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Moduli of Galois Representations1

Abstract

The theme of this thesis is the study of moduli stacks of representations of an associative
algebra, with an eye toward continuous representations of profinite groups such as Galois
groups. The central object of study is the geometry of the map ψ̄ from the moduli stack of
representations to the moduli scheme of pseudorepresentations. The first chapter culminates
in showing that ψ̄ is very close to an adequate moduli space of Alper [Alp10]. In particular,
ψ̄ is universally closed. The second chapter refines the results of the first chapter. In
particular, certain projective subschemes of the fibers of ψ̄ are identified, generalizing a
suggestion of Kisin [Kis09a, Remark 3.2.7]. The third chapter applies the results of the first
two chapters to moduli groupoids of continuous representations and pseudorepresentations
of profinite algebras. In this context, the moduli formal scheme of pseudorepresentations is
semi-local, with each component Spf BD̄ being the moduli of deformations of a given finite
field-valued pseudorepresentation D̄. Under a finiteness condition, it is shown that ψ̄ is not
only formally finite type over Spf BD̄, but arises as the completion of a finite type algebraic
stack over SpecBD̄. Finally, the fourth chapter extends Kisin’s construction [Kis08] of loci
of coefficient spaces for p-adic local Galois representations cut out by conditions from p-adic
Hodge theory. The result is extended from the case that the coefficient ring is a complete
Noetherian local ring to the more general case that the coefficient space is a Noetherian
formal scheme.

1Version 1.1 of May 17, 2013.
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CHAPTER 1

Pseudorepresentations and Representations

In this chapter, we develop the notion of a pseudorepresentation following Chenevier
[Che11], who calls them determinants. Essentially, a pseudorepresentation in the data of the
characteristic polynomials of a representation. We make it a goal in §1.1 is to give a thorough
exposition of the theory of pseudorepresentations. We emphasize that much of this content
is due to Chenever; he, in turn, synthesizes and builds on work of Roby, Vaccarino, Donkin,
Zubkov, Procesi, and others. We will make these attributions clear. In particular, §§1.1-1.3
are due in large part to Chenevier, and our presentation follows his, adding detail to the
sources he draws on. Our original contributions in these sections consist of the application
of polynomial identity ring theory, which we begin to discuss in §1.2.2.

Starting in §1.4, we define and study moduli stacks of representations. A representation
induces a pseudorepresentation, so that there is a natural morphism from moduli stacks of
representations to the moduli scheme of pseudorepresentation. Our task is to study the ge-
ometry of this morphism, which we call ψ. Our main result in this chapter, Theorem 1.5.4.2,
is that ψ is very nearly an adequate moduli space. Adequate moduli spaces, a notion due
to Alper [Alp10, Alp08], are introduced in §1.5.1. They are meant to generalize a situation
commonly arising in geometric invariant theory (GIT); they are basically “isomorphisms
minus representability,” having important properties of both proper morphisms and affine
morphisms (cf. Remark 1.5.1.5). Indeed, a more precise way of stating our result is that the
moduli space of pseudorepresentations differs by at most a finite universal homeomorphism
from the GIT quotient of the moduli scheme of framed representations by the natural action
of conjugation.

The controlling idea is that the moduli scheme of pseudorepresentations is a concrete
replacement for the GIT quotient of the moduli scheme of representations by the action
of conjugation. As pseudorepresentations have a sensible functorial definition, the moduli
problem of pseudorepresentations is representable by an affine scheme. This is what we mean
by “concrete.” On the other hand, the GIT quotient of a moduli scheme by a reductive group
of natural automorphisms has a priori a moduli-theoretic interpretation only for its functor
of geometric points, even though it is a scheme (cf. Theorem 1.5.1.4(2), Remarks 1.5.1.6 and
1.5.2.3). We lack a functor of points because the universal property of a quotient addresses
moprhisms out of the quotient instead of morphisms to the quotient. The moduli space of
pseudorepresentations is useful because it nearly attains both universal properties.

Later, in Chapter 2, we will improve Theorem 1.5.4.2, identifying certain loci in the base
over which ψ is an adequate moduli space. However, we expect that it is always an adequate
moduli space; Corollary 2.3.3.9 will provide some evidence.

In this chapter, we also begin to see what the concreteness of the moduli problem of pseu-
dorepresentations affords to us. The main thing we achieve in this chapter is the demon-
stration of some finiteness properties of representations that are visible when one studies
moduli spaces of representations relative to the moduli space of pseudorepresentations. We
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accomplish this by applying the notion of a Cayley-Hamilton pseudorepresentation and us-
ing results from polynomial identity ring theory to study the category of Cayley-Hamilton
representations (see §1.2). In particular, if a non-commutative algebra is finitely generated
over a commutative Noetherian ring, we show in Theorem 1.4.3.1 that all of its d-dimensional
representations canonically factor through a single algebra that is finite as a module over
its center. This line of thought will be followed in Chapter 3, when we approach our main
goal of studying moduli spaces of representations and pseudorepresentations of profinite
groups and algebras in the category of formal schemes. In particular, we show that under a
suitable finiteness condition on a profinite algebra, its moduli stacks of representations are
algebraizable over the moduli space of pseudorepresentations (cf. Corollary 3.2.4.3).

Notation and Conventions. Throughout this chapter, we will consider representations
and pseudorepresentations of non-commutative algebras over commutative rings. All rings
and algebras are associative, and they are unital except in some discussion of nil-algebras
in §1.2.2. Generally, we will use A for a commutative base ring of coefficients, R as a A-
algebra whose representations we study, and B for a commutative A-algebra of coefficients.
When a fixed base is needed to study functors and groupoids of representations and pseu-
dorepresentations, we will use a commutative ring A, so that B are commutative A-algebras.
Sometimes, we will also assume that A is Noetherian and that R is finitely generated in
order that the schemes paramterizing the representation and pseudorepresentation functors
will be finite type over SpecA. We may also use S as a base coefficient scheme. We will
use Γ for a group, often finitely generated, when we want to study group representations.
Except for some study of the moduli of group scheme valued representations in §1.4.4, we
study the representations of Γ by studying the representations and pseudorepresentations of
R = A[Γ].

1.1. Pseudorepresentations

In this section, we give an introduction to pseudorepresentations, our goal being to
provide a thorough exposition of background material on pseudorepresentations. All of
this material is due to Roby [Rob63, Rob80]1 and Chenevier [Che11, §§1-2]. Chenevier
emphasizes that the main theorems (Theorem 1.3.1.1 and Theorem 2.1.3.3) “should not be
considered as original, as they could probably be deduced from earlier works of Procesi via
the relation between determinants and generic matrices established by Vaccarino, Donkin,
and Zubkov” [Che11, p. 4]. We will give these attributions as they appear. We note that we
call “pseudorepresentation” what Chenevier calls a “determinant.”

1.1.1. Introduction to Pseudorepresentations. Let A be a commutative ring and
R be an A-algebra. We will give a preliminary (but accurate) definition of a pseudorepre-
sentation that we will provide more theoretical context for in the sequel.

Definition 1.1.1.1. A d-dimensional pseudorepresentationD of R over A is the structure
of an A-algebra on R and an association to each commutative A-algebra B to the map

DB : R⊗A B −→ B

satisfying the following conditions:

(1) DB is multiplicative and unit-preserving (but not necessarily additive),

1A helpful summary of Roby’s work appears in [BO78, Appendix A].
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(2) DB is homogenous of degree d, i.e.

∀ b ∈ B, ∀ x ∈ R⊗A B,DB(bx) = bdDB(x),

(3) D is functorial on A-algebras, i.e. for any map B → B′ of commutative A-algebras,
the diagram

R⊗A B
DB //

��

B

��
R⊗A B′

DB′ // B′

commutes.

We write D : R→ A for such data, although this data is much more than a map from R to
A.

Notation. If R is an A-algebra and B is a commutative A-algebra, we denote by
PsRd

R(B) the set of d-dimensional pseudorepresentations of R ⊗A B over B. We will soon
see that there is a natural structure of a functor on this map from A-algebras to sets.

The main interest in pseudorepresentations comes from their relation to representations
through the characteristic polynomial of a representation. Indeed, a d-dimensional represen-
tation ρ : R → Md(A) of R over A induces a d-dimensional pseudorepresentation D of R
over A as follows. For any commutative A-algebra B, let DB be the composition

(1.1.1.2) DB : R⊗A B
ρ⊗AB−→ Md(A)⊗A B

∼−→Md(B)
det−→ B

of the representation itself with the determinant map. We observe that

(1) DB is multiplicative, because ρ and det are multiplicative,
(2) DB is homogenous of degree d because ρ is linear (homogenous of degree 1) and det

is homogenous of degree d, and
(3) one can check that the functionality condition (3) holds.

This map from representations to pseudorepresentations is a bit abstract until one con-
siders the characteristic polynomial associated to a pseudorepresentation. Of course, this
characteristic polynomial exists even if the pseudorepresentation does not come from a rep-
resentation.

Definition 1.1.1.3. Given a d-dimensional pseudorepresentation D : R −→ A of R over
A, its characteristic polynomial function is

χ(·, t) : R −→ A[t]

r 7→ DA[t](t− r) = td − Λ1(r)td−1 + · · ·+ (−1)dΛd(r)

where Λi are maps R → A. We will sometimes write these maps as ΛD
i when specificity is

required.

When we have a representation ρ : R → Md(A) and the induced pseudorepresentation
D = D(ρ), a look at the definitions allows us to see that the characteristic polynomial of
r ∈ R under the representation ρ, that is, the polynomial

det(t · Id×d − ρ(r)) ∈ A[t],

is identical to the characteristic polynomial of the pseudorepresentation D. Therefore, a
pseudorepresentation retains at least as much information as the characteristic polynomial
of a representation. Later, we will see that it has exactly this much information, i.e. a
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pseudorepresentation is characterized by its characteristic polynomial coefficients Λi (Corol-
lary 1.1.9.15). It is useful to think of a pseudorepresentation as the data of characteristic
polynomial coefficient functions {Λi} on R satisfying the relations imposed by being the char-
acteristic polynomial of a representation. However, we never have need to these relations
explicit.

Remark 1.1.1.4. The construction of (1.1.1.2) works just as well when Md(A) is replaced
by R, an Azumaya A-algebra of rank d2 over its center A, and det is replaced by the reduced
norm R → A. This includes the case of the Azumaya algebra EndA(V ) for a projective
rank d A-module V . These three notions of representation – a homomorphism into a d-by-d
matrix algebra, a linear action on a rank d projective module, and a homomorphism into
an Azumaya algebra – are defined in Definition 1.4.1.1 and explored in §1.4. Note that each
notion of representation listed includes the previous notions in the list. Profinite topological
analogues of these representations are given in Definition 3.2.1.1 and studied in Chapter 2.

It is well known that a semisimple representation of an algebra over an algebraically
closed field is characterized up to isomorphism by its characteristic polynomial, and there-
fore also by its associated pseudorepresentation. This leads us to ask when we can reverse
the map from representations to pseudorepresentations, and make a representation from a
pseudorepresentation. In fact, we describe in Theorem 1.3.1.1 a result of Chenevier: given
an algebraically closed A-field k̄, the induced map

{semisimple d-dimensional representations of R⊗A k̄}/ ∼
↓

PsRd
R(k̄)

is a bijection! This is an important fact, suggesting that “pseudorepresentations” deserve
their name: over an algebraically closed field, they are realizable as the determinant of a
representation.

Let us overview the content of this section. Pseudorepresentations are, in fact, partic-
ular cases of multiplicative polynomial laws, which is a notion due to Roby. Roby’s work
[Rob63] on polynomial laws is reviewed for several of the next paragraphs, and we discuss
his work on multiplicative polynomial laws starting in §1.1.6. Then, we follow Chenevier:
pseudorepresentations are defined in §1.1.7, and a universal pseudorepresentation and the
resulting moduli scheme are identified in Theorem 1.1.7.4. Then, in §§1.1.8-1.1.9, we explore
properties of pseudorepresentations through their characteristic polynomials. In particular,
“Amitsur’s formula” shows that a pseudorepresentation is characterized by its characteris-
tic polynomial, and a certain “Cayley-Hamilton identity” holds for pseudorepresentations.
Work of Vaccarino [Vac08] critical for these identities is reviewed in §1.1.10, along with con-
tributions of Donkin and others that he build upon. The only original part of this section is
§1.1.11, where we give a direct sum operation on pseudorepresentations that decategorifies
the direct sum operation on representations. This makes the moduli space of pseudorepre-
sentations of all dimensions a “scheme in commutative monoids.” We conclude this section
in §1.1.12 with a discussion of an alternate notion of pseudorepresentation which we call
“pseudocharacters” in order to indicate that they retain only the data of a trace function,
while a pseudorepresentation consists of the entire characteristic polynomial. This notion of
pseudorepresentation is due to Taylor [Tay91] following a definition of Wiles [Wil88].
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1.1.2. Polynomial Laws. A d-dimensional determinant of R over A is a particular
case of a polynomial law that is homogenous of degree d and multiplicative. We will define
these terms and make a preliminary study of them. This content is originally due to Roby
[Rob63, Rob80], and we are indebted to the exposition of Chenevier [Che11, §1]. The main
result, Theorem 1.1.7.4, is that the functor of d-dimensional pseudorepresentations PsRd

R on
A-algebras is representable. In particular, there exists a universal pseudorepresentation.

First we define a polynomial law.

Definition 1.1.2.1 ([Rob63, §1.2]). Let A be a commutative ring and let M,N be A-
modules. A polynomial law P : M → N is the association to each commutative A-algebra
B a set-theoretic map

PB : M ⊗A B → N ×A B
such that for any A-algebras B → B′, the diagram

(1.1.2.2) M ⊗A B
PB //

��

N ⊗A B

��
M ⊗A B′

PB′ // N ⊗A B′

commutes. The set of polynomial laws from M to N is denoted PA(M,N).

Remark 1.1.2.3. A more sophisticated way of saying this is that if M is the quasi-
coherent sheaf on the big Zariski site Sch/ SpecA associated to M , then a polynomial law
P : M → N is just a morphism (M)Set → (N)Set of the underlying sheaves of sets.

Example 1.1.2.4. Let M −→ N be a homomorphism of A-modules. Applying ⊗AB
to this homomorphism for each A-algebra B defines a polynomial law. This is a linear
polynomial law. The set of linear polynomial laws in PA(M,N) is the image of HomA(M,N)
under the mapping we have just described.

It is possible to apply to polynomial laws many of the notions applicable to conventional
polynomial functions. For example, given A-modules M,N,P , we may compose pairs in
PA(M,N) × PA(N,P ). Also, PA(M,N) is naturally an A-module: if P, P ′ ∈ PA(M,N),
then setting (P + P ′)B to be PB + P ′B for each A-algebra B defines a valid polynomial law.
Likewise, for a ∈ A, P ∈ PA(M,N), composing PB with the action of a on N ⊗A B for each
A-algebra B gives an A-module structure on PA(M,N).

Polynomials are sums of their homogenous components of each degree. In the same way,
we can assign a degree to a polynomial law and define homogenous polynomial laws.

Definition 1.1.2.5. Let P ∈ PA(M,N) be a polynomial law between A-modules M,N
and let d ≥ 0. We call P homogenous of degree d if for all A-algebras B, all b ∈ B, and all
x ∈M ⊗A B,

P (bx) = bdP (x).

We write PdA(M,N) for the set of polynomial laws of degree d.

We observe that PdA(M,N) is a sub-A-module of PA(M,N): if P, P ′ ∈ PdA(M,N), then
their sum is homogenous of degree d, as is a scalar multiple. In fact, just as for conventional
polynomials, a polynomial law can be decomposed into its homogenous components of each
degree. Following [BO78, §A4], take P ∈ PA(M,N) and consider for any A-algebra B the
map PB[t] : M⊗AB[t]→ N⊗AB[t]. For any x ∈M⊗AB, define P d

B(x) ∈ N⊗AB according

5



to the formula
PB[t](x⊗ t) =

∑
d≥0

P d(x)td.

Since this is an element of N ⊗A B[t], P d(x) = 0 for sufficiently large d, i.e. this is a
“polynomial” in t. One can then check that the P d

B are functorial in B, so that they define
a P d ∈ PdA(M,N). Then by using the functionality of P under the map B[t]→ B, t 7→ 1 for
each A-algebra B, we see that PB(x) =

∑
d≥0 P

d
B(x) for all A-algebras B and all x ∈M⊗AB.

This decomposition into homogenous components is locally finite, in the sense that for any
given element of M ⊗A B, the result is a polynomial. However, as B and x vary, the
polynomial “degree” may grow.

Remark 1.1.2.6. As noted in [BO78, Appendix A], there is a sort of analogy between
homogenous polynomial laws (of a given degree) and modular functions (of a given weight).

Example 1.1.2.7 ([Rob63, Proposition I.5]). When P ∈ PA(M,N) is homogenous of
degree 0, this is a “constant” polynomial law, and amounts to n ∈ N such that PB(x) =
n⊗ 1 ∈ N ⊗A B for all x ∈M ⊗A B.

Example 1.1.2.8 ([Rob63, §I.4]). Any linear polynomial law is homogenous of degree 1.
Using the Yoneda Lemma, one can see that the map HomA(M,N)→ PA(M,N) defines an

isomorphism of A-modules HomA(M,N)
∼→ P1

A(M,N).

Example 1.1.2.9 (cf. [Rob63, §II.3]). Let P ∈ P2
A(M,N) be a homogenous degree 2

polynomial law. This gives rise to a bilinear form BP : M ⊕M → N by setting

BP (m,m′) = PA(m+m′)− PA(m)− PA(m′).

One can check that this is bilinear by observing that BP is the t1t2-coefficient of

PA[t1,t2](m1 ⊗ t1 +m2 ⊗ t2);

while this is just the standard association of a bilinear form to a quadratic form, see Definition
1.1.2.14 to set this in the context of polynomial laws. In fact, P is characterized by PA, and
is characterized by BP if 2 is not a zero divisor in A. Conversely, if Q : M → N is a quadratic
map, i.e. Q(am) = a2Q(m) for all a ∈ A,m ∈M , and if BQ constructed as above is bilinear,

then there exists a unique polynomial law Q̃ ∈ P2
A(M,N) such that Q̃A = Q. This is proved

in [Rob63, Proposition II.1].

The example above shows that a polynomial law of degree two P ∈ P 2(M,N) is actually
determined by PA, i.e. PA determines PB for all A-algebras B, cf. [Rob63, Proposition II.1].
However, this is not necessarily the case in general, as the following example shows.

Example 1.1.2.10 ([Che11, Example 1.2(iii)]). The Frobenius automorphism of the field
A = F2 of 2 elements can be used to find a polynomial law of degree 3 P ∈ P3

A(M,N) not
determined by PA. Let M be a two-dimensional A-vector space and let N = A. Choose
a basis {X, Y } of HomA(M,A). Then the A-polynomial law P : M → N defined by
XY 2 −X2Y is homogenous of degree q + 1. Clearly P 6= 0, but PA is the zero map.

On the other hand, there are general conditions for a polynomial law to be determined
by its restriction PA : M → N to M .

Proposition 1.1.2.11 ([Rob63, Proposition I.8]). If the ring A is an infinite cardinality
domain and if for every 0 6= x ∈ N there exists some A-linear map β : N → A such that
β(x) 6= 0, then any P ∈ PA(M,N) is determined by PA.
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For example, any free A-module N satisfies the condition on N in the statement.
One can isolate a single “coefficient” of a polynomial through the following procedure.

Definition 1.1.2.12. Let P ∈ PA(M,N) and choose integers p ≥ 1 and let α =
(α1, . . . , αp) be a p-tuple of non-negative integers. Then if A[t1, . . . , tp] is the free polynomial
algebra over A in p variables t1, . . . , tp, write P [α] : M⊕p to N as the following function. For
(m1, . . . ,mp) ∈Mp, P [α](m1, . . . ,mp) is the coefficient of tα1

1 t
α2
2 · · · t

αp
p in

PA[t1,...,tp]

(
p∑
i=1

miti

)
.

Note that by applying the homogeneity condition, we may quickly see that if P ∈
PdA(M,N), then P [α] 6≡ 0 =⇒

∑p
i=1 αi = d.

Remark 1.1.2.13 (cf. [Rob63, §II.2]). If P ∈ PdA(M,N) and p = d, i.e. if α is the d-tuple
(1, . . . , 1), then P [α] is a multilinear function M⊗d → N . Roby calls this the “complete
polarization” of a homogenous polynomial law. For d = 2, we have already seen this in
Example 1.1.2.9 above. We readily observe that this multilinear function is symmetric,
i.e. commutes with the action of Sd. When d! is invertible in A, this defines a bijection
between homogenous polynomial laws of degree d and symmetric multilinear functions from
M⊗d to N . This means that when PdA(M,−) is representable by SymdM , which we note

is a quotient of M⊗d. The universal object (corresponding to SymdM
id−→ SymdM) is the

d-dimensional homogenous polynomial law

m 7→ m⊗ · · · ⊗m/p! ∈ PdA(M, SymdM).

However, since the main goal of introducing pseudorepresentations in place of pseudochar-
acters2 is to allow the characteristic of coefficient rings of representations to be arbitrary, we
want a theory without this weakness. In fact, there is a universal object for PdA(M,−) for
arbitrary A and M , as we will see in the sequel.

We are interested in a simple, explicit set of functions that characterize a polynomial
law. These are the “coefficients” of the polynomial law.

Definition 1.1.2.14. Let P ∈ PA(M,N). Then for any choice of positive integer n ≥ 1,
any choice of m1, . . . ,mn ∈ M , and any ordered n-tuple of integers α = (α1, . . . , αn), set
P [α] : Mn −→ N by

PA[t1,...,tn](
n∑
i=1

mi ⊗ ti) =
∑
α

P [α](m1, . . . ,mn)tα,

where tα :=
∏n

i=1 t
αi .

Definition 1.1.2.15. Let Idn denote the set of tuples α = (α1, . . . , αn) of non-negative
integers such that their sum is d. We will use the notation Id when the size n of the tuple
is clear from the context.

Often, we will use Id will refer to d-tuples, since at most d entries of an element of Idn are
non-zero and the data, such as P [α], labeled by a choice of an element of Idn are completely
determined by the data labeled by elements of Idd .

2In short, pseudocharacters keep track of the trace function of a representation, while pseudorepresentations
keep track of the entire characteristic polynomial. See §1.1.12 for a discussion of pseudocharacters and the
history of notions of pseudorepresentations.
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The following proposition shows that the coefficients of a polynomial law share analogous
properties to the coefficients of a polynomial.

Proposition 1.1.2.16 (cf. [Rob63, Theorem I.1]). With P , α ∈ Idn, and P [α] as in the
definition above, then

(1) For any m1, . . . ,mn ∈ Mn, there are only finitely many n-tuples of non-negative
integers α such that P [α](m1, . . . ,mn) 6= 0.

(2) If m1, . . . ,mn generates M , then P [α](m1, . . . ,mn) characterizes P , as α varies over
all n-tuples of non-negative integers.

(3) If P is homogenous of degree d ≥ 0, then P is characterized by the degree d homoge-
nous functions {P [α] | α ∈ Idd}, and P [α] ≡ 0 if

∑
α αi 6= d.

(4) If P is homogenous of degree d, then P is characterized by the degree d homogenous
function PA[t1,...,td] : R⊗A A[t1, . . . , td]→ A[t1, . . . , td].

Proof. Parts (1) and (2) are proved in [Rob63, Theorem I.1]. Part (4) clearly follows
from (2) and (3).

Let us prove (3). By part (2), it will suffice to show that if α ∈ Id′ where d 6= d′

and P ∈ PdA(M,N), then P [α] = 0. Say that we have a counterexample α ∈ Ind′ , so that
there exists some n-tuple (x1, . . . , xn) ∈ Mn such that P [α](x1, . . . , xn) 6= 0. Then if t is an
indeterminant,

(1.1.2.17)

td · P (
n∑
i=1

miti) = P (t ·
n∑
i=1

miti)

= P (
n∑
i=1

mi(tti)

=
∑
D≥0

∑
α∈InD

P [α](m1, . . . ,mn) · tD · tα

where we recall that tα stands for
∏n

i=1 t
αi
i . Setting D = d′ and (m1, . . . ,mn) = (x1, . . . , xn)

and α = α, and expanding the expression above in terms of monomials in the variables
t, t1, . . . , tn, we have that there is a nonzero term in the final line of (1.1.2.17) where the
degree of t is not d. This violates the homogeneity expressed in the first line of (1.1.2.17). �

1.1.3. Representability. Now we assemble notions needed to specify the A-module
representing the functors N 7→ PA(M,N) and N 7→ PdA(M,N) for d ≥ 0. Firstly we define
the divided power A-algebra ΓA(M) of M along with its graded component A-modules
ΓdA(M), and construct a degree d homogenous polynomial law

Ld : M −→ ΓdA(M).

This will turn out to be the representing A-module and universal object for PdA(M,−).

Definition 1.1.3.1. Let M be an A-module. The commutative A-algebra ΓA(M) is the
quotient algebra of the polynomial algebra generated by the symbols m[i] where m ∈M and
i ≥ 0, subject to the relations

(1) m[0] = 1 for m ∈M ,
(2) (am)[i] = aim[i] for a ∈ A,m ∈M, i ≥ 0,
(3) m[i]m[j] = i!j!

(i+j)!
m[i+j] for m ∈M, i, j ≥ 0, and
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(4) (m+m′)[i] =
∑

p+q=im
[p]m′[q].

Assigning to m[i] the degree i, we see that as the relations form a homogenous ideal, ΓA(M)
is a graded A-algebra under this grading, and we denote by ΓdA(M) the dth graded piece, so

ΓA(M) ∼=
⊕
d≥0

ΓdA(M).

Definition 1.1.3.2. We define the universal degree d homogenous polynomial law Ld ∈
P d(M,ΓdA(M)) by the maps

LdB : M ⊗A B −→ ΓA(M)⊗A B ∼= ΓB(M ⊗A B)

m⊗ b 7→ m[i] ⊗ bi ∼= (bm)[i].

The relations above show that this map is well-defined, functorial in B, and degree d ho-
mogenous.

We think of the element m[i] as “mi/i!,” even though i! may not be invertible in A.

Remark 1.1.3.3. This graded algebra is called the divided power algebra of M because
the ideal Γ+

A(M) ⊂ ΓA(M) of positive degree elements is a divided power ideal for ΓA(M)
with divided power structure γ = (γi) characterized by the property γi(m

[1]) = m[i] for all
m ∈ M, i ≥ 0 [BO78, Theorem A9]. This algebra has a special universal property among
A-algebras with a divided power ideal [BO78, Theorem 3.9].

The universality of Ld among degree d homogenous polynomial laws out of M is sum-
marized by this theorem.

Theorem 1.1.3.4 ([Rob63, Theorem IV.1]). Let M,N be two A-modules and let d ≥ 0.
There is a canonical isomorphism

(1.1.3.5) HomA(ΓdA(M), N)
∼−→ PdA(M,N)

given by sending f ∈ HomA(ΓdA(M), N) to its composition f ◦Ld with the universal degree d
homogenous polynomial law Ld : M → ΓdA(M).

We can already see that the map (1.1.3.5) exists, by composing Ld with a linear map
ΓdA(M)→ N . In order to show it is a bijection as the theorem claims, we need to introduce
two notions: a natural functor that the A-algebra ΓA(M) represents, and the notion of the
derivative of a polynomial law. In this we follow [BO78, Appendix A].

In order to prove Theorem 1.1.3.4, we introduce two tools. The first is the exp functor.

Definition 1.1.3.6. Let B be a commutative A-algebra. Let exp(B) be the following
B-module, a subgroup of the abelian group of units f ∈ B[[t]]× such that

(1) f(0) = 1,
(2) f(t1 + t2) = f(t1)f(t2) for free commutative variables t1, t2,

with B-module structure given by (b · f)(t) = f(bt).

As remarked in [BO78, p. 1], the following property of ΓA is “in a way, a multiplicative
version of SymA” as SymA is the left-adjoint of the forgetful functor from commutative
A-algebras to A-modules.

Proposition 1.1.3.7 ([BO78, Proposition A1], [Rob63, Theorem III.1]). For B a com-
mutative A-algebra, there is a canonical bijection

(1.1.3.8) HomAlgA(ΓA(M), B)
∼−→ HomA−mod(M, exp(B))
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given by the relation, for f ∈ HomAlgA(ΓA(M), B), g ∈ HomA−mod(M, exp(B)), and m ∈M ,

(1.1.3.9) g(m) =
∞∑
n=0

f(m[n])tn,

i.e. ΓA is left-adjoint to exp.

Proof. Write GA(M) for the free polynomial algebra over A generated by the symbols
m[i] for m ∈ M and i ≥ 0 and IA(M) for the ideal of relations of conditions (1) to (4) of

Definition 1.1.3.1, so that GA(M)/IA(M)
∼→ ΓA(M).

Given any map of sets g : M → B[[t]], we have coefficient functions bg = b : M × N→ B
so that g(m) =

∑∞
i=0 b(m, i)t

i. We observe that this defines a map b : GA(M) → B, and
that the associations g 7→ bg 7→ b ∈ HomA(GA(M), B) are bijective. All that we need to do
is to show that b(IA(M)) = 0 if and only if the image of g lies in exp(B) ⊂ B[[t]] and g is a
map of A-modules.

We will progress through the generators of IA(M) given by conditions (1) to (4) of
Definition 1.1.3.1 in sequence.

(1) We see that b kills (m, 0) − 1 for all m ∈ M if and only if the leading coefficient
of g(m) is 1 for all m ∈ M , i.e. g(m)(0) = 1, which is condition (1) of Definition
1.1.3.6 that g(m) must satisfy in order that g(m) ∈ exp(B) ⊂ B[[t]].

(2) We see that b kills (am, i) − ai(m, i) for all m ∈ M, i ≥ 0, a ∈ A if and only if
g(m)(at) = g(am)(t); by the A-module structure on exp(B), this means that g
satisfies the a · g(m) = g(am) condition on morphisms of A-modules.

(3) We see that b kills

(m, i)(m, j)− (i+ j)!

i!j!
(m, i+ j)

for all m ∈M, i, j ≥ 0 if and only if

g(m)(t1 + t2) =
∞∑
k=0

b(m, k)(t1 + t2)k

=
∞∑
k=0

∑
i+j=k

(
b(m, i)b(m, j)

i!j!

(i+ j)!

)(
i+ j

i

)
ti1t

j
2

=

(
∞∑
i=0

b(m, i)ti1

)(
∞∑
j=0

b(m, j)tj2

)
= g(m)(t1) · g(m)(t2),

which is condition (2) of Definition 1.1.3.6 for g(m) to lie in exp(B) ⊂ B[[t]].
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(4) We see that b kills (m+m′, i)−
∑

p+q=i(m, p)(m
′, q) for all m,m′ ∈M , i ≥ 0 if and

only if

g(m) · g(m′) =

(
∞∑
i=0

b(m, i)ti

)(
∞∑
j=0

b(m′, j)tj

)

=
∞∑
k=0

∑
i+j=k

b(m, i)b(m′, j)ti+j

=
∞∑
k=0

b(m+m′, k)tk

= g(m+m′),

as required for g : M → exp(B) to obey the property g(m+m′) = g(m) + g(m′) of
A-module homomorphisms. �

The following corollaries will be very useful.

Corollary 1.1.3.10 ([BO78, Proposition A2], [Rob63, Theorems III.3 and III.4]). Let
A be a commutative ring.

(1) If B is a commutative A-algebra and M is an A-module, ΓA(M)⊗AB
∼−→ ΓB(M⊗A

B), by sending
m[i] ⊗ 1 7→ (m⊗ 1)[i].

(2) If M = lim−→λ
Mλ is a colimit of A-modules, then

lim−→ΓA(Mλ) ∼= ΓA(lim−→Mλ).

(3) If M1,M2 are A-modules, then there is a canonical isomorphism

ΓA(M1 ⊕M2)
∼−→ ΓA(M1)⊗A ΓA(M2)

(m1,m2)[i] 7→
∑
p+q=i

m
[p]
1 m

[q]
2

such that the grading on the left corresponds to the “sum” of the bi-grading on the
right, i.e. there is an induced isomorphism of A-modules

ΓdA(M1 ⊕M2)
∼−→

⊕
d1+d2=d

Γd1
A (M1)⊗A Γd2

A (M2)

We supply a proof along the lines of [BO78].

Proof. To show (1) we simply note that (1.1.3.8) can be composed with the standard
canonical isomorphisms

HomB−alg(ΓA(M)⊗A B,B)
∼−→ HomAlgA(ΓA(M), B),

HomA−mod(M, exp(B))
∼−→ HomB−mod(M ⊗A B, exp(B))

to establish (1).
Since we can state Proposition 1.1.3.7 by saying that ΓA : A−mod −→ AlgA is left-adjoint

to exp : AlgA −→ A−mod and left-adjoint functors preserve colimits, we have (2).
As ⊗A is the coproduct in the category of commutative A-algebras and ⊕ is the coproduct

in the category of A-modules, we directly derive (3) from Proposition 1.1.3.7. The explicit
form of the map may be deduced from relation (4) of Definition 1.1.3.1. �
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Now we can concretely describe ΓdA(M) in the case that M is a free A-module.

Corollary 1.1.3.11 ([BO78, Proposition A3], compare [Rob63, Theorem IV.2]). If the

A-module M is free with basis {ei}i∈I , then for d ≥ 0, ΓdA(M) is free with basis {
∏

i∈I e
[ki]
i |∑

I ki = d}, where the ki are non-negative integers.

Proof. Corollary 1.1.3.10(2) allows us to confine ourselves to finitely generated A-
modules M . Corollary 1.1.3.10(3) allows us to reduce to the case that M is free of rank
1! Finally, Corollary 1.1.3.10(1) allows us to reduce to the case that A = Z. If we write {e}
for the basis of M , then the definition of the divided power algebra and its grading show
that e[d] is a generator for ΓdZ(M). Therefore it will suffice to show that for all non-negative
integers a, a · e[d] 6= 0.

Now clearly the Taylor expansion exp(t) ∈ Q[[t]] of et lies in exp(Q). As M is free,
there exists a map M → exp(Q) sending x 7→ exp(t). Then by Proposition 1.1.3.7, there
is a canonical map ΓZ(M) → Q sending e[d] to the coefficient 1/d! of td in exp(t). Clearly
a/d! 6= 0 when a 6= 0, so a · e[d] 6= 0 as well. �

Now we add a second tool toward proving Theorem 1.1.3.4 in addition to the exp functor:
the derivative operators.

Definition/Lemma 1.1.3.12. Let M,N be A-modules, let m ∈M , and i ≥ 0. Then we
define the derivative operator ∂im on PA(M,N) as the A-module endomorphism of PA(M,N)
given by following notions.

(1) For P ∈ PA(M,N), a commutative A-algebra B, and an element x ∈M ⊗AB, then
then Taylor expansion of P at x with respect to m is

Sm(P )B(x) := PB[t](m⊗ t+ x).

(2) We observe that the Sm(P )B are functorial in B, and thereby defines a polynomial
law

Sm(P ) ∈ PA(M,N ⊗A A[t]).

(3) Decompose Sm(P ) into coefficient polynomial laws ∂im(P ) such that for all commu-
tative A-algebras B and all x ∈M ⊗A B,

Sm(P )B(x) =
∞∑
i=0

∂im(P )B(x)ti

(4) For m ∈ M and i ≥ 0, write ∂im for the (A-linear) endomorphism of PA(M,N)
defined by the association P 7→ ∂im(P ), and write

Sm :=
∞∑
i=0

∂imt
i

for the resulting formal power series with coefficients in EndA(PA(M,N)).
(5) The A-subalgebra D ⊂ EndA(PA(M,N)) generated by {∂im | m ∈ M, i ≥ 0} is

commutative.
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Proof. For (2) we observe that for any morphism of A-algebras B → B′, any x ∈
M ⊗A B, the diagram

x //

��

PB[t](m⊗ t+ x)

��
x⊗B 1B′ // PB′[t](m⊗ t+ x⊗ 1)

commutes.
For (3) we observe that the composition of the polynomial law Sm(P ) with the linear

polynomial law induced by the homomorphism of A-modules N ⊗A A[t]→ N,
∑

i nit
i 7→ ni,

remains a polynomial law. This composition is the coefficient polynomial law ∂im(P ).
For (4) we must show that ∂im : PA(M,N)→ PA(M,N) is A-linear. This is straightfor-

ward:

Sm(P + P ′)B(x) := (P + P ′)B[t](m⊗ t+ x) = PB[t](m⊗ t+ x) + P ′B[t](m⊗ t+ x)

= Sm(P )B(x) + Sm(P ′)B(x),

and Sm(a · P ) = a · Sm(P ) for a ∈ A follows similarly.
The remaining claim is (5), that the operators

{∂im | m ∈M, i ≥ 0} ⊂ EndA(PA(M,N))

commute. We deduce this by composing the operation Sm with itself, repeating the argument
of [BO78]: for B ∈ AlgA, m1,m2 ∈M,x ∈M ⊗A B, and indeterminates t1, t2,

PB[t1,t2](m1t1 +m2t2 + x) = PB[t1,t2](m2t2 +m1t1 + x)

Sm1(P )B[t2](m2t2 + x) = Sm2(P )B[t1](m1t1 + x)

Sm2(Sm1(P ))B(x) = Sm1(Sm2(P ))B(x),

so comparing terms of the polynomial coefficients in t1, t2, we find that

∂im2
∂jm1

ti2t
j
1 = ∂jm1

∂im2
tj1t

i
2

for all i, j ∈ N. �

The key role that these derivatives will play in showing that ΓdA(M) represents the functor
PdA(M,−) starts to become apparent with this

Lemma 1.1.3.13. The map S := S(·) : M → D[[t]] defines an A-linear map

S : M −→ exp(D).

Proof. First we show that the image of S(·) =
∑∞

i=0 ∂
i
(·)t

i lies in exp(D) ⊂ D[[t]]. Since

the coefficient of t0 in Sm(P )B(x) = PB[t](m⊗t+x) is given by ∂0
m(P )B(x) = PB[t](x) = PB(x)

for x ∈M ⊗A B, we see that ∂0
m(P ) = P , i.e. the coefficient is 1 ∈ D as desired.

The remaining condition to verify in order to see that Sm ∈ exp(D) ⊂ D[[t]] is that

Sm(t1 + t2) = Sm(t1) · Sm(t2) ∈ D[[t1, t2]].

We now write Sm(ti) in place of Sm to specify the variable put in the place of t in the original
definition of S. We check that the required identity is satisfied by calculating that for all
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m ∈M,P ∈ PA(M,N), B ∈ AlgA, x ∈M ⊗A B, we have

Sm(t1 + t2)(P )B(x) = PB[t1,t2](m⊗ t1 +m⊗ t2 + x)

= Sm(t1)(P )B[t2](m⊗ t2 + x)

=
(
Sm(t1)Sm(t2)

)
(P )B(x),

so Sm(t1 + t2) = Sm(t1) · Sm(t2) as desired.
It remains to show that S(·) is a homomorphism of A-modules. This is a simple calcula-

tion: for m1,m2 ∈M and all P,B, and x as above,

Sm1+m2(P )B(x) = PB[t](m1 ⊗ t+m2 ⊗ t+ x)

= Sm1(P )B[t](m2 ⊗ t+ x)

= Sm1(Sm2(P ))B(x).

This is commutative also, and we have Sm1+m2 = Sm1 · Sm2 = Sm2 · Sm1 . Finally, for
a ∈ A,m ∈M , and P,B, x as above,

Sam(t)(P )B(x) = PB[t](am⊗ t+ x)

= PB[t](m⊗ (at) + x)

= Sm(at)(P )B(x),

so Sam(t) = Sm(at) = a · Sm(t) as desired. �

Now we prove Theorem 1.1.3.4, which we recall here. Given an A-module M and d ≥ 0,
we have constructed the universal homogenous degree d polynomial law

Ld : M → ΓdA(M),

and want to prove that it deserves its name, i.e. for any A-module N , the natural map

HomA(ΓdA(M), N)
(1.1.3.5)−→ PdA(M,N) given by composing with Ld is bijective.

Proof. (Theorem 1.1.3.4) To show the injectivity of (1.1.3.5), choose
f ∈ HomA(ΓdA(M), N) and let P = f ◦ Ld. This is a homogenous degree d polynomial
law P : M → N . For α ∈ Idd recall the coefficients P [α] of P (Definition 1.1.2.14). For
m1, . . . ,md ∈M , we have, by definition of the P [α],

PA[t1,...,td](m1 ⊗ t1 + · · ·+md ⊗ td) =
∑
α∈Idd

P [α](m1, . . . ,md)t
α.

On the other hand, because ΓdA[t1,...,td](M⊗AA[t1, . . . , td]) ∼= ΓdA(M)⊗AA[t1, . . . , td] (Corol-

lary 1.1.3.10(1)), we see that

LdA[t1,...,td](m1 ⊗ t1 + · · ·+md ⊗ td) = (m1 ⊗ t1 + · · ·+md ⊗ td)[d]

=
∑
α∈Idd

∏
1≤i≤d

m
[αi]
i tαii .

Comparing coefficients, this shows that for each α ∈ Idd ,

f(m
[α1]
1 · · ·m[αd]

d ) = P [α](m1, . . . ,md), ∀(m1, . . . ,md) ∈Md.

As {
∏d

1 m
[αi]
i | α ∈ Idd , (mi) ∈Md} spans ΓdA(M) as a module by its construction (Definition

1.1.3.1), this shows that P = f ◦ Ld determines f , i.e. (1.1.3.5) is injective.

14



Now we show that (1.1.3.5) is surjective. Let P ∈ PdA(M,N). We need to produce a
linear map f : ΓdA(M)→ N such that

f :
d∏
i=1

m
[αi]
i 7→ P [α](m1, . . . ,md), ∀(mi) ∈Md, α ∈ Idd .

For brevity we write m for (mi) = (m1, . . . ,md) and m[α] for
∏d

i=1 m
[αi]
i .

We have S : M → exp(D) where D ⊂ EndA(PA(M,N)) is a commutative subalgebra
(Definition/Lemma 1.1.3.12(5)), and therefore by Proposition 1.1.3.7, an induced homo-
morphism of commutative A-algebras S̃ : ΓA(M) → D. One can verify from the relation
(1.1.3.9) that just as Sm =

∑∞
0 ∂imt

i, so also S̃(m[i]) = ∂im. Therefore, for any m[α] ∈ ΓA(M),

S̃(m[α]) = ∂αm :=
∏

i ∂
αi
mi

.

Apply these constructions to P ∈ PdA(M,N) by “evaluating at zero” the derivative of P
by some ∂ ∈ D, so that for each such P we have an A-linear map

evP : D → N

∂ 7→ ∂(P )A(0)

Composing evP with S̃, we have an A-linear map f : ΓA(M)→ N , mapping

f : m[α] 7→ ∂αm(P )A(0).

We find these quantities as coefficients of tα by expanding the definition of the Taylor series:
if we restrict α to have cardinality n, then for all B and x ∈M ⊗A B,∑

α

∂αm(P )B(x)tα = PB[t1,...,tn](m1 ⊗ t1 + · · ·+mn ⊗ tn + x),

and specializing to x = 0 ∈M , we have∑
α

∂αm(P )A(0)tα = PA[t1,...,tn](m1 ⊗ t1 + · · ·+mn ⊗ tn).

The coefficient of tα is f(m[α]) ∈ N in this series, but it is also equal to P [α](m1, . . . ,mn) by
Definition 1.1.2.14. This is what we wanted to prove. �

We derive a useful corollary of Theorem 1.1.3.4 regarding the functorial behavior of ΓdA.

Corollary 1.1.3.14 ([BO78, Corollary A6]). Let

M ′ ⇒M −→M ′′ −→ 0

be an exact sequence of A-modules. For d ≥ 1 and an A-module N , this induces an exact
sequence of modules of A-polynomial laws

0 −→ PdA(M ′′, N) −→ PdA(M,N) ⇒ PdA(M ′, N),

and an exact sequence

ΓdA(M ′) ⇒ ΓdA(M) −→ ΓdA(M ′′) −→ 0.

Proof. For any commutative A-algebra B,

M ′ ⊗A B ⇒M ⊗A B −→M ′′ ⊗A B −→ 0

is also exact. This is what we need in order to see the first exact sequence. The second exact
sequence then follows from Theorem 1.1.3.4. �
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1.1.4. Symmetric Tensor Algebras. In the case that M is a free A-module, there
is an isomorphism of A-modules between the symmetric tensors of M of degree d and the
dth graded component of the divided power algebra for M . This will be helpful later in
understanding the multiplication law on the algebra representing the functor of pseudorep-
resentations.

First we define the A-algebra of symmetric tensors.

Definition 1.1.4.1 ([Rob63, §III.5]). Let TSdA(M) be the submodule of M⊗d of elements
invariant under the natural action of the symmetric group Sd. Let TSA(M) := ⊕d≥0TSdA(M)

with the following structure of a graded algebra. For x ∈ TSdA(M), x′ ∈ TSd
′

A(M), let

D = d + d′ and consider x ⊗ x′ ∈ M⊗DA . Then x ⊗ x′ is invariant under the subgroup
Sd×Sd′ ↪→ SD, where the injections are defined by the ordering of the coordinates of x⊗x′.
Let (σ) be a set of representatives of the left cosets of Sd × Sd′ . Define multiplication
∗ : TSA(M)× TSA(M)→ TSA(M) by extending the multiplication on monomials

(1.1.4.2) x ∗ x′ :=
∑
σ

σ(x⊗ x′).

This multiplication is clearly bilinear so factors through TSA(M)⊗ATS(M), but showing
that it is associative takes a bit more work. For a full presentation of the commutativity and
associativity, see [Rob63, §III.5].

We observe that the map

M −→M⊗d

m 7→ m⊗ · · · ⊗m =: m⊗
d
A

is compatible with ⊗AB for commutative A-algebras B and therefore defines a polynomial
law that is homogenous of degree d. Therefore, by Theorem 1.1.3.4, we have a canonical
map

(1.1.4.3) ΓdA(M) −→ TSdA(M).

This map is characterized by the property that m[d] 7→ m⊗
d
A for all m ∈ M [Rob63, Propo-

sition III.1]. Using this property, one can see that the relations of Definition 1.1.3.1 defining
ΓA(M) as a quotient of the free commutative algebra on m[i] (m ∈ M, i ≥ 0) are sent to

zero under the map from this free commutative algebra to TS(M) defined by m[i] 7→ m⊗
i
A ,

so that we have a canonical map

(1.1.4.4) ΓA(M) −→ TSA(M).

See [Rob63, Proposition III.1] for further detail.
This map is often an isomorphism!

