2,1)−Ordinary

(1,−1) (2,−1)

(3,0)Non−Ordinary

Ordinary

(1,2)−Ordinary 

(0,0)
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Figure 3. Components for GL4, ν = (−1, 0, 0, 1)

(2,−1)(1,−1)

(4,0)

(1,3)−Ordinary 

Ordinary

(3,1)−Ordinary

(1,1,2)−Ordinary

(2,1,1)−Ordinary

(3,−1)

(0,0)

(2,2)−Ordinary

Non−Ordinary

Figure 4. Components for GSp4, ν = (−2,−1, 1, 2)

(1,−2) (3,−2)

(2,−3)

(0,0) (4,0)

Non−Ordinary

(1,2,1)−Ordinary 

Ordinary

(2,2)−Ordinary
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