Proposition 1.1.4.5 ([Rob63, Proposition IV.5]). When M is either free or is projective
of finite rank as an A-module, then (1.1.4.4) is an isomorphism of A-modules, induced by an
isomorphism of graded A-algebras

ΓA(M)
∼−→ TSA(M).

Proof. When M is projective of finite rank, we reduce to the case that M is free, as all
of the arguments below commute with localization.

Let M be a free A-module and choose a basis (ei)i∈I . Choose a total ordering on the

index set I for the basis. Consider the set of simple monomials ei1⊗ . . .⊗ eid ∈M⊗d and the

16



equivalence classes under the action of Sd. The ordering gives us a unique representative of
each class with the property that

i1 ≤ i2 ≤ · · · ≤ id.

Let K be the set of equivalence classes, and for K ∈ K let eK represent the sum of the
elements of the equivalence class and let ẽK represent the unique representative specified
above of the class K. This representative ẽK may be uniquely written (with a new choice of
indices ij ∈ I) in the form

(1.1.4.6) ẽK = e⊗
k1

i1
⊗ · · · ⊗ e⊗khih

where i1 < i2 < · · · < ih,

h∑
j=1

kj = d.

We note that
k1! · · · kh! · eK =

∑
σ∈Sd

σ(ẽK).

Choose some x ∈ TSd(M), which may be uniquely written as

x =
∑

i1,...,id∈I

λi1,...,idei1 ⊗ . . .⊗ eid .

Because this is a symmetric tensor, for all σ ∈ Sd we have λiσ(1),...,iσ(d)
= λi1,...,id . This means

that we can write x uniquely as

x =
∑
K∈K

λKeK ,

where we can set λK = λi1,...,id for any (i1, . . . , id) such that ei1 ⊗ . . . ,⊗eid ∈ K. This shows
that {eK}K∈K is a basis for TSdA(M). Now we will show that this basis is the image of a
basis for ΓdA(M).

We recall from Corollary 1.1.3.11 that ΓdA(M) is free with the set

(1.1.4.7) {
h∏
j=1

e
[kj ]
ij
| conditions of (1.1.4.6) on ij, kj} ⊂ ΓdA(M)

being a basis over A. This basis is in natural bijective correspondence with K. We will be
done if we can show that the map ΓdA(M)→ TSdA(M) preserves the correspondence between

their respective bases and K. Because m[i] 7→ m⊗
i

for all m ∈ M, i ≥ 0, the image of

e
[k1]
i1
· · · e[kh]

ih
∈ ΓdA(M) is

e⊗
k1

i1
∗ · · · ∗ e⊗khih

.

Using (1.1.4.2), we find that this product is precisely the sum over the permutations of the

orderings of factors e⊗
kj

ij
, which is the basis element eK �

1.1.5. Faithful Polynomial Laws. We introduce the notion of a kernel of a polynomial
law P : M → N , which is the kernel of the surjection from M onto the smallest quotient
A-module of M through which a polynomial law P ∈ PA(M,N) factors.

Definition 1.1.5.1 ([Che11, §1.17]). Let P ∈ P (M,N). Then ker(P ) ⊂M is the subset
of elements m ∈M such that

∀B ∈ AlgA,∀b ∈ B, ∀x ∈M ⊗A B, P (m⊗ b+ x) = P (x),
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which we immediately observe is a A-submodule of M . By Proposition 1.1.2.16, m is in
ker(P ) if and only if for all n ≥ 1 and m1, . . . ,mn ∈M ,

P (tm+ t1m1 + · · ·+ tnmn) ∈ N [t, t1, . . . , tn]

lies in N ⊗A A[t1, . . . , tn], i.e. it is independent of t.
When ker(P ) = 0, we say that P is faithful.

This lemma shows that the kernel deserves its name.

Lemma 1.1.5.2 ([Che11, Lemma 1.18]). Let P ∈ PA(M,N).

(1) ker(P ) is the biggest A-submodule K ⊂ M such that P admits a factorization P =

P̃ ◦ π where π is the canonical A-linear surjection M −→M/K.

(2) P̃ : M/ ker(P ) −→ N is a faithful polynomial law, and if P is homogenous of degree

d, so is P̃ .
(3) If B is a commutative A-algebra, then the image of

ker(P )⊗A B −→M ⊗A B
is contained in ker(P ⊗A B).

Proof. Assertion (3) follows from transitivity of the tensor product − ⊗A B ⊗B C
involved in the “restriction” of P to B-algebras C through the morphism A→ B.

Clearly if P factors through M → M/K for some A-submodule K of M , then K is in
the kernel of P by definition. Now we check the converse: say K ⊂ ker(P ). We need to

factor P through a polynomial law P̃ : M/K −→ N .
For any commutative A-algebra B, set

KB := =(K ⊗A B −→M ⊗A B).

Then ι : (M/K) ⊗A B
∼→ (M ⊗A B)/KB by the right-exactness of the tensor product

functor − ⊗A B, and KB ⊂ ker(P ⊗A B) by part (3). Now, applying the assumption that
K ⊂ ker(P ) and the definition of the kernel, we observe that the map PB : M⊗AB → N⊗AB
satisfies PB(k + m) = PB(m) for any m ∈ M ⊗A B, k ∈ KB, so that PB factors through
πB : M ⊗A B → (M ⊗A B)/KB. Composing this map with the isomorphism above, we have
a map which is well-defined by the relation

(1.1.5.3)
P̃B : (M/K)⊗A B → N ⊗A B

P̃B(ι−1 ◦ πB(M)) := PB(m)

because ι−1 ◦ πB is surjective onto (M/K) ⊗A B. As all of the maps defining this relation

are functorial in B, we have defined an polynomial law P̃ ∈ PA(M/K,N).

Because of the relation (1.1.5.3), we see that ker(P̃ ) = ker(P )/K. This is the first part
of (2), and the second part of (2) also follows from examining (1.1.5.3). �

1.1.6. Multiplicative Polynomial Laws. Now we consider polynomial laws between
A-algebras. These are polynomial laws between the underlying A-modules with multiplica-
tivity imposed. It is possible to define these laws when A is neither associative nor unital.

Definition 1.1.6.1. Let R, S have the structure of A-algebras (not necessarily commu-
tative) and P ∈ PdA(R, S). Then P is called multiplicative provided that

(1) P (1) = 1, i.e. PA(1R) = 1S, from which it follows that PB(1R⊗AB) = 1S⊗AB for all
commutative A-algebras B, and
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(2) PB is multiplicative for all commutative A-algebras B, i.e. for all B and all x, y ∈
R⊗A B, PB(xy) = PB(x)PB(y).

For d ≥ 0, we denote byMd
A(R, S) ⊂ PdA(R, S) the set of degree d homogenous multiplicative

polynomial laws from R to S over A.

Remark 1.1.6.2. A multiplicative polynomial law of degree 0 must be constant, and so
must send every element to the multiplicative identity.

We now ask if there exists a universal object for the functor Md
A(R,−) on the category

of A-algebras. Of course, an element of Md
A(R, S) induces an element of PdA(R, S) by the

forgetful functor from A-algebras to A-modules, so that P ∈Md
A(R, S) induces a morphism

of A-modules ΓdA(R)→ S. The composite

R→ ΓdA(R)→ S

is multiplicative. In fact, there exists a A-algebra structure on ΓdA(R) such that the first
map of the composite is multiplicative, and the multiplicativity of the composite depends
on the multiplicativity of the second map. This reasoning, due to Roby [Rob80], makes the
first map a universal homogenous degree d multiplicative polynomial law. This is what we
will now explain.

Let M,N ∈ A−mod, and for d ≥ 0 write LdM for the universal homogenous degree
d polynomial law LdM : M → ΓdA(M). By the universal property of the tensor product
of modules, M ⊗A N is universal for bilinear maps out of M × N . The universal map
M ⊕N → M ⊗A N is manifestly homogenous of degree 2 and compatible with −⊗A B for
commutative A-algebras B. Therefore we have a degree 2 homogenous polynomial law from
M ⊕N to M ⊗A N , which we will denote by βM,N ∈ P2

A(M ⊕N,M ⊗A N).
The composition LdM⊗AN ◦βM,N defines a degree 2d polynomial law in P2d

A (M ⊕N,M ⊗A
N), so that by Theorem 1.1.3.4 there exists a canonical A-linear homomorphism

ηM,N : Γ2d
A (M ⊕N) −→ ΓdA(M ⊗A N)

such that LdM⊗AN ◦ βM,N = ηM,N ◦ L2d
M⊕N is an equality of polynomial laws. Recall from

Corollary 1.1.3.10(2) that there is a canonical isomorphism⊕
p+q=2d

ΓpA(M)⊗A ΓqA(N)
∼−→ Γ2d

A (M ⊕N),

and we will also write ηM,N for its restriction to ΓpA(M)⊗A ΓqA(N) for p+ q = 2d, considered
as a submodule of Γ2n

A (M ⊕N).

Sublemma 1.1.6.3 ([Rob80, p. 869]). With M,N, d, βM,N , and ηM,N as above, let

m[α] := mα1
1 · · ·mαr

r , where
r∑
i=1

αi = p

n[α′] := n
α′1
1 · · ·nα

′
s
s , where

s∑
j=1

α′j = q

be representative elements of ΓpA(M) and ΓqA(N), respectively. Then

ηM,N(m[α] ⊗ n[α′]) =
∑
γij

∏
1≤i≤r
1≤j≤s

(mi ⊗ nj)[γij ],
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where αi =
∑

j γij and α′j =
∑

i γij. In particular, ηM,N kills ΓpA(M)⊗A ΓqA(N) ⊂ Γ2d
A (M ⊗A

N) if p 6= q.

Now we replace M and N with an A-algebra R, and write ηR (resp. βR) for ηM,N

(resp. βM,N). Let θ : R ⊗A R → R be the linear multiplication structure map for R.
As ΓA is a functor, the data of θ as a map of A-modules induces a morphism of A-algebras

Γ(θ) : ΓA(R⊗A R) −→ ΓA(R),

which restricts to its graded components Γn(θ). Now write θd for the composition

θd : ΓdA(R)⊗ ΓdA(R)
ηR−→ ΓdA(R⊗A R)

Γd(θ)−→ ΓdA(R).

Lemma 1.1.6.4 ([Rob80, p. 870]). The A-linear map θd defines the structure of an A-
algebra on ΓdA(R). If R is

(1) unital,
(2) associative, or
(3) commutative,

then for all d ≥ 0, ΓdA(R) is as well.

Now we know that an associative unital A-algebra R gives rise to an associative unital
A-algebra ΓdA(R). We can also check that the universal polynomial law LdR : R → ΓdA(R) of
Theorem 1.1.3.4 is multiplicative with respect to this structure. In fact, this the multiplica-
tive polynomial law LdR is universal for multiplicative homogenous degree d polynomial laws
out of R.

Theorem 1.1.6.5 ([Rob80, Théorèm]). For A-algebras R, S, there is a canonical bijection

Md
A(R, S)

∼−→ HomAlgA(ΓdA(R), S)

with universal object (LdR : R −→ ΓdA(R)) ∈Md
A(R,ΓdA(R)).

Recall that the kernel of a polynomial law P ∈ PA(M,N) is kernel of the factor map to the
smallest quotient A-module of M through which P factors. Naturally, in the multiplicative
case, we would like this quotient to be a quotient ring and the kernel to be a two-sided ideal
of a multiplicative polynomial law P ∈ Md

A(R, S). The following lemma proves this and
provides a simplification of the description of ker(P ) for the multiplicative case relative to
the module-theoretic case.

Lemma 1.1.6.6 ([Che11, Lemma 1.19]). Let R, S be a A-algebras and let P ∈Md
A(R, S).

Then

(1) The submodule ker(P ) ⊂ R defined in Definition 1.1.5.1 satisfies

ker(P ) = {r ∈ R | ∀B, ∀r′ ∈ R⊗A B, P (1 + rr′) = 1},
and the same equality holds on replacing the condition P (1 + rr′) = 1 with P (1 +
r′r) = 1.

(2) ker(P ) ⊂ R is a two-sided ideal of R. It is proper if d > 0, and it is the biggest

two-sided ideal K ⊂ R such that P admits a factorization P = P̃ ◦ π where π is the

standard surjection π : R→ R/K and P̃ ∈Md
A(R/K, S).

There is sometimes an even more concise description of the kernel, which we leave to
Lemma 1.1.7.2 below.
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Proof. Write J1(P ) for the right and side of the equality in (1), and write J2(P ) for
the same set with the condition P (1 + r′r) = 1 in place of P (1 + rr′) = 1. First, we
show that ker(P ) ⊆ J1(P ). The same argument will show that ker(P ) ⊆ J2(P ). Choose
r ∈ ker(P ), a commutative A-algebra B, and r′ = 1+h ∈ R⊗AB. It will suffice to show that
P (1+r(1+th)) is the unit polynomial 1 in S⊗AB[t]; we can then deduce the desired identity
by specializing t to t = 1. Since this polynomial has degree at most d in t, it will suffice to
check that this holds in S⊗AB[t]/(td+1). Notice that 1+ th is invertible in R⊗AB[t]/(td+1).
Applying multiplicativity and the definition of the kernel (Definition 1.1.5.1), we have

P (1 + r(1 + th)) = P ((1 + th)−1 + r)P (1 + th) = P ((1 + th)−1)P (1 + th) = P (1) = 1.

Therefore, J1(P ) ⊆ ker(P ), and the analogous calculation with P (1 + (1 + th)r) shows that
J2(P ) ⊆ ker(P ).

A similar argument shows that ker(P ) ⊇ J1(P ): choose B, r, and r′ = 1 + h as above.
Using the fact that r ∈ J1(P ), and calculating in S ⊗A B[t]/(td+1), we have

P (rt+ (1 + h)) = P ((1 + rt) + h) = P (1 + (1 + rt)−1h)P (1 + rt)

= P (1 + (1 + rt)−1h) = P (1 + h+ r(· · · )) = P (1 + h),

and the lack of dependence on t shows that r ∈ ker(P ) by definition. The same argument
shows that ker(P ) ⊆ J2(P ) as well.

By part (1), ker(P ) is visibly a two-sided ideal of R. The rest of part (2) follows directly
from the calculations in the proof of Lemma 1.1.5.2, in particular (1.1.5.3). �

1.1.7. Definition of Pseudorepresentations and Representability of the Pseu-
dorepresentation Functor. With the background above in place, we can restate the def-
inition of pseudorepresentations in terms of polynomial laws, and immediately make sev-
eral conclusions based on the theory of multiplicative homogenous polynomial laws outlined
above.

Definition 1.1.7.1 (Reprising Definition 1.1.1.1). Let A be a commutative ring, let R
be an A-algebra, and let d ≥ 0. A d-dimensional pseudorepresentation D of R over A is a
degree d homogenous multiplicative polynomial law

D : R −→ A.

The set of d-dimensional pseudorepresentations of R over A is denoted PsRd
R(A). When

B is a commutative A-algebra, we use PsRR(B) to denote the set of d-dimensional pseu-
dorepresentations of R⊗AB over B, and we observe that PsRd

R is naturally a functor under
the tensor product. Following Remark 1.1.6.2, we note that there is always a unique degree
0 pseudorepresentation sending everything to the multiplicative identity. We will formally
set this to be the determinant of the unique “zero-dimensional representation.”

We will freely use the notions associated to multiplicative polynomial laws to describe
pseudorepresentations. One particular notion that we will use heavily of is the kernel of a
pseudorepresentation D : R → A, written ker(D). This is a two-sided ideal of R, which
is the kernel of the surjection of A-algebras R � R/ ker(D) with the special property that
this is the smallest quotient of R through which D factors (cf. Lemma 1.1.6.6). The fol-
lowing lemma is special to the case that a multiplicative A-polynomial law P : R → S is a
pseudorepresentation (i.e. S = A).
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Lemma 1.1.7.2. Let A be an infinite cardinality commutative domain and let D : R→ A
be a d-dimensional pseudorepresentation. Then

ker(D) = {r ∈ R | ∀r′ ∈ R,D(1 + rr′) = 1}.

Proof. Combine Proposition 1.1.2.11 and Lemma 1.1.6.6. �

Remark 1.1.7.3. In order to call a homogenous multiplicative polynomial law a pseu-
dorepresentation of R over A, it is occasionally important to be precise about the stipulation
that the target is A and the source R is an A-algebra. It is common and reasonable to
depart from this precision in the following case: if B is a commutative A-algebra, a degree
d homogenous multiplicative A-polynomial law

R −→ B

is not, strictly speaking, a pseudorepresentation of R into B or over B (there is no such
thing because R is not a B-algebra). However, the distinction is not vast, because this data
induces a degree d homogenous multiplicative polynomial law

R⊗A B −→ B

which is a d-dimensional pseudorepresentation of R ⊗A B over B. By Corollary 1.1.3.10,
this induction of a pseudorepresentation from a multiplicative polynomial law is a bijection.
Therefore, we call the degree d homogenous multiplicative polynomial law R −→ B a d-
dimensional pseudorepresentation of R valued in B.

The results of Roby on homogenous multiplicative polynomial laws immediately imply
important facts about pseudorepresentations. To state these, we recall that the abelian-
ization Rab of an algebra R is its quotient by its two-sided ideal generated by xy − yx for
x, y ∈ R. Obviously this quotient has the universal property expected of the abelianization.

Theorem 1.1.7.4 ([Che11, Proposition 1.6]). Let R be an A-algebra and d ≥ 1. The
functor PsRd

R : AlgA → Set is representable by the commutative A-algebra

ΓdA(R)ab,

with universal pseudorepresentation

Du : R −→ ΓdA(R)ab

r 7→ r[d]

Moreover, for any commutative A-algebra B,

(1) There is an isomorphism of functors on B-algebras

PsRR ×SpecA SpecB
∼→ PsRR⊗AB,

corresponding to the canonical isomorphism of B-algebras

ΓdA(R)ab ⊗A B
∼−→ ΓdB(R⊗A B)ab.

(2) When D : R → B is a homogenous multiplicative polynomial law (of unspecified
and possibly non-existent degree), the degree is constant on connected components
of SpecB. In particular, if SpecB is connected, then D is a pseudorepresentation
of some dimension.
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(3) If R is free as an A-module, then PsRR(−) is represented by the commutative A-
algebra TSdA(R)ab with universal pseudorepresentation

R −→ TSdA(R)

r 7→ r⊗
d
A

(4) If R is the group algebra over A of the group (or monoid) Γ, then

PsRd
R
∼−→ Spec(TSdZ(Z[Γ]))ab ×SpecZ SpecA.

(5) If R is finite as an A-module, for example the group algebra of a finite group, then
ΓdA(R)ab is finite as an A-module.

(6) A d-dimensional B-valued representation of R, i.e.

R⊗A B −→ E ,
where E is a rank d2 Azumaya B-algebra, induces a pseudorepresentation by com-
position with the reduced norm E → B.

For the definition of an Azumaya algebra, see Definition 1.4.1.5.
Before proving this theorem, which summarizes our knowledge up to this point, we note

the most glaringly missing basic fact about the pseudorepresentation functor: we do not know
if finite generation (or some other condition other than finiteness of R as an A-module) of
R over A implies finite generation of ΓdA(R)ab. This is true (it is Theorem 1.1.10.15), but
will require the study of pseudorepresentations on freely generated (non-commutative) A-
algebras in §1.1.9, and the application of invariant theory.

Remark 1.1.7.5. Recall that there is a unique 0-dimensional pseudorepresentation which
sends everything to the multiplicative identity. This corresponds to the fact that Γ0

A(R) ∼= A,
i.e. PsR0

R = SpecA.

Proof. The main theorem statement follows closely from the representability statement
for homogenous multiplicative polynomial laws, Theorem 1.1.6.5. Indeed, we know that for
a commutative A-algebra B, the association

Md
A(R,B)

∼−→ HomAlgA(ΓdA(R), B)

is an isomorphism, and the right hand side is canonically isomorphic to HomA(ΓdA(R)ab, B)
since B is commutative. As the association

Md
A(R,B)

∼−→ PsRd
R(B)

D 7→ D ⊗A B
discussed in Remark 1.1.7.3, following Corollary 1.1.3.10, is bijective, we have the theorem.
In addition, part (1) follows directly from Corollary 1.1.3.10 and the main theorem.

Forgetting the algebra structure on R and B, the polynomial law D induces a map of
modules ΓA(R) → B by Theorem 1.1.3.4. By the proof of Theorem 1.1.6.5, the multiplica-
tivity of D implies that ΓA(R)→ B is multiplicative, where this multiplication operation is
not the multiplication of the divided power algebra, but the multiplication on each graded
component ΓdA(R), d ≥ 0. As B is commutative, this amounts to an A-algebra homomor-
phism ∏

d≥0

ΓdA(R)ab −→ B.
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As B has no nontrivial idempotents, this map factors through one of the factors, say of degree
d, so that D is a homogenous multiplicative polynomial law of degree d. This establishes
(2).

Part (3) follows directly from Proposition 1.1.4.5. Part (4) follows from part (3) and the
fact that a group algebra A[Γ] is equal to Z[Γ]⊗Z A. Part (5) is quickly checkable, say with
the explicit generators for ΓdA(R) given in Corollary 1.1.3.11, along with Corollary 1.1.3.14.

Let Md be the ring-scheme over SpecZ, the d-by-d matrix algebra. Each coefficient
of the characteristic polynomial defines a regular function Md → A1

Z which is equivariant
under the adjoint action of PGLd on Md and the trivial action on A1. Each Azumaya
algebra E is a form of Md twisted by this action (cf. [Gro68, Corollary 5.11]); therefore,
the characteristic polynomial function descends from E ⊗OX OU ∼= Md(OU) to E over OX
[Gro68, 5.13]. As PsRd

R is an étale sheaf (it is representable by a scheme), the formation of
a pseudorepresentation by taking the determinant of a representation into a matrix algebra
descends to the case of a representation into an Azumaya algebra. This establishes (6). �

Remark 1.1.7.6. For any A-scheme X, we may extend the definition of a pseudorepre-
sentation to allow for a OX-valued d-dimensional pseudorepresentation of R. This functor
is still represented by the affine A-scheme PsRd

R.

Example 1.1.7.7. Let R = A[X]. Then R is free as an A-module, so by Theorem
1.1.7.4(4), PsRd

R is represented by the d graded piece of the symmetric tensor algebra

TSdA(A[X])ab = A[X1, . . . , Xd]
Sd = A[Σ1, . . . ,Σd],

where (Σi) are the standard symmetric polynomials on d variables. The universal pseudorep-
resentation A[X] → A[Σ1, . . . ,Σd], X 7→ Σd is realized as the associated pseudorepresenta-
tion of a d-dimensional representation: let A[X] act on the rank d free A[Σ1, . . . ,Σd]-module

A[Σ1, . . . ,Σd][Y ]/(Y d − Σ1Y
d−1 + . . .+ (−1)dΣd)

by X 7→ Y . The characteristic polynomial of X is the standard one, i.e. the generator of the
ideal in the line above.

Example 1.1.7.8. Let A = Z and let Γ = Z. Letting X represent a generator of Γ, we
write R = A[X,X−1]. As in the previous example, the dth graded component of the symmet-

ric tensor algebra represents PsRd
R. We observe that R⊗

d
Z is a standard presentation of the

coordinate ring of the split rank d torus Gd
m/ SpecZ, and that its subring TSdZ(Z[X,X−1]) is

the subring of invariants of the action of the Weyl group. Via the Chevalley isomorphism, the
geometric points of Spec TSdZ(R) are in natural bijective correspondence with the semisimple
geometric points of GLd, up to conjugation. This latter set is clearly in natural bijective
correspondence with d-dimensional semisimple representations of Z up to isomorphism.

Example 1.1.7.9. As noted in the theorem, for a finite group Γ, TSdZ(Z[Γ]) is a finite

Z-module. We observe that Z[Γ]⊗
d ∼= Z[Γ×

d
] is generated (as a module, even) by elements of

finite multiplicative order, i.e. γn = id for some n ≥ 1. Therefore its subquotient TSdZ(Z[Γ])ab

consists of sums with coefficients in Z of elements of finite multiplicative order.
Now fix a d-dimensional complex representation of Γ. By the discussion of §1.1.1,

we may associate to this representation a C-valued pseudorepresentation, and therefore a
map TSdZ(Z[Γ])ab → C. The property above shows that the image must be contained in
lim−→n

Z[µn] ⊂ C, where µn is a primitive nth root of unity. Since the image of the map is
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generated by characteristic polynomial coefficients of elements of Γ, we observe the well-
known fact that characteristic polynomial coefficients of a given representation generate a
cyclotomic integral extension of Z.

Such observations also may be used to observe the Brauer character theory of positive
characteristic representations of Γ.

We now investigate the pseudorepresentations of a rank n2 Azumaya algebra R over a
commutative ring A. This includes the case that R = Mn(A), as Azumaya algebras are étale
locally matrix algebras (see Definition 1.4.1.5). Since the representation theory of a matrix
algebra over a field consists of direct sums of the identity representations, we expect this to
be reflected in its pseudorepresentations. This is what we record in the following proposition,
due to Ziplies [Zip86].

Proposition 1.1.7.10 ([Zip86], see also [Che11, Exercise 2.5]). Let R be an Azumaya A-
algebra of rank n2. Then the pseudorepresentations D : R→ A consist precisely of powers of
the reduced norm detR : R→ A. In other words, the reduced norm induces an isomorphism,
for each d ≥ 0 divisible by n,

ΓdA(R)ab ∼−→ Γ
d/n
A (A) ∼= A,

and for n - d there are no d-dimensional pseudorepresentations of R.

Remark 1.1.7.11. Proposition 1.1.7.10 reflects the fact that the basic algebra corre-
sponding to e.g. Md(C) is C, and that Md(C) and C are Morita equivalent. See Definition
2.2.2.1 for the notion of a basic algebra, see Definition 2.2.2.8 for the notion of a basic al-
gebra associated to an algebra, and Theorem 2.2.2.10 for the fact that their representation
categories are equivalent.

We record for future reference some important qualities of the functor ab sending A-
algebras to commutative A-algebras.

Lemma 1.1.7.12 (cf. [Vac08, Lemma 5.14]). If f : R � S is a surjection of A-algebras,
then

(1) The induced homomorphism of commutative A-algebras f ab : Rab → Sab is also
surjective, and

(2) ker f ab ∼= abA(ker f), where abA : A� Aab is the canonical homomorphism.

Proof. Let Iab(A) be the kernel of abA. Then the lemma follows from the snake lemma
applied to the commutative diagram

Iab(A) //

��

Iab(B) //

��

0

0 // ker f //

abA
��

A
f //

abA
��

B //

abB
��

0

0 // ker f ab // Aab fab

//

��

Bab //

��

0

0 0

�
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1.1.8. The Characteristic Polynomial. Let R be an A-algebra and A be a com-
mutative ring as usual, and fix for this subsection a d-dimensional pseudorepresentation
D : R → A. As described in the introduction §1.1.1, D induces a characteristic polyno-
mial function χD(·, t) : R → A[t] according to the following definition, repeated from the
introduction.

Definition 1.1.8.1. Given a d-dimensional pseudorepresentation D : R −→ A of R over
A, its characteristic polynomial function is

χD(·, t) : R −→ A[t]

r 7→ DA[t](t− r) = td − Λ1(r)td−1 + · · ·+ (−1)dΛd(r)

where Λi are maps R→ A.

In fact, by taking B-valued pseudorepresentaitons of R for commutative A-algebras B,
the characteristic polynomial coefficients are homogenous polynomial laws extending the
functions Λi : R→ A described above.

Definition/Lemma 1.1.8.2. With D,R,A as above and a commutative A-algebra B
and i ≥ 0, let the function Λi,B : R⊗A B → B be defined by the formula, for r ∈ R⊗A B,

χD(r, t) := DB[t](t− r) =
d∑
i=0

(−1)iΛi,B(r)td−i.

is a homogenous A-polynomial law of degree i from R to A. We also have characteristic
polynomial coefficient polynomial laws Λi, where Λ0 ≡ 1 and Λd = D are multiplicative, and
for i ≥ d+ 1 we set Λi ≡ 0. We call Λ1 the trace.

We note that the data of the polynomial law Λ1 is characterized by the A-linear map
R→ A (cf. Example 1.1.2.8).

Proof. We must prove the implied claim that Λi is a homogenous polynomial law of
degree i. First we observe that Λi is a polynomial law, since the formula for Λi,B given a
commutative A-algebra B can be checked to be functorial in B. For b ∈ B and x ∈ R⊗AB,
Λi,B(bx) is the coefficient of td−i in DB[t](t − bx). If we write t = t1 and let t2 be an
indeterminant, then the functorality of polynomial laws shows that ΛD

i is the specialization
of DB[t1,t2](t1 + t2(−x)) via B[t1, t2]→ B[t], t1 7→ t, t2 7→ b. By Proposition 1.1.2.16, the only
nonzero coefficient of DB[t1,t2] where t1 appears to the (d− i)th power also has t2 to the ith
power. Therefore Λi,B(bx) = bi · Λi,B(x) as desired. �

The characteristic polynomial coefficient polynomial laws allow for another description
of the kernel of D : R→ A:

ker(D) = {r ∈ R | ∀B, ∀r′ ∈ R⊗A B, ∀i ≥ 1,Λi,B(rr′) = 0}
One can, therefore, give a description of the kernel of D as the set of elements of R such
that any multiple of r in R ⊗A B for all B has the characteristic polynomial td. When A is
an infinite domain, this criteria still works when applied only to R (see Lemma 1.1.7.2).

Example 1.1.8.3. Let Td(A) ⊂Md(A) be the A-subalgebra of upper triangular matrices,
with the pseudorepresentation D : Td(A) → A induced from the determinant on Md(A).
Then ker(D) is the ideal of strictly upper triangular matrices, and D factors through the
diagonal subalgebra Td(A)/ ker(D) of Md(A).

26



Implicit in the example above is the Cayley-Hamilton theorem: When R is a matrix
algebra Md(A) and D = det is induced by the standard determinant, this defines a degree d
polynomial law, and the characteristic polynomial χD is the same as the standard character-
istic polynomial. It is very important that each element r ∈ R satisfies its own characteristic
polynomial! That is, χ(r, r) = 0. This is the Cayley-Hamilton theorem. For a general
A,R,D, this may not be the case, and the following polynomial laws measure this failure.

Definition 1.1.8.4. With A,R,D, and χ as above, let χ : R −→ R be the homogenous
degree d A-polynomial law

χ(r) = χD(r, r) = rd − Λ1(r)rd−1 + Λ2(r)rd−2 + · · ·+ (−1)dΛd(r).

For any n ≥ 1 and α ∈ Inn (the set of n-tuples of non-negative integers (α1, . . . , αn) with sum
n), we recall that χ[α] of Definition 1.1.2.14 are the coefficient functions of χ, defined by the
relation

χR[t1,...,tn](r1t1 + · · ·+ rntn) =
∑
α∈Inn

χ[α](r1, . . . , rn)tα,

where tα =
∏n

1 t
αi
i .

We recall Proposition 1.1.2.16(3): because χ is homogenous of degree d, χ[α] 6≡ 0 only
when n = d, and χ is characterized by the functions {χ[α] | α ∈ Idd}. Therefore given
A,R,D, d as usual, every element r ∈ R “satisfies its characteristic polynomial” if and only
if χ ≡ 0 as a polynomial law if and only if χ[α] ≡ 0 for all α ∈ Idd .

This equivalence results in the notion of a Cayley-Hamilton pseudorepresentation.

Definition 1.1.8.5 (cf. [Che11, p. 17]). Let R be an A-algebra and let D be a d-
dimension pseudorepresentation. Let CH(D) ⊂ R be the two-sided ideal generated by
χ[α](r1, . . . , rd) as (ri) varies over all d-tuples in R and α varies over Idd . We say that D
is Cayley-Hamilton if CH(D) = 0. Equivalently, χ ≡ 0 as a polynomial law. We also say
that (R,D) is a Cayley-Hamilton A-algebra of degree d.

Of course, R/CH(D) is a Cayley-Hamilton A-algebra.
The following observation will be very important in the sequel (see e.g. Proposition

1.2.4.3).

Lemma 1.1.8.6. The Cayley-Hamilton property of a pseudorepresentation D : R→ A is
stable under base changes ⊗AB, i.e. if (R,D) is a Cayley-Hamilton A-algebra, then (R ⊗A
B,D⊗AB) is as well. In particular, if D is an arbitrary d-dimensional pseudorepresentation,
then there is a natural isomorphism

(1.1.8.7) R/CH(D)⊗A B
∼−→ (R⊗A B)/CH(D ⊗A B).

Proof. The Cayley-Hamilton property and the Cayley-Hamilton ideal CH(D) are func-
torial under base change because they are defined by the image of the A-polynomial law
χ : R → R, and the functions χB as B varies over the category of commutative A-algebras
is functorial (1.1.2.2). Therefore, if (R,D) is Cayley-Hamilton, then χ = χD is equal to 0
as an A-polynomial law; therefore χB, being simply a restriction of χ from the category of
A-algebras to the category of B-algebras via the map A→ B, is still 0. This proves the first
part of the statement of the lemma.

By the definition of CH(D) as the ideal of R generated by the images of an A-polynomial
law, we see that there exists a map

(1.1.8.8) CH(D)⊗A B → CH(D ⊗A B) ⊂ R⊗A B
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and that this map is an surjection. This proves that the A-homomorphism (1.1.8.7) exists and

is injective. Using the canonical isomorphism R/CH(D)⊗A B
∼→ (R⊗A B)/(CH(D)⊗A B),

we see that (1.1.8.7) is surjective, completing the proof. �

1.1.9. Universal Polynomial Identities. We remarked in the introduction that a
pseudorepresentation of an A-algebra R over A amounts to the data of a characteristic
polynomial for each element of r. We will substantiate this comment in Corollary 1.1.9.15,
showing that the characteristic polynomial coefficient functions Λi characterize a pseudorep-
resentation. Conversely, given a characteristic polynomial function χ(·, t) : R → A[t], one
would have to impose a great deal of identities upon this function in order to “call it a
pseudorepresentation.” While we will not find a complete list of identities, in this section
we will prove that the characteristic polynomial of a pseudorepresentation “satisfies all of
the identities that one would expect form the characteristic polynomials of a representation”
(see (1.1.9.5)), even though it may not be induced by an actual Azumaya/matrix algebra-
valued representation. After that, we will deduce a few particular, useful identities from this
collection (Proposition 1.1.9.11).

Definition 1.1.9.1. Given a set X, the d-dimensional generic matrices representation
involves the following data:

(1) The free Z-algebra Z{X} on the set X;
(2) The coefficient ring FX(d) = Z[xij], the free polynomial ring on generators xij for

x ∈ X and 1 ≤ i, j ≤ d;
(3) The representation

ρuniv : Z{X} −→Md(FX(d))

x 7→ (xij)ij

(4) We also define the subring EX(d) ⊂ FX(d) generated by characteristic polynomial
coefficients of ρuniv, i.e. by Λi,Z(x) for x ∈ Z{X} and for Λi,Z : Z{X} → FX(d) for
1 ≤ i ≤ d the characteristic polynomial coefficient functions of the d-dimensional
pseudorepresentation det ◦ρuniv : Z{X} −→ FX(d).

Remark 1.1.9.2. It remains to be shown that the pseudorepresentation det ◦ρuniv factors
through EX(d) ↪→ FX(d). This will come along with the proof that a pseudorepresentation
is determined by its characteristic polynomial coefficient functions.

Theorem 1.1.9.3 (Vaccarino [Vac08]). With notation as in Definition 1.1.9.1, the canon-
ical map ΓdZ(Z{X})ab → FX(d) associated to the d-dimensional pseudorepresentation

det ◦ρuniv : Z{X} → FX(d)

induces a canonical isomorphism

(1.1.9.4) ΓdZ(Z{X})ab ∼−→ EX(d).

We postpone to §1.1.10 the the discussion of the results of Donkin, Zubkov, and Vaccarino
that are summarized in Theorem 1.1.9.3. Here we discuss the implications of this theorem
for pseudorepresentations.

Let D : R −→ A be a d-dimensional pseudorepresentation of an A-algebra R. Let X be
a set of generators for R over Z, e.g. X = R, so that there exists a surjection π : Z{X}� R.
Theorem 1.1.9.3, along with the representability Theorem 1.1.6.5, shows that there is a
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unique ring homomorphism fX : EX(d)→ A such that

Z{X} det ◦ρuniv

//

π

��

EX(d)

fX
��

R
D // A

is a commutative diagram of homogenous polynomial laws over Z, where the horizontal maps
have degree d and the vertical maps have degree 1 (they are ring homomorphisms).

Using EX(d)
fX−→ A −→ R where the second map is the structure map, we consider R as

an EX(d)-algebra, so that D is a homogenous multiplicative EX(d)-polynomial law of degree
d. Therefore we have a diagram of homogenous multiplicative EX(d)-polynomial laws

(1.1.9.5) Z{X} ⊗Z EX(d)
ρuniv⊗1 //

π⊗fX
��

Md(FX(d))
det // EX(d)

fX
��

R
D // A

As the top row factors through a matrix algebra, we can use this diagram to show
that identities in a matrix algebra, for instance, the Cayley-Hamilton identity, give rise to
identities in arbitrary homogenous multiplicative polynomial laws. One of these identities,
Amitsur’s formula, requires some initial explanation.

Definition 1.1.9.6. Let X be a totally ordered finite set (alphabet), and let X+ be the
monoid of words with letters in this set, with the induced total lexicographic ordering.

(1) A word w ∈ X+ is called a Lyndon word if w is less than or equal to any of its
rotations, or, equivalently, if w = xw′, then w ≤ w′. The set of Lyndon words of an
alphabet X is denoted LX .

(2) By the Chen-Fox-Lyndon theorem [CFL58, §1], any word w ∈ X+ may be uniquely
factored into a Lyndon decomposition w = w1 · · ·wn, where w1 ≥ w2 ≥ · · · ≥ wn,
wi ∈ LX . We also present the Lyndon decomposition as

w = wl11 w
l2
2 · · ·wlss , where w1 > · · · > ws, wi ∈ LX .

(3) There is a unique map ε : X+ → {±1}, multiplicative on Lyndon words, given by
sending w to 1 if the length of its Lyndon decomposition is even, and −1 otherwise.
We can write ε(w) = (−1)n or ε(w) =

∏s
1(−1)li .

With the notion of Lyndon words, we can explain Amitsur’s formula.

Definition 1.1.9.7. We say that characteristic polynomial functions Λi,A : R → A
satisfy Amitsur’s formula when for any finite subset X = {r1, . . . , rn} ⊂ R, totally ordered
by the indices, we have

(1.1.9.8) Λi,A(r1 + · · ·+ rn) =
∑
`(w)=i

ε(w)Λ(w),

where ` : X+ → N is the length of w in terms of the letters X, and

Λ(w) := Λls(ws) · · ·Λl2(w2)Λl1(w1).

Amitsur’s formula applies just as well to the polynomial laws Λi : R → A associated
to a d-dimensional pseudorepresentation D : R → A by applying the condition to Λi,B :
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R⊗AB → B for every commutative A-algebra B. This gives us a notion of when D satisfies
Amitsur’s formula.

Definition 1.1.9.9 (cf. [Ami80]). For A,R, d as usual, let D : R→ B be a homogenous
degree d polynomial law into a commutative A-algebra B. Let X = {r1 ⊗ t1, . . . , rn ⊗ tn} ⊂
R ⊗A A[t1, . . . , tn] with the standard lexicographic ordering, and preserve the notation of
Definition 1.1.9.7 otherwise. We say that D satisfies Amitsur’s formula if

(1.1.9.10) D

(
1−

n∑
j=1

rjtj

)
=
∏
w∈LX

(
d∑
i=0

(−1)iΛi(w)

)
,

where the product is taken over Lyndon words with length bounded by d, ordered decreas-
ingly. Equivalently, the homogenous of degree i component of this identity holds for all
1 ≤ i ≤ d:

Λi(r1t1 + · · ·+ rntn) =
∑
`(w)=i

ε(w)Λ(w),

where the letters in the words on the right hand side are now taken to be the n monomials
“riti.”

Proposition 1.1.9.11 ([Che11, Lemma 1.12]). For A,R, d as usual, let D : R→ B be a
homogenous degree d polynomial law into a commutative A-algebra B. Let Λi,B : R→ B be
the induced characteristic polynomial coefficient polynomial laws (homogenous of degree i),
and in case B = A, let χD : R → R be the degree d polynomial law given by evaluation of
the characteristic polynomial. Then the following identities hold.

(1) (commutativity of determinant) For all r, r′ ∈ R,

D(1 + rr′) = D(1 + r′r).

(2) (Amitsur’s formula) For all r1, . . . , rn ∈ R, Amitsur’s relations (1.1.9.8) on Λi are
satisfied.

(3) (Pseudocharacter identity) The “trace function” Tr = Λ1 : R → B satisfies the
d-dimensional pseudocharacter identity (1.1.12.2).

(4) (Cayley-Hamilton identity) If B = A (in which case D is a pseudorepresentation),
then for all α ∈ Id, (r1, . . . , rd) ∈ Rd, and r ∈ R,

D(1 + χ[α](r1, . . . , rd) · r) = 1.

Identity (1) is basic, reflecting the fact that the characteristic polynomial coefficients
are central functions. The remaining identities have a particular, prominent use. Amitsur’s
formula (2) often reduces the study of multiplicative polynomial laws to the study of their
characteristic polynomial coefficient functions. For example, we will use it to show that the
characteristic polynomial functions characterize a pseudorepresentation. The pseudocharac-
ter identity (3) on Λ1 will allow us to compare pseudorepresentations to pseudocharacters.
And the Cayley-Hamilton identity (4) will be most prominent in the new material of this
thesis, and will play a prominent role in relating pseudorepresentations to representations.

Proof. Our strategy is to use the relation (1.1.9.5) between, on the one hand, the
universal d-dimensional pseudorepresentation induced by the determinant function Duniv =
det ◦ρuniv of the universal, generic matrices representation of the free algebra Z{X} with
X = R, and, on the other hand, the degree d homogenous polynomial law D : R → B. We
will show that these identities hold for the universal pseudorepresentation Duniv because it
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is the determinant of a d-dimensional representation, and we will remark on any difficulties
in deducing the same identity for D.

We know that the characteristic polynomial functions of a representation are central
functions. Therefore, for r, r′ ∈ Z{X} ⊗Z EX(d), χDuniv(rr′, t) = χDuniv(r′r, t). Specializing
to t = −1, we deduce that Duniv(1 + rr′) = Duniv(1 + r′r), proving (1).

Part (2) is precisely [Ami80, Theorem B]: the relation (1.1.9.10) is proved for the deter-
minant of an arbitrary matrix algebra-valued representation.

The pseudocharacter identity is given in (1.1.12.2). The fact that the trace function on
the multiplicative monoid of a matrix algebra satisfies the identity (1.1.12.2) is originally
due to Frobenius [Fro96, §3, 21]. For a modern source, see e.g. [Tay91, Theorem 1(1)].
Alternatively, taking Chenevier’s approach, the identity may be deduced as a particular
case of Amitsur’s formula: simply let the homogenous degree i in the homogenous form
(1.1.9.8) of Amitsur’s formula be 1. We immediately observe that this is identical to the
pseudocharacter condition (1.1.12.2).

To prove (4), we may replace R by R⊗A A[t1, . . . , td] and recall Definition 1.1.8.4 to see
that it will suffice to show that Λi(χ(r)r′) = 0 for all r, r′ ∈ R, 1 ≤ i ≤ d. Applying this to
R′ := Z{X} ⊗Z EX(d), we see that ρuniv ◦ χ(r) = 0 in Md(FX(d)) for all r ∈ R′, since χ(r)
is the substitution of r into its own characteristic polynomial, which vanishes in Md(FX(d))
by the Cayley-Hamilton theorem. Now as Λi factors through ρuniv, we have the result. �

Remark 1.1.9.12 (cf. [Che11, Remark 1.13]). Proposition 1.1.9.11(2) (Amitsur’s for-
mula) may be proved for homogenous multiplicative polynomial laws into arbitrary associa-
tive A-algebras S in the place of commutative A-algebras B. That is, these identities in
the case of determinants of representations are due to Amitsur [Ami80], but they are are
particular instances of facts known to hold in more generality! In particular, an arbitrary
homogenous multiplicative polynomial law is determined by its “characteristic polynomial
coefficients.” These identities are established in this generality by Chenevier in [Che11,
Lemma 1.12] (following [RS87]). Here, we have confined our proof to the case that B is
commutative. We refer to Chenevier for the general case.

Remark 1.1.9.13. In contrast to the previous remark, the Cayley-Hamilton identity is
special not merely to the case that the target of a multiplicative polynomial law is commu-
tative, but actually only makes sense in the case of pseudorepresentations (i.e. B = A).

Remark 1.1.9.14. In Proposition 1.1.2.16(3), we showed that certain functions P [α] :
R → S characterize a polynomial law P ∈ PdA(R, S). It is quite convenient that when a
polynomial law is multiplicative, it can be characterized by what is apparently less data: the
d characteristic polynomial coefficient functions Λi,A : R→ S on R alone. Amitsur’s formula
uses multiplicativity to express P [α] in terms of Λi,A.

Now we use Amitsur’s formula to show that a pseudorepresentation D : R → A is
characterized by its characteristic polynomial functions on R, i.e. the function Λi,A : R→ A
contained in the polynomial law Λi : R→ A. In fact, these notions (characteristic polynomial
coefficient polynomial laws Λi, and Amitsur’s formula) make sense even when D : R → S
is a homogenous multiplicative A-polynomial law into a non-commutative A-algebra S (see
Remark 1.1.9.12 below), and we prove this fact in this generality.

Corollary 1.1.9.15 ([Che11, Corollary 1.14]). Let A be a commutative ring, and let
R and S be possibly non-commutative A-algebras. Let D : R → S ∈ Md

A(R, S) be a
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degree d homogenous multiplicative polynomial law. Then characteristic polynomial functions
Λi = Λi,A : R → S of D characterize D. In particular, characteristic polynomial coefficient
functions characterize D when D is a pseudorepresentation (i.e. A = S).

Proof. We know from Proposition 1.1.2.16(4) that the multiplicative polynomial law
D is characterized by the function

DA[t1,...,td] : R⊗A A[t1, . . . , td]→ S ⊗A A[t1, . . . , td].

We know from the discussion in Remark 1.1.9.12 regarding Chenevier’s proof of Amitsur’s
formula that D satisfies Amitsur’s formula. Now Amitsur’s formula (1.1.9.10) allows us to
express

DA[t1,...,td](r1t1 + · · ·+ rd), (r1, . . . , rd) ∈ Rd

as a sum of monomials in Λi,A(w) and ti with prescribed coefficients 1 and −1, where w is a
word in the letters r1, . . . , rd. Therefore the characteristic polynomial functions Λi,A : R→ S
characterize D, as desired. �

Because of its importance, Corollary 1.1.9.15 has been stated succinctly and solitarily
above. However, there are other consequences of its proof (e.g. consequences of Amitsur’s
formula) which are significant. We list them here.

Corollary 1.1.9.16. Let A,R, S,D, and d be as in the previous corollary. Let C ⊂ S be
the sub-A-algebra of S generated by the coefficients Λi(r) of χ(w, t) for all r ∈ R, 1 ≤ i ≤ d.

(1) Then D factors through a (unique) C-valued degree d multiplicative polynomial law
DΛ : R→ C ⊂ S.

(2) The S-valued d-dimensional pseudorepresentation D⊗AB : R⊗AB → B induced by
D is induced by the C-valued d-dimensional pseudorepresentation DΛ : R⊗AC → C
induced by DΛ.

(3) If R is generated over A by some monoid Γ, i.e. R = A{Γ}, and Λi,A(γ) lie in a
sub-A-algebra C ⊂ B for all γ ∈ Γ, 1 ≤ i ≤ d, then the conclusion of part (1) holds.

Proof. Part (1) follows from the comment in the proof above that the only factors in
the coefficients other than Λi(w) and ti are 1 and −1. Part (2) follows directly from the
proof above, along with the equivalence between multiplicative polynomial laws from R to
B and pseudorepresentations from R ⊗A B to B that follows from Corollary 1.1.3.10. Part
(3) is a special case of part (1). �

1.1.10. Work of Vaccarino, Donkin, Zubkov, and Procesi. In this paragraph we
describe work leading up Vaccarino’s proof of Theorem 1.1.9.3. We also deduce that if R is
a finitely generated A-algebra, then PsRd

R is finite type as an affine A-scheme.
The fundamental idea behind the proof of Theorem 1.1.9.3 is the generalization of the

ring of symmetric functions Λ, where Λ is to the singleton set as generalizations of Λ are to
other sets. This idea goes at least back to [Don93].

First we review the theory of Λ, corresponding to a singleton set X. Then TSdZ(Z{X}) ∼=
Z[Σ1, . . . ,Σd] =: Λd is the ring of symmetric polynomials on d coefficients (cf. Example
1.1.7.7). The ring of symmetric functions is Λ := lim←−d Λd, where the maps are given by

ld : Λd → Λd−1, (x1, . . . , xd) 7→ (x1, . . . , xd−1).

One key fact about this limit presentation is its behavior under the filtration by homogenous
polynomial degree, which we will denote by n here. Let Λn

d denote grnΛd for n ≥ 0. Then
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for d ≥ n, the composition of the li for n+ 1 ≤ i ≤ d induces an isomorphism Λn
d
∼→ Λn

n. For
example, the “trace” Σ1 = x1 + · · ·+ xd ∈ Λ1

d is a generator for Λ1
d for all d ≥ 1.

Now we generalize this construction of Λ, starting with a finite set X. Write X+ for
the associated monoid of words with letters in X. As Vaccarino proves these results for an
arbitrary commutative base ring A, we will replace Z above with A. We can assign each
element of X degree 1, which induces a degree, which we will index by n ≥ 0, on TSdA(A{X})
for any d. Write the nth graded piece as TSdA(A{X})n. With the analogous maps of graded
(non-commutative) A-algebras ld : TSdA(A{X})→ TSd−1

A (A{X}), the inverse limit

TSA(A{X}) := lim←−
d

TSdA(A{X})

stabilizes on each graded piece, so that (cf. [Vac08, Corollary 5.5])

TSA(A{X})n := lim←−
d

TSdA(A{X})n ∼= TSnA(A{X})n.

Therefore TSA(A{X}) is a graded A-algebra with each homogenous summand being finitely
generated as an A-module. Moreover, all of these objects are free A-modules with an explicit
basis that we do not require here [Vac08, Propostion 3.12]. It will be useful to have a set
of generators of TSdA(A{X}) as a A-algebra, however. Recall the notation of the proof of
Proposition 1.1.4.5, in particular the basis element eK for TSdA(A{X}), where K = K(w, i)
is the equivalence class of tensors including

ẽK(w,i) := w⊗
i ⊗ 1⊗

d−i ∈ TSdA(A{X})
as its special representative for some w ∈ X+, i ≤ d. For future reference, it will be helpful

to record that if e
(d)
K(w,i) ∈ TSdA(A{X}), where we make the degree d of the basis element

explicit, then ld : TSdA(A{X})→ TSd−1
A (A{X}) is given by the formula

(1.1.10.1) ld : e
(d)
K(w,i) 7→

{
e

(d−1)
K(w,i) if i < d,

0 if i = d
,

which is directly analogous to the maps in the theory of ring of symmetric functions. As an
A-algebra, TSdA(A{X}) is generated by eK(w,i) as i varies over positive integers less than d and
w varies over elements of X+ that are “primitive,” i.e. not proper powers of another word
[Vac08, Theorem 4.10]. By the stabilization of the grading discussed above, these eK(w,i)

have a canonical preimage in TSA(A{X}), and these preimages generate the A-algebra as
f primitive and i ranges over all positive integers. We summarize our knowledge in this
proposition

Proposition 1.1.10.2. The graded A-algebra TSA(A{X}) is free as an A-module and
generated as an A-algebra by eK(w,i) as w ranges over primitive words in X+ and i ranges
over positive integers.

All of these statements hold true after replacing each of these A-algebras with their
abelianizations,3 and although this is non-trivial, in fact even more is true: TSA(A{X})ab

is a polynomial ring over A! We record this result in Theorem 1.1.10.8 below, but first we

3Indeed, it is the freeness of ΓdZ(Z{X})ab as a Z-module that is the fundamental input from the work of
Vaccarino et. al. that Chenevier needs to establish the Cayley-Hamilton identity. But this comes part-and-
parcel with the rest of these results, cf. [Che11, Remark 1.16].
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explain the proof, as we will accomplish our main task of proving Theorem 1.1.9.3 along the
way.

Recall the generic matrices representations ρuniv
d : A{X} → Md(FX(d)A) for each d ≥ 1,

where FX(d)A denotes FX(d)⊗Z A. The determinant of ρuniv
d is a d-dimensional pseudorep-

resentation of A{X}, inducing a canonical ring homomorphism

(1.1.10.3) δd : TSdA(A{X}) −→ FX(d)A,

using TSdA(A{X}) in place of ΓdA(A{X}) in light of Proposition 1.1.4.5. He then observes in
[Vac08, Proposition 5.19] that

(1.1.10.4) δd(eK(w,i)) = Λi(ρ
univ(w))

for all primitive w and 1 ≤ i ≤ d, where Λi : Md(FX(d)A) → EX(d)A is the ith coefficient
of the standard characteristic polynomial on the matrix algebra and, recall, EX(d)A is the
sub-A-algebra of FX(d)A generated by coefficients of characteristic polynomials of the image
of ρuniv

d . As the eK(w,i) generate TSdA(A{X}), this shows that the characteristic polynomial

coefficient functions generate the image of TSdA(A{X}), i.e. the image of δd is precisely
EX(d)A. Since the image of δd is a commutative algebra, we have a surjective induced map

(1.1.10.5) δab
d : TSdA(A{X})ab � EX(d)A.

Remark 1.1.10.6. The line of argument that we have just concluded is sufficient to prove
Corollary 1.1.9.15.

Following [Vac08, §5.1.3], we extend this representation and the maps δd to the limit
as d → ∞. First we filter FX(d)A and EX(d)A by degree denoted n, where the generators
xij for x ∈ X, 1 ≤ i, j ≤ d are given degree 1. With the notation of Definition 1.1.9.1, let
ωd : FX(d)A � FX(d− 1)A via

xij 7→
{
xij if i, j < d
0 if i = d or j = d.

This induces a map (ωd)d : Md(FX(d)A)→Md(FX(d− 1)A) such that

(ωd)d ◦ ρuniv
d =

(
ρuniv
d−1 0d−1×1

01×d−1 0

)
.

We observe that Λ
(d)
i ◦ (ωd)d ◦ ρuniv

d = Λ
(d−1)
i ◦ ρuniv

d−1 for d ≥ 1, where the superscript on the
characteristic polynomial coefficient function indicates the dimension of the matrix algebra

on which it is defined. As a result, since the image of Λ
(d)
i ◦ρuniv

d generates EX(d)A, we have a
well-defined induced map ωd : EX(d)A → EX(d−1A) on the A-subalgebra EX(d)A ⊂ FX(d)A.
Therefore the maps ωd induce limits of graded A-algebras

FX,A := lim←−
d

FX(d)A ⊃ EX,A := lim←−
d

EX(d)A

with the same stabilization properties for the filtration by degree as discussed above for
the limit defining TSA(A{X}). In particular, for any w ∈ X+, there is a well defined
characteristic polynomial coefficient Λi(ρ

univ(w)) ∈ EX,A, where Λi(ρ
univ(w)) has bounded

degree i · `(w) where `(w) is the length of w. Strictly speaking, Λi ◦ ρuniv := lim←−d Λ
(d)
i ◦ ρuniv

d .
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Define δ : TSA(A{X}) � EX,A by

· · · // TSdA(A{X}) ld //

δd

��

TSd−1
A (A{X})

ld−1 //

δd−1

��

· · ·

· · · // EX(d)A
ωd // EX(d− 1)A

ωd−1 // · · ·

where the fact that δ is a surjection must be deduced from the fact that each δd is a surjection
by definition, along with a study of the gradings ([Vac08, Lemma 5.22]). The generating set
eK(w,i) for TSA(A{X}) of Proposition 1.1.10.2 and the calculation of (1.1.10.4) shows that
the characteristic polynomial coefficients Λi(ρ

univ(w)) generate EX,A, where i varies over
positive integers and w ∈ X+ vary over primitive words. Of course, δ factors through

TSA(A{X}) −→ TSA(A{X})ab,

and our goal is to show that

δab : TSA(A{X})ab −→ EX,A

is an isomorphism. This will follow from this result of Donkin:

Theorem 1.1.10.7 ([Don93, §3(10)]). The ring EX,A is a polynomial ring over A with free
generators Λi(ρ

univ(w)), where w varies over a set Ψ representatives of equivalence classes
of primitive words, where the equivalence relation is cyclic permutation.

Now we can prove that δab is an isomorphism.

Theorem 1.1.10.8 ([Vac08, Theorem 5.23]). The map of graded A-algebras

δab : TSA(A{X})ab −→ EX,A

is an isomorphism, and, consequently, the commutative A-algebra TSA(A{X})ab is a poly-
nomial ring over A with generators eK(f,i) where i ≥ 1 and f varies over Ψ.

Proof. We know that δab is a surjection. As EX,A is a free polynomial A-algebra, there
exists a section s : EX,A → TSA(A{X})ab sending Λi(ρ

univ(w)) to the image of eK(w,i) in the
abelianization, where i ≥ 1 and w varies over the representatives of the equivalence classes
mentioned in Theorem 1.1.10.7. By [Vac08, Corollary 5.12], eKw,i, w ∈ Ψ are sufficient to
generate TSA(A{X})ab. Therefore s is surjective, and δab is an isomorphism. �

Now, our goal is to deduce from Theorem 1.1.10.8 that δd is an isomorphism as well.
Here, Vaccarino’s remaining work is to apply work of Procesi, Razmyslov, and Zubkov,
whose background we now explain.

The issue we must confront is the determination ideal of relations that the free generators

Λi(w) := Λi(ρ
univ(w)) of EX,A satisfy when they are projected to Λ

(d)
i (w) ∈ EX(d)A. Clearly

if i > d, then Λi(w) ≡ 0 ∈ EX(d)A, and the Λ
(d)
i (w) generate EX(d)A. But are there

further relations? And are there more relations among Λ
(d)
i (w) ∈ EX(d)A than among

eK(w,i) ∈ TSdA(A{X})?
When A is an algebraically closed field of characteristic zero, this question was answered

by Procesi [Pro76, Theorem 4.6(a)] and Razmyslov [Raz74]: the kernel of EX,A � EX(d)A
is generated as an ideal by Λd+1(w) as w varies over representatives of equivalence classes
of primitive words. For an arbitrary infinite field A, it was shown by Zubkov [Zub96, Main
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Theorem] that the kernel of EX,A � EX(d)A is the ideal generated by

(1.1.10.9) {Λi(w) | i > d, w primitive}.
The answers to the analogous questions for TSA(A{X}) � TSdA(A{X}) are easier, and

A may be an arbitrary commutative ring: we know that TSA(A{X}) is a graded polynomial
algebra in the variables {eK(w,i) | w ∈ Ψ, i ≥ 1}. By examining the explicit presentation of
the maps ld composing the limit defining A{X} in (1.1.10.1), we see that

0 −→ (eK(w,i) : w primitive, i > d) −→ TSA(A{X}) −→ TSdA(A{X}) −→ 0

is exact. Applying Lemma 1.1.7.12, the sequence

(1.1.10.10) 0→ abTS(eK(w,i) : w primitive, i > d)→ TSA(A{X})ab → TSdA(A{X})ab → 0

is still exact.
Therefore, when A is an infinite field, using Zubkov’s result in (1.1.10.9) along with

(1.1.10.10) and the isomorphism of Theorem 1.1.10.8, we have that

(1.1.10.11)

TSdA(A{X})ab ∼= A[eK(w,i) : i ≥ 1, w ∈ Ψ]/abTS(eK(w,i) : i > d, w primitive}
∼= EX,A/(Λi(w) | i > d, w primitive)
∼= EX(d)A.

Vaccarino’s final task is to show that this isomorphism over infinite fields A implies that
the isomorphism holds in the case A = Z. To explain this last step, we introduce some more
background on the interest in these objects, culminating in a result over Z that we will need
to finish the proof of Theorem 1.1.9.3.

Recall the universal representation

ρuniv = ρuniv
d : A{X} −→Md(FX(d)A)

from Definition 1.1.9.1. The adjoint action of PGLd(A) on Md(A) for all commutative rings
A induces an action of the group scheme PGLd/ SpecZ on SpecFX(d) = SpecFX(d)Z, with
g ∈ PGLd(A) sending xij for x ∈ X, 1 ≤ i, j ≤ d to the element of FX(d)A appearing

in the (i, j)-coordinate after conjugation by g. Clearly EX(d)A ⊂ FX(d)
PGLd(A)
A for all A,

because characteristic polynomial coefficients are invariant under conjugation. Is this map
an isomorphism?

This question was first investigated for A an algebraically closed field of characteristic
zero, and then for positive characteristic algebraically closed fields and A = Z. The motivat-
ing question was to describe the invariant theory of n-tuples of d× d-matrices (m1, . . . ,mn).
That is, what is the subring of regular functions on the affine variety Mn

d = Md × · · · ×Md

invariant under the diagonal action of PGLd by conjugation on Md × · · · ×Md? M. Artin
conjectured4 that the subring of conjugation-invariant regular functions were generated by
traces of products of these n matrices, i.e. for some finite word w in the alphabet {1, . . . , n}
with letters wi, the regular function

Tr(mw1 ·mw2 · · · · ·mwn)

on Mn
d . In positive characteristic, one conjectures that such functions will generate the

invariant subring once other characteristic polynomial coefficients Λi, 1 ≤ i ≤ d are also
allowed. In other words, the conjecture is that EX(d) = FX(d)PGLd . This conjecture can
be extended over arbitrary bases. To be clear, over the base ring A, FX(d)PGLd

A denotes the

4For the attribution of this conjecture, see [Pro76, Introduction].
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co-invariants of the co-action of the coordinate ring of PGLd/A

FX(d)A −→ FX(d)A ⊗A A[PGLd],

i.e. those f ∈ FX(d) such that its image is f ⊗ 1. Also, set FX(d)PGLd := FX(d)PGLd
Z .

This is the main result of Donkin [Don92, §3] over arbitrary algebraically closed fields
and over Z (depending on his integrality result [Don93]); this was also proved by Zubkov
[Zub94]. This followed a proof by Procesi [Pro67] and, independently, Sibirski [Sib67], of
Artin’s conjecture in the characteristic zero case. Here is the key result of Donkin’s work for
our purposes.

Theorem 1.1.10.12 ([Don92, §3.1]). For A = Z and d ≥ 1, the map EX(d) −→
FX(d)PGLd is an isomorphism, and, for every algebraically closed field k̄, induces an iso-
morphism

EX(d)⊗Z k̄
∼−→ FX(d)PGLd

k̄
.

Vaccarino uses this theorem along with the following argument (cf. [Vac08, Theorem 6.1])
to complete the proof of Theorem 1.1.9.3.

Proof. (Theorem 1.1.9.3) Let A be a commutative ring. By Corollary 1.1.3.10(1),

we have an isomorphism TSdA(A{X}) ∼→ TSdZ(Z{X}) ⊗Z A. By the universal property of
abelianization, the map

abTSZ ⊗ 1A : TSdZ(Z{X})⊗Z A −→ TSdZ(Z{X})ab ⊗Z A

can be factored through the abelianization TSdA(A{X})→ TSdA(A{X})ab, making the com-
mutative diagram

(1.1.10.13) TSdA(A{X}) ∼ //

abTSA
��

TSdZ(Z{X})⊗Z A

abTSZ⊗1A
��

TSdA(A{X})ab // TSdZ(Z{X})ab ⊗Z A

where the bottom horizontal arrow is surjective. Letting A = k̄, an algebraically closed field,
this bottom horizontal arrow is the top arrow in the commutative diagram

TSdk̄(k̄{X})ab

∼=
��

// TSdZ(Z{X})ab ⊗Z k̄

δab
d ⊗1k̄
��

(FX(d)k̄)
PGLd

∼= // EX(d)⊗Z k̄

where the composite map from the top left to the bottom right is known to be an isomorphism
by (1.1.10.11) and the bottom horizontal arrow is known to be an isomorphism by Theorem
1.1.10.12. Since we know from (1.1.10.13) that the top horizontal arrow is surjective, and
the right vertical arrow is surjective since it is obtained by ⊗Zk̄ from the surjective map δab

d

of (1.1.10.5), all of the maps in the diagram are isomorphisms.
Therefore we have a surjective map of graded rings

(1.1.10.14) TSdZ(Z{X})ab −→ EX(d)
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that becomes an isomorphism after tensoring by any algebraically closed field. Each graded
component TSdZ(Z{X})ab

n , EX(d)n of each ring is a finite Z-module, and these finite Z-
modules are free because they are submodules of the polynomial algebra EX , and there-
fore torsion-free. As these finite free Z-modules become isomorphic after tensoring by any
algebraically closed field, they must be of the same rank and therefore (1.1.10.14) is an
isomorphism. �

Now we discuss the finite generation of ΓdA(R)ab over A. The invariant theoretic content
above will be very useful for this. We can now show the that ΓdZ(Z{X})ab is finitely generated
over Z when X is finite, from which we can deduce that PsRd

R is finitely type as an affine
A-scheme when R is a finitely generated A-algebra. We follow Chenevier, using the invariant
theoretic content above with the input of geometric invariant theory.

Theorem 1.1.10.15 ([Che11, Proposition 2.38]). Let A be a commutative Noetherian
ring, let R be a finitely generated A-algebra, and let d ≥ 0. Then ΓdA(R)ab is finitely generated
as an A-algebra.

Proof. Let X be a finite set an let m = |X|. As R is finitely generated over A, there
exists a surjective A-algebra homomorphism

A{X}� R,

and therefore also a surjective A-algebra homomorphism ΓdA(A{X})ab � ΓdA(R)ab, where the
surjectivity follows from Corollary 1.1.3.14 and Lemma 1.1.7.12. Therefore we are reduced
to the case that R = A{X}. As ΓdA(A{X})ab ∼= ΓdZ(Z{X})ab ⊗Z A by Corollary 1.1.3.10, we
further reduce to the case A = Z.

Our main achievement of this section, Theorem 1.1.9.3, shows that the determinant of
ρuniv is a pseudorepresentation inducing an isomorphism ΓdZ(Z{X})ab ∼→ EX(d). By Theorem
1.1.10.12, EX(d) ∼= FX(d)PGLd . By the main theorems of geometric invariant theory (see for
example [Alp10, Main Theorem, (4)] or the original source [Ses77, Theorem 2]), the fact
that FX(d) is finitely generated over Z implies that FX(d)PGLd is finitely generated over Z
as well. �

Remark 1.1.10.16. We will often assume the assumptions of Theorem 1.1.10.15, so that
PsRd

R is an affine Noetherian A-scheme. Later, we will see that these assumptions are also
necessary in order to know moduli spaces of representations and are finite type over SpecA.

1.1.11. A Direct Sum Operation on Pseudorepresentations. Given two repre-
sentations of an A-algebra R, one can form a representation out of their direct sum. In this
paragraph, we study the analogy of this construction for pseudorepresentations, and verify
that this operation behaves well with respect to dimension.

Let R1, R2 be A-algebras, and let B be a commutative A-algebra. We know from Corol-
lary 1.1.3.10(3) along with Theorem 1.1.6.5 that we have an isomorphism of A-algebras

(1.1.11.1) ΓdA(R1 ×R2)ab ∼−→
∏

d1+d2=d

Γd1
A (R1)ab ⊗A Γd2

A (R2)ab.

By representability, this corresponds to a binary operation, associating two multiplicative
A-polynomial laws

D1 : R1 −→ A, D2 : R2 −→ A,
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which are homogenous of degree di respectively, to their product, which is a multiplicative
A-polynomial law

D1 ·D2 : R1 ×R2 −→ A

of degree d = d1 + d2. One can check that the construction is

(1.1.11.2)
D1 ⊕D2 : R1 ×R2 −→ A

(r1, r2) 7→ D1(r1) ·D2(r2),

which is compatible with ⊗AB, and thereby a polynomial law. One can also quickly see that
this polynomial law is multiplicative of degree d = d1 + d2 (cf. 1.1.11.5).

Remark 1.1.11.3. It is important to notice that the case of degree 0 homogenous mul-
tiplicative polynomial laws play an important role in the isomorphisms above: for example,
in (1.1.11.1), the d1, d2 must vary over all non-negative integers such that d1 + d2 = d. We
also see the importance of zero-dimensional pseudorepresentations having constant value 1.

It is natural, since pseudorepresentations are sometimes constructed by taking determi-
nants, to think of this operation as a product. However, we will call it a sum, either by
analogy to the data of the trace function that a pseudorepresentation holds, or by observing
that if we have two representations

R1 −→Md1(A), R2 −→Md2(A),

then there is a direct sum representation

R1 ×R2 −→Md1(A)×Md2(A) ↪→Md1+d2(A)

which is compatible with the construction above by taking the pseudorepresentations induced
by the determinants of the three representations.

Remark 1.1.11.4. We also choose to call this operation a sum ⊕ on pseudorepresenta-
tions because some preliminary calculations suggest that if R has the structure of a (cocom-
mutative) Hopf algebra, there is a (commutative) tensor product operation ⊗ on pseudorep-
resentations which decategorifies the tensor product of representations of R.

We summarize our discussion about the sum in this proposition, also adding the basic
fact that the degree of a homogenous polynomial law into a commutative ring is locally
constant; then we know that we are not making any restriction by studying homogenous
multiplicative polynomial laws of a given degree.

Proposition 1.1.11.5 (Following [Che11, Lemma 2.2]). With R1, R2 being A-algebras,
let B be a commutative A-algebra and let Di : Ri → B be a multiplicative A-polynomial laws.
If SpecB is connected, then

(1) D1 (resp. D2) is homogenous of some degree d ≥ 0.
(2) any degree d homogenous multiplicative A-polynomial law D : R1 × R2 → B is the

sum, D1⊕D2, of two unique multiplicative homogenous polynomial laws Di : Ri → A
of degree di, with d1 + d2 = d.

Part (2) is also proved in [Che11, Lemma 2.2(iii)].

Proof. Part (1) is precisely Theorem 1.1.7.4(2).
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To prove (2), simply observe that as SpecB is connected, its image in PsRd
R1×R2

must be
confined to one of the elements of the disjoint union

PsRd
R1×R2

∼−→
∐

d1+d2=d

PsRd1
R1
×SpecA PsRd2

R2

induced by (1.1.11.1). �

Now we set R1 = R2 = R, so that the work above amounts to the analogue in the
category of pseudorepresentations of the construction of the R × R-module M ⊕ N out of
two R-modules M,N , where the first copy of R acts on N trivially and the second copy of R
acts on M trivially. To construct from this R×R module the direct sum R-module M ⊕N ,
we simply compose with the diagonal embedding

R
∆−→ R×R.

This construction inspires the construction of the direct sum of pseudorepresentations.

Definition 1.1.11.6. Let R be an A-algebra, and let D1, D2 be pseudorepresentations
of dimension d1, d2 of R over A. Set d = d1 + d2. Then the direct sum pseudorepresentation
D := D1 ⊕D2 of R over A is given by the d-dimensional homogenous polynomial law such
that for each commutative A-algebra B,

DB(x) = D1,B(x) ·D2,B(x) ∀x ∈ R⊗A B.

We take note of the basic properties of this operation.

Lemma 1.1.11.7. Let R be an A-algebra, and let d1, d2, and d be non-negative integers
such that d1 + d2 = d. Then

(1) The operation
⊕ : PsRd1

R ×SpecA PsRd2
R −→ PsRd

R

is a morphism in the category of affine A-schemes, corresponding to the homomor-
phism of commutative A-algebras

ΓdA(R)ab Γd(∆)−→ ΓdA(R×R)ab
(1.1.11.1)
� Γd1

A (R)ab ⊗A Γd2
A (R2)ab.

(2) If D1 ∈ PsRd1
R (B) and PsRd2

R (B) are induced from d-dimensional B-valued repre-
sentations of R, ρ1 of dimension d1 and ρ2 of dimension d2 respectively, then the
det ◦(ρ1 ⊕ ρ2) ∼= D1 ⊕D2. In other words, the direct sum operations on representa-
tions and pseudorepresentations commute with the map det from representations to
pseudorepresentations.

Proof. For (1), simply compose (1.1.11.2) and ∆, and note that this is the same as the
direct sum given in Definition 1.1.11.6.

To prove (2), we note that the determinant of a direct sum of representations is equal to
the product of the determinants of the representations. �

The structures above induce a commutative monoid structure on the functor of all pseu-
dorepresentations.

Definition 1.1.11.8. Let R be an A-algebra. Then write PsR+
R for the SpecA-scheme

in commutative monoids
PsR+

R :=
∐
d≥0

PsRd
R,
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where the group operation is

⊕ : PsR+
R ×SpecA PsR+

R −→ PsR+
R

and the identity section is
SpecA ∼= PsR0

R ↪→ PsR+
R.

Later in Theorem 1.3.1.1, we will see that when A ∼= k̄ is an algebraically closed field,
the commutative monoid PsR+

R(k̄) will be the Grothendieck semigroup of the category of
representations of R.

1.1.12. Relation to Pseudocharacters. In this paragraph, we describe a previous
version of a pseudorepresentation, which is also commonly known as a pseudorepresenta-
tion. This is a pseudocharacter, which is a function on an algebra or multiplicative monoid
satisfying the identities one expects of the trace function of a matrix algebra.

Definition 1.1.12.1 (cf. [Tay91, §1.1], [Nys96, Rou96]). Let Γ be a monoid and let A
be a commutative ring. Let R be an A-algebra. A pseudocharacter of Γ over A of dimension
d is the data of a function T : Γ→ A such that

(1) T (1) = d,
(2) T is central, i.e. T (γ1γ2) = T (γ2γ1) for all γ1, γ2 ∈ Γ, and
(3) the d-dimensional pseudocharacter identity holds:

(1.1.12.2)
∑

σ∈Sd+1

sgn(σ)Tσ(γ1, . . . , γd+1) for all γ1, . . . , γd+1 ∈ Γ,

where Sd+1 is the symmetric group on d+ 1 letters and Tσ is the function given by

Tσ : Γd+1 −→ A

(γ1, . . . , γd+1) 7→
s∏
j=1

T (γ
i
(j)
1
· · · γ

i
(j)
rj

),

where σ has cycle decomposition

σ = (i
(1)
1 . . . i(1)

r1
)(i

(2)
1 . . . i(2)

r2
) . . . (i

(s)
1 . . . i(s)rs ).

The definition of a pseudocharacter for R is identical, using the multiplicative monoid of R,
except that we impose the additional condition that T be A-linear.

Taylor [Tay91] gave the definition of pseudorepresentation above, following on Wiles’
definition for two-dimensional representations [Wil88]. That the identity (1.1.12.2) is satis-
fied by a trace function of a representation is due to Frobenius [Fro96], and Procesi [Pro76,
Theorem 1.2] showed that this is the only identity that a central function needs to satisfy
in order to correspond to an invariant (by the adjoint action) function on a space of repre-
sentations. Taylor used this result to show that pseudorepresentations over an algebraically
closed field of characteristic zero are in natural bijection with semisimple characteristic zero
representations up to isomorphism. Rouquier [Rou96] extended this to the case that the
characteristic of the field is either 0 or greater than the dimension of the pseudocharacter.
We will give Chenevier’s [Che11] extension of this theorem to arbitrary characteristic, which
is achieved by replacing pseudocharacters with pseudorepresentations, in Theorem 1.3.1.1.

Carayol [Car94] showed that the deformations of an absolutely irreducible representation
over a field are determined by the induced deformation of its pseudocharacter, where this
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deformation is given by the trace function of the representation. Nyssen [Nys96, Theorem
1] and Rouquier [Rou96, Theorem 5.1] proved a converse, showing that deformations of a
pseudocharacter to a henselian local ring determine a unique (up to isomorphism) defor-
mation of its associated semisimple representation. Definition 1.3.4.1 describes absolutely
irreducible pseudorepresentations, and we give Chenevier’s an analogous result for pseu-
dorepresentations to the result of Cayayol, Nyssen, and Rouquier’s work in the in Theorem
2.1.3.3.

To what extent are pseudocharacters and pseudorepresentations comparable? This propo-
sition, due to Chenevier, gives the state of knowledge on this question.

Proposition 1.1.12.3 ([Che11, Propositions 1.27 and 1.29]). Let A be a commutative
ring and let R be an A-algebra. To each d-dimensional pseudorepresentation D : R→ A, we
associate to D its trace function function T = Λ1,A : R→ A via Definition 1.1.8.2.

(1) T is a pseudocharacter of dimension d; in particular, it satisfies (1.1.12.2).
(2) The association of determinants to pseudocharacters is injective.
(3) If (2d)! ∈ A×, then the association is bijective.

Proof. The first part is precisely Proposition 1.1.9.11(3). See [Che11, Propositions 1.27
and 1.29] for parts (2) and (3). �

We will use the theory of pseudocharacters in §2.3 in order to apply Belläıche-Chenevier’s
definition of generalized matrix algebra. We propose a notion of generalized matrix algebra
with respect to pseudorepresentations instead of pseudocharacters in Remark 2.3.3.6. How-
ever, when we do this, we will restrict ourselves to the case that (2d)! is invertible in our
coefficient rings, so that we can join our theory of pseudorepresentations with the theory of
generalized matrix algebras. Proposition 1.1.12.3(3) shows that this is sensible.

1.2. Cayley-Hamilton Pseudorepresentations

Recall from Definition 1.1.8.5 that a pseudorepresentation D : R −→ A is called Cayley-
Hamilton if the homogenous degree d pseudorepresentation

χ = χD : r 7→ rd − Λ1(r)rd−1 + Λ2(r)rd−2 + · · ·+ (−1)dΛd(r)

vanishes identically, i.e. every element of R satisfies its own characteristic polynomial, just
as if R were a matrix algebra. We also say that (R,D) is a Cayley-Hamilton A-algebra.
Cayley-Hamilton algebras have several special properties which we will explore here. We are
motivated by exploring to what extent R has similarities to matrix algebras. For example,
Procesi [Pro87] proved that in characteristic zero, a Cayley-Hamilton A-algebra admits an
embedding into a matrix algebra Md(B) for some commutative A-algebra B.

While the material of this section is mostly due to Chenevier [Che11], our main new
contribution is the application of polynomial invariant ring (PI ring) theory to show that
Cayley-Hamilton algebras are finite over their pseudorepresentation algebra OPsRdR

, and in
particular finite over their center. This allows us to strengthen one of Chenevier’s results.

1.2.1. Properties of Cayley-Hamilton Algebras. We freely use the notation of Def-
inition 1.1.8.5. One of the most basic properties of the two-sided ideal CH(D) ⊂ R is the
following lemma, showing that any pseudorepresentation factors through a Cayley-Hamilton
algebra and that faithful pseudorepresentations are Cayley-Hamilton.
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Lemma 1.2.1.1 ([Che11, Lemma 1.21]). With A, R, D, and d as usual, ker(D) contains
CH(D). In particular, if D is faithful, then (R,D) is Cayley-Hamilton.

Proof. We have proved the “Cayley-Hamilton identity for pseudorepresentations” in
Proposition 1.1.9.11(4), namely

D(1 + χ[α](r1, . . . , rd) · r) = 1

for any α ∈ Idd , (r1, . . . , rd) ∈ Rd, and r ∈ R. It remains to show that this holds true after
replacing r with an element of R ⊗A B for B any commutative A-algebra. This follows

from the fact that, for a given α, the functions χ
[α]
B : (R ⊗A B)d → R associated to the

pseudorepresentation D ⊗A B : R⊗A B → B belong to the commutative diagram

Rd χ[α]

//

��

R

��
(R⊗A B)d

χ
[α]
B // R⊗A B

�

Example 1.2.1.2 ([Che11, Example 1.20]). Consider a matrix algebra Md(A) over a
commutative ring A, with its standard d-dimensional pseudorepresentation det coming from
the determinant Md(A) → A. Of course, this pseudorepresentation is Cayley-Hamilton, as
every matrix satisfies its characteristic polynomial by the Cayley-Hamilton theorem. It is
also faithful, since for any 0 6= r ∈ Md(A) there exists r′ ∈ Md(A) such that the char-
acteristic polynomial of rr′ is not td. Consider now the restriction D : Td(A) → A of
det to the A-subalgebra Td(A) ⊂ Md(A) of upper triangular matrices. We see that D is
still Cayley-Hamilton, illustrating the general fact that the restriction of a Cayley-Hamilton
pseudorepresentation to a subalgebra remains Cayley-Hamilton. However, this example also
illustrates that the “faithful” property of a pseudorepresentation is not stable under restric-
tion to a subalgebra. For det is faithful, but the kernel of D is precisely the two-sided ideal
of strictly upper triangular matrices in Td(A).

We record the following lemma on the decomposition of a pseudorepresentation by idem-
potents. Recall that an idempotent e ∈ R induces a decomposition eRe ⊕ (1 − e)R(1 − e)
which is a A-subalgebra of R isomorphic to eRe× (1− e)R(1− e) via the natural map

(1.2.1.3) x 7→ (ex, (1− e)x).

Also recall that a set of idempotents is called orthogonal provided that the product of any
pair of distinct elements of the set is zero. Note that not all of this lemma depends on D
being Cayley-Hamilton.

Lemma 1.2.1.4 ([Che11, Lemma 2.4]). Assume that SpecA is connected and let e ∈ R
be an idempotent element. Let D : R→ A be a d-dimensional pseudorepresentation.

(1) The polynomial law De : eRe → A defined by r 7→ D(r + 1 − e) is a pseudorepre-
sentation whose dimension r(e) satisfies r(e) ≤ d.

(2) We have r(e) + r(1 − e) = d, and the restriction of D to the A-subalgebra eRe ⊕
(1− e)R(1− e) is the direct sum pseudorepresentation DeD1−e of (1.1.11.2).

(3) If D is Cayley-Hamilton (resp. faithful), then so is De.
(4) Assume that D is Cayley-Hamilton. Then e = 1 (resp. e = 0) if and only if D(e) = 1

(resp. r(e) = 0). Let e1, . . . , es be a family of nonzero orthogonal idempotents of R.
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Then s ≤ d, and we have an inequality
∑s

i=1 r(ei) ≤ d, which is an equality if and
only if e1 + e2 + · · ·+ es = 1.

Proof. Write S1 = eRe and S2 = (1 − e)R(1 − e). Let S be the A-subalgebra S =
S1 ⊕ S2 ⊂ R. As noted above, (1.2.1.3) induces an isomorphism with S1 × S2. Now parts
(1) and (2) follow directly from Proposition 1.1.11.5.

Assume that D is faithful. Note that for any commutative A-algebra B, the B-algebra
eRe ⊗A B is naturally isomorphic to a direct summand e(R ⊗A B)e of R ⊗A B. Choose
r ∈ ker(De) ⊂ eRe ⊂ R. Using the characterization of the kernel in Lemma 1.1.6.6, we have
for any r′ ∈ R⊗A B that

D(1 + rr′) = D(1 + erer′) = D(1− e+ e+ erer′) = De(e+ erer′) = 1.

Therefore r ∈ ker(D) so r = 0 by assumption.
Assume that D is Cayley-Hamilton. For r ∈ R ⊗A B, we have the Cayley-Hamilton

identity χD(r, r) = 0. From part (2), we know that

χD(r, t) = χDe(er, t)χD1−e((1− e)r, t) ∈ B[t].

For r ∈ e(R⊗A B)e, we apply the Cayley-Hamilton identity for χD to r (resp. r + 1− e) to
find that

χDe(er, r)rd2 = 0, resp. χDe(e(r + 1− e), r + 1− e)(r − 1)d2 = 0.

As the ideal of B[t] generated by td2 and (t− 1)d2 is B[t], we get De(r, r) = 0, showing that
De is Cayley-Hamilton.

Let us show part (4). It is always the case that χD(e, e)−D(e) ∈ Ae ⊂ R. If D is Cayley-
Hamilton and D(e) = 1, then e is a unit in A (see (1.2.3.3) for this fact) and therefore e = 1.
If r(e) = 0, then De(·) = D(·+ 1− e) is a determinant of degree 0 on eRe, and is therefore
constant and equal to 1. In particular, D(1 − e) = 1 so e = 0 by the argument above. For
the last claim of part (4), set es+1 = 1 − (e1 + · · · + es). Note that 1 ≤ r(ei) ≤ d for each
ei, since ei 6= 0 and therefore r(ei) 6= 0 for each i. However,

∑s+1
1 r(ei) = d by applying part

(2) s times. This proves the last claim in (4). �

Lemma 1.2.1.5 ([Che11, Lemma 2.6]). Let D : R → A be a 1-dimensional Cayley-
Hamilton pseudorepresentation. Then R = A and D is the identity map.

Proof. For each r ∈ R, χ(r, t) = t −D(r). As r satisfies its characteristic polynomial
and D is A-linear, the lemma follows. �

1.2.2. Background in PI Ring Theory. Our main aim in this paragraph is to apply
the theory of polynomial identity rings to prove that a Cayley-Hamilton A-algebra (R,D)
is often finite as a module over A. One implication of this is that all representations of an
arbitrary finitely generated A-algebra R of a fixed dimension d simultaneously factor through
an algebra that is finite over its center.

We begin with a short review of the theory of polynomial invariant algebras over a
commutative ring A, following Procesi’s book [Pro73]. We will use the notation A{xs} to
denote the free (non-commutative) A-algebra on a set X.

Definition 1.2.2.1. Let R be an A-algebra.

(1) An ideal I ⊂ A{xs} is called a T -ideal if, for any endomorphism ϕ : A{xs} → A{xs},
we have ϕ(I) ⊆ I.
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(2) The set
I = {f(xs) ∈ A{xs} | f(rs) = 0 for all rs ∈ R}

is called the T -ideal of polynomial identities of R.
(3) A T -ideal I ⊂ A{xs} is called a proper T -ideal provided that it is not contained in

J{xs} for any ideal J 6= A of A.
(4) We call R a polynomial ideal algebra or PI-algebra if the T -ideal I of polynomial

identities of R is proper.

Since every element of a degree d Cayley-Hamilton A-algebra satisfies its own degree d
characteristic polynomial, which is monic and degree d in A[t], it is a PI A-algebra because
of the following fact.

Proposition 1.2.2.2 ([Pro73, Proposition 3.22]). Let d be a positive integer. Then there
exists a proper polynomial identity such that for any commutative ring A and any A-algebra
R, R satisfies this polynomial identity if every element of R is integral over A of degree
bounded by d. In particular, such an algebra R is a PI A-algebra.

Proof. We will specify this polynomial identity and leave it to the reader to complete the
proof or look up the reference. Let Pn for n ≥ 1 be the polynomial in the (noncommutative)
free algebra over Z generated by n indeterminates x1, . . . , xn given by

Pn(x1, . . . , xn) =
∑
σ∈Sn

sgn(σ)xσ(1)xσ(2) · · ·xσ(n),

where Sn is the symmetric group on n letters and sgn is the signature character sgn : Sn →
{±1}. Define f(x, y) in the (noncommutative) free algebra over Z by

f(x, y) = Pd+1(ydx, yd−1x, yd−2x, . . . , yx, x).

Then f is a proper polynomial identity whose existence is asserted in the statement of the
proposition. �

When A is Noetherian and R is finitely generated a A-algebra and Cayley-Hamilton, the
following fact will allow us to conclude immediately that R is finite as an A-module.

Theorem 1.2.2.3 ([Pro73, Theorem 2.7]). Let R be a finitely generated PI algebra over
a commutative Noetherian ring A. Then if R is integral over A, it is also finite as a module
over A.

However, in some particular cases relevant to our investigation of Cayley-Hamilton al-
gebras, we will be able to establish module finiteness of R over A when R satisfies weaker
conditions than the conditions of Theorem 1.2.2.3.5 In order to accomplish this, it will be
particularly important to show that if R is a nil algebra (i.e. every element is nilpotent; in
particular, a nil algebra does not have a unit) of bounded nil degree over a field k, then R
is finite dimensional as a k-vector space. The following theorems will be very useful to this
end.

The first important theorem is known as the Nagata-Higman theorem.

5The most important example will be Theorem 3.2.3.2. Here we are working over a fixed pseudorepresentation
into a complete local ring, and the condition ΦD̄ is the finitude of the vector space of self-extensions of the
semisimple representation corresponding to the pseudorepresentation of the special fiber D̄. This shows that
the complete local ring can be taken to be Noetherian (Theorem 3.1.5.3), but finite generation of the algebra
over this base is not required. The condition on the self-extensions suffices.
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Theorem 1.2.2.4 (Dubnov-Ivanov [DI43]). Let k be a field and let R be a nil k-algebra
such that there exists a positive integer d with the property that rd = 0 for every r ∈ R. Then
if char(k) = 0 or char(k) > d, there exists some N ≤ 2d − 1 such that RN = 0.

There exist examples showing that 2d − 1 is the best possible such bound.

Remark 1.2.2.5. This theorem is known as the Nagata-Higman theorem, since it was
discovered in the western mathematical community by Nagata [Nag52] in characteristic zero,
and then generalized to large enough positive characteristic by Higman [Hig56]. It was first
discovered Dubnov and Ivanov [DI43] but overlooked in the west. For a few further remarks
on the history and context of these works, see [For90].

The following theorem is more in the spirit of Shirshov’s height theorem [Šir57], and
fulfills Chenevier’s suspicion [Che11, Remark 2.29] that there exists some such result which
will allow one to show the nilpotence of the kernel of a Cayley-Hamilton pseudorepresentation
over a field, even when the characteristic is too small to apply the Nagata-Higman theorem.
For further comments on Shirshov’s height theorem, see [Kem09].

Theorem 1.2.2.6 (Samoilov [Sam09]). Let R be an associative PI algebra over a field k
of characteristic p > 0. If R is generated by a set X and every word in the elements of x is
nilpotent of degree not exceeding d, then R is a nilalgebra, i.e. there exists a positive integer
N such that RN = 0. Here N depends on p, the particular polynomial identity it satisfies,
and on d, but it does not depend on the cardinality of X.

For future reference, let us record a particular integer N = N(p, d).

Definition 1.2.2.7. Let p be a prime number and let d be a positive integer. Let
N(p, d) be the integer determined by Theorem 1.2.2.6, where, in the notation of the theorem
statement, p is the characteristic of the field k, d is the bound on the nil-degree of the
elements of X, and the polynomial identity is xd. Let N(d) be the integer specified in
Corollary 1.2.2.8 below.

For a fixed d, Theorems 1.2.2.4 and 1.2.2.6 combine to form the following result.

Corollary 1.2.2.8. There exists an integer N(d) ≥ 0 dependent only on d with the
following property: for any associative, non-unital algebra R over a characteristic p ≥ 0 field
k such that every element of R satisfies the identity xd where d ≥ 1, R is nilpotent of degree
no more than N(d), i.e. RN(d) = 0. The integer N(d, p) also has this property over such
algebras R where k has characteristic p.

Proof. Let N(d) be the maximum of the finite collection of integers

{N(p, d) : prime p ≤ d} ∪ {2d − 1}.
Then by Theorems 1.2.2.4 and 1.2.2.6, RN(d) = 0. �

While we will prove stronger results later, let us now list some immediate corollaries,
applying the results from PI theory above to Cayley-Hamilton A-algebras.

Corollary 1.2.2.9. Let (R,D) be a finitely generated Cayley-Hamilton A-algebra of
degree d, where A is a commutative Noetherian ring. Then R is finite as a module over A.

Proof. As (R,D) is a Cayey-Hamilton A-algebra, each element r ∈ R satisfies its char-
acteristic polynomial, which is a degree d monic polynomial equation χ(r, t) with coefficients
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in A. Proposition 1.2.2.2 implies that R is a PI A-algebra, and then Theorem 1.2.2.3 implies
that R is finite as a module over A. �

There are several more very useful consequences of this finiteness, which we now discuss.

Corollary 1.2.2.10. Let (R,D) be a d-dimensional finitely generated Cayley-Hamilton
A-algebra, where A is a commutative Noetherian ring.

(1) R is finite as an A-module; in particular, it is finite over its center and is a Noe-
therian ring.

(2) ker(D) ⊂ R is a nilpotent two-sided ideal.
(3) If A is a Jacobson ring (e.g. a field), then R is a Jacobson ring as well, and J(R) =

N(R) is an equality of nilpotent ideals.
(4) If A is an Artinian ring, then R is as well.

Proof. The first statement in (1) repeats Corollary 1.2.2.9. When A is a commutative
Noetherian ring, then an A-algebra which is finite as an A-module via the structure map is
also Noetherian (see e.g. [MR01, Lemma 1.1.3]). This proves (1).

Because (R,D) is Cayley-Hamilton, each element r ∈ ker(D) satisfies its characteristic
polynomial χ(r, t) = td. Therefore the kernel is a nil two-sided ideal. Since R is Noetherian,
the nilradical of R contains ker(D) and is nilpotent (see Remark 1.2.2.11 below). Hence
ker(D) is nilpotent as well.

If A is a Jacobson ring, then R is a Jacobson ring as well, as it is finite as a module
over A [MR01, §9.1.3] (see also [MR01, Theorem 13.10.4(iii)]). Therefore its nilradical is
the same as its Jacobson radical. As R is Noetherian, both are nilpotent (see the Remark
immediately below). This proves (3).

Taking R as an A-module, it is the descending chain condition holds on sub-A-modules of
R because it is a finitely generated module over an Artinian ring. As ideals of R are certain
sub-A-modules of R, the descending chain condition also holds for ideals, proving (4). �

Remark 1.2.2.11. There are several notions of nilradical which coincide for Noetherian
rings. Here are the notions for a general noncommutative ring R.

(1) The lower nilradical is the intersection of all prime ideals in a ring, where an ideal
I ⊂ R is prime if for any ideals A,B such that A · B ⊆ I, then either A ⊆ I or
B ⊆ I.

(2) The Levitsky radical is the largest locally nilpotent ideal, where an ideal is called
locally nilpotent if any finitely generated sub-ideal is nilpotent.

(3) The upper nilradical is the ideal generated by all nil ideals in R, where an ideal is
called nil if every element in it is nil. Note that the ideal generated by nilpotent
elements may not be nil in the noncommutative case; this definition of upper radical
is chosen so that it the upper radical is a nil ideal.

In general there is an inclusion

lower nilradical ⊆ Levitsky radical ⊆ upper nilradical,

but one can check that these definitions coincide when R is Noetherian, so that one can
speak of “the nilradical of R.” In particular, in the Noetherian case, its follows from this
equivalence that the nilradical is a nilpotent ideal.

The Jacobson radical always contains the (upper) nilradical, and is equal to the nilradical
when R is Jacobson and Noetherian. For more information see e.g. [GW04].
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1.2.3. The Jacobson Radical of a Cayley-Hamilton Algebra. We write J(R) for
the Jacobson radical of an algebra R.

The following lemma is a strengthening of a lemma of Chenevier [Che11, Lemma 2.7-
2.8], beginning an exploration of the extent to which the kernel of a d-dimensional Cayley-
Hamilton pseudorepresentation behaves like a nilpotent subalgebra (without unit) of a matrix
algebra. The addition to and partial simplification of Chenevier’s arguments comes from PI
ring theory.

Lemma 1.2.3.1 (Following [Che11, Lemma 2.7]). Let D : R −→ A be a Cayley-Hamilton
pseudorepresentation, where A is a commutative ring and R is an A-algebra.

(1) J(R) is the largest two-sided ideal J ⊂ R such that D(1 + J) ⊂ A×.
(2) For any r ∈ ker(D), we have (rr′)d = 0 for all r′ ∈ R. In particular, ker(D) is a nil

ideal and is contained in the upper nilradical of R, and therefore also contained in
J(R).

Now assume that A is a field.

(3) r ∈ R is nilpotent if and only if D(t− r) = td. Moreover, J(R) consists of nilpotent
elements.

(4) ker(D) and J(R) are nilpotent ideals, with degree of nilpotence bounded by the integer
N(d) of Definition 1.2.2.7, which depends only on the integer d. However, if d! is
invertible in A, then the bound 2d − 1 suffices.

(5) ker(D) = J(R).
(6) If I ⊂ R is a two-sided ideal such that In = 0 for some n ≥ 1, then I ⊂ ker(D)

(here it is not necessary to assume that D is Cayley-Hamilton).

Remark 1.2.3.2. This lemma and its proof is based on Chenevier’s lemma [Che11,
Lemma 2.7]. It is due to him, except for (3), which comes from our use of PI ring theory.

Proof. Without applying a Cayley-Hamilton assumption, if r ∈ R is invertible, then
D(r) is invertible since D is multiplicative and preserves units. Assuming the Cayley-
Hamilton property, the converse is true: if D(r) = a is invertible in A, then the multiplicative
inverse of r is given by manipulating its characteristic polynomial.

(1.2.3.3) (rd−1 − Λ1(r)rd−2 + · · ·+ (−1)d−1Λd−1(r)) · r = −a.
Since the Jacobson radical J(R) of R is the set of quasiregular elements, i.e. r ∈ R such that
1− r is a unit in R, we see that r ∈ J(R) if and only if D(1− r) is a unit, proving (1).

Now we will prove (2). If r ∈ ker(D) and r′ ∈ R, then Λi(rr
′) = 0 for 1 ≤ i ≤ d. Then r

must satisfy the characteristic polynomial χ(r, t) = td. This shows that ker(D) is a nil ideal
of bounded nil-degree d. Therefore ker(D) ⊆ N(R).

Now let A be a field k. If r ∈ R is nilpotent, then 1 + tr ∈ R ⊗k k[t] is invertible.
Therefore D(1 + tr) is invertible in k[t], hence D(1 + tr) is in k×. Using the homogenous
multiplicativity of D on B = A[t, t−1], we see that

t−d ·DB(1− tr) = DB(t−1 − r) = χ(r, t−1),

so that χ(r, t) = td and D(1 + tr) = 1. Therefore rd = 0, proving one direction of part (3).
For the converse, we simply use the Cayley-Hamilton property. Now choose x ∈ J(R). For
all y ∈ k[x], 1 + yx is invertible in k[x], so that D(1 + yx) ∈ k×. Then, as in the proof
of part (1), we know that 1 + yx is invertible in k[x]. This means that x ∈ J(k[x]). This
only happens when k[x] is finite dimensional as a k-vector space. Since any element of the
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Jacobson radical of a finite dimensional algebra over a field is nilpotent, we conclude that x
is nilpotent as desired. This concludes (3).

Parts (2) and (3) have shown that ker(D) and J(R) are nil-ideals of bounded nil-degree
d, i.e. all of their elements are nilpotent of degree d. Part (4) follows directly from this fact,
upon applying Corollary 1.2.2.8.

To prove (5), let us first assume that k is an infinite field. We know from part (3) that
J(R) consists of nilpotent elements, and that D(1 + r) = 1 for all r ∈ J(R). Since k is an
infinite domain and J(R) is a two-sided ideal, we may apply Lemma 1.1.7.2, which tells us
that

ker(D) = {r ∈ R | ∀r′ ∈ R,D(1 + rr′) = 1}.
This shows that J(R) ⊆ ker(D). The opposite inclusion is part (2). It remains only to
reduce to the case that k is an infinite field; this is accomplished in Lemma 1.2.3.5 below.
This completes our proof that J(R) = ker(D) when A is a field.

For part (6), let I be a nilpotent ideal of R and choose r ∈ I. Then for any y ∈
R⊗AA[t1, · · · ,m] for any m, ry is nilpotent. Therefore D(1 + try) is invertible, hence equal
to 1 by the logic above. Therefore r ∈ ker(D) by definition. �

Remark 1.2.3.4. The nilpotence of the nilradical of a finitely generated PI algebra over
a commutative Noetherian ring was first proved by Braun [Bra84]. We proved this more
simply because, in our case of concern, R is integral of bounded degree over A and therefore
finite as an A-module.

Lemma 1.2.3.5 ([Che11, Lemma 2.8]). Let k be a field and let D : R → k be a d-
dimensional pseudorepresentation. Then for any separable algebraic extension K/k, the nat-
ural injection R⊗k K induces isomorphisms

J(R)⊗k K
∼−→ J(R⊗k K), ker(D)⊗k K

∼−→ ker(D ⊗k K).

This proof is due to Chenevier.

Proof. By Lemma 1.1.5.2, we have an injection

ker(D)⊗k K −→ ker(D ⊗k K).

We need to show that this map is surjective. Enlarge K if necessary, so that K/k is normal
with Galois group Γ. Consider the natural semilinear action of Γ on R ⊗k K. By Hilbert’s
Theorem 90, each Γ-stable K-subvector space of V of R⊗kK has the form V Γ⊗kK, where
V Γ ⊂ R is the k-vector space of fixed points. We claim that ker(D ⊗k K) is Γ-stable.
Observe that Γ has a natural semilinear action on any K-algebra B. As the characteristic
polynomial coefficient functions of D⊗kK are defined over k, we have for any K-algebra B,
any r ∈ R⊗k B, and any γ ∈ Γ that D is Γ-equivariant, i.e.

D(γ(r)) = γ(D(r)).

The claim now follows upon examining the definition of the kernel: if r ∈ ker(D⊗kK), then
D(1+rr′) = 1 for all K-algebras B and r′ ∈ R⊗kB, and this will remain true after replacing
r with σ(r). Now the desired surjectivity follows from the fact that ker(D⊗kK)Γ ⊂ ker(D).
This also follows from the Γ-equivariance of D. �

49



1.2.4. The Universal Cayley-Hamilton Algebra. This paragraph discusses a trivial
generalization of [Che11, 1.22-1.23], introducing the category of “Cayley-Hamilton represen-
tations” of a given A-algebra R. We may think of this as a generalization of the universal
Azumaya-algebra valued representation of R discussed in §1.4 below.

We start with the usual data of an algebra R over a commutative ring A. From Theorem
1.1.7.4, we have the universal pseudorepresentation

Du : R⊗A ΓdA(R)ab −→ ΓdA(R)ab

of R over ΓdA(R)ab. Now we apply the notion of a Cayley-Hamilton algebra to this universal
pseudorepresentation.

Definition 1.2.4.1. Let R,A, and Du be as above. Let B a commutative A-algebra.

(1) A Cayley-Hamilton B-representation of R of dimension d over B is a triple

(B, (E,D), ρ)

where (E,D) is a Cayley-Hamilton A-algebra relative to the pseudorepresentation
D : E → B, and ρ : R⊗A B → E is a homomorphism of B-algebras.

(2) The universal Cayley-Hamilton representation of R is

(ΓdA(R)ab, (E(R, d), Du|E), ρu),

where E(R, d) is the ΓdA(R)ab-algebra

E(R, d) := (R⊗A ΓdA(R)ab)/CH(Du)

receiving the canonical quotient homomorphism ρu : R⊗A ΓdA(R)ab → E(R, d), and
Du|E : E(R, d)→ ΓdA(R)ab is the factorization of Du through ρu.

Of course, the factorization Du|E exists, in view of Lemma 1.1.6.6(2) and Lemma 1.2.1.1.

Remark 1.2.4.2. Cayley-Hamilton representations are direct generalizations of the usual
notion of a representation. With R,A as usual, let R ⊗A B → Md(B) be a B-valued d-
dimensional representation of R. Then

(B, (Md(B), det), ρ)

is a d-dimensional Cayley-Hamitlon representation of R over B, where det is the standard
determinant map det : Md(B)→ B.

We want to show that the “universal” d-dimensional Cayley-Hamilton representation of
R deserves its name, but first we must define the structure of a category CHd(R) where
this representation will be initial, following [Che11, §1.22]. The objects are the data of the
definition above, and a morphism of Cayley-Hamilton representations of R

(B1, (E1, D1), ρ1) −→ (B2, (E2, D2), ρ2)

is a pair (f, g) where f : B1 → B2 and g : E1 → E2 are ring homomorphisms such that if
ιi : Bi → Ei is the Bi-algebra structure on Ei, then the diagrams

B1
ι1 //

f
��

E1

g

��

E1
D1 //

g

��

B1

f
��

B2
ι2 // E2 E2

D2 // B2
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and

R⊗A B1
ρ1 //

id⊗f
��

E1

g

��
R⊗A B2

ρ2 // E2

commute.

Proposition 1.2.4.3 ([Che11, Proposition 1.23]). The universal d-dimensional Cayley-
Hamilton representation

(ΓdA(R)ab, (E(R, d), Du|E), ρu)

is the initial object of CHd(R).

Proof. Let (B, (S,D), η) be a d-dimensional Cayley-Hamilton representation of R. The
B-algebra homomorphism η : R ⊗A B → S induces a d-dimensional B-valued pseudorepre-
sentation of R, namely D ◦ η. This induces an A-algebra homomorphism f : ΓdA(R)ab → B.
This in turn induces an A-algebra homomorphism

R⊗A ΓdA(R)ab −→ R⊗A B
η−→ S.

Since (S,D) is Cayley-Hamilton, Lemma 1.1.8.6 implies that this map factors through ρu :
R⊗A ΓdA(R)ab � E(R, d), with quotient

g : E(R, d) −→ S.

We observe that f ◦Du|E = D◦g, and that (f, g) has the remaining properties of a morphism
in CHd(R), as desired. �

Now, assuming that A is Noetherian and R is finitely generated as an A-module, we have
a pleasant consequence of the PI theory of §1.2.2. This proposition will be applied in §1.4.3
to show that the representation theory of such an algebra R reduces to the representation
theory of a finite-over-center algebra, basically by exploring the consequences of Remark
1.2.4.2.

Proposition 1.2.4.4. If A is Noetherian and R is finitely generated as an A-algebra,
then the universal d-dimensional Cayley-Hamilton algebra of degree d associated to R, namely
the ΓdA(R)ab-algebra E(R, d), is finite as a ΓdA(R)ab-module. In particular, E(R, d) is a
Noetherian ring and is finite as a module over its center.

Proof. This is an instance of Corollary 1.2.2.10(1). �

1.3. Pseudorepresentations over Fields

In the current chapter, we are developing the theory of pseudorepresentations and then,
starting in §1.4, studying the moduli space of pseudorepresentations relative to the moduli
space of representations. The main theorem of this chapter, Theorem 1.5.4.2, depends heavily
on the comparison of representations wtih pseudorepresentations over an algebraically closed
field. Indeed, it is fair to say that in Chapter 1 we prove what we can about this situation
by studying moduli functors through their geometric points, and in Chapter 2 we aim for a
closer, local-on-the-base study.

This is our motivation for studying pseudorepresentations over fields. We can find a close
relationship between semisimple representations and pseudorepresentations over fields. We
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will now give the main theorem. This is a critical property of this notion of pseudorepresen-
tation, developed by Chenevier, who calls it a “determinant.” Previous notions, which we
call “pseudocharacters” here, did not function well in the case that the dimension is greater
than or equal to the characteristic of the field (see §1.1.12).

1.3.1. Main Theorem. As usual, let R is an A-algebra. We have seen that represen-
tations of R valued in an Azumaya algebra, and in particular a matrix algebra, induce a
pseudorepresentation (Theorem 1.1.7.4(6)). We have also seen that given a pseudorepre-
sentation D of R, the universal Cayley-Hamilton representations of R over D share some
similarities with representations of R valued in subalgebras of matrix algebras (cf. Corollary
1.2.2.10). Now we will show that over an algebraically closed field, pseudorepresentations
are in natural bijection with representations. Here is our main theorem, due to Chenevier.

Theorem 1.3.1.1 ([Che11, Theorem 2.12]). Let k̄ be an algebraically closed A-field.
There is a bijection between conjugacy classes of semisimple d-dimensional representations
ρ of R over k̄ and d-dimensional pseudorepresentations of R over k̄, given by sending
ρ : R ⊗A k̄ → Md(k̄) to det ◦ρ. In fact, if D is a d-dimensional k̄-valued pseudorepre-
sentation of R, then the corresponding semisimple representation may be written as

R⊗A k̄ −→ (R⊗A k̄)/ ker(D) '
∏

Mdi(k̄),

where
∑
di = d.

We will also find an analogous result over arbitrary A-fields k. Indeed, Theorem 1.3.1.1
follows directly from this more general case. However, it will require that we establish some
notions and notation.

The following notion of an “exponent” describes the size of field extensions K/k in a
different way than the degree of an extension. Indeed, the exponent may be finite and
meaningful even when the degree of the extension is infinite. We also give “determinant”
maps from central simple algebras S/K to k ⊂ K when K/k has finite exponent, generalizing
the determinant on a matrix algebra.

Definition 1.3.1.2. Let K/k be a field extension, and let k′ ⊂ K be the maximal
separable subextension of K. Assume that k′/k is finite. If the characteristic p of k is
positive, let q be the smallest power of p such that Kq ⊆ k′, and if p = 0 let q = 1. Define
the exponent (f, q) ∈ N2 of K/k by f = [k′ : k] and q as above. It is possible for both or
either of the quantities in the exponent to be infinite.

Now assume that K/k has finite exponent (f, q), and let S be a central simple K-algebra
of rank n2 over K with its reduced norm N : S → K. Let Nk′/k : k′ → k be the norm map
on finite separable fields, and let F q : K → k′ be the q-power Frobenius map. Then there is
a natural determinant

detS : S → k

of k-homogenous degree nqf defined by detS = Nk′/k ◦ F q ◦N .

We observe that in the case that the exponent of S is trivial (1, 1), detS is the standard
reduced norm of an Azumaya algebra, such a matrix algebra.

Now we can state the theorem describing pseudorepresentations of an algebra over an
arbitrary field

Theorem 1.3.1.3 ([Che11, Theorem 2.16]). Let R be a k-algebra. Let D : R → k be a
d-dimensional pseudorepresentation.
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(1) Then there is an isomorphism of k-algebras

R/ ker(D)
∼−→

s∏
i=1

Si

where Si is a simple k-algebra which is of finite dimension n2
i over its center ki, and

where ki/k is a with finite exponent (fi, qi). In particular, R/ ker(D) is semisimple.
(2) Moreover, under such an isomorphism, D is equal to the sum of determinants

D =
s⊕
i=1

detmiSi , d =
s∑
i=1

miniqifi,

where mi are certain uniquely determined integers.
(3) The pseudorepresentation D is realizable as the composition of the natural sum of

determinants detSi with the following product of the natural surjections R � Si,
namely

R −→
s∏
i=1

mi∏
j=1

Si,

where the integers mi are as above.
(4) R/ ker(D) is finite-dimensional as a k-vector space and, equivalently, each ki is

finite-dimensional if any of the following conditions are satisfied, where p is the
characteristic of k.
(a) k is perfect,
(b) d < p,
(c) p > 0 and [k : kp] <∞, or
(d) R is finitely generated as a k-algebra.

Let us deduce the algebraically closed case from this general case.

Proof. (Theorem 1.3.1.3 implies Theorem 1.3.1.1.) Beginning with the notation of
Theorem 1.3.1.1, we let k̄ be an algebraically closed A-field and replace R by R ⊗A k̄ and
think of R as a k̄-algebra and let D be a d-dimensional pseudorepresentation D : R→ k̄.

By definition of the exponent, every element of a field extension K/k̄ of finite exponent
is algebraic over k̄. Since k̄ is algebraically, closed this means that K = k̄ when K/k̄ has
finite exponent, i.e. the exponent is (1, 1). Now Theorem 1.3.1.3 implies that R/ ker(D)
is a product of central simple k̄-algebras, which are therefore matrix algebras because k̄ is
algebraically closed. We write

R/ ker(D)
∼−→

s∏
i=1

Mdi(k̄).

If we write deti for the determinant function on Mdi(k̄), Theorem 1.3.1.3 tells us that

D ∼=
s⊕
i=1

detmii , where
s∑
i=1

midi = d,
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and where ⊕ refers to the direct sum of (1.1.11.2). If Vi a the di-dimensional representation
of R corresponding to R �Mdi(k̄), then clearly the representation

s⊕
i=1

V ⊕mii

realizes D as its determinant. Since, by the Brauer-Nesbitt theorem, a semisimple represen-
tation over an algebraically closed field is determined up to isomorphism by its character-
istic polynomials, this semisimple representation is unique up to isomorphism. Conversely,
a pseudorepresentation is determined by its characteristic polynomial functions (Corollary
1.1.9.15). Therefore the correspondence is bijective. �

We will prove Theorem 1.3.1.3 in the next paragraph.

1.3.2. Semisimple k-algebras. Now we work toward proving Theorem 1.3.1.3. Firstly,
we will note that our existing knowledge allows us to conclude immediately that R/ ker(D)
is semisimple and track the number of orthogonal idempotents.

Recall that R is a k-algebra with a d-dimensional pseudorepresentation D : R→ k. Let
p be the characteristic of k.

Because Lemma 1.2.1.1 tells us that (R/ ker(D), D) is a Cayley-Hamilton k-algebra, we
can apply our study of Cayley-Hamilton algebras from §1.2. Let us review the facts that we
can deduce directly from this study.

• Every element of R is integral (i.e. algebraic) of bounded degree d over k: each
element satisfies its own characteristic polynomial.
• By Proposition 1.2.2.2 R is a PI-k-algebra.
• By Lemma 1.2.3.1(5), ker(D) is the Jacobson radical J(R) of R, so R/ ker(D) is

semisimple.
• By Lemma 1.2.1.4, the largest possible cardinality of a family of pairwise orthogonal

idempotents of R/ ker(D) is d.

Also, Corollary 1.2.2.9, if R is finitely generated as a k-algebra, R/ ker(D) is a finite dimen-
sional k-algebra. However, we are not currently assuming that R is finitely generated as a
k-algebra.

All that we need to do is to control the exponent of the centers of the simple fac-
tors (Lemma 1.3.2.1 below) and control the possible pseudorepresentations out of simple
k-algebras (Lemma 1.3.2.3 below).

The following lemma describes field extensions of k satisfying the first property of the
bullet list above; these are the possible fields that can appear as the center of a k-algebra
satisfying all of the properties of the bullet list.

Lemma 1.3.2.1 ([Che11, Lemma 2.14]). If S is a k-algebra satisfying the properties in
the bullet list above, then

S
∼−→

s∏
i=1

Mni(Ei)

where Ei is a division k-algebra, finite dimensional over its center ki, and s ≤ d. In partic-
ular, S is semisimple. The center ki of Ei is a finite separable extension of k, unless k has
positive characteristic p, in which case k[kqi ] is separable, where q is the greatest power of p
less then n. Moreover, S is finite dimensional over k if any of the following conditions are
satisfied:
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(1) k is perfect,
(2) p > d,
(3) p > 0 and [k : kp] <∞, or
(4) R is finitely generated over k.

We record some of the proof here for reference, following the proof of [Che11, Lemma
2.14].

Proof. Let A be a commutative k-algebra satisfying the properties in the bullet list. If
p > 0, define q as in the statement of the lemma, and set q = 1 otherwise. The bound on
the number of idempotents implies that

A
∼−→

s∏
i=1

Ai

where s ≤ d, and where Ai is an algebraic field extension of k. Since Ai/k has bounded
algebraic degree d, its maximal separable subextension Aét

i is finite dimensional over k. As
the center Z(S) of S has the properties of A, we have established the conditions of the last
part of the lemma are sufficient to imply that the center is finite dimensional over k.

Now we show that S is semisimple. Let M be a simple S-module, and let E be the
division algebra EndS(M). First, we claim that M is finite dimensional over E. Indeed,
Jacobson’s density theorem6 implies that either M is finite dimensional over E and S →
EndE(M) ' Ms(E

op) is surjective, or for each j ≥ 1 there is a k-subalgebra Rj ⊂ S and a
surjective k-algebra homomorphism Rj � Mj(E

op), but the second option is not possible
since the elements of S are algebraic of bounded degree over k.

Now we claim that there are finitely many simple S-modules M1, . . . ,Ms up to isomor-
phism. This will complete the proof that S is semisimple, for in this case the fact that
J(S) = 0 implies that

(1.3.2.2) S −→
s∏
i=1

Mni(E
op
i ), where Ei := EndS(Mi)

is injective, and the fact that the Mi are pairwise non-isomorphic implies that it is surjective.
It remains to check the claim. For this, we refer the reader to the remainder of the proof,

found in [Che11, Lemma 2.14]. �

Now we must describe the possible pseudorepresentations out of a simple k-algebra S
whose center K is a finite exponent extension of k. Let us first recall that we have already
given such a result in the case that the center of S is k, so that S is an Azumaya algebra
over k. This is Proposition 1.1.7.10, due to Ziplies [Zip86], which states that all of the
pseudorepresentations out of an Azumaya algebra are induced by integral powers of the
reduced norm.

Having described the Azumaya algebra case, we proceed to the general case.

Lemma 1.3.2.3 ([Che11, Lemma 2.17]). Let K/k be a field extension with finite exponent
(f, q), and let S be a central simple finite dimensional K-algebra. Then any pseudorepresen-
tation D : S → k has the form detmS for some unique integer m ≥ 0.

6Jacobson’s density theorem states that for any simple left module N of a ring R, any EndR(N)-linear
transformation η of N , and any finite set of elements {xi} of N , there exists r ∈ R such that η(xi) = r · xi
for all i. See e.g. [Her68, Theorem 2.1.2].

55



Proof. Let D : S → k be a d-dimensional pseudorepresentation, and define n2 :=
dimK(S). Note that if D = detmS , then we must have d = fmnq since detS is homogenous
of degree fnq by definition; this shows that m is unique if it exists.

We will use the following fact below: if two d-dimensional pseudorepresentations D1, D2 :
R→ A are such that D1 ⊗A B ∼= D2 ⊗A B for some commutative A-algebra B with A→ B
injective, then D1

∼= D2. This follows directly from the representability of the moduli space
of pseudorepresentations, Theorem 1.1.7.4.

Assume for the moment that k is separably closed, so that K is as well. The Noether-
Jacobson theorem implies that S is isomorphic to some matrix algebra Mn(K), n ≥ 1. Set
A := K⊗kK, and denote by I the kernel of the natural split surjection A→ K. We see that
I is generated as an A-module by elements of the form x⊗ 1− 1⊗ x, which are nilpotent of
index ≤ q. In, particular, I is a nil ideal, and any finite type A-submodule of I is nilpotent as
an ideal. Now Lemma 1.2.3.1(6) implies that for any pseudorepresentation D : Mn(A)→ K,
D factors through π : Mn(A) �Mn(A/I) = Mn(K). Applying this to

D ⊗k K : S ⊗k K 'Mn(K)⊗k K ∼= Mn(A) −→ K,

we get a pseudorepresentation Mn(K) → K, which is an integral power of the usual deter-
minant by Proposition 1.1.7.10, say D ⊗k K ∼= detsMn(K) ◦π and d = ns. Now recall that
the restriction of D ⊗k K to Mn(K) ⊗ 1 ⊂ Mn(A) must be valued in k, since D is valued
in l. This means that dets(Mn(K)) ⊂ k. Therefore q must divide s, and we observe that

det
s/q
S ⊗kK ∼= D ⊗k K. Now by the fact mentioned above, this implies that D ∼= det

s/q
S .

Now we reduce to the case that k is separably closed. We have

K ⊗k ksep ∼−→
f∏
i=1

Ki,

where Ki = K · ksep is a separable algebraic closure of K such that Kq
i ⊂ ksep for each i (q

is minimal for this property) and Gal(ksep/k) permutes transitively the Ki. Recall that f is
the (finite) separable degree of K over k. Likewise,

S ⊗k ksep ∼= S ⊗K (K ⊗k ksep)
∼−→

f∏
i=1

Si,

where Si = S ⊗K Ki is central simple of rank n2 over Ki. By Proposition 1.1.11.5(2), each

D ⊗k ksep is the product of determinants Si
∼→ Mn(Ki) → ksep, which have the form detmiSi

by the previous step above, and d = n(
∑f

i=1mi). As D ⊗k ksep is Gal(ksep/k)-equivariant,
this implies that mi is independent of i, i.e. mi = m for each i. Therefore, m = d/nf , and
we observe that D ⊗k ksep ∼= detmS ⊗kksep. Now by the fact mentioned above, this implies
that D ∼= detmS , as desired. �

Now we complete the proof of Theorem 1.3.1.3.

Proof. (Theorem 1.3.1.3) By Lemma 1.3.2.1, we know that R/ ker(D) is isomorphic to
a product of s ≤ d simple k-algebras Si whose centers ki are finite exponent extensions of k.
This is part (1). Write (fi, qi) for the exponent of ki.
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By Proposition 1.1.11.5(2), any pseudorepresentation out of R/ ker(D) is the sum7 of
pseudorepresentations Di, one out of each Si. Indeed, Spec k is connected, so that the con-
ditions of Proposition 1.1.11.5 are satisfied. Lemma 1.3.2.3 implies that each Di is a power
detmiSi of detSi . As Proposition 1.1.11.5 tells us that the degree of a sum of pseudorepresen-
tations is the sum of the degrees, and detSi has degree niqifi, the formula for the degree
follows; this is part (2).

For part (3), we are simply combining part (1) with Lemma 1.1.6.6(2). Part (4) follows
directly from Lemma 1.3.2.1. �

Corollary 1.3.2.4. Let D : R → k be a d-dimensional pseudorepresentation of a k-
algebra R.

(1) There exists a field extension L/k such that D⊗k L is realizable as the determinant
of a matrix algebra-valued representation

R⊗k K →Md(L).

If R/k is finitely generated, then L/k may be chosen to be a finite extension.
(2) When the centers ki/k, 1 ≤ i ≤ s, of exponent (fi, qi), the simple factors Si of

R/ ker(D) of Theorem 1.3.1.3 are separable extensions, e.g. when k is perfect, then
there exists a finite separable extension K of degree bounded by

∏s
i=1 fi such that

R/ ker(D)⊗k K
is a product of matrix algebras and the natural map from R⊗k K to this algebra is
a d-dimensional representation whose determinant induces D ⊗k K.

Proof. We begin with the case that the integer s from Theorem 1.3.1.3 is 1, i.e. the
k-algebra R/ ker(D) is a central simple n2-dimensional L-algebra S where L/k is a field
extension of finite exponent (f, q) such that d = n ·f · q. Its maximal separable subextension
L′/k has degree f . Because universal homeomorphisms such as inseparable extensions induce
equivalences of étale topoi and Brauer groups classify central simple algebras over a field,
the L′ algebra S ⊗k L′ is isomorphic to Mn(L). We then observe that the product L-algebra

q∏
i=1

∏
σ∈Gal(L′/k)

σMn(L)

is naturally embeddable in Md(L). The pseudorepresentation resulting from

R/ ker(D)⊗k L −→
q∏
i=1

∏
σ∈Gal(L′/k)

σMn(L) −→Md(L)
det−→ L

is then equal to D ⊗k L, upon examining the “determinant” detS of S defined in Definition
1.3.1.2 and the conclusion of Theorem 1.3.1.3.

The general result (1) follows by applying this to each of the simple factors Si of
R/ ker(D), taking the sum of the resulting pseudorepresentations on the product of these
factors, and tensoring D by the composite field of the extensions L′ above of each factor.

The claim that the finite generation of R/k implies the finitude of L/k follows from
Theorem 1.3.1.3(4d).

Part (2) follows from part (1) and its proof when qi = 1 for each i. �

7Recall that this sum is defined in (1.1.11.2).
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1.3.3. Finite-Dimensional Cayley-Hamilton Algebras. In this paragraph, we find
conditions under which a Cayley-Hamilton algebra (R,D) over a field k is finite-dimensional.
There are three basic ingredients. Results from PI ring theory from §1.2.2 culminated in the
fact that the Jacobson radical of a Cayley-Hamilton algebra over a field is nilpotent, with
degree of nilpotence bounded in terms of the degree of the pseudorepresentation (Lemma
1.2.3.1). The next ingredient is the conditions we have given above for the maximal semisim-
ple quotient of R to be finite-dimensional. Finally, we require some basic lemma, which we
now give. This translates the condition that ker(D)/ ker(D)2 is a finite dimensional vector
space, which is the last fact we require, into a condition on the deformations to k[ε]/(ε2) of
the semisimple representation ρ associated to D.

Lemma 1.3.3.1. Let A be a commutative ring, R an A-algebra. Let I be a two-sided ideal
of R. There is a natural A-module isomorphism

HomR(I/I2, R/I)
∼−→ Ext1

R(R/I,R/I).

Proof. Apply HomR(−, R/I) to the exact sequence of R-modules

0 −→ I −→ R −→ R/I −→ 0,

and use that Ext1
R(R,−) = 0. �

We continue to work with deformations of a fixed d-dimensional pseudorepresentation
D̄ : R → k. Now let us restrict to the case that S := R/ ker(D̄) is finite dimensional as a
k-vector space.

Theorem 1.3.3.2. Let k be a field of characteristic p ≥ 0 and let R be a k-algebra
equipped with a Cayley-Hamilton d-dimensional pseudorepresentation D : R → k. Assume
that S := R/ ker(D) is finite-dimensional over k. If Ext1

R(S, S) is finite-dimensional as a k-
vector space, where S is treated as an R-module here, then R is finite-dimensional k-algebra.

Recall that sufficient conditions for S to be finite dimensional over k are given in Theorem
1.3.1.3(4).

Proof. Apply Lemma 1.3.3.1, so that the assumption that dimk Ext1
R(S, S) <∞ implies

that dimk HomS(ker(D)/ ker(D)2, S) < ∞. This means that ker(D)/ ker(D)2 is a finite
sum of simple representations of S, but this in turn implies that ker(D)/ ker(D)2 is finite-
dimensional as a k-vector space.

Because there are natural surjections

(I/I2)⊗
n
k � In/In+1

for any ideal I ⊂ R, this means that R/ ker(D̄)2n is also finite dimensional over k for any
positive integer n. Since (R,D) is Cayley-Hamilton, Lemma 1.2.3.1(4) implies that ker(D) is
nilpotent of index bounded by N(d) (or by N(d, p)), where N(d) is the integer of Definition
1.2.2.7. This completes the proof. �

1.3.4. Composition Factors of Field-Valued Pseudorepresentations. We con-
clude this section with some discussion of the simple factor algebras of R/ ker(D), where
we continue to let R be a k-algebra where k is a field. Equivalently (almost), we discuss
the Jordan-Hölder factors that appear in representations of R arising from pseudorepresen-
tations according to Theorem 1.3.1.1. We mostly follow Chenevier’s discussion of [Che11,
§2], and introduce some notions – the Grothendieck group of R and dimension vectors of
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representations – that will be useful in §2.2. These notions will be heavily used when we
discussion deformation theory of pseudorepresentations in Chapter 2.

Definition/Lemma 1.3.4.1 ([Che11, Defn.-Prop. 2.18]). Let D : R → k be a d-
dimensional pseudorepresentation over a field k. We call D absolutely irreducible provided
that one of the following equivalent conditions is true.

(1) The semisimple representation ρD : R⊗k k̄ →Md(k̄) with determinant equal to the
pseudorepresentation D, which exists and is unique up to isomorphism by Theorem
1.3.1.1, is irreducible,

(2) (R⊗k k̄)/ ker(D ⊗k k̄) 'Md(k̄),
(3) R/ ker(D) is a central simple k-algebra of rank d2,
(4) R/CH(D) is a central simple k-algebra of rank d2,
(5) for some (resp. all) subset X ⊂ R generating R as a k-vector space, there exists

x1, x2, . . . , xd2 ∈ X such that the abstract d2 × d2 matrix ((Λ1(xixj))i,j belongs to
GLd2(k).

If they are satisfied, then CH(D) = ker(D) = {x ∈ R, ∀y ∈ R,Λ1(xy) = 0}.

Proof. Since we know from Proposition 1.1.7.10 that any pseudorepresentation out of a
matrix algebra is a power of the determinant, and a pseudorepresentation factors through the
quotient by its kernel, (2) implies (1) since we know that D has dimension d. Conversely, if ρ :
R⊗k k̄ →Md(k̄) is as in (1), then Wedderburn’s theorem tells us that ρ is surjective. We see
that ker(ρ) ⊂ ker(D), since the pseudorepresentation det ◦ρ is invariant under multiplication
by ker(ρ). Therefore (2) follows from Theorem 1.3.1.3. Also, (5) (for any subset X ⊂ R
satisfying the conditions above) follows from (1) or (2) by the nondegeneracy of the trace
pairing on Md(k̄). Conversely, if X ⊂ R satisfies (5), then

dimk̄((R⊗k k̄)/ ker(D ⊗k k̄)) ≥ d2,

and now (5) implies (2) by Theorem 1.3.1.3, since positive integers ni, 1 ≤ i ≤ s, such that∑s
1 ni = d also satisfy

∑
n2
i = d2 if and only if s = 1 and d = n.

We have shown that (1), (2), and (5) are equivalent. Because the quotient R/CH(D)
commutes with arbitrary base changes (this is Lemma 1.1.8.6), and a k-algebra R is central
simple of rank d2 if and only if R ⊗k k̄ is a rank d2 matrix algebra, we see that (4) ⇐⇒
(2). Now recall from Lemma 1.2.3.1 that the kernel of the natural surjection

R/CH(D) −→ R/ ker(D)

is nilpotent and equal to the Jacobson radical of R/CH(D). Clearly (4) implies (3), since
the kernel ker(D) is non-trivial by Lemma 1.1.6.6(2). To complete the proof, we show that
(3) implies (5). Since the kernel is stable under separable extensions by Lemma 1.2.3.5 and
the central simple algebra R/ ker(D) of finite rank is split by a finite separable extension
k′/k, we have that Md(k

′) ∼= R/ ker(D) ⊗k k′ ∼= (R ⊗k k′)/ ker(D ⊗k k′). We can choose
x1, . . . , xd2 in R to be lifts of a k-basis for R/ ker(D); as this k-basis is also a k′-basis for
(R⊗k k′)/ ker(D⊗k k′) ∼= Md(k

′) and (D⊗k k′)(t− xi⊗ 1) = D(t− xi), (5) follows from the
nondegeneracy of the trace pairing on Md(k

′). �

We can derive from these equivalences the fact that the locus of absolutely irreducible
pseudorepresentations is open. First we give a definition.
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Definition 1.3.4.2. We write PsIrrdR ⊂ PsRd
R for the subfunctor of PsRd

R cut out by the
following condition: for B ∈ AlgA and D ∈ PsRd

R(B), we say that D ∈ PsIrrdR provided that
for every B-field k, D ⊗B k : R⊗B k → k is an absolutely irreducible pseudorepresentation.

Corollary 1.3.4.3 (cf. [Che11, Example 2.20]). The subfunctor PsIrrdR ⊂ PsRd
R is

Zariski open and therefore representable.

Proof. We use condition (5) of Definition/Lemma 1.3.4.1: choose r1, . . . , rd2 such that
(5) holds. This defines a morphism of affine SpecA-schemes

PsRd
R −→Md2

D 7→ (Λ1(rirj))i,j,

and Definition/Lemma 1.3.4.1 tells us that the absolutely irreducible locus is the inverse
image of the open subscheme GLd2 ⊂Md2 , which is therefore an open subscheme. �

As we will discuss in §2.1.3, the deformation theory of absolutely irreducible pseudorep-
resentations is especially nice. It amounts to deforming the absolutely irreducible represen-
tation associated to it by Theorem 1.3.1.1; this is already suggested by Corollary 1.3.4.3

The next most tractable case for the deformation theory of pseudorepresentations (which
we will discuss in §2.1) is the multiplicity free case, which we now define. While “multiplicity
free” is defined over any field k by using the base change to the algebraic closure, just like the
case for “absolutely irreducible,” we will sometimes require that the pseudorepresentation
be realizable as the determinant of a matrix algebra-valued representation over k. We define
the term split for this purpose.

Definition/Lemma 1.3.4.4 ([Che11, Definition 2.19]). Given a d-dimensional pseu-
dorepresentation D : R → k, we say that D : R → k is multiplicity free provided that
D ⊗k k̄ is the determinant of a direct sum of pairwise non-isomorphic irreducible k̄-linear
representations. In the notation of Theorem 1.3.1.3, it is equivalent to say that mi = qi = 1
for each i.

Call D split provided that it is induced by the determinant of a representation R →
Md(k). Equivalently, D is split if and only if R/ ker(D) is a finite product of matrix algebras
over k.

Proof. We will prove the equivalence of the definitions of “split.” If R/ ker(D) is a
finite product of matrix algebras

∏s
1Mni(k), then by Proposition 1.1.11.5(2) and Proposition

1.1.7.10, D is a product of powers of the determinants of each Mni(k), say D = ⊕ detmiMni
,

where
∑s

1 nimi = d. If Mi is the representation of R corresponding to R→Mni(k), then we
can recover D as the determinant of the d-dimensional representation ⊕M⊕mi

i .
Conversely, assume that R/ ker(D) is not a finite product of matrix algebras. In this

case, R/ ker(D) is nonetheless semisimple with additional properties prescribed by Theorem
1.3.1.3: it is a product of simple k-algebras Si, each of which is of finite dimension n2

i over
its center ki, where ki/k has exponent (fi, qi). The k-valued pseudorepresentations of Si are
described in Lemma 1.3.2.3. Using Proposition 1.1.11.5(2) and Lemma 1.3.2.3 in the same
way as above, D = ⊕ detmiSi for some non-negative integers mi, and d =

∑s
1 fiqimini. We

note that ki has separable degree fi over k, and inseparable degree at least qi over k. We
note that any representation of Si has dimension at least fiqini over k, and this is achieved
if and only if Si is a matrix algebra over ki. Since at least one Si is not a matrix algebra by

60



assumption, we see that D cannot possibly be realized as the determinant of a d-dimensional
sum of representations of the Si. �

Write RepR(k) for the abelian category of finite-dimensional representations of the k-
algebra R over k. To be precise, an object of this category is a finite-dimensional k-vector
space V with a k-linear action of R. We give the following definitions in the context of
representations of algebras; the second term comes from the theory of quiver representations.

Definition 1.3.4.5. Let C be an abelian category.

(1) The Grothendieck group of C, denoted K0(C), is the quotient of the free abelian
group on the objects of C by the subgroup generated by exact sequences, i.e. by
[M ′]− [M ] + [M ′′] where

0 −→M ′ −→M −→M ′′ −→ 0

is an exact sequence in C.
(2) Assuming that any object of C has a unique composition series, the Grothendieck

semi-group is the set of isomorphism classes of semisimple objects of C, with the
operation coming from the direct sum of objects.

(3) The dimension vector of an object of C is its image in the Grothendieck group
K0(C).

(4) If any element ρ of C has a composition series, we consider the dimension vector βρ
to be a vector with respect to the basis of K0(C) given by simple objects.

In the case that C is RepR(k), the finite-dimensional restriction shows that any object
has a composition series (the representation factors through a subalgebra of Endk(V ); apply
the Hopkins-Levitsky theorem). From this, we deduce that K0(RepR(k)) is generated by the
simple finite-dimensional representations of R over k. We can think of the dimension vector
of a representation (or its semisimplification) as a vector with respect to this basis.

Using this basis for K0(RepR(k̄)), one can say that a pseudorepresentation D : R → k
is absolutely irreducible when the associated element of K0(RepR(k̄)) has a single non-
zero entry, which is 1. The pseudopresentation is multiplicity free when the corresponding
representation has dimension vector with coordinates consisting of 0 and 1.

1.4. Moduli Spaces of Representations

Let S be an affine Noetherian scheme and let R be a finitely generated, not necessarily
commutative quasi-coherent OS-algebra, which amounts to a finitely generated Γ(OSpecS)-
algebra. We consider moduli spaces of representations of R over S-schemes. The Noetherian
hypothesis on S will allow for the moduli spaces of representations of R that we will de-
scribe below to be Noetherian as well (also cf. Remark 1.1.10.16). We will conclude this
section by drawing a morphism from these moduli spaces of representations to their induced
pseudorepresentation.

1.4.1. Moduli Schemes and Algebraic Stacks. The following definitions describe
the functors and groupoids of representations of R that we will study.

Definition 1.4.1.1. With S and R as above and a positive integer d, define the following
S-functors and S-groupoids of d-dimensional representations over an S-scheme X.
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(1) Define the functor on S-schemes Rep�,d
R by

X 7→ {OX-algebra homomorphisms R⊗OS OX −→Md(X).

(2) Define the S-groupoid RepdR by

ob RepdR(X) = {V/X rank d vector bundle,

OX-algebra homomorphism R⊗OS OX −→ EndOX (V )}

(3) Define the S-groupoid Rep
d

R by

ob Rep
d

R(X) = {E a rank d2OX-Azumaya algebra,

OX-algebra homomorphism R⊗OS OX −→ E}

The functor Rep�,d
R is of natural interest, but we will often be interested in studying rep-

resentations of R up to isomorphism, where isomorphisms come from conjugation. Explicitly,
we say that ρ, ρ′ ∈ Rep�,d

R (SpecA) are equivalent when there exists some g ∈ GLd(A) such

that ρ = g−1 · ρ′ · g. We fix this adjoint action of GLd or PGLd on Rep�,d
R , and we desire a

scheme that represents the functor of orbits of this action.
However, the functor sending SpecA to the set of such equivalence classes/orbits – we

could say that it is the functor sending an S-scheme X to a free module with an action
of R, up to isomorphism – is not representable in general. Projective modules must be
allowed in order to put equivalence classes of representations of R into families and still
retain representability by an algebraic object. There are two possible strategies that have
been explored most. One strategy is to find the S-scheme which does the best possible job,
by some standard, in representing the moduli problem up to isomorphism. This approach
of “geometric invariant theory” will be discussed in the next section §1.5. Here, we will
follow the other approach, which is to remember the data of the isomorphisms between
objects, resulting in groupoids fibered over the category of S-schemes that are representable
by algebraic stacks. As we will see below (Theorem 1.4.1.4), the groupoids described above
will naturally arise as the quotient stacks of the adjoint action.

There is a canonical 1-equivalence to the functor (better, S-setoid) Rep�,d
R from the S-

groupoid whose fiber over an S-scheme X is the data of a free, rank d OX-module, a basis,
and an OX-linear action of R⊗OSOX . Having drawn this equivalence, we observe that there
are canonical maps

(1.4.1.2) Rep�,d
R −→ RepdR −→ Rep

d

R

where the first arrow is given by forgetting the basis and retaining the free rank d vector
bundle with its action, and the second arrow is given by forgetting the vector bundle and
retaining the homomorphism from R ⊗OS OX into its bundle of endomorphisms. We note

that the Azumaya algebras in Rep
d

R are not taken up to equivalence8, so that they corespond
up to isomorphism with PGLd-torsors, not elements of the Brauer group. In other words, we
consider non-trivial but locally isotrivial (i.e. Zariski locally trivializable) Azumaya algebras.

Theorem 1.4.1.3. Let S,R, and d be as above. Then the functor Rep�,d
R is representable

by an affine finite type S-scheme.

8Azumaya algebras E1, E2 over A are called equivalent if there exist finite rank projective modules V1, V2 such
that there exists an isomorphism of A modules E1 ⊗A EndA(V1) ∼= E2 ⊗A EndA(V2). The Azumaya-Brauer
group classifies Azumaya A-algebras up to equivalence, cf. [Gro68, §2].
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Proof. Choose a set of generators r1, . . . , rn for R over A. Then we have a morphism
of functors

Rep�,d
R −→Mn

d

ρ 7→ (ρ(r1), ρ(r2), . . . , ρ(rn)).

Let X be the finite set X = {x1, . . . , xn} and let F be the non-commutative quasi-coherent
S-algebra freely generated by X. We observe that the map above induces an isomorphism
Rep�,d

F

∼→ Mn
d . There is a canonical map F � X given by sending xi 7→ ri for each

i, 1 ≤ i ≤ n, and let J ⊂ F be its kernel, which is a two-sided ideal of F . For f ∈ J ,
consider it as a function f(x1, . . . , xn) of the free variables xi. There exists a morphism
W f ∈ HomS−schemes(M

n
d ,Md) corresponding to f , given by sending an n-tuples of d × d-

dimensional matrices (m1, . . . ,mn) to f(m1, . . . ,mn). Let W f
ij ∈ Γ(O(Mn

d )) be the regular

function obtained from composing W f with the projection onto the (i, j)th coordinate of

d × d-matrices, and let IJ be the ideal of Γ(O(Mn
d )) generated by W f

ij as f varies over
elements of J and 1 ≤ i, j ≤ d.

We claim that the closed subscheme V (IJ) ⊂Mn
d represents the functor Rep�,d

R is isomor-

phic to Rep�,d
R under the map above. Clearly we have a monomorphism Rep�,d

R → V (IJ) ⊂
Mn

d , because each of the relations f ∈ J are sent to zero under the representation. For

any affine S-scheme SpecA, the map of sets Rep�,d
R (A) → V (IJ)(A) is surjective, since for

(m1, . . . ,mn) ∈ V (IJ)(A), the A-algebra homomorphism R ⊗Γ(OS) A→ Md(A) arising from
sending ri to mi defines a representation which maps to (m1, . . . ,mn). �

We recall that GLd and PGLd act on Rep�,d
R via the adjoint action, conjugating the

matrix coefficients of the representations.

Theorem 1.4.1.4. The groupoids RepdR and Rep
d

R are equivalent to algebraic stacks, in
particular the quotient algebraic stacks

RepdR
∼= [Rep�,d

R /GLd], Rep
d

R
∼= [Rep�,d

R /PGLd].

The canonical smooth presentation maps of these quotient stacks

Rep�,d
R −→ [Rep�,d/GLd] −→ [Rep�,d

R /PGLd]

correspond to the natural maps of groupoids (1.4.1.2).

For the reader’s convenience, we recall some equivalent definitions of Azumaya algebras.

Definition 1.4.1.5 ([Gro68, Theorem 5.1]). Let X be a scheme, and let E be a coherent
OX-module which has the structure of a OX-algebra. Then we say that E is an Azumaya
algebra if one of the following equivalent conditions are satisfied.

(1) E is locally free as a OX-module, and for every x ∈ X, the fiber E ⊗OX κ(x) is a
central simple algebra.

(2) E is locally free as a OX-module, and the canonical homomorphism E ⊗OX Eop →
EndOX (E) is an isomorphism.

(3) There exists an étale covering U → X such that E ⊗OX OU ∼= Md(OU) for some
d ≥ 1.

Now we prove Theorem 1.4.1.4.

Proof. The quotient [Rep�,d
R /GLd] parameterizes, by definition, a GLd-torsor G along

with a GLd-equivariant map G → Rep�,d
R . This is what we will create from the data of an
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SpecA-point of RepdR, i.e. the data (V/A, ρ : R ⊗OS A → EndA(V )), where V is a rank
d projective A-module. We create a GLd torsor over SpecA corresponding to V , setting
its functor of points on SpecA-schemes X to be G(X) := IsomOX (V ⊗A OX ,O⊕dX ). This
defines an equivalence of categories between GLd-torsors up to isomorphism and rank d
locally free sheaves up to isomorphism. The identity map in G(G) = IsomOG(V ⊗AOG,O⊕dG )

is a canonical isomorphism V ⊗A OG
∼→ O⊕dG . This defines a OG-linear action of R ⊗OS OG

on the free vector bundle O⊕dG with its canonical basis, so that we have a map G → Rep�,d
R .

It remains to show that this map is GLd-equivariant. The action of GLd on G on the right
comes from the standard action of GLd(X) on O⊕dX . This is effectively the basis change
action of GLd on the map R ⊗OS OX → Md(X), which is the adjoint action. This is an

A-point of [Rep�,d
R /GLd], as desired.

For the inverse construction, we take an A-point of [Rep�,d
R /GLd], i.e. a GLd-equivariant

map G → Rep�,d
R , and create an object of RepdR(A). We use the equivalence of categories

between vector bundles and GL-torsors mentioned above to find a rank d projective A-
module such that G(X) ∼= IsomOX (V ⊗A OX ,O⊕dX ) for all A-schemes X. As V ⊗A OG is a
rank d-free module with a canonical basis as discussed above, we can take our initial data
of R⊗OS OG →Md(G) and compose it with the canonical map Md(G)

∼→ EndOG(V ⊗A OG),
to obtain an action of R ⊗OS OG on V ⊗A OG. We leave it as an exercise to show that the

GLd-equivariance of G → Rep�,d
R is then exactly what we need in order to descend this map

to SpecA.

The proof that Rep
d

R
∼= [Rep�,d

R /PGLd] goes along the same lines. We choose a SpecA-

point of Rep
d

R: a map R⊗OS A→ E, where E is a rank d2 Azumaya A-algebra. We can then
create a PGLd-torsor G whose X-points for an A-scheme X are G(X) := IsomOX−alg(E ⊗A
OX ,Md(X)), and the action of PGLd(X) on G(X) comes from its adjoint action on Md(X).

Then the identity map id ∈ G(G) corresponds to a canonical isomorphism E⊗AOG
∼→Md(G)

defining a morphism G → Rep�,d
R , and we observe that the adjoint action on both the source

and target make this map PGLd-equivariant, and therefore an A-point of [Rep�,d
R /PGLd].

For the inverse construction, from an A-point G → Rep�,d
R of [Rep�,d

R /PGLd] we construct
a rank d2 Azumaya A-algebra E so that there is a canonical isomorphism of coherent OG-
algebras E ⊗A OG

∼→ Md ⊗OG. Then the map R ⊗OS OG → Md(G) can be composed with

E(G)
∼→Md(G) to get a map R⊗OS OG → E⊗AOG. The PGLd-equivariance of G → Rep�,d

R

allows us to descend this map from G to SpecA.
The claim that the forgetful maps from Rep�,d

R and the presentation maps commute with
the equivalences we have drawn follows from checking that the universal framed representa-

tion over Rep�,d
R induces a map to RepdR (resp. Rep

d

R) compatible with the universal object
on the quotient stack via the correspondence that we have written out above. �

1.4.2. Mapping Algebraic Stacks of Representations to the Moduli Scheme
of Pseudorepresentations. Let X be an S-scheme. Having defined these moduli spaces
of representations of the OS-algebra R, we know that the association of an X-valued repre-
sentation of R, that is, the data

(ρ : R⊗OS OX −→Md(OX)) ∈ Rep�,d
R (X)
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to an X-valued pseudorepresentation by taking the determinant (see Theorem 1.1.7.4(6) and
Remark 1.1.7.6)

R⊗OS OX
ρ−→Md(OX)

det−→ OX
defines a morphism of S-schemes

(1.4.2.1) ψ� : Rep�,d
R −→ PsRd

R.

Think “ψ” for pseudorepresentation.
We will now show that there is also a natural pseudorepresentation associated to objects

of RepdR(X) and Rep
d

R(X) that is constant across isomorphism classes in the groupoid, so
that there are morphisms of algebraic stacks

ψ : RepdR → PsRd
R, ψ̄ : Rep

d

R → PsRd
R

which commute with the canonical maps (1.4.1.2). Then we will have a commutative diagram

(1.4.2.2) Rep�,d
R

(1.4.1.2)
//

ψ�

))

RepdR
(1.4.1.2)

//

ψ

##

Rep
d

R

ψ̄
��

PsRd
R

All that we need to do is construct the vertical arrow ψ̄, sending, for X an S-scheme, an
Azumaya OX-algebra-valued representation R ⊗OS OX → E to an OX-valued pseudorepre-
sentation. We will achieve this using the reduced norm map out of any Azumaya algebra,
and indeed, the rest of the characteristic polynomial coefficients. We construct these coeffi-
cient functions as follows. Each coefficient of the characteristic polynomial defines a regular
function Md → A1 which is invariant under the adjoint action of PGLd. Each Azumaya
algebra E is a form of Md twisted by this action (cf. [Gro68, Corollary 5.11]); therefore, the
characteristic polynomial function descends from E⊗OXOU ∼= Md(OU) to E over OX [Gro68,
5.13].

Now there are at least two perspectives we could take on the pseudorepresentation asso-

ciated to an object ρ : R⊗OSOS → E of Rep
d

R(X). We can compose this representation with
the reduced norm, which we continue to write as “det” as it is equal to det étale-locally:

R⊗OS OS
ρ−→ E det−→ OX

is compatible with base change, making a pseudorepresentation. Alternatively, as PsRd
R is a

scheme, it is a sheaf on the étale site SÈt, so that we can choose an étale cover U of X and
descend the pseudorepresentation

R⊗OS OU
ρ⊗OU−→ E ⊗OX OU ∼= Md(OU)

det−→ OU
to a pseudorepresentation over OX .

In any case, we have completed the construction of the diagram (1.4.2.2).

1.4.3. Representations Factor through the Universal Cayley-Hamilton Alge-
bra. In this paragraph, we will show that our basic assumptions – that R is a finitely gen-
erated algebra over an affine Noetherian base – are sufficient to show that the d-dimensional
universal representation of R factors through an algebra finite over its center. This is a con-
sequence of the theorem below, which shows that any representation of R factors through
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the universal d-dimensional Cayley-Hamilton representation associated to R,

ρu : R⊗A ΓdA(R)ab −→ E(R, d)

Recall the definition of Cayley-Hamilton representations from §1.2.4. In particular, E(R, d)
is a ΓdA(R)ab-algebra, defined to be (R⊗A ΓdA(R)ab)/CH(Du).

Theorem 1.4.3.1. Any representation in Rep�,d
R (B) (resp. RepdR(B), resp. Rep

d

R(B)) of
R factors uniquely through the universal Cayley-Hamilton representation

ρu ⊗ΓdA(R)ab B : R⊗A B −→ E(R, d)⊗ΓdA(R)ab B.

This factorization induces canonical equivalences of PsRd
R-schemes (resp. algebraic stacks)

Rep�,d
R

∼−→ Rep�,d
E(R,d),Du|E ,

RepdR
∼−→ RepdE(R,d),Du|E ,

Rep
d

R
∼−→ Rep

d

E(R,d),Du|E ,

where the left hand side algebraic stacks are considered to be PsRd
R-stacks through the map

ψ� (resp. ψ, resp. ψ̄).

The implicit map ΓdA(R)ab → B arises from the determinant (or reduced norm) of the
representation, along with the representability result Theorem 1.1.7.4.

Remark 1.4.3.2. While the theorem has an especially nice consequence when A is as-
sumed to be Noetherian and R is assumed to be finite generated over A, the theorem is true
with or without these finiteness assumptions.

Proof. Let SpecB be an affine PsRd
R-scheme (and therefore naturally an A-algebra) and

write ζ : SpecB → PsRd
R for the structure map, i.e. a choice of a B-valued d-dimensional

pseudorepresentation of R. Any object of the SpecA-groupoids Rep�,d
R (B), RepdR(B) induces

an Azumaya B-algebra-valued representation ρ : R ⊗A B → E ∈ Rep
d

R(B) by the forgetful
maps (1.4.1.2). The question of the factorization of a representation does not depend on the

forgotten data, so it will suffice to prove the result for ρ. So we choose ρ ∈ Rep
d

R(B), such
that

SpecB
ρ //

ζ ##

Rep
d

R

ψ̄
��

PsRd
R

commutes.
Recall Definition 1.2.4.1, which is the notion of a Cayley-Hamilton representation of R.

Following Remark 1.2.4.2, we note that a the data of ρ induces a d-dimensional Cayley-
Hamilton representation of R over B, namely

(B, (E , det), ρ),

where det : E → B represents the reduced norm map for the Azumaya B-algebra E .
Proposition 1.2.4.3 shows that the universal d-dimensional Cayley-Hamilton represen-

tation (ΓdA(R)ab, (E(R, d), Du|E), ρu) is initial in the category CHd(R) of Cayley-Hamilton
representations of R. Thus there exists a canonical CHd(R)-morphism

(ΓdA(R)ab, (E(R, d), Du|E), ρu) −→ (B, (E , det), ρ).
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This includes the datum of a A-morphism ΓdA(R)ab → B, corresponding to the pseudorep-
resentation det ◦ρ by representability and contravariantly equivalent to ζ. There is also a
canonical morphism

E(R, d)⊗ΓdA(R)ab B → E ∈ Rep
d

E(R,d),Du|E(B),

factoring ρ through the canonical quotient map ρu : R⊗A ΓdA(R)ab → E(R, d).

We have therefore exhibited a PsRd
R-morphism Rep

d

R → Rep
d

E(R,d),Du|E .
We can derive a quasi-inverse from ρu. Define

η : E(R, d)⊗ΓdA(R)ab B → E ∈ RepE(R,d),Du|E(B).

We get from η a representation of R, η ◦ (ρu ⊗B) ∈ Rep
d

R(B). �

When A and R satisfy appropriate finiteness conditions, we know that the universal
Cayley-Hamilton algebra, the ΓdA(R)ab-algebra E(R, d), is finite as a ΓdA(R) and is a Noether-
ian ring. Therefore we may show that the representation theory of a finitely generated algebra
over a commutative Noetherian ring reduces to the theory of Noetherian (non-commutative)
rings that are finite over their Noetherian center.

Corollary 1.4.3.3. Fix a positive integer d. If A is Noetherian and R is finitely gener-
ated as an A-algebra, all of the d-dimensional representations of R factor canonically through
an algebra which is finite as a module over its center and Noetherian, namely, each repre-
sentation factors uniquely through

ρu : R⊗A ΓdA(R)ab −→ E(R, d).

Proof. This follows directly from Theorem 1.4.3.1 along with Corollary 1.2.2.10.
We recapitulate Theorem 1.4.3.1 for clarity. A B-valued d-dimensional representation

of R amounts to some map ρ : R ⊗A B → E where E is a rank d2 B-Azumaya algebra,
possibly with some extra data that we can discard. The induced pseudorepresentation ψ̄(ρ)
induces a map ΓdA(R)ab → B by the representability of PsRd

R. This gives us the B-valued
representation of R⊗AΓdA(R)ab. Then Theorem 1.4.3.1 shows that this representation factors
through ρu ⊗ΓdA(R)ab B.

The rest of the statements follow directly from Corollary 1.2.2.10. Since E(R, d) is
an ΓdA(R)ab-algebra, the center of E(R, d) contains the image of ΓdA(R)ab in E(R, d), and
E(R, d) is finite as a ΓdA(R)ab-module, it must also be module-finite over its center. As
noted in Corollary 1.2.2.10, these facts along with the Noetherianness of A imply that R is
Noetherian as well. �

Remark 1.4.3.4. We could prove a version of Corollary 1.4.3.3 with A being a field and
demanding that a base pseudorepresentation D : R → A be fixed. Then the functor of all
representations lying over this pseudorepresentation via ψ would factor through the Cayley-
Hamilton quotient R/CH(D) of R relative to D, and Theorem 1.3.3.2 gives conditions for
this quotient to be finite dimensional. We will use these ideas later, extending Corollary
1.4.3.3 to the case that R is a profinite algebra satisfying an appropriate finiteness condition
(see Theorem 3.2.3.2).

1.4.4. Representations of Groups into Affine Group Schemes. In this paragraph
we restrict our attention to representations of group algebras as opposed to general asso-
ciative algebras, and then generalize this case to representations of a group valued in an
arbitrary group scheme.
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Let Γ be a finitely generated group. Then R = OS[Γ] is a finitely generated quasi-
coherent OS-algebra, and the formalism of the above can be repeated. We leave the reader
to verify the following basic equivalences, which amount to saying for a ring A that A-
valued d-dimensional representations ρ : Γ → GLd(A) are equivalent to homomorphisms
A[Γ]→Md(A).

Proposition 1.4.4.1. Let R = OS[Γ] and let X represent an S-scheme. Then

(1) Rep�,d
R is naturally equivalent to the functor

X 7→ {Γ −→ GLd(X)}.
(2) RepdR is equivalent to the S-groupoid with objects over X being

{V/X a rank d vector bundle, Γ −→ AutOX (V )(X)}.
and morphisms being isomorphisms of these data.

(3) Rep
d

R is naturally equivalent to the S-groupoid with objects over X being

{H/X an inner form of GLd,Γ −→ H(X)}.
and morphisms being isomorphisms of these data.

Proof. Omitted. �

We also might be interested in representations of Γ that fix certain tensors, for example,
representations valued in Spd or SOd. We will simply let G be an arbitrary finite type flat
affine S-group scheme and consider the moduli of representations of Γ into G.

Definition 1.4.4.2. For an abstract group Γ and a finite type flat affine S-group scheme
G, we define the following functors and S-groupoids.

(1) Let Rep�,G
Γ denote the functor on S-schemes X

X 7→ {homomorphisms Γ −→ G(X).

(2) Define the S-groupoid RepGd by

ob RepGΓ (X) = {G a right G-torsor over X,

Γ −→ AutGX(G)(X)}.

Here AutGX(G) is the X-group scheme of automorphisms of G, where an automor-
phism of G over an X-scheme Y is an endomorphism of the Y -scheme G×X Y which
is equivariant for the right action of G×S Y .

(3) Define the S-groupoid Rep
G

d by

ob Rep
G

Γ (X) = {an inner form H of G over X,

Γ −→ H(X)}.

We observe that there are natural maps

(1.4.4.3) Rep�,G
Γ −→ RepGΓ −→ Rep

G

Γ .

To construct the first map, choose a trivial G-torsor G over S so that

(1.4.4.4) AutGS (G)
∼−→ G,

where the isomorphism follows from the fact that the maps G → G which are equivariant
for the right action of G on itself are precisely the left translations of G on itself. Then the

68



first map is given by sending (ρ : Γ→ G(X)) ∈ Rep�,G
Γ (X) to the composition

Γ −→ G(X)
∼−→ AutGS (G)(X).

The second map is given by forgetting the G-torsor G over X inducing the inner form
H := AutGX(G)(X), where we see that this is an inner form by the isomorphism, for a trivial
G-torsor.

Theorem 1.4.4.5. Let Γ, G be as above. Then the functor Rep�,G
d is representable by an

affine finite type S-scheme.

Proof. Choose a set of generators γ1, . . . , γn for Γ. Then we have a morphism of functors

Rep�,G
Γ −→ Gn

ρ 7→ (ρ(r1), ρ(r2), . . . , ρ(rn)).

Any word w on the n letters γ1, . . . , γn induces a map

fw : Gn −→ G

(g1, . . . , gn) 7→ w(g1, . . . , gn).

given by substituting gi for γi. We observe that Gn represents RepGFn , where Fn is the
free group on n letters. A representation of Fn valued in A corresponding to a morphism
p : SpecA → Gn induces a representation of Γ if and only if, for every word w in the
letters (γi) such that w = id ∈ Γ, fw ◦ p ∼= idG ×S SpecA, where idG is the identity section

idG : S → G of the S-group scheme G. Therefore Rep�,G
Γ is precisely the intersection over

words w such that w = id ∈ Γ of the closed subschemes Gw of Gn given by the fiber product

Gw //

��

Gn

fw
��

S
idG // G.

As S is Noetherian and G is finite type over S, so is Gw Noetherian and finite type over
S. �

Just as GLd (or PGLd) acts on group representations Γ → GLd via the adjoint action,
so does the adjoint group of G, namely G/Z(G), act on itself by the adjoint action. This

gives an action of G and PG := G/Z(G) on Rep�,G
Γ . Also, like before, this is a natural

notion of equivalence for the points of Rep�,G
Γ , but the functor of equivalence classes is not

representable. The following quotient stacks retain the equivariant geometry of Rep�,G
Γ , and

are equivalent to the stacks of representations defined above.

Theorem 1.4.4.6. The groupoids RepGΓ and Rep
G

Γ are equivalent to algebraic stacks, in
particular the quotient algebraic stacks

RepGΓ
∼= [Rep�,G

Γ /G], Rep
G

Γ
∼= [Rep�,G

Γ /PG].

The canonical flat presentation maps of these quotient stacks

Rep�,G
Γ −→ [Rep�,G/G] −→ [Rep�,G

Γ /PG]

correspond to the natural maps of groupoids (1.4.4.3).

Proof. Let G1 be a right G-torsor over an S-scheme X, equipped with a group homo-
morphism Γ → AutGX(G1)(X), where we use the superscript to denote various copies of the
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same G-torsor. We wish to induce from this data a G-equivariant map G2 → Rep�,G
Γ . We

know that G2 → X trivializes G1 via the map

(1.4.4.7)
G×X G2 ∼−→ G1 ×X G2

(g, x) 7→ (xg, x),

so we have a map

(1.4.4.8) Γ −→ AutGG2(G1 ×X G2)(G2)
∼−→ GG2(G2)

inducing a map G2 → Rep�,G
Γ . Now we wish to show that (1.4.4.8) is G-equivariant for the

standard right action of G on the left and the adjoint action of G on the right.
The right action of g′ ∈ G on G2 on the right side of (1.4.4.7) sends

(xg, x) 7→ (xg, xg′) = (xg′g′−1g, xg′),

and therefore acts on the left side of (1.4.4.7) by

(g, x) 7→ (g′−1g, xg′).

so its action on GG2 is the right action by multiplication on the left by the inverse. Now we
need to consider GG2 as a trivial right G-torsor and calculate the induced intertwining action
on the functor of automorphisms of GG2 as a torsor. These automorphisms are precisely the
left translations by g′′ ∈ G, g 7→ g′′g. The intertwining action of g′ ∈ G on this map is then

(g, x) 7→ (g′g, xg′−1) 7→ (g′′g′g, xg′−1) 7→ (g′−1g′′g′−1g, x),

which is the adjoint action, as desired.
For the inverse construction, we start with a G-equivariant map from a G-torsor G2 over

an S-scheme X with a G-equivariant map G2 → Rep�,G
Γ . By definition of Rep�,G

Γ , there
exists a homomorphism

Γ −→ G(G2).

As G2/X is trivialized by G1 → X, we can fix an isomorphism AutGG1(G2 ×X G1) ∼= GG1 , and
replace G with this expression in the homomorphism above. We leave it as an exercise to
check that the G-equivariance of G2 → Rep�,G

Γ is exactly what we need in order to descend
the automorphisms of G2 ×X G1 from G1 to X. �

1.5. Geometric Invariant Theory of Representations

In the previous section, we defined the affine, finite type S-scheme Rep�,d
R of d-dimensional

representations of the quasi-coherent, finitely generated OS-algebra R. After making note of
the natural equivalence relation of conjugation, we defined the algebraic quotient S-stacks
arising from this action. These algebraic stacks have a clear, explicit description as an S-
groupoid. In this section, we will study an alternative approach, using geometric invariant
theory to find the “best possible” S-scheme to stand in for a quotient of Rep�,d

R . Geometric
invariant theory (GIT) was originally developed by Mumford (see e.g. [Mum65]). We will first
describe Alper’s theory of adequate moduli spaces [Alp10], which summarizes and generalizes
the results of geometric invariant theory in a way that will be useful for our purposes, as
describes nicely the relationship between the quotient stack and the GIT quotient scheme
via the canonical projection morphism.

1.5.1. Alper’s Theory of Adequate Moduli Spaces. Say that an affine algebraic
group G acts on a finite type affine scheme X = SpecA over a field k. The GIT quotient
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scheme, which we will denote X//G, is the spectrum of the invariant regular functions on
X. That is, X//G := SpecAG, where AG ⊂ A is the k-subalgebra of A of co-invariants of
the co-action A → O[G] ⊗k A. We have a natural map X → X//G. When G is reductive,
Mumford’s theory implies that X//G is finite type over Spec k and the map X → X//G has
appropriate universal properties of the quotient of a group action. The finite type property
of the quotient is not necessarily true when G is not reductive [Nag60]. Now we turn our
interest toward the relationship of the quotient stack [X/G] to the GIT quotient scheme
through the canonical morphism φ : [X/G]→ X//G. We write X := [X/G] for short.

As Alper notes [Alp10, p. 2], φ can be checked to have the special properties

(1) For any surjection of quasi-coherent OX -algebras A → B and section t ∈ Γ(X ,B),
there exists an integer N > 0 and a section s ∈ Γ(X ,A) such that s 7→ tN .

(2) AG → Γ(OX ) is an isomorphism.

Slight extension of these properties to apply locally on non-affine spaces give the definitional
conditions for φ to be an adequate moduli space. As Alper puts it, “it turns out that
properties (1) and (2) capture the stack-intrinsic properties of such GIT quotient stacks
[X/G] and that these properties alone suffice to show that the quotient X//G inherits nice
geometric properties” [Alp10, p. 2].

Definition 1.5.1.1 ([Alp10]). A quasi-compact and quasi-separated morphism φ : X →
Y from an algebraic stack to an algebraic space is an adequate moduli space if the following
two properties are satisfied:

(1) For every surjection of quasi-coherentOX -algebrasA� B and every étale morphism
p : U = SpecA → Y and section t ∈ Γ(U, p∗φ∗B) there exists N > 0 and a section
s ∈ Γ(U, p∗φ∗A) such that s 7→ tN , and

(2) OY → φ∗OX is an isomorphism.

The first property is called “adequately affine,” and indeed, any quasi-compact, quasi-
separated map of algebraic spaces that is adequately affine is affine [Alp10, Theorem 4.3.1],
generalizing Serre’s criterion for affineness (which is the same condition with N = 1). In
sum, we require the following notions of adequacy.

Definition/Lemma 1.5.1.2. Let A→ B be a homomorphism of rings. Let X → Y be
a morphism of algebraic spaces.

(1) We call A → B adequate if for all b ∈ B, there exists some N > 0 and a ∈ A such
that a 7→ bN .

(2) We call A → B universally adequate if for all A-algebras A′, A′ → A′ ⊗A B is
adequate.

(3) We call X → Y an adequate homeomorphism if its is an integral, universal homeo-
morphism which is a local isomorphism at all points with a residue field of charac-
teristic zero. In particular, SpecB → SpecA is an adequate homeomorphism if and
only if
(a) ker(A→ B) is locally nilpotent (i.e. every element is nilpotent),
(b) ker(A→ B)⊗Q = 0, and
(c) A→ B is universally adequate.

Proof. The “if and only if” statement is [Alp10, Proposition 3.3.5(2)]. �

We will be interested in adequate moduli spaces that arise from the conventional GIT
setting, where a reductive group scheme acts on a scheme.
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Example 1.5.1.3 ([Alp10, Theorem 9.1.4]). Let S be an affine scheme and letX = SpecA
be an affine S-scheme. Let G be a reductive group S-scheme with an action on X. Then

φ : [X/G] −→ SpecAG

is an adequate moduli space.

Here is Alper’s main theorem on adequate moduli spaces.

Theorem 1.5.1.4 ([Alp10, Main Theorem]). Let φ : X → Y be an adequate moduli space.
Then

(1) φ is surjective, universally closed, and universally submersive.
(2) Two geometric points x1, x2 ∈ X (k̄) are identified in Y if and only if their closures

{x1} and {x2} in X ×Z k̄ intersect.
(3) If Y ′ → Y is any morphism of algebraic spaces, then X ×Y Y ′ → Y ′ factors as

an adequate moduli spaces X ×Y Y ′ → Ỹ followed by an adequate homeomorphism

Ỹ → Y ′.
(4) Suppose X is finite type over a Noetherian scheme S. Then Y is finite type over S

and for every coherent OX -module F , φ∗F is coherent.
(5) φ is universal for maps from X to algebraic spaces which are either locally separated

or Zariski-locally have affine diagonal.

Remark 1.5.1.5. We note that adequate moduli spaces φ : X → Y share particular
similarities with both affine morphisms of schemes and proper morphisms of schemes. Indeed,
an adequate moduli space is adequately affine (part (1) of Definition 1.5.1.1), and as we noted
above, a quasi-compact, quasi-separated morphism of algebraic spaces is adequately affine if
and only if it is affine. On the other hand, φ is universally closed and φ∗ preserves coherent
sheaves, which are characteristics of proper morphisms. Since a morphism of schemes that is
both affine and proper is finite, we expect φ to behave somewhat like a finite morphism and
moreover, by part (2) of the Definition 1.5.1.1, like an isomorphism! The obstruction to being
an isomorphism is the lack of representability and the accompanying lack of separatedness
(fact: a quotient stack of a separated scheme is separated if and only if all stabilizers are
finite). This “isomorphism up to lack of representability” property is encapsulated more
precisely in part (5) of the theorem (1.5.1.4).

Remark 1.5.1.6. One important notion from geometric invariant theory that will be used
in the sequel is the following two facts about orbits (of geometric points) of the action of a
reductive group on a scheme. Working over an algebraically closed field, let a reductive group
G act on an variety X, which for simplicity we assume to be affine. Because X = SpecA
is affine, every orbit is semistable. The standard fact from geometric invariant theory is
that every semistable orbit contains a unique closed semistable orbit (one can get this by
combining Example 1.5.1.3 and part (2) of the theorem above). Now, obviously an invariant
regular function on X must remain constant along an orbit. Moreover, it must remain
constant along an orbit’s closure, since regular functions are “continuous.” This means that
invariant regular functions cannot distinguish orbits whose closures overlap! It turns out that
the geometric points of X//G := SpecAG are in bijective correspondence with the orbits of
G in X modulo the equivalence relation of overlapping closure. This is what part (5) of
Theorem 1.5.1.4 expresses.
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1.5.2. Geometric Invariant Theory on Rep�. Example 1.5.1.3 shows that in the
classical setting of geometric invariant theory, where a reductive group G acts on an affine
scheme X, the resulting morphism [X/G]→ X//G is an adequate moduli space. By Theorem

1.4.1.4, the algebraic stacks RepdR (resp. Rep
d

R) are quotient stacks for the adjoint action of

GLd (resp. PGLd) on the finite type affine S-scheme Rep�,d
R . Therefore, as Rep�,d

R is an affine

scheme and Rep�,d
R //GLd ∼= Rep�,d

R //PGLd, each of the morphisms

(1.5.2.1)
φ : RepdR −→ Rep�,d

R //PGLd,

φ̄ : Rep
d

R −→ Rep�,d
R //PGLd

are adequate moduli spaces. Therefore by the universality of the GIT quotient scheme
for maps to separated schemes (Theorem 1.5.1.4(5)) we can canonically factor the diagram
(1.4.2.2) to get a diagram

(1.5.2.2) Rep�,d
R

//

ψ�

$$

φ�

))

RepdR //
ψ

��

φ

##

Rep
d

R

ψ̄

��

φ̄

��
GIT

ν

��

PsRd
R

where GIT stands in for the GIT quotient scheme Rep�,d
R //PGLd. To put these ideas in

words, the maps ψ�, ψ, ψ̄ of (1.4.2.2) factor uniquely through the GIT quotient.

Remark 1.5.2.3. One shortcoming of the GIT quotient is that despite the concrete
moduli problem that Rep�,d

R and the other moduli stacks solve, this does not lend us a
complete description of the GIT quotient in terms of a “functor of points.” Its one universal
property is that of Theorem 1.5.1.4(5), but this characterizes morphisms out of it instead
of its functor of points. However, we do know the “functor of geometric points” of the GIT
quotient, following Remark 1.5.1.6: geometric points of a GIT quotient of an affine scheme
correspond to closed orbits of geometric points. In the next paragraph, we will discover what
these closed orbits in Rep�,d

R are in terms of its moduli problem. But we emphasize that

this is a property of Rep�,d
R //PGLd and not a characterization, since the geometric points

of a scheme do not characterize it. For another, related shortcoming of GIT quotients, see
Remark 1.5.4.4.

As noted in the introduction, one of the main ideas behind pseudorepresentations is to
serve as a concrete (i.e. a moduli problem) replacement for the GIT quotient Rep�,d

R //PGLd.
We will therefore be very interested in the map

(1.5.2.4) ν : Rep�,d
R //PGLd −→ PsRd

R,

which we expect to be nearly an isomorphism (see Theorem 1.5.4.2).

1.5.3. Work of Kraft, Richardson, et al. on Orbits of the Adjoint Action on
Representations. In this paragraph we describe the geometric points of the GIT quo-
tient scheme Rep�,d

R //PGLd of the adjoint action of PGLd on Rep�,d
R . As we noted in

Remark 1.5.1.6 following Theorem 1.5.1.4(2), these geometric points correspond naturally
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and bijectively to closed orbits in Rep�,d
R , or, equivalently, closed geometric points in RepdR

(resp. Rep
d

R). So what are the closed geometric points in RepdR?
Kraft [Kra82] answered this question, proving the following

Theorem 1.5.3.1 ([Kra82, §II.4.5, Proposition]). As usual, let R be a finitely generated
quasi-coherent OS-algebra where S is an affine Noetherian scheme. For any algebraically
closed S-field k̄, the following equivalent statements are true.

(1) The closed orbits of PGLd(k̄) in Rep�,d
R (k̄) are precisely the orbits of semisimple

d-dimensional representations of R⊗OS k̄.

(2) The closed geometric points of RepdR (resp. Rep
d

R) are in natural bijective corre-
spondence with isomorphism classes of semisimple d-dimensional representations of
R⊗OS k̄.

(3) The geometric points of the GIT quotient affine scheme Rep�,d
R //PGLd are in natural

bijective correspondence with the semisimple d-dimensional representations of R⊗OS
k̄.

This result uses the Hilbert-Mumford criterion.

Remark 1.5.3.2. This theorem implies that the canonical map ν : Rep�,d
R //PGLd −→

PsRd
R of (1.5.2.4) induces a bijection on geometric points! We will take up this point in

the following paragraph, spending this paragraph on the proof of Theorem 1.5.3.1 and its
analogue Theorem 1.5.3.7, which addresses Rep�,G

Γ in place of Rep�,d
R .

Proof. Part (1) is due to Kraft [Kra82, §II.4.5, Proposition]. The equivalence of (1)
with (2) and (3) follows from Remark 1.5.1.6. �

Richardson [Ric88] answered this question in the case that R is a group algebra; in fact,
his proof addresses representations of a finitely generated group Γ into a reductive group G
(see the setup for these representation moduli schemes/stacks in §1.4.4), with G = GLd as
a special case. The techniques of his proof were improved by several people, with notable
contributions (for our purposes) of Serre [Ser05] (following [Ser98, Part II]) and Bate-Martin-
Röhrle [BMR05]. These are the results that we now overview. They can be summarized in

brief by saying that the closed orbits of the adjoint action ofG on Rep�,G
Γ over an algebraically

closed field (or, equivalently, the closed geometric points in RepGΓ or Rep
G

Γ ) are in natural
bijective correspondence with “semisimple” representations. Of course, we must say what
semisimple means in G.

We work over an algebraically closed field k̄.

Definition 1.5.3.3 ([Ser05]). A subgroup H ⊂ G(k̄) is called G-completely reducible
provided that whenever H is contained in some parabolic subgroup P of G, it is contained
in a Levi subgroup of P .

This generalizes the familiar case from GLd: if H ⊂ GL(V ), then V is a semisimple
H-module if and only if H is GL(V )-completely reducible. By the same token, we give a
notion of semisimplicity for a reductive group-valued homomorphism.

Definition 1.5.3.4. Let G be a reductive group over an algebraically closed field k̄, and
let Γ be a group. We say that a homomorphism ρ : Γ → G(k̄) is semisimple if ρ(G) is
G-completely reducible.
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One would hope that a result analogous to Theorem 1.5.3.1 can be proved with G in
place of GLd. The basic problem is that in positive characteristic, a reductive subgroup of a
reductive group may not be semisimple. Richardson proved a result to this effect, overcoming
problems in positive characteristic, although it was originally proved with the notion of a
strongly reductive subgroup in place of a completely reducible subgroup.

Definition 1.5.3.5 ([Ric88, Definition 16.1]). Let G be a reductive group over an al-
gebraically closed field. Let H be a closed subgroup of G and let S be a maximal torus of
CG(H), the centralizer in G of H. We call H a strongly reductive subgroup of G provided
that H is not contained in any proper parabolic subgroup of CG(S).

Richardson’s definition is set up in order to apply geometric invariant theory – in partic-
ular, the Hilbert-Mumford numerical criterion – to show that the closed orbits of the adjoint
action on G (or PG) on Rep�,G

Γ correspond to strongly reductive subgroups. Here, the sub-
group in question is the closure of the image of the representation. It was more recently
proved that strong reductivity is the same as complete reducibility.

Theorem 1.5.3.6 ([BMR05, Theorem 3.1]). Let G be a reductive algebraic group over an
algebraically closed field k̄, and let H be a closed algebraic subgroup. Then H is G-completely
reducible if and only if H is strongly reductive in G.

From this, the desired result follows.

Theorem 1.5.3.7. As usual, let Γ be a finitely generated group and let G be a reductive
S-group scheme. For any algebraically closed S-field k̄, the following equivalent statements
are true.

(1) The closed orbits of G(k̄) (resp. PG(k̄)) in Rep�,G
Γ (k̄) are precisely the orbits of

semisimple representations Γ→ G(k̄).

(2) The closed geometric points of RepGΓ (resp. Rep
G

Γ ) are in natural bijective correspon-
dence with isomorphism classes of semisimple representations Γ→ G(k̄).

(3) The geometric points of the GIT quotient affine scheme Rep�,G
Γ //PG are in natural

bijective correspondence with semisimple representations Γ→ G(k̄).

Proof. Richardson proved that the n-tuples of geometric points of G whose orbit under
the adjoint action of G or PG is closed are precisely those n-tuples whose generated subgroup
of G is strongly reductive [Ric88, Theorem 16.4]. This is equivalent to statement (1) by
Theorem 1.5.3.6. The equivalence of (1) with (2) and (3) is clearly, in light of Remark
1.5.1.6. �

1.5.4. The GIT quotient and PsRd
R are Almost Isomorphic. In this paragraph,

we will show that the canonical map ν : Rep�,d
R //PGLd → PsRd

R is a finite universal home-
omorphism. Another name for finite universal homeomorphisms is “almost isomorphisms,”
so we will be able to say that the two schemes are almost isomorphic. This reduces the
question of the difference between the GIT quotient and PsRd

R to a local question; will will
take up this question locally in Chapter 2.

From the previous paragraph, we know that the geometric points of the GIT quotient by
the adjoint action Rep�,d

R //PGLd are in natural bijective correspondence with isomorphism
classes of semisimple representations of R. This naturality of this bijection refers to the
canonical map φ : RepdR → Rep�,d

R //PGLd (resp. φ̄ : RepdR → Rep�,d
R //PGLd) of (1.5.2.1), as
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each geometric fiber of φ (resp. φ̄) has a unique closed geometric point (cf. Remark 1.5.1.6)
corresponding to a semisimple representation.

The map ψ : RepdR → PsRd
R (resp. ψ̄ : Rep

d

R → PsRd
R) has a similar property: by

Theorem 1.3.1.1, the geometric points of PsRd
R are in natural bijective correspondence with

isomorphism classes of semisimple representations, meaning that there is a unique semisimple
point in each geometric fiber of ψ (resp. ψ̄). As ψ (resp. ψ̄) factors uniquely through ν :
RepdR//PGLd in (1.5.2.2), ν is an isomorphism on geometric points.

From this we know that ν is finite type, radicial, and surjective. We recall this and a few
other useful basic definitions and properties.

Definition 1.5.4.1 ([Gro60, Definition 3.5.4]). Let f : X → Y be a morphism of
schemes.

(1) We call f radicial or, equivalently, universally injective, if for all fields k, the induced
map of sets X(k)→ Y (k) is injective. As remarked in [Gro60, §3.5.5], it suffices to
verify this property on algebraically closed fields.

(2) We call f a universal homeomorphism if after any base change by Y ′ → Y , fY ′ is a
homeomorphism. By [Gro67, Corollary 18.12.11], f is a universal homeomorphism
if and only if it is integral, radicial, and surjective.

(3) We call f an almost isomorphism if f is a finite universal homeomorphism, or,
equivalently, if f is a finite type universal homeomorphism.

To verify that ν is a universal homeomorphism, it remains to show that it is integral, or,
equivalently, finite. This is what we show in the following

Theorem 1.5.4.2. Let S be an affine Noetherian scheme, and let R be a quasi-coherent
finitely generated OS-algebra. The map ν : Rep�,d

R //PGLd → PsRd
R induced by ψ or ψ̄ is a

finite universal homeomorphism.

Remark 1.5.4.3. We must remark that there are well known facts that can be im-
mediately applied to improve this theorem. Indeed, Chenevier has generalized in [Che11,
Theorem 2.22(i)] (which we record below in Theorem 2.1.3.3) a result of Nyssen [Nys96] and
Rouquier [Rou96], showing that deforming an absolutely irreducible pseudorepresentation
(recall Defintiion/Lemma 1.3.4.1) is equivalent to deforming the associated absolutely irre-
ducible representation. This shows that ν is an isomorphism over this locus; this is already
visible in the study of the locus that we already did in §1.3.4. However, we are deferring
this local study of pseudorepresentations to Chapter 2. These results on absolutely irre-
ducible pseudorepresentations will be discussed in §2.1.3. The full extent of what we prove,
which extends the result of Chenevier to the multiplicity free case, may be found in Theorem
2.3.3.7.

We thank Brian Conrad for comments leading to this remark.

Remark 1.5.4.4. Let us remark on the basic difficulty in making Theorem 1.5.4.2 more
precise than it currently is. That is, why is ν hard to control? One major issue is that
GIT quotients are not stable under base change. For example, if one could prove that ν had
geometrically reduced fibers, then by [Gro67, Corollaire 18.12.6], ν is a closed immersion.
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Therefore we might take a geometric fiber of ν and ψ at a point D̄ ∈ PsRd
R(k̄),

Rep�,d
R ×PsRdR

Spec k̄

��

// Rep�,d
R

��

Rep
d

R ×PsRdR
Spec k̄

��

// Rep
d

R

��

Rep�,d
R //PGLd ×PsRdR

Spec k̄ //

��

Rep�,d
R //PGLd

��

Spec k̄ // PsRd
R.

Then we would want to draw conclusions about this fiber of ν by studying the fiber of ψ or
ψ�. We could study the invariants of the action of PGLd on the upper left entry. However,
non-flat base change of an adequate moduli space is no longer an adequate moduli space,
but may differ from an adequate moduli space by an adequate homeomorphism [Alp10,
Proposition 5.2.9(3)]. Adequate homeomorphisms are not necessarily reduced, so we are
unable to conclude anything about the fiber of ν over D̄ by considering the fiber of ψ or
ψ� over D̄. In other words, the GIT quotient is not stable under base change, and the base
change of a GIT quotient may differ from the GIT quotient of a base change by an adequate
homeomorphism.

Remark 1.5.4.5. We expect that it follows from Procesi’s solution of the “embedding
problem” for Cayley-Hamilton algebras9 in characteristic zero [Pro87] that we can show that
ν is not only an finite universal homeomorphism, but an adequate homeomorphism. The
additional content required is that ν is an isomorphism in characteristic zero.

Proof. As noted above, Kraft’s result (Theorem 1.5.3.1) implies that ν is surjective and
radicial. It is also finite type, since the source and target of ν are each finite type over the
Noetherian scheme S by Theorems 1.5.1.4(4) and 1.1.10.15, respectively. Then by [Gro67,
Corollary 18.12.11], if in addition ν is finite, then ν is a finite universal homeomorphism.
We will actually check that ν is universally closed in order to show that it is finite; this will
suffice because ν is clearly affine.

To show that ν is proper, we verify the valuative criterion for universal closedness. Using
our knowledge that this morphism is separated and finite type between Noetherian schemes,
[LMB00, Theorem 7.10] (see also [Gro61a, Remark 7.3.9(i)]) allows us to verify the following
valuative criterion on spectra of complete discrete valuation rings B with algebraically closed
residue fields: for every diagram

SpecK //

��

Rep�,d
R //PGLd

ν
��

SpecB // PsRd
R

9The embedding problem for Cayley-Hamilton algebras (R,D) is the problem of finding an embedding ρ of
R into a matrix algebra M which is compatible with the native pseudorepresentation D, i.e. ρ induces a
morphism in CHd(R) over D, i.e. D = det ◦ρ.
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where K is the fraction field of B, there exists a field extension SpecK ′ → SpecK which is
the fraction field of a valuation ring B′ with a dominant map SpecB′ → SpecB such that
there exists a section

(1.5.4.6) SpecK ′ //

��

SpecK //

��

Rep�,d
R //PGLd

ν
��

SpecB′ //

44

SpecB // PsRd
R

In fact, we will achieve this where K ′/K is a finite field extension and B′ is the integral
closure of B in K ′.

Let D denote the pseudorepresentation of R over K associated to the K-point of PsRd
R in-

duced by the B-point induced above, and let DB denote the underlying B-valued pseudorep-
resentation, so that D = DB ⊗B K. Corollary 1.3.2.4(1) and its proof gives us a semisimple

representation ρ : R ⊗OS K ′ → Md(K
′) in Rep�,d

R (K ′) where K ′/K is a finite extension of
fields, and whose induced pseudorepresentation DK′ := det ◦ρ appears as the base change
from K to K ′ of the pseudorepresentation D. Sending the K ′-point ρ ∈ Repd,�R (K ′) via φ�

to an K ′-point of Repd,�R //PGLd, this K ′-point lies over the K-point D of Repd,�R //PGLd
given in the data of the valuative criterion above. Taking B′ to be the integral closure of B
in K ′, we now have all of the maps of (1.5.4.6) except the desired diagonal section.

We claim that ρ is conjugate to the tensor by ⊗B′K ′ of a representation ρB′ : R⊗OSB′ →
EndB′(L

′), where L′ is a rank d projective B′-module. The projection of this B′-point of

RepdR to Rep�,d
R //PGLd via φ is the desired section in (1.5.4.6). Therefore, proving the claim

will complete the proof of the theorem.
To prove the claim, first note that the OS-algebra homomorphism R→Md(K

′) induced
by ρ factors through the Cayley-Hamilton algebra R → (R ⊗OS K)/CH(D) by Proposition
1.2.4.3. Moreover, since D is induced by ⊗BK from DB ∈ PsRd

R(B), it factors through
R→ R⊗OS B/CH(DB), i.e. this map lies in the composite

R −→ (R⊗OS B)/CH(DB) −→Md(K
′).

By Corollary 1.2.2.9, the B-algebra (R⊗OS B)/CH(DB) is finite as a B-module.
Choose a d-dimensional K ′-vector space V ′ and choose a basis in order to draw an

isomorphism Md(K
′)
∼→ EndK′(V

′). Also choose a rank d B′-lattice L ⊂ V ′, where B′ is
the integral closure of B in the finite extension K ′/K. Now let L′ be the B′-linear span of
the translates of L by R ⊗OS B. Since this is a finite B-module, L′ is a finite projective
B′-submodule of V , which is therefore rank d. Its action of R⊗OS B′ induces ρ by applying
⊗B′K ′. Now R ⊗OS B′ → EndB′(L

′) is an object of RepdR(B′) inducing ρ ∈ RepdR(K ′),
completing the proof of the claim. �

Here is a nice result of our work: the maps ψ and ψ̄ are adequate moduli spaces up to an
almost isomorphism. Some of the properties of an adequate moduli space still hold despite
this defect.

Corollary 1.5.4.7. With assumptions as in Theorem 1.5.4.2, the morphisms ψ and ψ̄
have the properties (1), (2), and (4) proved of adequate moduli spaces in Theorem 1.5.1.4,
as well as property (1) defining adequate moduli spaces in Definition 1.5.1.1. Namely, ψ and
ψ̄ are finite type, universally closed, push forward coherent sheaves to coherent sheaves, and
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two geometric points in RepdR(k̄) (resp. Rep
d

R(k̄)) have overlapping closures if and only if
their images under ψ (resp. ψ̄) are isomorphic.

Proof. We have shown that ν : Rep�,d
R //PGLd → PsRd

R is a finite universal homeomor-
phism. Now we apply Theorem 1.5.1.4: because the canonical map φ from RepdR to the GIT
quotient is finite type and has the geometric point closure property, the same is true of the
composition ν ◦ φ = ψ; because it is universally closed, its composition with the finite and
therefore proper map ν is still universally closed. Finally, since push forwards of coherent
sheaves are coherent under φ and under the finite morphism ν, the same is true of ψ. This

all holds for ψ̄ on Rep
d

R as well. �
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CHAPTER 2

Local Study of Pseudorepresentations

In Chapter 1, we described moduli spaces of representations and pseudorepresentations
and proved that the maps ψ, ψ̄ sending algebraic stacks of representations to their associated
pseudorepresentations are very close to adequate moduli spaces. In particular, they are
universally closed. We accomplished this almost entirely through a study of the geometric
points of these moduli spaces, the only additional input being the verification that ν satisfies
the valuative criterion for properness in Theorem 1.5.4.2. However, as we noted in Remark
1.5.4.4, the study of the defect ν of ψ (resp. ψ̄) from being an adequate moduli space is
not visible through the fibers of ψ (resp. ψ̄). The challenge is that the GIT quotient, which
is the base of adequate moduli space, does not admit a good moduli interpretation – only
its geometric points have a satisfying moduli interpretation. However, as remarked at the
beginning of §1.5.4, we have reduced the study of the defect ν to ψ being an adequate moduli
space to a local question on the base. This is one reason why we will now study the moduli
space of pseudorepresentaitons locally. For example, in §2.3, we make progress in showing
that ν is an isomorphism by adding more linear structure to representations whose induced
pseudorepresentation deforms a fixed multiplicity free psueodrepresentation. In this case, we
will be able to eliminate the defect ν. This result is recorded in Theorem 2.3.3.7.

Of course, there are other reasons to study pseudorepresentations locally. One reason
is to study their tangent spaces and deformation theory, which is what we begin with,
following Chenevier [Che11]. Our main result here is Proposition 2.1.2.3. This gives a
representation theoretic condition for the finitude of the dimension of the tangent space to a
field-valued pseudorepresentation. In this, we make an improvement on [Che11, Proposition
2.28] by eliminating the assumption that the characteristic of the field must be larger than
the dimension or must be 0. This follows from the application of PI ring theory described
in Chapter 1.

The other major goal in this chapter is to identify some projective subschemes of Rep
d

R,
locally on the base PsRd

R of ψ. To accomplish this fiber-wise is to apply one of the results
of King [Kin94] (Theorem 2.2.1.12 here), which shows that these projective spaces exist
inside geometric fibers of ψ̄. Our additional contribution is the deformation of this ample
line bundle to henselian neighborhoods of a point, so that the projective subscheme can be
deformed to complete local neighborhoods (Theorem 2.2.4.1). To this end, our work here is
to carefully identify the ample line bundle implicit in King’s result.

Our motivating case of interest for this local study is the moduli of continuous pseudorep-
resentations and representations of a profinite group or algebra, with a certain finiteness
condition. In this case, the results above apply very well, as the moduli formal scheme of
continuous pseudorepresentations is semi-local (see Corollary 3.1.6.13). Each component is
the formal spectrum of a complete local Noetherian ring! We are preparing the results in
Chapter 2 with their application to profinite representation theory in Chapter 3 in mind.
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2.1. Pseudorepresentations over Local Rings

In this section, we will study pseudorepresentations of an algebra R over a commutative
local ring A. In practice, we will often fix a d-dimensional pseudorepresentation

D : R −→ A

and draw conclusions about D given some conditions about the data. We will begin with
deformation theory of a field-valued pseudorepresentation and then discuss the tangent space
of the pseudorepresentation functor at such a point. We will conclude with some facts about
Cayley-Hamilton algebras (R,A) over local rings.

2.1.1. Deformation Theory Setup. Our study of the deformations of pseudorepre-
sentations will follow Chenevier [Che11]. As usual, let A be a commutative ring and let R
be an A-algebra. We could consider a closed SpecA-subscheme X ⊂ PsRd

R with its reduced
structure, and then study the completion of PsRd

R at X. However, our purposes do not
require this generality; in particular, our work in Chapter 1 shows that we can study the
morphism ν locally on the base. Our setting for the study deformations will be a complete
Noetherian local base ring A with residue field FA of characteristic p ≥ 0, along with a given
d-dimensional FA-valued pseudorepresentation of R, denoted

D̄ : R⊗A FA −→ FA.
For example, in this setting, A may be the Cohen ring of FA, which we denote by W .

We study deformations of D̄ to the following rings, writing F for FA.

Definition 2.1.1.1. Let AF be the category of Artinian local A-algebras with residue
field F, where morphisms are local A-algebra homomorphisms.

Let ÂF be the category of Noetherian local A-algebras with residue field F, where mor-
phisms are local W -algebra homomorphisms. For B ∈ AF we write mB for its maximal
ideal.

The category ÂF includes AF as a full subcategory, and objects in ÂF consist of limits
(filtered projective limits with surjective maps) in AF.

We define the deformation functor PsRD̄ as follows.

Definition 2.1.1.2. With the data p,A,R, D̄, d and F as above, let PsRD̄ be the covari-
ant functor on ÂF associating to each B ∈ ob ÂF the set of d-dimensional pseudorepresenta-
tions

D : R⊗A B −→ B

such that D ⊗B F −→ F ∼= D̄. We call such deformations of D̄ pseudodeformations.

The representability of this deformation functor in the category ÂF follows immedi-
ately from the representability for the usual pseudorepresentation moduli scheme PsRd

R over
SpecA.

Proposition 2.1.1.3. Given F, A,R, d, and D̄ as above, let D̄ also denote its associated
F-point of PsRd

R. Then the pseudodeformation functor is representable by the completion BD̄

of the local ring OPsRdR,D̄
at its maximal ideal mD̄, with the universal object Du ⊗ΓdA(R)ab BD̄.

Proof. By definition of pseudodeformation, any object of PsRD̄ over B ∈ ÂD̄ corre-
sponds to a map SpecB → PsRd

R factoring through the natural map SpecBD̄ → PsRd
R. �
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Corollary 2.1.1.4. If R is finitely generated as a A-algebra, BD̄ is Noetherian.

Proof. In this case, PsRd
R is Noetherian and finitely generated over SpecA by Theorem

1.1.10.15. Then since BD̄ is the completion of a localization of a Noetherian ring, PsRD̄ is
Noetherian. �

Since BD̄ is a complete local ring, there are several conditions on BD̄ equivalent to the
Noetherian condition.

Lemma 2.1.1.5. Since BD̄ is a complete local A-algebra and A is a complete Noetherian
local ring, the Cohen structure theorem (see e.g. [MR10, Theorem 3.2.4]) implies that the
following properties are equivalent.

(1) There exists a surjection W [[t1, . . . , tn]] � BD̄ for some n ≥ 0.
(2) There exists a surjection A[[t1, . . . , tn]] � BD̄ for some n ≥ 0.
(3) BD̄ topologically finite type1 as a A-algebra.
(4) BD̄ is Noetherian.
(5) dimF(mD̄/m

2
D̄

) is finite.
(6) The tangent F-vector space PsRD̄(F[ε]/(ε2)) is finite-dimensional.

This is our motivation to study the tangent space TD̄ := PsRD̄(F[ε]/(ε2)) of PsRd
R at D̄.

We will give a (co)homological condition for the finiteness of the tangent space in the next
paragraph.

2.1.2. Tangent Spaces of the Pseudorepresentation Functor. We now describe
and give a sufficient condition for the finiteness of the tangent space of the pseudorepresen-
tation functor (or pseudodeformation functor) at a point. We follow Chenevier [Che11, 2.24-
2.29] here. We make an improvement on Chenevier’s results, generalizing [Che11, Proposition
2.28] to arbitrary characteristic in Proposition 2.1.2.3; the improvement entirely rests on the
use of the reference [Sam09] (see Theorem 1.2.2.6 and its use in Lemma 1.2.3.1), and we
follow Chenevier’s techniques otherwise.

This study is especially useful in preparation for giving sufficient conditions for the
Noetherianess of a complete local “pseudodeformation ring” of continuous deformations of
a field-valued pseudorepresentation of a profinite algebra (see Theorem 3.1.5.3).

As usual, we have a commutative ring A and an A-algebra R. Let D̄ : R → A be a
d-dimensional pseudorepresentation. We will write A[ε] for A[ε]/(ε2), i.e. ε2 = 0. For any
A-module M , we write M [ε] for M ⊗A A[ε].

Definition 2.1.2.1. Let D̄ be a d-dimensional pseudorepresentation D̄ : R → A. We
call a pseudorepresentation D : R[ε] → A[ε] a lift of D̄ when D ⊗A[ε] A ∼= D̄. Through the
canonical identification

Md
A(R,A[ε])

∼−→ PsRd
R[ε](A[ε]),

of Corollary 1.1.3.10, the set of lifts is canonically functorially isomorphic to the set of
multiplicative A-polynomial laws

P : R −→ A[ε]

such that they map to D̄ via composition with the A-algebra homomorphism π = πA :

A[ε]
ε7→0−→ A. We denote this set of multiplicative polynomial laws by T = TD̄ ⊂Md

A(R,A[ε]),
the tangent space at D̄.

1When we say that B is topologically finite type over A, we mean that it is (or admits a surjection from)
the completion of some finite type A-algebra with respect to the powers of some ideal of A.
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Another way of defining this tangent space is to say that TD̄ := (π∗)−1(D0), where

π∗ : HomA−alg(Γ
d
A(R)ab, A[ε]) −→ HomA−alg(Γ

d
A(R)ab, A)

f 7→ π ◦ f.
One can check that it has a natural A-module structure.

From now on, in our discussion of lifts of pseudorepresentations, we let A be a field F.

Lemma 2.1.2.2 ([Che11, Lemma 2.26]). Let R be a F-algebra and let D̄ : R → F be a
d-dimensional pseudorepresentation. Assume that there exists a positive integer N such that
ker(D̄)N ⊂ CH(D̄). Then T ⊂ PdF(R/ ker(D̄)2N ,F).

Proof. Let P ∈ TD̄ and let D : R[ε] → F[ε] be the associated pseudorepresentation.
One can check that ker(P ) = ker(D)∩R. Therefore want to show that 2N such that satisfies
the relation ker(D̄)2N ⊆ ker(D).

Consider the Cayley-Hamilton F[ε]-algebras S := R/CH(D̄) and S[ε], which is canoni-
cally isomorphic to R[ε]/CH(D) by Lemma 1.1.8.6. For r ∈ ker(D̄)[ε] ⊂ R[ε], we have by
assumption Λi(r) ∈ εF for all 1 ≤ i ≤ d, and therefore sd ∈ ε · F[s] for all s ∈ J [ε] ⊂ S[ε].
Let J := ker(D̄)/CH(D̄) ⊂ S, so J ∼= J [ε]/εJ [ε]. The assumption ker(D̄)N ⊂ CH(D̄) implies
that (J [ε]/εJ [ε])N = 0, and then J [ε]2N = 0. Consequently, ker(D̄)2N ⊂ CH(D) ⊂ ker(D),
where the latter inclusion is the content of Lemma 1.2.1.1. �

We continue to work with deformations of a fixed d-dimensional pseudorepresentation
D̄ : R→ F. Now let us restrict to the case that S := R/ ker(D̄) is finite-dimensional as a F-
vector space. By Theorem 1.3.1.3, this condition will hold when F is perfect, p = char(F) > 0
and [F : Fp] <∞, R/F is finitely generated, or d < p. This lemma improves [Che11, Lemmas
2.26].

Proposition 2.1.2.3 (Following [Che11, Proposition 2.28]). Let R,F, D̄ : R → F, and
assume that S = R/ ker(D̄) is finite-dimensional over F. Then if Ext1

R(S, S) is finite-
dimensional over F, where S is treated as a R-module here, then TD̄ is also finite-dimensional
over F.

Compare this statement with Theorem 1.3.3.2; the methods of proof also correspond in
large part.

Proof. Choose N such that ker(D̄) ⊂ CH(D̄). Such an N exists by Lemma 1.2.3.1(4),
and is bounded by the integers N(d) and N(d, p) of Definition 1.2.2.7.

Now Lemma 1.3.3.1 tells us that

HomR(I/I2, S) ∼= HomS(I/I2, S)

is also finite-dimensional as a F-vector space. Since S is semisimple and the S-module S con-
tains all simple S-modules as submodules, the finiteness of the dimension of HomS(I/I2, S)
implies that I/I2 is finite length as a S-module, and therefore also implies that dimF I/I

2 <
∞.

Because there are natural surjections

(I/I2)⊗
n
F � In/In+1

for any ideal I ⊂ R, this means that R/ ker(D̄)2N is also finite-dimensional over F. Using
Lemma 2.1.2.2, we know that TD̄ ⊂ PdF(R/ ker(D̄)2N ,F). Finally, because the finitude of a
general A-module M implies the finitude of ΓdA(M) as an A-module for any d ≥ 0, we apply
Theorem 1.1.3.4 to conclude. �
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We can apply Proposition 2.1.2.3 to give a criterion depending only on D̄ for the Noethe-
rianness of the complete local deformation ring BD̄ defined in Proposition 2.1.1.3, using the
Noetherianness criteria of Lemma 2.1.1.5. For this statement, we resume the language of
§2.1.1, also setting R̄ := R⊗A FA.

Corollary 2.1.2.4. Let A be a complete Noetherian local ring and let R be an A-algebra.
Fix a d-dimensional pseudorepresentation D̄ : R̄ → FA such that if we take S̄ := R̄/ ker(D̄)
as an R-module, Ext1

R(S, S) is finite-dimensional as a FA-vector space. Then the complete
local pseudodeformation ring BD̄ of Proposition 2.1.1.3 is Noetherian.

Since we will be interested in this primarily in the profinite topological case, we will give
the proof for the profinite case in Theorem 3.1.5.3. A proof in this case would feature the
same techniques without the topological considerations.

2.1.3. Cayley-Hamilton Pseudorepresentations over Local Rings. As we have
remarked, a d-dimensional Cayley-Hamilton A-algebra (R,D) shares properties with alge-
bras appearing as subalgebras of d×d matrix algebras. For example, each element is integral
of degree d over A, and if A is a field, we have shown that the Jacobson radical is nilpotent
(see Lemma 1.2.3.1 and Corollary 1.2.2.10 for this and other properties of Cayley-Hamilton
algebras). When A is a henselian local ring and the semisimple representation correspond-
ing to the special fiber of D is absolutely irreducible and split over the residue field, this
correspondence with matrix algebras is exact. This is what we describe in this paragraph.

First we require a lemma on the Jacobson radical of Cayley-Hamilton algebras over local
rings. Recall that J(R) denotes the Jacobson radical of the ring R.

Lemma 2.1.3.1 (Following [Che11, Lemma 2.10]). Let A be a local ring with maximal ideal
mA and residue field F = FA. Let R be an A-algebra with a d-dimensional Cayley-Hamilton
pseudorepresentation D : R→ A with residual pseudorepresentation D̄ = D ⊗A F.

(1) The kernel of the canonical surjection R � (R⊗A F)/ ker D̄ is J(R).
(2) If ms

A = 0 for s ≥ 1 an integer, then J(R)N(d)s = 0, where N(d) is the integer of Def-
inition 1.2.2.7, which depends only on d. The possibly lesser integer N(d, charFA)
can be used in place of N(d).

Our use of polynomial identity ring theory improves Chenevier’s result in the case d ≥
charFA.

Proof. Write I for the two-sided ideal named in statement (1). Let us first show that
I ⊆ J(R), which will follow from checking that 1 + I ⊂ R×. By Lemma 1.2.3.1(1), it
is equivalent to check that D(1 + I) ⊂ A×. But it is clear that D(1 + I) ⊆ 1 + mA by
assumption, so we have I ⊆ J(R). To show the reverse inclusion, we first observe that
mA · R ⊆ I ⊆ J(R), so it will suffice to prove the reverse inclusion with A = FA. Now the
desired inclusion J(R) ⊆ I is given by Lemma 1.2.3.1(5).

Now we assume that ms
A = 0. It is clear that we may replace R by R/mA · R, assume

that A = FA, and show that J(R)N(d) = 0. This is precisely what we get from Lemma
1.2.3.1(4). �

Recall this essential property of henselian rings. The idempotent lifting is what we require
in order to make a comparison with a matrix algebra over all of SpecA, and not just over
the closed point.
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Lemma 2.1.3.2 (cf. [BLR90, §2.3, Proposition 4]). Let A be a local ring with residue field
FA. Then A is Henselian if and only if for any finite A-algebra B, the canonical map on
idempotents

Idem(B) −→ Idem(B ⊗A FA)

is an isomorphism.

Now we can give the main theorem of this paragraph.

Theorem 2.1.3.3 ([Che11, Theorem 2.22(i)]). Assume that D is Cayley-Hamilton and
that A is a henselian local ring with residue field FA. If D̄ is split and absolutely irreducible,
then there is an A-algebra isomorphism

ρ : R
∼−→Md(A)

such that D = det ◦ρ.

Proof. Omitted. �

Recall the representation theoretic moduli spaces of §1.4. The local result Theorem
2.1.3.3 is enough for us to show that the universal Cayley-Hamilton algebra is globally an
Azumaya algebra when restricted to the absolutely irreducible locus PsIrrdR ⊂ PsRd

R. We
also point out that ψ̄ is an isomorphism over this locus, which immediately implies that
the deformation functor of a chosen absolutely irreducible field-valued representation of R
is equivalent to the deformation functor of the representation. This is an improvement of
Chenevier of the results of Nyssen [Nys96] and Rouquier [Rou96], who showed that deform-
ing an absolutely irreducible pseudocharacter is equivalent to deforming the associated an
absolutely irreducible representation.

Corollary 2.1.3.4 ([Che11, Corollary 2.23]). Let A be a commutative ring and let R
be an A-algebra.

(1) Over the absolutely irreducible locus PsIrrdR ⊂ PsRd
R, the restriction of the universal

Cayley-Hamilton algebra E(R, d) to PsIrrdR is an Azumaya OPsIrrdR
-algebra of rank

d2.
(2) Over PsIrrdR ⊂ PsRd

R, ψ̄ and ν are isomorphisms.
(3) For each split point D̄ ∈ PsIrrdR, the mD̄-adic completion of OPsIrrdR,D̄

is canonically
isomorphic to the deformation ring for the representation

R −→Md(κ(D̄)).

Proof. Chose x ∈ PsIrrdR and let B be the strict henselization of OPsRdR,x
. By Lemma

1.1.8.6,
E(R, d)⊗O

PsRd
R

B
∼−→ (R⊗A B)/CH(Du ⊗ A).

Theorem 2.1.3.3 now implies that the right hand side is isomorphic to Md2(B). Hence
E(R, d) ⊗O

PsRd
R

OPsRdR,x
is an Azumaya algebra of rank d2 since OPsRdR,x

→ B is faithfully

flat (cf. [Sta, Lemma 07QM]). Now we observe that E(R, d) is an Azumaya algebra, as the
definition of an Azumaya algebra may be given locally (see Definition 1.4.1.5(1)).

Parts (2) and (3) follow at once, as the Azumaya OPsIrrdR
-algebra defines a section to ψ̄

over PsIrrdR. �

Remark 2.1.3.5. This generalizes results previously known for pseudocharacters when
the characteristic is larger than the dimension, e.g. [Nys96, Rou96, Car94]. In particular,
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Carayol [Car94] showed that a deformation of an absolutely irreducible residual representa-
tion is characterized by its trace. Nyssen and Rouquier [Nys96, Rou96] showed the “con-
verse,” that the deformation of a residual pseudocharacter arising as the trace of an absolutely
irreducible representation is realizable as the trace of a deformation of said representation.

We have succeeded in showing that ψ̄ is an adequate moduli space over the absolutely
irreducible locus, but this is a trivial case since ψ̄ is an isomorphism here. We will prove this
in a nontrivial case in Corollary 2.3.3.9.

2.2. Fibers of ψ

Recall Theorem 1.4.3.1, where we show that schemes and stacks parameterizing d-
dimensional representations of an algebra R are equivalent to the analogous moduli space for
representations of the universal Cayley-Hamilton algebra E(R, d) over the universal pseu-
dorepresentation of R. This is a particularly useful result in the case that E(R, d) is finite
as a OPsRdR

-module. We have shown that this is true when, for example, A is Noetherian

and R is finitely generated (Corollary 1.4.3.3).
Assuming that E(R, d) is finite, we study of the fibers of ψ� (resp. ψ, resp. ψ̄). Fix a

residue field F of PsRd
R and let D̄ denote the associated pseudorepresentation

D̄ = Du ⊗ F : E(R, d)⊗ΓdA(R)ab F −→ F.
Recall that by Lemma 1.1.8.6, the formation of the Cayley-Hamilton quotient of R commutes
with base change over PsRd

R. Therefore, when E(R, d) is finite over OPsRdR
, the study of the

fibers of ψ amounts to the study of representations of a finite-dimensional algebra

E(R, d)⊗ΓdA(R)ab F
over the field F, with the condition that the induced pseudorepresentation of these represen-
tations is precisely D̄.

Consider also the case where R is an algebra over a field F that is not finitely generated,
but where a pseudorepresentation D̄ : R→ F satisfies the conditions of Theorem 1.3.3.2, so
that the associated Cayley-Hamilton algebra E := R/CH(D̄) is finite-dimensional over F.
Then, using the universality of the Cayley-Hamilton algebra (Theorem 1.4.3.1), the repre-
sentations of R inducing D̄ as a determinant amount to the representations of E inducing
D̄|E as a determinant. Once again, we are reduced to the study of the representations of a
finite-dimensional algebra. We will also find ourselves remanded to this case when we study
representations of profinite topological algebras in Chapter 3, provided that an appropriate
finiteness condition is satisfied.

Therefore, for this section we will let E be a finite-dimensional F-algebra with a given
Cayley-Hamilton d-dimensional pseudorepresentation

D̄ : E → F.
Certainly, this satisfies the conditions of Theorem 1.4.1.3, so that the scheme of framed
representations and the algebraic stacks of representations are finite type SpecF-schemes.
We will study the fiber of the representation spaces of E over D̄, i.e.

Rep�,◦
D̄

:= ψ�,−1(D̄) ⊂ Rep�,d
E ,

Rep◦D̄ := ψ−1(D̄) ⊂ RepdE,

Rep
◦
D̄ := ψ̄−1(D̄) ⊂ Rep

d

E.
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Important point. This condition that a representation lie in the fiber of D̄ is equivalent,
once D̄ is split, to the condition that its Jordan-Hölder factors match those of the semisimple
representation ρss

D̄
associated to ρ via Theorem 1.3.1.1. Therefore, Rep◦D̄ is a geometric real-

ization of the category (whose morphisms are isomorphisms) of representations of E with a
given semisimplification. Of course, semisimple representations of a finite-dimensional alge-
bra are naturally in bijective correspondence with functions from simple representations to
the non-negative integers. This description is known as a dimension vector. Therefore, once
F is large enough so that E/ ker(D̄) is split, we can speak of F-valued pseudorepresentations
as dimension vectors, and vice-versa. This lange will be particularly natural as we introduce
representations of quivers.

The main goal of our study is to show that there are projective subspaces of Rep
◦
D̄

corresponding to certain notions of (semi)stability, formally analogous to the theory of vector
bundles over a curve. Basically, we are reviewing a result of A. D. King [Kin94]. Let us
begin with a brief summary of his result. We will freely use terminology from §1.3.4.

Given an integer-valued character θ : K0(RepE(F)) → Z of the Grothendieck group of
E, he develops a corresponding notion of semi-stability and stability for representations of
E. He then shows that semistability (resp. stability) of a representation ρ ∈ Rep�

D̄ ⊂ Rep�,d
E

is equivalent to it lying in a semistable (resp. stable) orbit for a certain action of a certain
reductive group and a linearization of Rep�

E corresponding to θ. Then the GIT quotient of the
semistable orbit locus is a projective space which is a coarse moduli space parameterizing θ-
semistable representations of E up to S-equivalence. The notion of S-equivalence is analogous
to the notion of S-equivalence of vector bundles on curves due to Seshadri [Ses67]. The
equivalence relation is better on the stable locus within the GIT quotient: it is a coarse
moduli space for θ-stable representations with respect to the usual notion of equivalence
between E-modules.

We will not pursue these generalities and the notion of S-equivalence. Rather, we will
focus on a particular case when we get a projective, fine moduli space out of this GIT
construction. This case is noted by King [Kin94, Remark 5.4]: θ may be chosen (relative to
D̄) so that θ-semistability implies θ-stability in Rep�

D̄, and such that the GIT quotient is a fine

moduli space.2 This will show that there are large projective subschemes of Rep
◦
D̄(θ) ⊂ Rep

◦
D̄

corresponding to θ-(semi)stable representations of E.

Remark 2.2.0.6. This observation generalizes and answers affirmatively a suspicion of
Kisin [Kis09a, Remark 3.2.7] on the existence of projective loci (relative to ψ) inside moduli
spaces of representations, and adds many more instances to the cases that Kisin pointed out
(see Corollary 2.2.2.14). Of course, we must wait until Chapter 3 to see that the case of
extensions of continuous representations of a profinite group with finite field coefficients can
be reduced to the case that we now work with.

In terms of the intrinsic study of the special fiber of ψ, King’s result is all that we require,
and it would suffice to quote his result in order to show which families of representations of
E form projective spaces in Rep

◦
D̄. However, we are also interested in showing that these

projective sub-moduli-spaces exist locally on the base in PsRd
R, or complete-locally in the

profinite case PsRD̄ ⊂ PsRd
R. Of course, this will follow if we can show that an ample

line bundle for King’s projective space is the specialization of a locally well-defined line

bundle in Rep
d

R to PsRd
R. We will accomplish this over complete local rings, with our work

2The former condition is the more interesting one.
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culminating in Theorem 2.2.4.1. This will take some work, since King’s work uses the fact
that the category of modules for any finite-dimensional algebra is equivalent to the category
of modules for a a quotient algebra of a path algebra for a finite quiver. It is in the category
of representations of quivers that these projective spaces are most naturally constructed,
and our work is to follow the ample line bundle on a space of representations of a quiver
through several equivalences necessary to identify an ample line bundle on a certain space
of representations of E.

Assumption. We assume that F is algebraically closed. This assumption will be in
place only for this section.

Remark 2.2.0.7. This assumption is used to ensure that R/ ker(D̄), the semisimple
algebra associated to the pseudorepresentation, will be split in the sense of Definition 1.3.4.4.
It is also necessary in order to ensure that statements about points of a GIT quotient are
accurate, as GIT only has a good functor of geometric points (cf. Remark 1.5.1.6). The
former issue is more serious, as we will need to find as many idempotents as the dimension
of an algebra in order to draw comparisons with quivers. In many cases, including those
that we will be concerned with for profinite algebras in Chapter 3, this can be achieved with
a finite separable extension of a field F. Therefore an assumption that D̄ is split over F will
be sufficient to apply the results of this section.

2.2.1. King’s Result on Quiver Representation Moduli. We give a brisk intro-
duction to quivers in order to state King’s result. For more background on quivers, see for
example [ASS06].

Definition 2.2.1.1. A quiver Q is an oriented graph Q = (Q0, Q1), where Q0 is the set
of vertices, and Q1 the set of oriented edges, also known as arrows. We define the head and
tail functions

h, t : Q1 → Q0

to be the maps sending an arrow a ∈ Q1, to the head h(a) of the arrow and the tail t(a) of
the arrow. A quiver Q is called finite if Q0 and Q1 are finite.

Definition 2.2.1.2. Let Q be a quiver.

(1) A representation of Q over a field F is a collection of F-vector spaces Wv for each
v ∈ Q0 and a collection of F-linear maps φa : Wt(a) → Wh(a) for each arrow a ∈ Q1.

(2) A morphism of such representations, (Wv, φa)→ (Uv, ψa) is a collection of F-linear
maps fv : Wv → Uv such that fh(a) ◦ φa = ψa ◦ ft(a) for each a ∈ Q1.

(3) The dimension vector β ∈ ZQ0 of a representation (Wv, φa) is the vector of integers
βv = dimFWv for each v ∈ Q0. A representation is called finite-dimensional if Wv

is finite-dimensional for all v and βv = 0 for all but finitely many v ∈ Q0.
(4) Given a dimension vector β we use GL(β) to denote the group ×v∈Q0GL(Wv) of

linear automorphisms of (Wv).
(5) ∆ ⊂ GL(β) denotes the diagonal subgroup of scalars (t, . . . , t) ⊂ GL(β), and

PGL(β) denotes the quotient.

Note that PGL(β) is not generally the product over v ∈ Q0 of PGL(Wv).
Convention. We will work with finite quivers and finite-dimensional representations

from now on, without remarking on their finiteness.
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Once we define the path algebra FQ of Q, we will see that under the equivalence of
between representations of Q and representations of FQ, dimension vectors correspond to
pseudorepresentations of FQ.

First, we note that framed moduli spaces of representations of quivers are affine spaces!
Indeed, the set of representations of F over a given dimension vector β ∈ ZQ0 corresponding
to the set of vector spaces (Wv)v∈Q0 is

Rep�
β (F) :=

⊕
a∈Q1

HomF(Wt(a),Wh(a)).

The group GL(β)(F) acts naturally on this set, and one can check that two representations
in Rep�

β (F) are isomorphic if and only if they lie in the same orbit of GL(β)(F).

We let Rep�
β represent the functor from SpecF-schemes to the set of such representations;

explicitly, this functor sends a SpecF-scheme X to the OX-module⊕
a∈Q1

HomOX (Wt(a) ⊗F OX ,Wh(a) ⊗F OX).

Observe that there is a natural isomorphism

(2.2.1.3) Rep�
β
∼−→ Spec Sym∗F

(⊕
a∈Q1

HomF(Wt(a),Wh(a))
∧

)
,

and that the algebraic group GL(β) acts naturally on Rep�
β , with orbits consisting of iso-

morphism classes of representations. In addition, PGL(β) acts on Rep�
β ; it acts on each

space Hom(Wt(a),Wh(a)) even though it does not have a sensible action on Wv for v ∈ Q0.
In analogy to Definition 1.4.1.1, we define the following groupoids of representations.

Definition 2.2.1.4. Let Q be a quiver. Define groupoids on SpecF-schemes by mapping
an SpecF-scheme X to the following sets.

Repβ := X 7→ {For each v ∈ Q0, a vector bundle Wv/X of rank βv,

for each a ∈ Q1, φa ∈ HomOX (Wt(a),Wh(a))}.

The definition of Repβ amounts to tracking the data of the the data of (Wv, φa) modulo

simultaneous twists of (Wv) by a line bundle L ∈ PicX.3

Repβ := X 7→ {For v, w, x ∈ Q0, a vector bundle Hvw/X of rank βvβw,

OX-Azumaya algebra structure on Ev := Hvv,

OX-module surjections cvwx : Hvw ⊗OX Hwx → Hvx,

and, for a ∈ Q1, φa ∈ Ht(a)h(a)}
such that the following conditions on cvwx hold (following [BC09, §1.3.2]):

(UNIT) For all v, w ∈ Q0, cvvw : Ev ⊗ Hvw → Hvw (resp. cvww : Hvw ⊗ Eww → Hvw) is
compatible with the Azumaya algebra structure on Ev.

(ASSO) For all v, w, x, y ∈ Q0, the two natural maps Hvw ⊗Hwx ⊗Hxy → Hvy coincide.
(COM) For all v, w ∈ Q0, x ∈ Hvw, y ∈ Hwv, cvwv(x⊗ y) = cwvw(y ⊗ x).

3This corrects a small oversight in [Kin94] – he does not mention the twists of families of representations of
Q by a line bundle and the resulting lack of representability of Repβ .
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In analogy to Theorem 1.4.1.4, one can check that there are natural equivalences of
SpecF-groupoids

(2.2.1.5) Repβ
∼−→ [Rep�

β /GL(β)], Repβ
∼−→ [Rep�

β /PGL(β)].

Now choose θ ∈ ZQ0 , which we call a character of Rep(Q). In fact, such a character
naturally determines a character of the Grothendieck group of Rep(Q) (cf. Definition 1.3.4.5).
Simple Q-representations over F are in natural bijective correspondence with Q0, sending
w ∈ Q0 to the representation (Wv, φa), where we have

Wv =

{
Wv = F v = w
Wv = {0} v 6= w

and we have φa = idWv if h(a) = t(a) = v, and φa = 0 otherwise. This establishes a
natural equivalence between characters of Rep(Q) characters of the Grothendieck group
K0(RepQ(F)). We call a character of Rep(Q) indivisible if it is not the scalar multiple of
another character.

We will define two notions of θ-semistability (resp. θ-stability), one intrinsic to the rep-
resentation theory, and one being that of the GIT notion of semistability (resp. stability)
of a point in Rep�

β for the χθ-linearized action of GL(β), where χθ is a character of GL(β)
associated to θ.

First we give the representation theoretic definition for a general F-algebra E, which
makes sense for representations of a quiver Q even though we have not yet realized the
representations of Q as the representations of its path algebra. As King points out, this
definition makes sense for any abelian category; special cases of the notion include Mumford’s
notion of stability for vector bundles over a curve.

Definition 2.2.1.6 ([Kin94, Definition 1.1]). With F, E, and a character

θ : K0(RepE)→ Z
as above,

(1) a representation W ∈ RepE is called θ-semistable if θ(M) = 0, and for every sub-
representation W ′ ⊆ W , θ(W ′) ≥ 0.

(2) if W ∈ RepE is θ-semistable, and if, additionally, it satisfies the property

θ(W ′) = 0 =⇒ W ′ = W or W ′ = 0

for all subrepresentations W ′ ⊆ W , then we call W θ-stable.

We call two θ-semistable representations S-equivalent if they have identical composition
factors in the full abelian subcategory of θ-semistable representations; the stable represen-
tations are the simple objects in this subcategory. We will not focus here on S-equivalence
except when it coincides with the usual notion of equivalence.

In fact, as we pointed out in the introduction, we are mainly interested in families of
representations in which θ-semistability implies θ-stability. As connected families of rep-
resentations of finite-dimensional algebras have constant residual pseudorepresentation (by
Theorem 1.1.7.4(5), for example), this condition is dependent upon the semisimplification of
the representation. Semisimple representations amount to non-negative integer-valued linear
combinations of simple representations and simple representations are a basis for K0(RepE).
We recall that this is the dimension vector (Definition 1.3.4.5) of the representation. Note
that the condition θ(W ) = 0 of semisimplicity depends only on its dimension vector θ, and
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can be expressed in terms of the dot product of the dimension vector with θ, i.e.

〈β, θ〉 = 0.

Using this terminology, we will give a condition such that semistability will imply stability.
First, we require the following definition.

Definition 2.2.1.7. A standard projection operator on characters of K0(RepE) sends
θ ∈ K0(RepE) to its projection along the submodule spanned by a subset of the simple
representations of E. We say that a standard projection operator is non-trivial on the
support of β ∈ K0(RepE) provided that Pβ 6= β.

Lemma 2.2.1.8. Let θ be a character of the Grothendieck group K0(RepE) of RepE, and
let β be a dimension vector such that 〈β, θ〉 = 0. If for every standard projection P that
is non-trivial on the support of β we have a strict inequality 〈Pβ, Pθ〉 6= 0, then for every
representation W ∈ RepE with dimension vector β, W is θ-semistable if and only if it is
θ-stable.

Definition 2.2.1.9. If β and θ satisfy the conditions of Lemma 2.2.1.8, we say that β is
stabilizing with respect to θ.

Example 2.2.1.10. Let ρ1, . . . , ρn be simple representations of E, possibly with multi-
plicity except that we demand that ρn 6' ρi for 1 ≤ i < n. Let β be the dimension vector
supported on the ρi, with these multiplicities. Later in Example 2.2.3.1, we will study this
dimension vector relative to the character θ on K0(E) sending

θ :
ρi 7→ 1 1 ≤ i < n
ρn 7→ −(n− 1)

We see that β is stabilizing with respect to θ. The only way to get a sum of zero out of
a projection to some subset of the isomorphism classes of the ρi is to choose the identity
projection.

Now we give a character of GL(β) associated to θ.

Definition 2.2.1.11. For each v ∈ Q0, write detv for the determinant of the vth com-
ponent of GL(β) ∼= ×v∈Q0GL(Wv). Then set χθ to be the character

GL(β) −→ Gm

(gv) 7→
∏
v∈Q0

det
v

(gv).

This geometric notion of semistability (resp. stability) cuts out a subfunctor of Rep�
β ,

which geometric invariant theory implies is open. We write

Rep�,s
β (θ) ⊂ Rep�,ss

β (θ) ⊂ Rep�
β

for these open subschemes. Let
Rep�,ss

β (θ)× L(η)

denote the total space of the trivial line bundle L over Rep�,ss
β (θ) with an action of GL(β)

extended to this space by acting on L by η−1 with the character χ−1
θ . Then standard GIT

results give us that a quotient by GL(β) exists. This linearized GIT quotient space is

Rep�
β //(GL(β), χθ) := ProjF

(⊕
n≥0

F[Rep�,ss
β (θ)× L(χnθ )]GL(β)

)
,

91



and it is projective over the GIT quotient

Rep�
β //GL(β) ∼= SpecF.

We write
Rep

ss

β (θ) := Rep�
β //(GL(β), χθ)

for this projective SpecF-scheme, and standard GIT theory gives an open F-subscheme

Rep
s

β(θ) ⊆ Rep
ss

β (θ)

image of the χθ-stable locus in Rep�
β (θ).

This theorem summarizes the GIT content of King’s paper.

Theorem 2.2.1.12 ([Kin94, Propositions 3.1-3.2, Proposition 5.2-5.3]).

(1) A point in Rep�
β corresponding to a representation W of Q is χθ-semistable, i.e. lies

in Rep�,ss
β (θ) (resp. χθ-stable, i.e. lies in Rep�,s

β (θ)), if and only if W is θ-semistable
(resp. θ-stable).

(2) Two θ-semistable representations correspond to points in Rep�,ss
β (θ) with GL(β)-

orbits with overlapping Zariski closures in Rep�,ss
β (θ) if and only if the representa-

tions are S-equivalent with respect to θ.
(3) Rep

ss

β (θ) is a coarse moduli space for families of θ-semistable modules up to S-
equivalence

(4) When the dimension vector β is indivisible, the stable quotient Rep
s

β(θ) is a fine
moduli space for families of θ-stable modules.

Much the content of King’s paper works toward proving Theorem 2.2.1.12 in the context
of representations of a finite-dimensional F-algebra, using an equivalence between quiver
representations with a fixed dimension vector on one hand, and representations of a finite-
dimensional F-algebra E with induced pseudorepresentation D̄ on the other. However, we
need a more concrete realization of this equivalence than King provides. We are staying
within the context of quiver representations for the moment so that we can carefully iden-
tify an ample line bundle on Rep

ss

β (θ). Our goal is to give an explicit translation between
representations of Q and representations of E, also translating conditions of semistability,
etc., so that under the resulting closed immersion

Rep
ss

E,D̄(θ) ↪→ Rep
ss

Q,β(θ),

we can identify the pullback of the ample line bundle to the left side in terms of the moduli
problem there. Therefore, let us conclude our overview of King’s results by identifying this
ample line bundle on the right side in terms of the moduli problem there.

An ample line bundle on the linearized GIT quotient

Rep
ss

β (θ) = ProjF

(⊕
n≥0

F[Rep�,ss
β (θ)× L(χnθ )]GL(β)

)
is the standard ample line bundle Oθ(1) of this Proj construction,4 which consists of the

regular functions on Rep�,ss
β (θ) × L(χnθ ) such that GL(β) acts by χθ. By reviewing the

definition of χθ and the explicit form of the coordinate ring for Rep�
β in (2.2.1.3), we observe

4It is not necessarily very ample.
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that this line bundle is the descent of the PGL(β)-equivariantly linearized line bundle

(2.2.1.13) Õθ(1) :=
⊗
v∈Q0

det(Wv)
⊗θ(v)

on Rep�
β to Rep

ss

β (θ). In saying that this bundle is PGL(β)-equivariantly linearized, we

are using the fact that the GL(β)-linearization of Õθ(1) descends to a PGL(β)-linearization
(cf. the comments on the action of PGL(β) on Rep�

β at (2.2.1.3)). This is the case because
χθ(∆) = {1}; indeed, this is a condition for (GIT) semistability, which, in the translation
between the representation theoretic and GIT notions of semistability for a representation
W , corresponds to the condition θ(W ) = 0. Alternatively, we know that Õθ(1) will descend
to Repβ by (2.2.1.5), and one can check that in terms of the intrinsic definition of Repβ,

(2.2.1.14) Oθ(1) ∼=
⊗

v,w∈Q0

(∧βvβwHvw)⊗n(v,w)

for appropriate integers n(v, w) dependent on θ ∈ ZQ0 and β. We derive these integers from
(2.2.1.13) by recalling that the natural association is Hvw = Hom(Wv,Ww), and

∧βvβwHvw
∼= (∧βvWv)

⊗−βw ⊗ (∧βwWw)⊗βv .

Indeed, the integers n(v, w) are specified by the following

Lemma 2.2.1.15. Let β = (β1, . . . , βn) ∈ Zn be indivisible, and let θ = (θ1, . . . , θn) ∈ Zn
such that the dot product β · θ is zero. Then θ is a Z-linear combination of the vectors eij

for 1 ≤ i < j ≤ n, where eij = (eij1 , . . . , e
ij
n ) is given by

eijk =

 +βj if k = i
−βi if k = j
0 otherwise

.

The integers n(v, w) are the coefficients of evw in the expression for θ. Of course, since
evw = −ewv for any v, w ∈ Q0, we don’t lose anything by restricting to i < j. Also, note
that we are assuming that βv > 0 for each v ∈ Q0.

Proof. We write Zn for the Z-module of n-tuples of integers. The standard dot product
defines a perfect pairing Zn × Zn → Z, and pairing with β defines a Z-module morphism
µ = 〈·, β〉 : Zn → Z. The indivisibility of β is equivalent to the surjectivity of µ. Therefore
if we let M represent the kernel of µ, we have an exact sequence

0 −→M −→ Zn −→ Z→ 0

which admits a splitting. We observe that M must be free of rank n− 1 over Z. We want to
verify that the sub-Z-module of M generated by eij, 1 ≤ i < j ≤ n, which we will denote by
N , is in fact equal to M . Let P denote the cokernel of N ↪→ M , so that we have an exact
sequence

0 −→ N −→M −→ P −→ 0.

Since e1j, 2 ≤ j ≤ n, are linearly independent over Q, N is free of rank n− 1 and P is finite
in cardinality. We will complete the proof by showing that P ⊗Z Fp = 0 for all rational
primes p, and we will do this by showing that eij span M modulo p for each p.

Fix a prime p. Because β is indivisible, there exists some v ∈ Q0 such that βv 6≡ 0
(mod p). Without loss of generality, assume v = 1. Then the n− 1 elements e1j are linearly
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independent modulo p. This shows that the image of N⊗ZFp in M⊗ZFp is n−1-dimensional,
and therefore is equal to M ⊗Z Fp. �

2.2.2. Finite Dimensional Algebras and Path Algebras. Now we prepare back-
ground material on finite-dimensional algebras to show that their representations can be
expressed as representations of quivers.

One step will be to show that given any algebra, its abelian category of representations
is equivalent to that of some basic algebra.

Definition 2.2.2.1. Let E be a finite-dimensional F-algebra.

(1) We call E basic provided that it has a complete set {e1, . . . , en} of primitive or-
thogonal idempotent such that Eei and Eej are not isomorphic as F-algebras for all
i 6= j.

(2) We call E connected provided that it cannot be written as a proper product of
algebras E ∼= E1 × E2.

One can show (cf. [ASS06, Proposition I.6.2]) that the simple representations of a basic
algebra are all one-dimensional, or, equivalently, that if E is basic, then

(2.2.2.2) E/J(E) ∼= Fn, some n ≥ 0.

If {e1, . . . , en} are a complete set of primitive orthogonal idempotents for E, then each
simple representation into F is given by sending ei to 1 for a single i, and J(E) and the
remaining ej, j 6= i, to 0. Therefore, pseudorepresentations of a basic algebra E are in
bijective correspondence with n-tuples of non-negative integers, where we have numbered a
complete set of n primitive idempotents correspondingly.

Next, we describe the path algebra FQ of a quiverQ. This is a basic algebra whose abelian
category of representations is naturally equivalent to the abelian category of representations
of a given quiver Q. We will describe this equivalence below.

Definition 2.2.2.3. Let Q0 be a finite quiver.

(1) The path algebra FQ of Q is the quotient of the free algebra on the set Q0 ∪ Q1

where we write εv for v ∈ Q0 and αa for a ∈ Q1, subject to the relations

εvεw = δvwεv, εvαa = δvt(a)αa, αaεv = δh(a)vαa,

αaαb = 0 if h(a) 6= t(b),∑
v∈Q0

εv = 1.

(2) Let J(FQ) be the Jacobson radical of FQ, which one can check is generated by the
arrows. We call I ⊂ FQ an admissible ideal provided that there exists m ≥ 2 such
that J(Q)m ⊆ I ⊆ J(Q)2.

We observe that FQ is a basic algebra.

Remark 2.2.2.4. There is another sensible definition of FQ when Q is not finite, ex-
pressing FQ as ring graded by the lengths of paths. However, this definition does not have
a unit when Q0 is infinite, and is equivalent to the definition given above when Q is finite.

Now we give a construction of a quiver from a connected basic algebra. This is an inverse
construction to the construction of the path algebra.
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Definition 2.2.2.5 (cf. [ASS06, Definition II.3.1]). Let E be a basic connected F-algebra.
Number off the complete set of primitive orthogonal idempotents {e1, . . . , en}. Now define
the (ordinary) quiver QE = (Q0, Q1) of E by Q0 = {v1, . . . , vn} in correspondence with the
idempotents, and each arrow a in Q1 consists of a head h(a) = vi, tail t(a) = vj, and an
element of a fixed F-basis of ei(J(E)/J(E)2)ej.

The term “ordinary” is not standard notation, but we mention it as there are other
quivers associable to E such as its Auslander-Reiten quiver. We observe that if E is finite-
dimensional, then Q is finite. One can check that Q does not depend on the choices made in
order to construct it. Also, given a primitive idempotent e ∈ E, we will often simply write
ve for the vertex of Q associated to e.

Theorem 2.2.2.6 (cf. [ASS06, Theorem II.3.7]). Let E be a basic connected F-algebra.
Then there exists a surjection of F-algebras from the path algebra of a connected quiver,
namely, from the path algebra of its ordinary quiver

FQE −→ E,

inducing an isomorphism of E with the quotient QE/I of FQE by an admissible ideal.

Proof. Map the set Q0 into FQE by sending v to εv. By definition, an arrow a ∈ Q1

such that t(a) = v and h(a) = w is an element of some basis for ew(J(E)/J(E)2)ev. Choose
a lift of this basis element to J(E) and map the set Q1 to FQE according to the choices
above. This map is, in fact, surjective with admissible kernel [ASS06, Theorem II.3.7], and
we can already see that the kernel is contained in J(E)2. �

Let us explicitly describe an equivalence between representations of Q = QE and repre-
sentations of the path algebra FQ. We will give the construction a representation of FQ out
of a representation of Q in terms of the algebraic stacks

RepQ,β
∼−→ RepFQ,D̄β ,

since we are interested in keeping track of the line bundle Oθ(1) of (2.2.1.14) on RepQ,β
after its pullback to RepFQ or RepE. Here D̄β denotes a pseudorepresentation of FQ that
corresponds via Theorem 1.3.1.1 to the direct sum of representations⊕

v∈Q0

M⊕βv
v ,

where Mv is the one-dimensional simple representation on which only ev acts as 1 and
ew, w 6= v and Q1 act as 0. This is the semisimple representation of FQ associated to the
|Q0|-tuple (ev)v∈Q0 , i.e. the direct sum with multiplicity (ev)v∈Q0 over the |Q0| simple (1-
dimensional) representations of FQ corresponding to ev, cf. (2.2.2.2). For this construction
in the more usual framed setting (i.e. for elements of Rep�

Q,β), see e.g. [ASS06, Theorem
III.1.6].

Let (Hvw, φa) ∈ Repβ(X) be a representation of Q over X ∈ SchSpecF of dimension vector
β, as in Definition 2.2.1.4. Define

(2.2.2.7) E = E(Wv, φa) :=
⊕

v,w∈Q0

Hvw.

The structure maps cvwx of Definition 2.2.1.4 endow E with the structure of an Azumaya
OX-algebra, where the OX-algebra structure map induced by the sum over v ∈ Q0 of the
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maps OX → Ev ∼= Hvv. One can readily check that the map of sets

Q = Q0 ∪Q1 −→ E
εv 7→ idv ∈ Ev ⊂ E
αa 7→ φa ∈ Ht(a)h(a) ⊂ E .

extends to a homomorphism FQ⊗FOX → E of OX-algebras. Here Ev and Ht(a)h(a) are being
considered as (OX-module) summands of E . Let D̄β : FQ→ F be the pseudorepresentation
associated to the semisimplification FQ →

⊕
v∈Q0
Ev, which one can check from the defini-

tions. We have constructed a map of SpecF-groupoids RepQ,β → RepFQ,D̄β ; one can examine

the inverse construction (cf. [ASS06, Theorem III.1.6]) to see that this is an equivalence, and
use e.g. [Kin94, Proposition 5.2] to show that the map is algebraic.

Now let E be a basic connected F-algebra. Choose a (non-canonical) surjection FQE � E
described in the proof of Theorem 2.2.2.6. Choose also a Cayley-Hamilton pseudorepresen-
tation D̄β : E → F, where we let β denote the dimension vector of Q corresponding to the
semisimple representation of FQ induced by the semisimple representation ρss

D̄β
. We have a

closed immersion
Rep�

E,D̄β
↪→ Rep�

FQ,D̄β
∼−→ Rep�

Q,β,

where the maps are equivariant for the natural action of PGL(β). Therefore we have a closed
immersion of algebraic stacks

RepE,D̄β ↪→ RepFQ,D̄β
∼−→ RepQ,β,

and we observe that the line bundle Oθ(1), expressed in terms of the data Hvw on RepQ,β in
(2.2.1.14), pulls back via the association (2.2.2.7) to a line bundle that can be constructed

out of appropriate sub-modules of the universal Azumaya algebra E on Rep
◦
E,D̄β

receiving

the universal representation of E with pseudorepresentation D̄β.
Now, in the case of basic algebras, we have achieved our goal of identifying the line bundle

Oθ(1). Let us extend this to the general case of a finite-dimensional algebra E.
First we explain how to associate a basic algebra to a general F-algebra.

Definition 2.2.2.8. Let E be a finite-dimensional F-algebra with a complete set of
primitive orthogonal idempotents {e1, . . . , en}. Partition these idempoents according to the

equivalence relation ei ∼ ej if and only if there is a F-algebra isomorphism Eei
∼→ Eej, and

choose a representatives ej1 , . . . , ejb . Write eE for eE =
∑b

1 eji . Then the F-subalgebra

Eb := eEEeE

as a basic algebra associated to E.

This subalgebra Eb of E is clearly not canonical, but one can show that the isomorphism
class of Eb does not depend on the choices above. For the time being, we fix such choices
and the resulting F-subalgebra Eb ⊆ E.

Remark 2.2.2.9. For this association to work, we must have a complete set of orthogonal
idempotents as the definition above requires. When we apply this construction, we will
always work with finite-dimensional algebras E whose semisimple quotient E/J(E) by the
Jacobson radical is a product of matrix algebras. Such a set of idempotents clearly exists
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for a product of matrix algebras, and we then apply the well known fact that one can (non-
canonically) lift idempotents over a nilpotent ideal (the Jacobson radical of a finite dimension
algebra is nilpotent).

Here we see that we can reduce the study of representations of finite-dimensional algebras
to the study of the representations of basic algebras.

Theorem 2.2.2.10 (cf. [ASS06, Corollary I.6.10]). Let E be a finite-dimensional F-
algebra. Then E contains a basic F-subalgebra Eb := eEEeE as above, and the natural
restriction functor

res : RepE(F) −→ RepEb(F)

V 7→ eEV

is an equivalence of abelian categories with quasi-inverse −⊗Eb EeE.

Now let us observe that this equivalence extends from representations with coefficients F
to functors of families of representations over SpecF-schemes. Fix a choice of idempotents to
produce ι : Eb ↪→ E as above. We observe that the restriction functor res extends naturally
to families of representations over F-schemes X, via the natural transformations

res : RepE −→ RepEb ,

V 7→ eEV,

ρ : E ⊗F OX → EndOX (V ) 7→ (x 7→ ρ(eE)xρ(eE)) ◦ ρ ◦ (ι⊗OX).

of SpecF-scheme functors with a quasi-inverse as in the theorem above, so that it is an
isomorphism. The induced isomorphic functor res : RepE → RepEb is given by sending
ρ : E ⊗F OX → E to

(2.2.2.11) res(ρ) : Eb ⊗F OX −→ eEEeE.
Now that we have given the association of representations, we are able to calculate the

line bundle Õθ(1) on RepE,D̄ in terms of data native to the moduli problem for RepE,D̄ we
summarize this calculation and the choices involved in this

Proposition 2.2.2.12. Let E be a F-algebra. Fix a choice of

(1) a set of primitive idempotents {ejv} indexed by a finite set Q0, v ∈ Q0, representing
the isomorphism classes of Definition 2.2.2.8, and the resulting idempotent eE =∑

Q0
ejv and basic subalgebra Eb = eEEeE ⊆ E,

(2) a F-basis for ejv(J(Eb)/J(Eb)2)ejv , which produces the F-algebra homomorphism
FQEb � Eb ↪→ E of Theorem 2.2.2.6,

(3) a Cayley-Hamilton pseudorepresentation D̄ : E → F, the associated semisimple
representation ρss

D̄
of E, the semisimple representation eEρ

ss
D̄

of Eb, and the resulting
dimension vector β for Q corresponding to the induced semisimple representation of
FQ via FQ� Eb.

These choices define morphisms

RepE,D̄
∼−→ RepEb,D̄ ↪→ RepFQE ,D̄ −→ RepQ,β.

Let θ : K0(E) −→ Z. Under these maps with the choices above, the line bundle Oθ(1) pulls
back to

(2.2.2.13)
⊗

v,w∈Q0

(
∧βvβw (ejvEejw)

)n(v,w)
,
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where n(v, w) are a choice of integers as specified in (2.2.1.14).

Recall that Lemma 2.2.1.15 shows that there exist integers n(v, w) with the properties
demanded by (2.2.1.14).

Proof. On RepQ,β, we recall from (2.2.1.14) that we have a natural isomorphism

Oθ(1) ∼=
⊗

v,w∈Q0

(∧βvβwHvw)⊗n(v,w).

We see in (2.2.2.7) that Hvw pulls back to RepF,D̄β as a direct summand of E ′, namely εvE ′εw,

where E ′ is the universal Azumaya algebra on RepFQ,D̄β . These idempotents εv ∈ FQE

correspond to the chosen idempotents {ejv}v∈Q0 of Eb; the homomorphism from FQE to E ′
factors through Eb, so that the data of E ′ and εvEεw still make sense on the closed substack
RepEb,D̄β ⊆ RepFQ,D̄β . Finally, if we write E for the universal Azumaya algebra on RepE,D̄,

we see in (2.2.2.11) that E ′ ' eEEeE. So the pullback of Hvw to RepE,D̄ from RepQ,βD̄ is
expressible in terms of its universal Azumaya algebra E as

ejveEEeEejw ∼= ejvEejw . �

By combining King’s Theorem 2.2.1.12 with this calculation, we have the following de-
duction. Recall the notation of θ-(semi)stability of a representation of E from Definition
2.2.1.6.

Corollary 2.2.2.14. Let E be a F-algebra. Choose a character θ : K0(E) → Z and a
pseudorepresentation D̄ : E → F with associated dimension vector βD̄ ∈ ZK0(E) such that
〈β, θ〉 = 0. If βD̄ is indivisible and 〈β, θ〉 = 0, then the θ-stable locus of representations

of E descends to a quasi-projective subscheme Rep
s

E,D̄(θ) of Rep
◦
E,D̄. If, moreover, βD̄ is

stabilizing with respect to θ, then the Rep
s

E,D̄(θ) is a projective subscheme of the algebraic

stack Rep
◦
E,D̄, with ample line bundle given in terms of the universal Azumaya algebra on

RepE,D̄ by (2.2.2.13).

Note that while this subscheme is projective, it is not closed in RepE,D̄ in any non-
trivial case. The usual geometric situation is just like the standard construction of Pn as
An+1\{0}/Gm, lying inside [An+1/Gm].

Proof. By Theorem 2.2.1.12, the indivisibility of β implies that the θ-stable locus
Rep

s

E,D̄(θ) of the χθ-linearized GIT quotient of Rep�,◦
E,D̄

is a fine moduli space. As a result,

we have an immersion Rep
s

E,D̄(θ) ↪→ Rep
◦
E,D̄. When βD̄ is stabilizing with respect to θ, then

θ-semistability of representations of E is equivalent to θ-stability by Lemma 2.2.1.8. There-
fore Rep

s

E,D̄(θ) is projective and a subscheme of Rep
◦
E,D̄, and Proposition 2.2.2.12 identifies

a line bundle on Rep
◦
E,D̄ that is ample on Rep

s

E,D̄(θ). �

2.2.3. Examples of Projective Moduli Spaces. We will give the motivating exam-
ple, suggested by Kisin, of a moduli space of representations that is projective relative to
the moduli space of pseudorepresentations below. First we give an example of the projective
spaces constructed above.

Example 2.2.3.1. Let R be a finitely generated algebra over a field F. Choose n simple
representations ρ1, . . . , ρn of R of dimension di < ∞ over F. We stipulate that ρn 6' ρi for
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1 ≤ i < n, but allow multiplicity among the ρi otherwise. Let ρ represent the d-dimensional
direct sum

⊕n
1 ρi. Let Dρ be the pseudorepresentation of R associated to ρ, i.e. Dρ := det ◦ρ.

We will illustrate in this example that the moduli space of families of representations of R
whose semisimplification is ρ and whose unique simple quotient is ρn is in fact projective
over the point Dρ ∈ PsRd

R(F) with residue field FDρ .
Let E be the universal Cayley-Hamilton representation of R over Dρ, i.e. E := R/CH(D).

By abuse of notation, we will write D for the factorization of D through E, and likewise
for the representations ρi. It is visible that Dρ is split over F. We know that E is finite-
dimensional over F by Corollary 1.2.2.9, and we know from Theorem 1.4.3.1 that

RepR,D
∼= RepE,D.

Consider now a character θ on K0(E) sending

θ :
ρi 7→ 1 1 ≤ i < n
ρn 7→ −(n− 1)

Write β = βρ for the dimension vector of ρ, which is essentially the image of ρ in K0(E).

Now let us consider the projective SpecFDρ-scheme Rep
ss

E,D(θ). We want to show that the
conditions of Corollary 2.2.2.14 are satisfied. Here are the conditions:

• Since θ · β = 0, i.e. θ(ρ) = 0, it is possible for this space to be non-empty (the first
condition of semisimplicity in Definition 2.2.1.6 is satisfied)
• β is indeed indivisible – this is guaranteed because ρn appears with multiplicity 1

as a factor of ρ.
• It is also the case that β is stabilizing with respect to θ (see Definition 2.2.1.9).

Simply see Example 2.2.1.10.

With these conditions satisfied, Corollary 2.2.2.14 now tells us that

RepsE,D(θ)
∼→ Rep

ss

E,D(θ)

is a fine moduli space for θ-semistable (equivalently, θ-stable) representations of E lying over
D ∈ PsRd

E, i.e. it is naturally a subscheme of RepE,D. We also know from Corollary 2.2.2.14

that the restriction of ψ : Rep
d

E → PsRd
E to RepssE,D(θ) is projective.

Finally, we give a translation of the last bullet point above: a representation M with
dimension vector β is θ-semistable (equivalently, θ-stable) if and only if its unique simple
quotient is ρn. For if there exists some other simple quotient of M , then there exists a proper
subrepresentation M ′ of M with ρn as a Jordan-Hölder factor, implying that θ(M ′) < 0 and
that M is not θ-semistable. Conversely, if M is not θ-semistable, there must exist some
subrepresentation M ′ ⊂ M such that θ(M ′) < 0, which implies that ρn is a Jordan-Hölder
factor of M ′ and that M/M ′ (which must have some simple quotient) has a simple quotient
not isomorphic to ρn.

We were motivated to investigate these projective spaces of representations by an example
and suggestion of Kisin [Kis09a, §3.2, esp. Remark 3.2.7]. Kisin gives his construction and
suggestion in the context of continuous representations of a profinite group, but we will see
later (e.g. Theorem 3.2.4.1) that the continuous representations of a profinite algebra over
a fixed finite field-valued pseudorepresentation amounts to the representations of a certain
finite-dimensional algebra over the finite field. Therefore these constructions of projective
spaces apply to Kisin’s context. Then the next paragraph §2.2.4 shows that deformations of
these projective spaces are projective, as he suggests.
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Definition 2.2.3.2. Let E be a finite-dimensional algebra over F with pairwise non-
isomorphic simple representations ρi, 1 ≤ i ≤ n, each of dimension di. Write ρ =

⊕n
1 ρi and

let Dρ (resp. βρ) be the corresponding pseudorepresentation (resp. dimension vector). Let

Rep
′
Dρ ⊂ RepDρ be the full subgroupoid of families of representations E ⊗F OX → E which

locally in the Zariski topology are of the form

(2.2.3.3) ρ '


ρ1 ∗ · · · · · ·
0 ρ2 ∗ · · ·
0 0

. . . ∗
0 0 0 ρn


with the additional condition that follows. When we write

0 = L0 ⊂ L1 ⊂ · · · ⊂ Ln = M

for the filtration where Li/Li−1 ' ρi, we stipulate that the extension class of M/Li−1 as an
extension of M/Li by ρi is non-trivial.5

Remark 2.2.3.4. As Kisin notes, this condition guarantees that such representations
have no non-trivial automorphisms, making the isomorphism (2.2.3.3) unique. The unique-
ness only holds once one considers representations as maps into Azumaya algebras (an object
of Rep) instead of vector bundles with an action (an object of Rep). In the latter case, the
trivial (scalar) automorphisms are taken into account.

We immediately observe that this groupoid is a subgroupoid of the projective FDρ-
subscheme Rep

ss

Dρ(θ) of RepDρ described in Example 2.2.3.1 above, where θ is the character

of K0(RepE) with θ : ρi 7→ 1 for 1 ≤ i < n and θ(ρn) = −(n − 1). Indeed, ρn is the unique

simple quotient of any object of Rep
′
Dρ , and this condition defines Rep

ss

Dρ(θ) in RepDρ . We

claim that Rep
′
Dρ is a closed subscheme of Rep

ss

Dρ(θ), and is therefore projective over SpecFDρ
as well.

Proof. First we fix certain idempotents in E. We know from Lemma 1.2.3.1 that the
representation ρ has kernel precisely the Jacobson radical J(E) of E, and draws a surjection

ρ : E �
n∏
i=1

Mdi(F).

Let ei represent a (non-canonical) lift to E of the idempotent of E/J(E) corresponding to
the identity element of Mdi(F) via ρ (see Remark 2.2.2.9). One can quickly check that they
remain pairwise orthogonal.

Let Euniv be the universal Azumaya algebra over RepssDρ(θ), receiving the universal rep-

resentation ηuniv from E ⊗F ORepssDρ (θ). These idempotents ηuniv(ei) along with the standard

reduced trace on Euniv correspond to the additional structure of a generalized matrix algebra
of type (d1, . . . , dn) on the Azumaya algebra Euniv; we will use the notation of Lemma 2.3.1.4
describing generalized matrix algebras to offer additional clarity to the following calcula-
tions without requiring any additional theory of generalized matrix algebras. We have an

5Actuallly, Kisin uses the dual condition that the extension Li of ρi by Li−1 is non-trivial.
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isomorphism

Euniv ∼=


Md1(A1,1) Md1×d2(A1,2) · · · Md1×dn(A1,n)
Md2×d1(A2,1) Md2(A2,2) · · · Md2×dn(A2,n)

...
...

...
...

Mdn×d1(An,1) Md2(An,2) · · · Mdn(An,n)

 ,

where the Aij are line bundles on RepssDρ(θ) (with a canonical trivialization for Aii for each

i) and the algebra structure is determined by canonical isomorphisms

Mdidj(Aij)
∼→ eiRej.

Consider a representation (η : E ⊗F OX → E) ∈ ob Rep
ss

Dρ(θ), so that η = ηuniv ⊗Rep
ss
Dρ

(θ)

OX . It inherits the structure of a generalized matrix algebra from Euniv, which we denote
again with OX-line bundles Aij, abusing notation. The condition that η belongs to the

subgroupoid Rep
′
Dρ is equivalent to the triviality of the projection of the image of E in E to

Mdidj(Aij) via
x 7→ η(ei) · x · η(ej)

for all pairs (i, j) such that 1 ≤ j < i ≤ n. To illustrate this equivalence, notice that the
condition for the pair (n, n− 1) is equivalent to the condition (in the language of Definition
2.2.3.2) that the extension M/Ln−2 of M/Ln−1 by ρn−1 is non-trivial; following this, the
condition that the extension M/Ln−3 of M/Ln−2 by ρn−2 is non-trivial is expressed by the
pairs (n, n− 1), (n, n− 2), (n− 1, n− 2); and so forth.

Notice in particular that the condition for pairs (n, j), 1 ≤ j < n, is what defines the
subscheme Rep

ss

Dρ(θ) ⊂ RepDρ ; this shows that Rep′Dρ is contained in the θ-semistable locus.
It remains to show that the locus cut out by the condition that

η(eiEej) ⊂Mdidj(Aij) is trivial for 1 ≤ j < i ≤ n.

Let Nij ⊂ Mdidj(Aij) be the OX-submodule of Mdidj(Aij) generated by η(eixej) for x ∈
E. This submodule will be trivial over the locus of support for the quotient module
Mdidj(Aij)/Nij, which is a closed subscheme.

Now we can apply these constructions to the universal representation ηuniv over Rep
ss

Dρ(θ).

The intersection of all of these support loci is therefore the closed subscheme Rep
′
Dρ ⊂

Rep
ss

Dρ(θ). Consequently, Rep
′
Dρ is projective over SpecFDρ . �

We summarize what we have shown in the following theorem, confirming Kisin’s expec-
tation [Kis09a, Remark 3.2.7] that the space Rep′Dρ is projective.

Theorem 2.2.3.5. Let ρi, 1 ≤ i ≤ n be pairwise non-isomorphic simple representations
of E with sum ρ, and let θ be a character of K0(RepE) sending ρi, 1 ≤ i < n to 1 and ρn
to −(n− 1) as in the example above. The subgroupoid Rep

′
Dρ ⊂ RepDρ defined by the condi-

tion (2.2.3.3) is a closed sub-SpecFDρ-scheme of Rep
ss

Dρ(θ), and is consequently a projective

subscheme of RepDρ with ample line bundle Oθ(1).

2.2.4. Deformation of Ample Line Bundles. We conclude our discussion of the
fibers of ψ̄ by giving conditions such that the projective subspaces Rep

s

E,D̄(θ) ⊂ Rep
◦
E,D̄

identified in the previous paragraph are the special fiber of a projective morphism to a local
neighborhood on the base moduli space of pseudorepresentations. The question of which
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condition we must impose has a fairly clear answer in light of the calculation of the ample
line bundle in Proposition 2.2.2.12: the idempotents on the fiber must be locally liftable to a
neighborhood. By Lemma 2.1.3.2, this is true precisely for henselian local rings. To deform
the projectivity condition, we require that A is complete.6

Theorem 2.2.4.1. Let A be a complete local Noetherian ring with residue field FA and
maximal ideal mA. Let R be an A-algebra that is finite as an A-module, and write E for
R ⊗A FA. Let R be equipped with a d-dimensional Cayley-Hamilton pseudorepresentation
D : R→ A such that its special fiber D̄ : E → FA is split. For any indivisible character θ of
K0(RepE), the line bundle Oθ(1) on the special fiber Rep

◦
E,D̄ is the restriction to the special

fiber of a line bundle defined over all of RepR,D.

In particular, if D̄ is stabilizing with respect to θ, the projective fine θ-stable moduli space
Rep

◦,s
E,D̄(θ) of Corollary 2.2.2.14 is the special fiber of a projective subscheme Rep

s

R,D(θ) of

the moduli stack RepR,D arising as the algebraization of the completion of RepR,D along

Rep
◦,s
E,D̄(θ).

Proof. Firstly, we show that the ample line bundle Oθ(1) is a specialization of an ample
line bundle that exists on all of RepD. This follows directly from the fact that we can lift
the idempotents defining Oθ(1) according to (2.2.2.13) from E⊗A FA to E. We then use the
same formula.

Now we apply formal GAGA [Gro61b, Theorem 5.4.5] to draw the conclusion. �

We thank Mark Kisin for comments leading to the following remark.

Remark 2.2.4.2. In fact, Theorem 2.2.4.1 can be extended to a henselian base. The line
bundle ample on the particular subspace certainly exists. Then, in place of the completion
of RepR,D along Rep◦,s

E,D̄
(θ), one can consider the henselization along this subscheme.

This theorem is especially significant in the context of continuous representations and
pseudorepresentations of a profinite algebra. Of course, it is necessary to show that we can
reduce the topological profinite case to the non-topological case under a finiteness condition
ΦD̄, which we do in Chapter 3 (see e.g. Theorem 3.2.4.1). Then, firstly, the moduli space of
pseudorepresentations of a profinite algebra is a disjoint union of formal spectral of complete
local rings (Corollary 3.1.6.13). This allows Theorem 2.2.4.1 to be applied over the whole
moduli space of pseudorepresentations! Each component Spf BD̄ arises from the complete
local ring BD̄, which is Noetherian upon the finiteness assumption ΦD̄. These notions will
be defined and discussed in Chapter 3. For now we discuss the moduli of representations of
a Cayley-Hamilton BD̄-algebra (R,D) where R is finite as a BD̄-module.

This is the context in which Kisin proposed the projectivity of a moduli formal scheme
of representations of a profinite group with residually constant, split, multiplicity free pseu-
dorepresentation D̄, and a certain ordering of non-trivial residual extensions of the represen-
tation given in Definition 2.2.3.2 [Kis09a, Remark 3.2.7]. We verified in Theorem 2.2.3.5 that

the special fiber of ψ in this space Rep
′
E,D̄ is projective and is a closed subspace of the larger

projective subscheme Rep
ss

E,D̄(θ) ⊂ RepE,D̄. The ample line bundle Oθ(1) on Rep
ss

E,D̄(θ) is

therefore also ample on Rep
′
E,D̄. Since this line bundle deforms to RepR,D as discussed in

Theorem 2.2.4.1, formal GAGA implies that the formal completion of Rep
′
E,D̄ in RepR,D

6See Remark 2.2.4.2.
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is projective. In particular, it is algebraizable and is a projective SpecBD̄-subscheme of

RepR,D, which we denote by Rep
′
R,D. This completes the confirmation of Kisin’s suggestion

that the space of representations with reduction in Rep
′
E,D̄ is projective. We summarize this

in the following

Corollary 2.2.4.3. Let ρ̄ss
D̄

: E → Md(FA) be chosen as in Theorem 2.2.3.5, and

choose an ordering of its simple factors in order to define the subgroupoids Rep
′
R,D ⊂

RepR,D,Rep
′
E,D̄ ⊂ RepE,D̄ as above. Assume that the associated pseudorepresentation satis-

fies condition ΦD̄. The formal completion of RepR,D along the projective subscheme Rep
′
E,D̄

of the special fiber of ψ is projective over Spf BD̄ with ample line bundle Oθ(1). Conse-

quently, this formal scheme is algebraizable with algebraization Rep
′
R,D, a projective SpecBD̄-

subscheme of RepR,D.

2.3. Multiplicity Free Pseudorepresentations

Chenevier showed that a Cayley-Hamilton algebra (R,D) over a henselian local ring A
which is residually split and absolutely irreducible is a matrix algebra (Theorem 2.1.3.3).
This corresponds to very tidy results in in the moduli theory of representations and pseu-
dorepresentations that locally satisfy these conditions: the deformations of representations
and pseudorepresentations are equivalent (Corollary 2.1.3.4).

Our goal in this section is to generalize these results to the case that a pseudorepresen-
tation is residually multiplicity free (see Definition 1.3.4.4). Here, the moduli of representa-
tions and pseudorepresentations are no longer equivalent. For example, over a multiplicity
free geometric point D̄ of PsRd

R, non-trivial extensions of the Jordan-Hölder factors Mi of
ρss
D̄

may form positive dimensional families of representations lying over this single pseu-
dorepresentation; for example, this often happens if there exists Mi,Mj, i 6= j, such that
dimFA Ext1

R(Mi,Mj) ≥ 2. What we want to show is that around multiplicity free points in
PsRd

R, ψ (resp. ψ̄) is an adequate moduli space. This will mean that the multiplicity free
locus of pseudorepresentations is a universal scheme-theoretic quotient for representations of
R up to conjugation. This improves the results of GIT (Theorem 1.5.4.2), which only have
fine enough resolution to give a satisfactory theory for geometric points.

The main tool to accomplish this will be a generalized matrix algebra. The key result
generalizing Theorem 2.1.3.3 is Theorem 2.3.1.2, which shows that a Cayley-Hamilton alge-
bra (R,D) over a henselian local ring is a generalized matrix algebra. The linear structure
we can put on the moduli space of representations of a generalized matrix algebra, an “adap-
tation” of its representations, will allow us to show that the invariant functions on the space
of framed representations are exactly the coefficients of the universal pseudorepresentation,
as desired (Theorem 2.3.3.7).

Remark 2.3.0.4. Currently, the notion of generalized matrix algebra that we use is meant
to work with pseudocharacters as opposed to pseudorepresentations (see §1.1.12). Therefore,
we state our main result here in the case that (2d)! is invertible in A (i.e. charFA > 2d),
which is a sufficient condition for pseudocharacters to be equivalent to pseudorepresentations
according to Proposition 1.1.12.3(3). We expect to develop a theory of generalized matrix
algebras compatible with pseudorepresentations, which will allow us to remove the condition
on the characteristic (see Remark 2.3.3.6).
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2.3.1. Generalized Matrix Algebras. We define generalized matrix algebras.

Definition 2.3.1.1 ([BC09, Definition 1.3.1]). Let A be a commutative ring and R an
A-algebra. We say that R is a generalized matrix algebra (GMA) of type (d1, . . . , dr) if R is
equipped with

(1) a family of orthogonal idempotents e1, . . . , er of sum 1
(2) for each i, an A-algebra isomorphism ψi : eiRei →Mdi(A),

such that the trace map T : R→ A defined by

T (x) :=
r∑
i=1

Tr(ψi(eixei)),

satisfies T (xy) = T (yx). The “data of idempotents” of the GMA is E = {ei, ψi}.

Here is the main result making possible our use of generalized matrix algebras to study
ψ : Rep → PsR: given a henselian local ring A and a Cayley-Hamilton algebra (R,D) over
A, R must be a generalized matrix algebra.

Theorem 2.3.1.2 ([Che11, Theorem 2.22(ii)]). Let D : R → A be a Cayley-Hamilton
pseudorepresentation over a henselian local ring A. If D̄ is split and multiplicity free, then
(R, TD) is a generalized matrix algebra.

We use the GMA structure on (R, E) to establish notation for elements of R analogous
to matrices with a single non-zero entry.

Definition 2.3.1.3. Let Ek,l
i ∈ eiRei be the unique element mapping under ψi to the

matrix in Mdi(A) with 1 in the (k, l)th entry and 0 elsewhere. Write Ei = E1,1
i . For

1 ≤ i, j ≤ r set Ai,j := EiREj. For 1 ≤ i, j, k ≤ r we have Ai,jAj,k ⊂ Ai,k so that the
product in R induces maps

ϕi,j,k : Ai,j ⊗A Aj,k → Ai,k.

Belläıche and Chenevier use these elementary matrix-like elements to exhibit a matrix-
like structure on any given GMA (R, E).

Lemma 2.3.1.4 (Belläıche-Chenevier, §1.3.2). There is a canonical isomorphism of A-
algebras

R ∼=


Md1(A1,1) Md1×d2(A1,2) · · · Md1×dr(A1,r)
Md2×d1(A2,1) Md2(A2,2) · · · Md2×dr(A2,r)

...
...

...
...

Mdr×d1(Ar,1) Md2(Ar,2) · · · Mdr(Ar,r)

 ,

where the A-algebra structure is determined by canonical isomorphisms

Mdidj(Aij)
∼→ eiRej.

In analogy to Definition 2.2.1.4, we take note of the conditions that the maps ϕi,j,k must
satisfy (cf. [BC09, Lemma 1.3.5]) as a result of the construction above. Here we implicitly use

a canonical morphism for each i, Ai,i
∼→ A, that arises from the trace T , i.e. Ai,i ↪→ R

T−→ A
is an isomorphism.

(UNIT) For all i, Ai,i ∼= A and for all i, j, ϕi,i,j : A⊗Ai,j → Ai,j (resp. ϕi,j,j : Ai,j⊗A→ Ai,j)
is the A-module structure of Ai,j.

(ASSO) For all i, j, k, l, the two natural maps Ai,j ⊗Aj,k ⊗Ak,l → Ai,l coincide.
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(COM) For all i, j and for all x ∈ Ai,j, y ∈ Aj,i, we have ϕi,j,i(x⊗ y) = ϕj,i,j(y ⊗ x).

Belläıche and Chenevier note that specifying the data of A-modules Ai,j, 1 ≤ i, j ≤ r with
maps ϕi,j,k as above satisfying (UNIT), (ASSO), and (COM), then R := Mdi,dj(Ai,j) is
uniquely a GMA of type (d1, . . . , dr) such that EiREj ∼= Ai,j for all i, j. This completes a
satisfying structure theory for GMAs.

Remark 2.3.1.5. Compare these conditions (UNIT), (ASSO), (COM) with the groupoid
of families of quiver representations in Definition 2.2.1.4.

2.3.2. Trace Representations and Adapted Representations. Now we define the
notion of an adapted representation of a GMA (R, E). Adapted representations have extra
linear structure that makes their moduli easier to handle than the general moduli problem
of representations.

Definition 2.3.2.1 ([BC09, Definition 1.3.6]). Let B be a commutative A-algebra and
let (R, E) be a generalized matrix A-algebra. A representation ρ : R → Md(B) is said to
be adapted to E if its restriction to the A-subalgebra

⊕r
i=1 eiRei is the composite of the

representation
⊕r

i=1 ψi by the natural “diagonal” map

Md1(A)⊕ · · · ⊕Mdr(A)→Md(B).

We define Rep�
Ad(R, E) to be the functor associating an A-algebra B to the set of adapted

representations of (R, E) over B.

We also give a definition of a trace representation. This is nothing more than the ana-
logue, where pseudocharacters replace pseudorepresentations, of the functor of representa-
tions lying over a given pseudorepresentation.

Definition 2.3.2.2 ([BC09, §1.3.3]). If R is an A-algebra equipped with a d-dimensional
pseudocharacter T : R → A and B is a commutative A-algebra, we will say that a map of
A-algebras ρ : R → Md(B) is a trace representation if Tr ◦ ρ(x) = T (x)1B for any x ∈ R.
We write Rep�

T for the functor of trace representations on AlgA.

Of course, this definition can be applied to Azumaya algebra valued representations as
well, to get a groupoid RepT analogous to the definition for pseudocharacters (Definition
1.4.1.1). We will assume that (2d)! is a unit in A so that we can consider pseudocharacters
and pseudorepresentations to be the same object (cf. Proposition 1.1.12.3).

The key result is that a trace representation can be made into an adapted representation
after base change and conjugation. This is the key result we require in order to compare the
moduli problem for adapted representations with our usual moduli problem for representa-
tions.

Lemma 2.3.2.3 ([BC09, Lemma 1.3.7]). Let B be a commutative A-algebra and ρ : R→
Md(B) be a trace representation. Then there is a commutative ring C containing B and a
P ∈ GLd(C) such that PρP−1 : R → Md(C) is adapted to E. Moreover, if every finite type
projective B-module is free, then we can take C = B.

We omit the proof, since we will give a proof more precisely tailored to the situation we
are required to address in order to prove Proposition 2.3.3.5 below.

Adapted representations have a very concrete moduli functor.

Proposition 2.3.2.4 ([BC09, Propositions 1.3.9, 1.3.13]). When (R, E) is a GMA over
A, the functor Rep�

Ad(R, E) : AlgA → Set associating a commutative A-algebra B to the set
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of homomorphisms R→Md(B) adapted to E is representable by a faithful A-algebra Bu with
an injective universal adapted homomorphism R ↪→Md(B

u).

Proof. The proof shows that one can find a ring Bu with inclusions Ai,j ↪→ Bu (where
Ai,j are from Lemma 2.3.1.4 above) such that the isomorphism in Lemma 2.3.1.4 is precisely
the injection required. Bu is constructed as a quotient of the symmetric power algebra on
⊕i 6=jAi,j. For additional details, see [BC09]. �

It follows from the existence of the universal adapted representation that the trace func-
tion on a GMA is Cayley-Hamilton (cf. [BC09, Corollary 1.3.16]), where Cayley-Hamilton
is defined for pseudocharacters in analogy with the definition for pseudorepresentations in
Definition 1.1.8.5 (see [BC09, §1.2.3]). We give this brief argument: the trace T of the
GMA data (R, E) is equal to the composition of the trace function Tr on Md(B

u) with the
universal adapted representation R → Md(B

u) given by Proposition 2.3.2.4. Since Tr is
Cayley-Hamilton and R→Md(B

u) is an algebra homomorphism, so is T Cayley-Hamilton.

2.3.3. Invariant Theory of Adapted Representations. In this paragraph, our goal
is to naturally identify the GIT quotient of Rep�

Ad(R, E) with the algebra of traces, which
is A. This will allow us to do for adapted representations what we have not yet done for
general representations: show that pseudorepresentations are an adequate moduli space for
representations. After completing this paragraph, we will use the comparison of adapted
representations with trace representations to show that ψ (resp. ψ̄) is an adequate moduli
space over the multiplicity free locus of PsRd

R.
Let (R, E) be a d-dimensional generalized matrix algebra of type β = (d1, . . . , dr). We

set up the notation for the following group schemes; the group Z(β) is made to act naturally
on the affine scheme Rep�

Ad(R, E).

Definition 2.3.3.1. In analogy with automorphism groups of quiver representations,
define GL(β) := GLd1 × · · · ×GLdr as a subgroup

GLd1 × · · · ×GLdr ⊂ GLd,

compatible with the maps ψi : Mdi → Md of Definition 2.3.2.1. Let Z(β) denote the center
of GL(β). Likewise, let PGL(β) denote the quotient of GL(β)/∆ of GL(β) by the diagonally
embedded central 1-dimentional torus ∆ ∼= Gm, and let PZ := Z(β)/∆.

Because Z(β) commutes with ⊕iMdi , its adjoint action preserves the adaptation. There-
fore we have a natural action of Z(β) on Rep�

Ad(R, E), inducing a natural action of PZ(β).
There is a natural map

(2.3.3.2) Rep�
Ad(R, E) ↪→ Rep�,d

R

given by forgetting the adaptation data. The map ⊕iMdi ↪→Md induces a canonical injection
Z(β) ↪→ GLd (resp. PZ(β) ↪→ PGLd). In this lemma, we record the fact that (2.3.3.2) is
equivariant for the action of Z(β) (resp. PZ(β)). We also calculate the GIT quotient of the
action of Z(β) on Rep�

Ad(R, E).

Lemma 2.3.3.3. Given (R, E) a GMA over A of type β. The map (2.3.3.2) is equivariant
for the action of Z(β) (resp. PZ(β)). The invariant regular functions on Rep�

Ad(R, E) under
this action are precisely A ⊂ Bu.

Proof. The first claim can be checked by each of the embeddings of functors and groups
set up above. For the claim on the invariant functions, as we mentioned in the proof of
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Proposition 2.3.2.4, Bu is generated over A by Ai,j for i 6= j. As Z(G) ' Gr
m acts on Bu

(observe the form of the matrices in Lemma 2.3.1.4), it acts on each of Aij (i 6= j) by a
(distinct) non-trivial character, namely, through the roots of GLd. Since these modules Aij
generate the coordinate ring Bu of Rep�

Ad(R, E), we see that (Bu)Z(β) ∼= A, i.e.

Rep�
Ad(R, E)//Z(β) ∼= SpecA

as desired. �

If as usual, we let (R, E) be a d-dimensional generalized matrix A-algebra of type β, the
lemma above shows that we have a morphism of stacks

[Rep�
Ad(R, E)/Z(β)] −→ RepR,T

[Rep�
Ad(R, E)/PZ(β)] −→ RepR,T ,

(2.3.3.4)

because of the equivariance of the adaptation-forgetting map (2.3.3.2) with respect to the
embedding Z(β) ↪→ GLd (resp. PZ(β) ↪→ PGLd).

Now we will show that (2.3.3.4) is an isomorphism when A is a henselian local ring! To
do this, we will find a quasi-inverse. We recall here that we are assuming that (2d)! is a
unit in A, so that pseudorepresentations and pseudocharacters are identical by Proposition
1.1.12.3, and we can apply our knowledge of pseudorepresentations to this problem.

Proposition 2.3.3.5. Let A be a henselian local ring and let (R,D) be a d-dimensional
Cayley-Hamilton A-algebra, so that (R, E) is a generalized matrix A-algebra with trace func-
tion T . Then the natural induced maps of SpecA-algebraic stacks (2.3.3.4) are isomorphisms.

Remark 2.3.3.6. We record an alternative notion of generalized matrix algebra, replac-
ing the notion relative to pseudocharacters with one for pseudorepresentations. Using the
notation of Definitions 2.3.1.1 and 2.3.1.3, we replace the trace map T with a “determinant
map” D : R → A as follows: let the symmetric group Sd act on the complete set of d
primitive orthogonal idempotents Ej,j

i ∈ R.

D(r) :=
∑
σ∈Sd

sgn(σ)
∏

1≤i≤r

∏
1≤j≤di

Ej,j
i rσ(Ej,j

i ).

This determinant map is compatible with tensor products, and defines a d-dimensional pseu-
dorepresentation. We expect to extend the theory of generalized matrix algebras of [BC09]
to this case. This would eliminate the complications with the characteristic of coefficient
rings.

Proof. (Proposition 2.3.3.5) Let X be a SpecA-scheme. Choose (ρ, VX) ∈ RepT (X).
The idempotents ei ∈ R break VX into a direct sum of projective sub-OX-modules Vi := eiVB
of rank di,

VX ∼=
r⊕
i=1

Vi.

Each Vi receives an A-linear action of eiRei ⊂ R, and therefore a OX-linear action of eiRei⊗A
OX . Using the GMA data ψi : eiRei

∼→ Mdi(A), we see that EndB(Vi) ∼= Mdi(OX). This
means that as a OX-module, Vi is isomorphic to a twist of a free rank di vector bundle Fi
by a line bundle Li.

Let Gi := IsomOX (Li,OX) be the Gm-torsor over X corresponding to Li. Then G :=
×ri=1Gi is naturally a Z(β)-torsor. Indeed, the base change of VX to G from X is a free
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rank d OG-vector bundle with a canonical basis adapted to (R, E). This defines a map
G → Rep�

Ad(R, E), equivariant for the action of Z(β). We have therefore established a
morphism

RepT −→ [Rep�
Ad(R, E)/Z(β)].

We observe that this provides a quasi-inverse to (2.3.3.4). �

We now replace pseudorepresentations with pseudocharacters, using the fact that they
are equivalent to each other; this is the case because we are assuming that (2d)! is invertible
in the base ring A (cf. Proposition 1.1.12.3).

We recall the notation of §1.5. S is an affine Noetherian scheme, and R is a quasi-coherent
finitely generated OS-algebra. The map ν : Rep�,d

R //PGLd → PsRd
R measures the difference

between the GIT quotient of the space of framed d-dimensional representations Rep�,d
R by

the action of PGLd and the moduli scheme PsRd
R of d-dimensional pseudorepresentations.

We showed in Theorem 1.5.4.2 that ν is a finite universal homeomorphism, or “almost
isomorphism.” We showed in Corollary 2.1.3.4 that ν is an isomorphism in the neighborhood
of points corresponding to absolutely irreducible representations of R. Now we will extend
this result, showing that ν is an isomorphism in the neighborhood of points corresponding
to multiplicity free pseudorepresentations.

Theorem 2.3.3.7. Let A be a commutative Noetherian ring and let R be a finitely gen-
erated A-algebra. There exists a Zariski open subscheme U ⊂ PsRd

R with the following two
properties:

(1) the set U contains all points of residue characteristic greater than 2d corresponding
to multiplicity free pseudorepresentations of R, and

(2) ν is an isomorphism onto U .

Proof. We will write X = Rep�,d
R //PGLd for convenience.

We already know that ν is a finite universal homeomorphism of finite type SpecA-schemes
(Theorem 1.5.4.2 ). Therefore ν is étale in the neighborhood of some point D ∈ PsRd

R if
and only if it is an isomorphism in that neighborhood.7 Since being an isomorphism is a
local property on the base, in order to prove the theorem, it will suffice to show that ν
is étale in a neighborhood of each of the specified points. Since ν is finite type, it will
suffice to show that the induced maps on complete local rings are étale; we will simply show
that they are isomorphisms. We may have to make an étale base change in order that the
pseudorepresentation may be assumed to be split; this is not a problem, since we can descend
the étale property along this morphism.

We apply Theorem 1.4.3.1 to replace Rep�,d
R (resp. RepdR, resp. Rep

d

R) with Rep�,d
E,Du

(resp. RepdE,Du , resp. Rep
d

E,Du) where E = E(R, d). We will think of ψ (resp. ψ̄) as a

morphism out of RepdE,Du (resp. Rep
d

E,Du).

Let D̄ be a point of PsRd
R of residue characteristic greater than 2d, and write x =

ν−1(D̄) ∈ X for the corresponding point of X. We have a canonical map

ÔPsRdR,D̄
−→ ÔX,x

7In fact, any étale universal homeomorphism is an isomorphism.
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which we wish to show is an isomorphism. Write ÛD̄ := Spec ÔPsRdR,D̄
, V̂x := Spec ÔX,x. Of

course, ÛD̄ classifies the pseudodeformations of D̄ to Artinian A-algebras with residue field
FD̄ and has a universal pseudodeformation Du

D̄
, so we will just write PsRDu

D̄
in place of ÛD̄.

Because X and PsRd
R are Noetherian, the morphisms PsRDu

D̄
→ PsRd

R, V̂x → X are flat.
By the Artin-Rees theorem and the finitude of ν, they form a cartesian square

(2.3.3.8) V̂x //

��

X

ν

��
ˆPsRDu

D̄

// PsRd
R.

Now [Alp10, Proposition 5.2.9(1)] says that the flatness of the completion maps along with
the fact that the maps φ, φ̄ of (1.5.2.2) are adequate moduli spaces (Definition 1.5.1.1) will
imply that the maps φ, φ̄ of

RepdE,Du ×PsRdR
PsRDu

D̄

∼ // RepdE,Du ×X V̂x

ψ

��

φ

��

V̂x

ν

��

PsRDu
D̄

PsRDu
D̄

V̂x

ν

OO

Rep
d

E,Du ×PsRdR
PsRDu

D̄

∼ // Rep
d

E,Du ×X V̂x

ψ̄

RR

φ̄

OO

are also adequate moduli spaces. Since (2.3.3.8) is cartesian, we get an identical picture by

replacing RepdE,Du×X V̂x with RepdE,Du×PsRdR
PsRDu

D̄
, as we have indicated with the horizontal

isomorphisms above.
Write pD̄ for the prime ideal of ΓdA(R)ab corresponding to D̄ ∈ PsRd

R, and write BD̄ for
the pD̄-adic completion of (ΓdA(R)ab)pD̄ . Now, unraveling definitions for the fiber product

RepdE,Du ×PsRdR
PsRDu

D̄
, using Lemma 1.1.8.6, and noting that the pD̄-adic completion ÊD̄

of E ⊗ΓdA(R)ab (ΓdA(R)ab)pD̄ is isomorphic to E ⊗ΓdA(R)ab BD̄, we see that the fiber product is
isomorphic to

Repd
ÊD̄,(D

u⊗ΓBD̄)
,

the groupoid of representations of the Cayley-Hamilton BD̄-algebra (ÊD̄, D
u⊗BD̄) compat-

ible with its pseudorepresentation. The universal pseudorepresentation also is compatible
with these completions and base changes; we write Du

D̄
: ED̄ → BD̄ in place of Du⊗BD̄. Of

course, the same things can be said with Rep in the place of Rep.
Because BD̄ is a henselian ring, we see that we are now in the situation of Proposition

2.3.3.5. Indeed, Theorem 2.3.1.2 implies that (ÊD̄, TD̄) is a generalized matrix algebra, where

we write TD̄ for the trace function Λ
Du
D̄

1,BD̄
associated to Du

D̄
. Then Proposition 2.3.3.5 gives
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us isomorphisms of algebraic stacks

[Rep�
Ad(ED̄, TD̄)/Z(β)]

∼−→ RepDu
D̄
,

[Rep�
Ad(ED̄, TD̄)/PZ(β)]

∼−→ RepDu
D̄

Lemma 2.3.3.3 tells us that

Γ(O(Rep�
Ad(R, E)))Z(β) ∼= BD̄.

This means that ψ (resp. ψ̄) is an adequate moduli space with source [Rep�
Ad(R, E)/Z(β)]

(resp. [Rep�
Ad(R, E)/PZ(β)]), since this situation from GIT outlined in Example 1.5.1.3

is an example of an adequate moduli space. Theorem 1.5.1.4(5) implies that adequate
moduli spaces arising from a reductive group acting on an affine scheme have a unique base.
Therefore ν induces an isomorphism V̂x

∼→ PsRDu
D̄

as desired. �

Corollary 2.3.3.9. Over the base locus defined in Theorem 2.3.3.7, ψ (resp. ψ̄) is an
adequate moduli space.

This means that the pseudorepresentation scheme consists precisely of the invariant func-
tions of the framed moduli scheme under the action of conjugation. This sort of statement
on invariants is made clearly in Lemma 2.3.3.3.
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CHAPTER 3

Representations and Pseudorepresentations of Profinite Algebras

In this chapter, we apply the results on moduli spaces of representations of representations
and pseudorepresentations to the study of the moduli theory of continuous representations
of profinite algebras R. Our approach is to develop the topological theory of pseudorep-
resentations and prove (see e.g. Corollary 3.1.6.13) the representability of their moduli by
formal schemes that are disjoint unions of formal spectra PsRD̄

∼= Spf BD̄ of complete local
deformation rings BD̄ of residual pseudorepresentations D̄ (pseudodeformation rings). Up to
this point we will have been following Chenevier [Che11]. Then, we give conditions for the
Noetherianness of BD̄, the most important being known as ΦD̄ (Definition 3.1.5.1). Then we
study the moduli space of representations more simply by studying the connected component
over each pseudodeformation spectrum. However, we will hold short of developing moduli
formal schemes/algebraic stacks of representations directly. Instead, upon the assumption
of ΦD̄, we show that when the moduli problem of continuous representations is finitely pre-
sented over the moduli of pseudorepresentations. Then, the moduli formal scheme/stacks of
continuous representations on formal schemes arise, over Spf BD̄, as completions of a natural
algebraic, finite type scheme/algebraic stack of representations.

We accomplish this by showing that under the condition ΦD̄, the universal Cayley-
Hamilton representation E(R,Du

D̄
) of R over the universal deformation Du

D̄
of D̄ is finite as

a module over BD̄. Then we simply observe that over coefficient rings that are separated
continuous BD̄-algebras, all (non-topological) representations of ED̄ lying over Du

D̄
|E are

automatically mD̄-adically continuous. Now, any representation of E(R,Du
D̄

) is continuous,
and we can apply the theory of Chapters 1 and 2 directly to show that the functors of
continuous representations on formal schemes over Spf BD̄ are not only representable by
adic formal schemes, but are algebraizable over SpecBD̄.

Not only can we apply representability results from the previous chapters, but the results
of Chapter 3 overviewed above will allow us to apply all of the results of Chapters 1 and 2
to this profinite topological case (assuming condition ΦD̄). We present these conclusions in
Theorem 3.2.5.1.

3.1. Pseudorepresentations of Profinite Algebras

In this section we introduce continuous pseudorepresentations, due to Chenevier [Che11],
and recall some basic topological facts about profinite rings and group algebras of profinite
groups. We assume that all topologies are Hausdorff. We will focus on working with profinite
rings, and then pro-discrete rings.

Let A be a commutative topological ring and let R be a topological (continuous) A-
algebra. We establish notions of continuity for pseudorepresentations of R.

Definition 3.1.0.10. With A,R as above, a d-dimensional pseudorepresentation D :
R→ A is said to be continuous provided that the following equivalent conditions hold.
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(1) for each n ≥ 1, α ∈ In, the functions D[α] : R → A of Definition 1.1.2.14 are
continuous.

(2) the characteristic polynomial functions Λi = ΛD
i : R→ A, 1 ≤ i ≤ d are continuous.

(3) For every commutative continuous A-algebra B, the function DB : R ⊗A B → B is
continuous.

We will show that the notions of continuity in the definition are indeed equivalent.

Proof. The equivalence of (1) and (2) is immediate from Amitsur’s formula (Proposition
1.1.9.11(2)).

Recalling that a pseudorepresentation D : R→ A consists of a function DB : R⊗AB → B
for every commutative A-algebra B, let us verify that (2) implies (3). When B is any
continuous topological A-algebra, this definition does indeed guarantee that each of the
induced homogenous functions

DB : R⊗A B → B

that make up the polynomial law are continuous. For we can write B as a continuous quotient
of a polynomial algebra C, where C is given its natural topology as a free A-module. The
D[α] are coefficient functions of DC by definitiion, and the functions DB are the composition
of DC with the continuous quotient map from C to B.

Conversely, using the case that B is a polynomial algebra B = A[t1, . . . , tn], we see that
(3) implies (1). A polynomial coefficient D[α] for α ∈ Idd is the composition of a continuous
map

Rn −→ R⊗A A[t1, . . . , tn]

(ri) 7→
n∑
i=1

riti

followed by DA[t1,...,tn], followed by the continuous function from A[t1, . . . , tn] to A given by

taking the αth coefficient. Therefore D[α] is continuous, as desired. �

3.1.1. Pro-discrete Topological Notions. We will be interested exclusively in either
discrete or pro-discrete topologies. We begin by recalling some basic notions on profinite
topologies on rings, with an eye toward group algebras of profinite groups. We note that
rings are unital and associative but not necessarily commutative unless stated.

Lemma 3.1.1.1. Let R be a topological ring. The following conditions on R are equivalent.

(1) R is a profinite ring.
(2) R is Hausdorff and compact.
(3) R is Hausdorff, compact, and totally disconnected.
(4) R is compact and has a fundamental system of neighborhoods of zero consisting of

open ideals of R.
(5) There is an inverse system of finite discrete rings with surjective maps such that R

is its limit.

Proof. This is [RZ10, Proposition 5.1.2]. �

We will often denote by I a general open ideal of R.
When A is a profinite (e.g. finite) commutative ring, we will be interested in the studying

continuous representations and pseudorepresentations of a profinite group Γ̂ with coefficients
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in A or in commutative A-algebras. The group algebra A[Γ̂] is clearly not a profinite A-
algebra. Therefore we discuss its natural topology and its profinite completion.

The topology on A[Γ̂] is defined by the fundamental system of neighborhoods of zero
given by the kernels of the canonical surjections

(3.1.1.2) κ(I, U) := ker(A[Γ̂] −→ (A/I)[Γ̂/U ])

where I varies over open ideals of A and U varies over open normal subgroups of Γ̂. Each of
these ideals have finite index in A[Γ̂]. We then define the complete group algebra to be the

completion of A[Γ̂] with respect to this topology,

A[[Γ̂]] := lim←−(A/I)[Γ̂/U ].

We see that this is a profinite ring, with open ideals

ker(A[[Γ̂]] −→ (A/I)[Γ̂/U ]),

where we abuse notation by writing κ(I, U) for these ideals of A[[Γ̂]] as well. It is also possible
to express the complete group algebra as the limit

A[[Γ̂]] ∼= lim←−
U

A[Γ̂/U ].

Here are some basic facts about this construction.

Lemma 3.1.1.3. Let A be a commutative profinite ring and let Γ̂ be a profinite group.

(1) The intersection of all the ideals of the form (3.1.1.2) is zero.

(2) A[Γ̂] is densely embedded in A[[Γ̂]].

(3) Γ̂ 7→ A[[Γ̂]] behaves functorially in Γ̂.

Proof. This is [RZ10, Lemma 5.3.5]. �

One more notion that remains before discussing continuous pseudorepresentations of
profinite algebras is that of the topology on the tensor product of pro-discrete algebras.
Let us therefore be explicit in explaining this topology on these tensor products and their
completions in the primary setting that we will require.

Definition 3.1.1.4. Let A be a profinite commutative ring. Let R be a profinite contin-
uous A-algebra with a fundamental system of finite index ideals (Iλ). Let B be a continuous
linearly topologized commutative A-algebra1 with fundamental system of ideals (Jη). Then
a neighborhood of ideals of 0 in R⊗A B is given by the ideals

Image(Iλ ⊗A Jη −→ R⊗A B)

as Iλ, Jη vary over elements of the fundamental systems of ideals mentioned above. The
completed tensor product is the limit

R⊗̂AB := lim←−
λ,η

R/Iλ ⊗A B/Jη.

We observe that R⊗̂AB is profinite when R and B are profinite. The completed tensor
product is, of course, complete, even if B is not complete with respect to its topology. Also,
the natural map B → R⊗̂AB factors through the completion B̂. See [RZ10, §5.5] for some
further discussion in the profinite case.

1See [Gro60, 0I, §7.1] for this definition.
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Remark 3.1.1.5. As discussed in Definition 3.1.0.10 and the proof the equivalence of the
definitions of continuity given theret, a continuous pseudorepresentation consists of continu-
ous functions DB : R⊗A B → B for every A-algebra B. Because all of the topological rings
involved are Hausdorff and the targets are complete, DB will factor uniquely through the
completion map R ⊗A B → R⊗̂AB. When we need to distinguish these two cases, we will
write DB for the map out of R⊗A B and D̃B for the map out of R⊗̂AB.

Now we would like to discuss continuous pseudorepresentations over profinite algebras.
First let us specify the data that we start with.

Conventions. Our general setup is the following: A is a commutative profinite ring,
and R is a profinite continuous A-algebra. It is important to note that if (Ii) are a set of
ideals of A forming a fundamental system of neighborhoods around 0 in A, then the induced
(Ii)-adic topology on R is not necessarily equivalent to the profinite topology on R. We will
always use the native profinite topology on R unless otherwise noted.

We are interested in continuous representations of R. We will generally use B to represent
a topological A-algebra of coefficients for the representation, or X for a Spf(A)-formal scheme
of coefficients. For most of our discussion, we will let B be an admissible A-algebra,2 where
we write AdmA for the category of admissible A-algebras. Sometimes B will be restricted to
certain subcategories of admissible A-algebras, such as local Artinian A-algebra with a fixed
residue A-field.

Any commutative profinite ring A is canonically a continuous Ẑ := lim←−n Z/nZ-algebra.

Since Ẑ ∼=
∏

p Zp and the functors of representations over this base ring respect this de-
composition, we will assume that A is a continuous Zp-algebra for some rational prime p.
This means that p will be topologically nilpotent in the rings and algebras that we will be
concerned with.

3.1.2. Continuous Pseudorepresentations of Profinite Algebras. In this para-
graph, we provide more characterizations of continuous pseudorepresentations in the case
of profinite or prodiscrete topologies, and show that the Cayley-Hamilton ideal CH(D) of a
continuous pseudorepresentation is closed.

The following lemma, due to Chenevier, shows that the conventional notion that a ho-
momorphism from a profinite object to a discrete object is continuous if and only if it has
open kernel extends to the case of pseudorepresentations.

Lemma 3.1.2.1 (Following [Che11, Lemma 2.33]). Let A be a profinite commutative ring
and let R be a profinite A-algebra. Let B be a commutative continuous discrete A-algebra,
and choose a B-valued d-dimensional pseudorepresentation D of R. Let PD denote the
corresponding degree d homogenous multiplicative A-polynomial law PD ∈Md

A(R,B). Then
the following conditions are equivalent.

(1) D is continuous.
(2) PD is continuous.
(3) ker(D) is open.
(4) ker(PD) is open.
(5) D factors through a continuous discrete quotient ring of R⊗̂AB.
(6) PD factors through a continuous finite quotient ring of R.

2See [Gro60, 0I, §7] for this and other notions for the topological coefficient rings and formal schemes.
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Proof. The equivalences (3) ⇐⇒ (5), (4) ⇐⇒ (6) are clear.
If ker(PD) (resp. ker(D)) contains an open ideal, then it is continuous because the char-

acteristic polynomial coefficient functions factor through a discrete space and have target a
discrete space. Therefore (3) =⇒ (1), (4) =⇒ (2).

Assume that PD is continuous; this means that each characteristic polynomial function
Λi : R → B is continuous. Since B is discrete and the topology on R is given by finite
index ideals, each Λi factors through R/Ii for some open ideal Ii. The intersection of these
ideals is open, so PD factors continuously through a finite discrete quotient. We have shown
(2) =⇒ (4). The proof (1) =⇒ (3) is identical, except that the ideals topologizing R⊗̂AB
are not necessarily finite index.

Since PD factors through D along the natural continuous map R → R⊗̂AB, we have
(1) =⇒ (2). Now assume (3); we will prove (4). Since the contraction of ker(D) along this
continuous map is an open (equivalently, finite index) ideal and contained in ker(PD), we see
that ker(PD) is also finite index and therefore open. �

We prove this lemma in a more generality than the profinite case, although we only prove
the converse statement in the pro-discrete case.

Lemma 3.1.2.2. Let D : R → A be a d-dimensional pseudorepresentation between topo-
logical rings. If D is continuous, then ker(D) ⊂ R is closed. If A,R are profinite as discussed
above and B ∈ AdmA, then the converse is also true.

Proof. The closure ker(D) of the two-sided ideal ker(D) is a two-sided ideal. Because
the characteristic polynomial functions Λi : R → A are constant on cosets of ker(D) in R
and are also continuous, they are also constant on the closure of cosets. This means that D
factors through R � R/ker(D). According to Lemma 1.1.6.6, ker(D) is the largest two-sided

ideal K ⊂ R such that D factors through R/K. Therefore ker(D) = ker(D).
Now we prove the converse statement, assuming that A,R are profinite and B ∈ AdmA.

Present B as a limit of A-algebras B = lim←−λBλ, where the system (Bλ) is composed of
finite discrete continuous A-algebras and the maps are surjective continuous A-algebra ho-
momorphisms. For each map πλ : B � Bλ, let Pλ denote the induced polynomial law
Dλ := πλ ◦ D. Lemma 3.1.2.1 tells us that ker(Dλ) ⊂ R ⊗A B is open and closed, and
therefore ker(D) =

⋂
λ ker(Dλ) is closed. �

In the non-topological case discussed in Chapters 1 and 2, the notion of a Cayley-
Hamilton pseudorepresentation D : R→ A and a Cayley-Hamilton A-algebra (R,D) played
a large role. This will be especially true as we consider the moduli of representations of
profinite algebras. Therefore the following lemma will be useful, showing that in the case
of profinite coefficients, the Cayley-Hamilton ideal CH(D) is closed, so that the natural
surjection R � R/CH(D) is continuous.

Lemma 3.1.2.3. Let A be a complete Noetherian local ring, with finite residue field FA.
Let R be a profinite continuous A-algebra. Then CH(D) is a closed ideal. Consequently,
R/CH(D) is profinite, the natural map R � R/CH(D) is continuous, and is a continuous
A-algebra.

Proof. Freely using the notation of Definition 1.1.8.5, we recall that CH(D) is the two-
sided ideal of R generated by the image of χ[α](r1, . . . , rd) where α varies over Idd and ri vary

over R. Let RIdd have its standard set-theoretic meaning, i.e. the set of tuples of elements of
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R, each one corresponding to an element of Idd . Let Rl, Rr be copies of R distinguished for

notational purposes, and let (rαr ) denote an element of R
Idd
l , and (ri) denotes an element of

Rd. Now define a function

R
Idd
l ×R

d ×RIdd
r −→ R

((rαl ), (ri), (r
α
r )) 7→

∑
α∈Idd

rαl · χ
[α]
D ((ri)) · rαr .

The image of this map is precisely the two-sided ideal generated by the image of the χ
[α]
D ,

i.e. CH(D).
Because R is profinite, it is compact Hausdorff. And every map in sight is continuous.

Therefore the image CH(D) of the map above is closed by the closed map lemma. �

3.1.3. The Φp Finiteness Condition on Profinite Groups. When we consider the

case that R = A[[Γ̂]], we will often want to impose a condition on Γ̂ weaker than topological
finite generation, but strong enough to imply that the various functors of representations are
finite in the appropriate manner (e.g. finite type or Noetherian). This is the Φp condition,
developed by Mazur [Maz89].

Definition 3.1.3.1. Let Γ̂ be a profinite group and let p be a prime number. We say
that Γ̂ satisfies the Φp finiteness condition when one of the following equivalent conditions

holds, for every finite index (and therefore open) subgroup H ⊂ Γ̂.

(1) The maximal pro-p quotient of H is topologically finitely generated.
(2) For any finite dimensional Fp-vector space M with a continuous Fp-linear action of

H, the continuous cohomology group H1
c (H,M) is finite dimensional over Fp.

(3) There are only a finite number of continuous homomorphisms from H to the additive
group Fp.

Example 3.1.3.2. When K/Q` is a finite field extension, Γ̂ = Gal(K̄/K) satisfies Φp

because Γ̂ is topologically finitely generated.

Example 3.1.3.3. When F/Q is a finite field extension and S is a finite set of places
of F , let FS denote the maximal extension of F unramified outside S. Then by Hermite’s
theorem, Gal(FS/F ) satisfies Φp.

Given a finite index subgroup H ⊂ Γ̂, there exists a maximal quotient Γ̃ of Γ̂ with the
property that the image of H in Γ̃ is pro-p. If Γ̂ has property Φp, then one can check that

Γ̃ (and of course the image of H in Γ̃) topologically is finitely generated. This quotient Γ̃ is

called the p-completion of Γ̂ relative to H. This notion will come up in the following sort of
example.

Example 3.1.3.4 (cf. [Maz89, p. 389]). Let Γ̂ satisfy condition Φp, and let F be a finite

characteristic p field. Fix a continuous homomorphism ρ̄ : Γ̂→ GLd(F), where d ≥ 0. Then
for any Artinian ring A with residue field F, the kernel of GLd(A) � GLd(F) is a pro-p

group. Therefore the action of Γ̂ through any deformation of ρ̄ from F to A factors through
the p-completion of Γ̂ relative to ker(ρ̄).
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3.1.4. Continuous Deformations of a Finite Field-Valued Pseudorepresenta-
tion. Let A be a Noetherian local commutative Zp-algebra with finite residue field FA, and
let R be a profinite A-algebra. Let F be a finite A-field (of characteristic p) and let

D̄ : R⊗A F −→ F
be a continuous d-dimensional determinant. We are interested in continuous deformations
of D̄.

It will be useful in the sequel to apply Theorem 1.3.1.1 and write ρss
D̄

for a representative

ρssD̄ : R⊗A F −→Md(F),

assuming that F is large enough so that D̄ is split and therefore ρss
D̄

exists over F.

Remark 3.1.4.1. Applying Theorem 1.3.1.3 along with the fact that finite fields are
perfect, any finite field valued pseudorepresentation of R is automatically continuous, as is
ρss
D̄

, since the kernel of such D̄ must be finite index in R.

Artinian A-algebras with residue field F are the natural context to study deformations
of an object, such as D̄, defined over F. We reprise Definition 2.1.1.1.

Definition 3.1.4.2. Let AF be the category of Artinian local A-algebras with residue
field F, where morphisms are local and continuous A-algebra homomorphisms. For B ∈ AF
we write mB for its maximal ideal and endow it with the discrete (mB-adic) topology.

Let ÂF be the category of profinite local A-algebras with residue field F, where morphisms
are local continuous A-algebra homomorphisms. For B ∈ AF we write mB for its maximal
ideal and endow it with the mB-adic topology.

The category ÂF includes AF as a full subcategory, and objects in ÂF consist of limits
(filtered projective limits with surjective maps) in AF.

We define the deformation functor PsRD̄ as follows.

Definition 3.1.4.3. With the data p,A,R, D̄, d and F as above, let PsRD̄ be the co-
variant functor on ÂF associating to each B ∈ ob ÂF the set of continuous d-dimensional
pseudorepresentations

D : R⊗̂AB −→ B

such that D⊗̂BF −→ F ∼= D̄. We call such deformations of D̄ pseudodeformations.

Remark 3.1.4.4. Let us clarify the notation D⊗̂AB where D : R → A is a continuous
pseudorepresentation from a profinite A-algebra R to a profinite commutative continuous
A-algebra B. Let D ⊗A B : R⊗A B → B be the non-topological version of the base change
of D from A to B. The tensor product has a profinite topology defined by the ideals used in
its profinite completion, although it is not complete with respect to this topology. Since the
characteristic polynomial coefficient functions of D⊗A B are continuous and B is complete,
they factor through the completion with respect to this topology – a full argument along
these lines (but addressing a slightly different question) may be found in the proof of Lemma
3.1.6.4. We denote this pseudorepresentation by D⊗̂AB. We will extend this notion when
we allow B to be an admissible A-algebra.

We need to show that this definition of a functor is indeed functorial in ÂF and respects
surjective projective limits. It will suffice to prove functorality on AF and that it respects
surjective projective limits. This is due to Chenevier.
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Lemma 3.1.4.5 ([Che11, Lemma 3.2]). The functor PsRd
R on ÂF is compatible with sur-

jective projective limits.

Proof. For a morphism (B → B′) ∈ ÂF and D ∈ PsRD̂(B), we observe that D⊗̂BB′ ∈
PsRD̂(B′).

If R is any A-algebra, the functor of degree d homogenous multiplicative (not necessarily
continuous) A-polynomial lawsMd

A(R,−) from A-algebras to sets is representable (Theorem
1.1.6.5), and therefore commutes with projective limits. For finite continuous A-algebras
Bi, a function R → lim←−iBi is continuous if and only if R → Bi is continuous for every
i. Applying this to the characteristic polynomial coefficient functions and recalling the
definition of continuity of a pseudorepresentation, we see that the same equivalence applies
to pseudorepresentations. This completes the lemma. �

Now we will show that the functor of continuous pseudodeformations of D̄ : R⊗A F→ F
is representable.

Theorem 3.1.4.6 ([Che11, Proposition 3.3]). The functor PsRD̄ : ÂF −→ Sets is rep-
resentable, i.e. there exists a profinite local A-algebra BD̄ and a continuous d-dimensional
pseudorepresentation

Du
D̄ : R⊗̂ABD̄ −→ BD̄

such that for any B ∈ ÂF and any D ∈ PsRD̄(B), there exists a unique ÂF-morphism
BD̄ → B such that Du

D̄
⊗̂BD̄B ∼= D.

Proof. We will construct the representing algebra BD̄ as the profinite completion of the
representing object in the analogous non-topological case. By Theorem 1.1.6.5, there exists
a universal degree d multiplicative homogenous A-polynomial law

Du : R −→ ΓdA(R)ab

inducing the universal d-dimensional pseudorepresentation of Theorem 1.1.7.4 upon applying
⊗AΓdA(R)ab.

Let ψ : ΓdA(R)ab → F be the A-algebra homomorphism corresponding to D̄. Call an ideal
I ⊂ ΓdA(R)ab open if I ⊂ ker(ψ), ΓdA(R)ab/I is a finite local ring, and the induced degree d
multiplicative A-polynomial law (called DI)

Du ⊗ΓdA(R)ab ΓdA(R)ab/I = DI : R −→ ΓdA(R)ab/I

is continuous. We must check that these ideals define a topology on ΓdA(R)ab. We will call
this topology the D̄-adic topology on ΓdA(R)ab.

As a union of ideals of I, I ′ of this type is a union of translates of I ∩ I ′, it will suffice to
show that I ∩ I ′ is open. We consider the canonical A-homomorphism

(3.1.4.7) ΓdA(R)ab/(I ∩ I ′) −→ ΓdA(R)ab/I × ΓdA(R)ab/I ′.

It will suffice to show that this map is a homeomorphism onto its image for the D̄-adic
topology. As this map is injective and induces the diagonal map F → F × F after taking
the quotient of each of these three rings by their maximal ideals, we see that the properties
“finite” and “local” are preserved. It remains to show that the DJ for J = I, I ′, I ∩ I ′ are
topologically compatible with this map (we will specify what this means below).

Recall that the continuity of a multiplicative homogenous polynomial law is defined in
terms of its characteristic polynomial coefficients. Write Λi/I for the reduction modulo I of
the universal characteristic polynomial functions Λi : R → ΓdA(R)ab. By assumption, Λi/I
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and Λi/I
′ are continuous. Now consider the commutative diagram

R

Λi/I×Λi/I
′

!!Λi/(I∩I′) &&

Λi // ΓdA(R)ab

�� **
ΓdA(R)ab/(I ∩ I ′)

(3.1.4.7)
// ΓdA(R)ab/I × ΓdA(R)ab/I ′

As (3.1.4.7) is a homeomorphism onto its image for the discrete topology, we have the
continuity of Λi/(I ∩ I ′). The fact that (3.1.4.7) is a homeomorphism onto its image for the
discrete topology implies that a quotient of its image will induce a continuous polynomial
law if and only if a quotient of Λi/(I ∩ I ′) will. Since, as we noted above, the same claim
will hold true for the properties “finite” and “local,” we have shown that (3.1.4.7) induces a
homeomorphism onto its image for the topology on ΓdA(R)ab defined above, as desired.

Define BD̄ to be the completion of ΓdA(R)ab with respect to this topology. This is a profi-
nite A-algebra, by definition of the topology. There is a universal continuous d-dimensional
pseudorepresentation which we will call Du

D̄
,

Du
D̄ : R⊗̂ABD̄ −→ BD̄,

which we obtain from Du by the canonical map from ΓdA(R)ab to its completion BD̄. We
verify that this is an object of PsRD̄(BD̄) by applying Lemma 3.1.4.5:

PsRD̄(BD̄) = lim←−
I

PsRD̄(ΓdA(R)ab/I),

and DI for each D̄-adically open ideal I defines a projective system of continuous ΓdA(R)ab/I-
valued homogenous degree d multiplicative A-polynomial laws whose limit is Du

D̄
.

Having constructed Du
D̄

, we now verify its universality. Let B ∈ AF and choose D ∈
PsRD̄(B). By Theorem 1.1.6.5, there exists a unique A-algebra map f : ΓdA(R)ab → B such
that D = f ◦Du and f (mod mB) ∼= ψ. Therefore ker(f) ⊂ ker(ψ). Also, ΓdA(R)ab/ ker(f) ⊂
B is finite local. Finally, the continuity of D implies that ker(f) is open in the D̄-adic
topology on ΓdA(R)ab. Therefore we have the universality of (BD̄, D

u
D̄

) as a functor on AF;

Lemma 3.1.4.5 implies that it is universal on ÂF. �

Remark 3.1.4.8. In the case that the profinite A-algebra R arises as the complete group
ring R = A[[Γ̂]] for some profinite group Γ̂, one can alternatively form BD̄ by replacing R

with A[Γ̂] and completing ΓdA(R)ab with respect to the D̄-adic topology described above.

This is Chenevier’s approach [Che11, Proposition 3.3]. Because A[Γ̂] is dense in A[[Γ̂]], one
can check the functors and constructions amount to the same thing.

Remark 3.1.4.9. We note that just as ΓdA(R)ab is generated by ΛDu

i (r) for r ∈ R and

1 ≤ i ≤ d (this is the non-topological case), so is BD̄ topologically generated by Λ
Du
D̄

i (r) for
r ∈ R and 1 ≤ i ≤ d. This is a consequence of Amitsur’s formula (Proposition 1.1.9.11(2)).
This statement remains true when the choice of r ∈ R is restricted to r in a dense subset
of R. For example, if Γ ⊂ Γ̂ is a dense subgroup of Γ̂, then a pseudodeformation of a
D̄ : A[[Γ̂]]⊗̂AF→ F is determined by the characteristic polynomial coefficients of the universal
pseudodeformation of D̄ evaluated at the elements of Γ.
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Remark 3.1.4.10. Following on Corollary 2.1.3.4, the continuous deformations of an ab-
solutely irreducible residual pseudorepresentation are equivalent to continuous deformations
of the associated absolutely irreducible representation. Compare [Nys96, Theorem 2] in the
case of pseudocharacters.

3.1.5. Finiteness Condition ΦD̄. Having defined the universal continuous pseudode-
formation of a finite field-valued continuous pseudorepresentation of a profinite A-algebra
R, we are interested in finiteness properties of this functor. The main finiteness property of
interest for the complete local continuous A-algebra representing this deformation functor is
the Noetherian property.

We recall Lemma 2.1.1.5, which gives equivalent conditions under which a complete local
ring is Noetherian. As in Chapter 2, we will aim to show the finiteness of the tangent space
in order to show that the pseudodeformation ring is Noetherian. Our strategy is to show that
the tangent space is finite-dimensional if one assumes ΦD̄ We have already developed the
non-topological notion of tangent spaces to a field-valued pseudorepresentation in §2.1.2, and
have given criteria for the finiteness of the dimension for this tangent space in Proposition
2.1.2.3. We will freely use the notation of §2.1.2, and aim to prove a topological version of
Proposition 2.1.2.3. As in §2.1.2, these are results of Chenevier, which we extend to arbitrary
characteristic.

If D0 denotes a d-dimensional (possibly non-continuous) pseudorepresentation D : R →
A, we recall that TD0 denotes the non-topological tangent space at D0 ∈ PsRd

R(A). Assuming
now that D0 is continuous, denote by T cD0

the A-submodule of continuous lifts of D0. We
can write this as a union of A-modules

T cD0
=
⋃
I

T ID0
,

where I varies in the set of all open two-sided ideals of R such that ker(D0) ⊇ I, and T ID0
is

defined to be the liftings P such that ker(P ) ⊇ I.
Now assume that A is a finite field F and replace D0 with a continuous d-dimensional

pseudorepresentation D̄ : R → F. Then SD̄ := R/ ker(D̄) is finite dimensional by Theorem
1.3.1.3.

Definition 3.1.5.1. With D̄ : R → F a continuous pseudorepresentation of a profinite
F-algebra R into a finite field F, we say that D̄ satisfies condition ΦD̄ or that ΦD̄ holds when
the set of continuous extensions Ext1

R(SD̄, SD̄)c is finite dimensional as a F-vector space.

The finiteness condition ΦD̄ on continuous extension is the finiteness condition we require
to give a topological generalization of Proposition 2.1.2.3.

Proposition 3.1.5.2 (Following [Che11, Proposition 2.35]). Let R be a profinite F-
algebra where F is a finite field. Let D̄ : R→ F be a continuous d-dimensional pseudorepre-
sentation satisfying condition ΦD̄. Then T c

D̄
is finite dimensional over F.

Proof. It will suffice to show that there exists a bound on the dimension of T I
D̄

that
is independent of choice of finite index two-sided ideal I ⊂ R such that I ⊂ ker(D̄). Fix
such an ideal I. Also choose N such that ker(D̄) ⊂ CH(D̄); such an N exists by Lemma
1.2.3.1(4). By Lemma 2.1.2.2, we know that

T ID̄ ⊂ P
d
F(R/(ker(D̄)2N + I),F).
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Therefore, it will suffice to show that the right hand side has F-dimension bounded indepen-
dently of I.

Since I ⊆ ker(D̄), we have for each n ≥ 1 the natural surjection

(ker(D̄)/(ker(D̄)2 + I))⊗
n
F −→ (ker(D̄)n + I)/(ker(D̄)n+1 + I),

similar to the proof of Proposition 2.1.2.3. Because SD̄ is finite dimensional, it will be enough
to show that the F-dimension of ker(D̄)/(ker(D̄)2 + I) is bounded independently of I.

Because SD̄ is a semisimple F-algebra, it will suffice to show that

dimF(HomR(ker(D̄)/(ker(D̄)2 + I), SD̄))

is bounded independently of I. By noting that the action of R on ker(D̄)/(ker(D̄)2 + I)
factors through R/I and applying Lemma 1.3.3.1, we have

HomR(ker(D̄)/(ker(D̄)2 + I), SD̄)
∼−→ Ext1

R/I(SD̄, SD̄).

The right hand side is a sub-F-vector space of Ext1
R(SD̄, SD̄)c, i.e. the action of R on the

extension is continuous, since the action of R on any of these extensions factors through
the finite (cardinality) F-algebra R/I. Because of the assumption that the dimension of
Ext1

R(SD̄, SD̄)c is constant (and clearly independent of I), we are done. �

Now we are ready to give some sufficient conditions on the continuous d-dimensional
pseudorepresentation D̄ : R ⊗A F → F to guarantee that the deformation functor is repre-
sented by a Noetherian ring. We recall that with D̄ as specified above, ρss

D̄
: R⊗A F̄→Md(F̄)

denotes a semi-simple representation associated to D̄ by Theorem 1.3.1.1, which is continu-
ous because the continuity of D̄ implies that ker(D̄) is closed (Lemma 3.1.2.2). We will also
use SD̄ to denote SD̄ := (R ⊗A F)/ ker(D̄), which is finite dimensional over F by Theorem
1.3.1.3.

Theorem 3.1.5.3 (Following [Che11, Proposition 3.7]). Let A be a Noetherian complete
local Zp-algebra and let R be a profinite continuous A-algebra. Let D̄ : R⊗̂AF → F be a
continuous d-dimensional pseudorepresentation, where F is a finite continuous A-field. Then
the complete local profinite continuous A-algebra BD̄ is Noetherian if any of the following
conditions are true.

(1) R is topologically finitely generated as an A-algebra.
(2) D̄ satisfies condition ΦD̄.

(3) Γ̂ is a profinite group, R = A[[Γ̂]], and the continuous cohomology H1
c (Γ̂, ad(ρss

D̄
)) is

finite dimensional over F̄.
(4) Γ̂ is a profinite group satisfying Mazur’s Φp-condition and R = A[[Γ̂]].

Proof. We will show that any of these conditions implies that the tangent space TD̄
(Definition 2.1.2.1) to PsRd

R at D̄ is finite dimensional over F. This tangent space is nat-
urally dual to mD̄/(mA,m

2
D̄

), which is therefore finite-dimensional. Since A is assumed to
be Noetherian, this finiteness in turn implies that mD̄/m

2
D̄

is finite-dimensional. Therefore,
PsRD̄ is Noetherian by Lemma 2.1.1.5.

That condition (2) is sufficient to prove that BD̄ is Noetherian is immediate from Propo-

sition 3.1.5.2. Condition (3) is the same condition as (2) in the case that R = A[[Γ̂]], after
tensoring by ⊗FF̄. Condition (4) is sufficient to imply condition (3), as discussed in Definition
3.1.3.1.
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Assume condition (1). Let Rfg be a finitely generated dense sub-A-algebra of R. Then
PsRd

Rfg is a finite type (hence Noetherian) A-scheme by Theorem 1.1.10.15. Upon observing
that PsRD̄ is the formal scheme arising from PsRd

Rfg by completion at the maximal ideal of
PsRd

Rfg corresponding to D̄, we are done. �

3.1.6. Pseudorepresentations valued in Formal Schemes. So far we have dis-
cussed pseudorepresentations of a profinite A-algebra R, where A is a complete local Noe-
therian Zp-algebra with finite residue field F. We have found that the functor of deformations
of a given finite field valued pseudorepresentation is representable (Theorem 3.1.4.6), and
have given sufficient conditions for it to be Noetherian (Theorem 3.1.5.3). We have restricted
ourselves to profinite coefficient rings, in particular Artinian local commutative rings with
finite residue field. However, in order to discuss algebraic families of representations of a
profinite algebra, we will need to consider coefficient rings that are not profinite. For exam-
ple, a one-dimensional family of representations will be valued in a polynomial ring like Fp[t].
Our goal in this paragraph is to investigate the families of continuous pseudorepresentations
that arise in these larger coefficient rings.

Our main result, Theorem 3.1.6.11, tells us that the study above is sufficient: even on
larger appropriately topologized rings, the universal pseudorepresentations are valued in a
complete local profinite ring. The first task must be to specify what exactly these larger
coefficient rings are.

EGA contains the basic facts and terminology to describe linearly topologized rings and
formal schemes. We will now freely use these terms, providing some references as we go. We
will introduce here, however, some terminology that we have not found universal agreement
upon, but which is an important distinction for our purposes.

Definition 3.1.6.1. Let A be a commutative adic Noetherian ring with ideal of definition
I. Let B be a linearly topologized commutative ring which is a continuous A-algebra.

(1) If B is topologically isomorphic over A to an admissible completion of a finitely
generated A-algebra, then we say that B is topologically finitely generated as an
A-algebra.

(2) If B is topologically isomorphic over A to the I-adic completion of a finitely gener-
ated A-algebra, then we say that B is formally finitely generated as an A-algebra.
Equivalently, B is a (continuous) quotient of a restricted power series over A.

We use this terminology in consonance with terminology established in [Gro60, 0I, §7;
1, §10]. We are allow following the definition of “topologically finitely generated” used in
[Che11, §3.9]: a completion of a finite type algebra. In particular, here are the corresponding
definitions in the category of formal schemes.

Definition 3.1.6.2 ([Gro60, §0I, §10.13]). Let Y be a locally Noetherian formal scheme
with ideal of definition K. Let f : X→ Y be a morphism of formal schemes. Then if any of
the following equivalent conditions are satisfied, we say that f is formally finite type.

(1) X is locally Noetherian, f is an adic morphism, and if we write J := f ∗(K)OX, then
the morphism f0 : (X,OX/J )→ (Y,OY/K) induced by f is finite type.

(2) X is locally Noetherian and is the inductive adic limit Xn over the inductive limit
Yn := Spec(OY/Kn) such that f0 : X0 → Y0 is finite type.

(3) Every point of Y is continued in an open formal affine Noetherian subschemes V ⊂ Y
such that f−1(V ) is a finite union of open formal affine Noetherian subschemes Ui,

122



such that the adic Noetherian ring Γ(Ui,OY) is formally finitely generated over
Γ(V,OY).

When the context is clear, we say that such a morphism of formal schemes is simply
“finite type.”

With these definitions in place, we can now specify the category of topological rings on
which we will define the functor of pseudorepresentations, and later the functor and groupoids
of representations. We write AdmA for the category of continuous admissible A-algebras.

Definition 3.1.6.3. Let A be a commutative local complete Noetherian Zp-algebra with
finite residue field F and its adic topology. Let R be a profinite continuous A-algebra, which
we assume to be complete and separated as an A-module. Let PsRd

R denote the functor

PsRd
R : AdmA −→ Sets

sending B to the set of continuous B-valued d-dimensional pseudorepresentations of R,

D : R⊗A B → B.

We will often use the equivalent formulation in terms of a continuous homogenous degree
d multiplicative A-polynomial law, which we will denote by P = PD, i.e. PD : R → B such
that the induced multiplicative polynomial law R⊗̂AB → B is equal to D. Let us confirm
that these notions are indeed equivalent in this topological setting. We will writeMd

A(R,B)c

for the set of continuous degree d homogenous multiplicative A-polynomial laws from R to
B.

Lemma 3.1.6.4. With A,R,D, d as above and B ∈ AdmA, the natural association

PsRd
R(B) −→Md

A(R,B)c

(D : R⊗A B → B) 7→ D ◦ (R
id⊗1−→ R⊗A B)

is a bijection.

Proof. Clearly the map exists. We will exhibit a two-sided inverse. For P ∈Md
A(R,B)c,

we have by e.g. Corollary 1.1.3.10(1) an induced determinant

DP : R⊗A B → B.

such that DP (r⊗ b) = bd ·DP (r). The characteristic polynomial functions ΛP
i,A : R→ B are

continuous by assumption. Recalling that the characteristic polynomial functions are in fact
polynomial laws ΛP

i : R→ B, we take the function associated to the A-algebra B,

ΛP
i,B : R⊗A B −→ B ⊗A B,

which we concatenate with the A-algebra structure map B⊗AB → B to get a characteristic
polynomial function. This function is continuous, and it is also identical to ΛDP

i,B . This shows
that DP is continuous. �

The equivalence of Lemma 3.1.6.4 makes it clear that PsRd
R is a covariant functor: for

a morphism (ι : B → B′) ∈ AdmA and P ∈ Md
A(R,B)c, we have PsRd

R(ι)(P ) := ι ◦ P ∈
PsRd

R(B′).

Remark 3.1.6.5. The equivalence P ↔ DP described in the lemma above shows that the
description of D⊗̂AB in Remark 3.1.4.4 extends to the case that B an admissible A-algebra,
and also for X a Spf(A)-formal scheme since pseudorepresentations on X will be defined as
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a Zariski sheaf of algebra homomorphisms. The lemma above shows that one can simply
reduce to the underlying multiplicative A-polynomial law out of R in order to test continuity.

Example 3.1.6.6. The main example of A,R that we will concern ourselves with is the
case that A = Zp and R = Zp[[Γ̂]], where Γ̂ is a profinite group.

Lemma 3.1.6.7 (Following [Che11, Lemma 3.10]). Let B ∈ AdmA, and let D : R⊗AB →
B be a continuous d-dimensional pseudorepresentation D ∈ PsRd

R(B). Denote by C ⊂ B the
closure of the sub-A-algebra generated by the characteristic polynomial coefficients ΛP

i (r) for
r ∈ R of the associated continuous homogenous multiplicative A-polynomial law P : R→ B.

(1) C is an admissible profinite sub-A-algebra of B. In particular, it is a finite product
of local A-algebras with finite residue field.

(2) Assume that ι : B → B′ is a morphism in AdmA and let D′ : R ⊗A B′ → B′

be the induced continuous d-dimensional pseudorepresentation. Let C ′ ⊂ B′ be the
sub-A-algebra associated to B′ as above. Then ι induces a continuous surjection
C � C ′.

Proof. Assume that B is discrete, so that admissibility means that mn
A ·B = 0 for some

n ≥ 1. Let P : R → B be the associated continuous multiplicative degree d A-polynomial
law associated to D as above. By Lemma 3.1.2.1, P factors through some finite index,
i.e. open two-sided ideal I ⊂ R containing mn

A · R. In particular, we can consider P to
be a polynomial law over the finite cardinality ring A/mn

A. Now ΓdA/mnA
(R/I)ab is a finite

cardinality commutative ring, and therefore so is the ring C of the statement of the lemma,
since C is, by Amitsur’s relations (Proposition 1.1.9.11(2)), the image of the A-algebra map

ΓdA/mnA(R/I) −→ B

canonically associated to P by Theorem 1.1.6.5.
Now we consider the general case. Since B is admissible as an A-algebra, there is a

topological A-algebra isomorphism B
∼→ limBλ, where Bλ is a discrete A-algebra and the

maps of the limit have nilpotent kernel. Write πλ : B → Bλ for the natural projection. Let
P : R → B denote the continuous homogenous degree d multiplicative A-polynomial law
associated to D. Write Pλ for πλ ◦ P .

Let C ⊂ B be the sub-A-algebra defined in the statement of the lemma. By the discrete
case above, the image Cλ ⊂ Bλ of C ⊂ B in Bλ is of finite cardinality, and therefore

C
∼−→ lim←−Cλ

is a profinite admissible A-subalgebra. The Jacobson radical of a profinite admissible ring
must include all ideals of definition. Therefore C/J(C) is finite, and part (1) follows.

For part (2), we simply note that the ring C ⊂ B is simply the closure of the induced
canonical map ΓdA(R)→ B; this is functorial for ι : B → B′. �

With this lemma controlling the characteristic polynomial coefficients of pseudorepre-
sentations of R in place, we are going to show that the functor PsRd

R(A) of all continuous
d-dimensional pseudorepresentations of R into admissible A-algebras is represented by the
disjoint union of deformation functors of finite field valued pseudorepresentations. We now
establish the notation necessary to describe this result.

Definition 3.1.6.8. Denote by PsRd
R(F̄A) the set of closed points of Spec(ΓdA(R)ab) with

finite residue field. We denote the associated pseudorepresentation by D̄ and the point of
PsRd

R by SpecFD̄.
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By Remark 3.1.4.1, such pseudorepresentations and their associated semisimple repre-
sentations are automatically continuous.

In the case that C is a local ring instead of being merely semi-local, then we know that
the B-valued continuous pseudorepresentation D : R⊗̂AB → B induces a C/mC-valued
pseudorepresentation. This pseudorepresentation corresponds via representability of the
(non-topological) pseudorepresentation functor to the canonical surjective map

ΓdA(R)ab � C0 � C0/mC0
∼= C/mC ,

so C/mC is canonically isomorphic to FD̄ for some D̄ ∈ PsRd
R(F̄A).

Definition 3.1.6.9. Let A,R,B,D, and C ⊂ B be as in the statement of Lemma
3.1.6.7. If C is local, and C/mC is canonically isomorphic to FD̄ as ΓdA(R)ab-algebras as per
the discussion above, we call D residually constant, and say that it is residually equal to D̄.

Now we define subfunctors of PsRd
R on AdmA which are residually constant.

Definition 3.1.6.10. Let D̄ ∈ PsRd
R(F̄A). Let PsRD̄ be the subfunctor of PsRd

R on
AdmA defined by the following relation. For each B ∈ AdmA, let PsRD̄(B) ⊂ PsRd

R(B) be
the subset of d-dimensional pseudorepresentations that are residually constant and residually
equal to D̄.

Lemma 3.1.6.7(2) shows that PsRD̄ is indeed (covariantly) functorial in morphisms (B →
B′) ∈ AdmA.

We have now defined two functors which we call PsRD̄. We will temporarily distinguish
these functors in order to show that they correspond in a natural way. Write PsRAdmA

D̄
for the

functor of residually constant pseudorepresentations of Definition 3.1.6.10. Write PsR
ÂFD̄
D̄

for the deformation functor of the residual pseudorepresentation D̄ : R⊗A FD̄ → FD̄ defined
in Definition 3.1.4.3.

Theorem 3.1.6.11 (Following [Che11, Proposition 3.13]). Let A be a complete Noetherian
local Zp-algebra with finite residue field, and let R be a profinite continuous A-algebra. Let

D̄ ∈ PsRd,AdmA

R (F̄A). Then PsRAdmA

D̄
is representable by a local admissible A-algebra B̃D̄ ∈

obAdmA whose residue field is canonically isomorphic to FD̄. Moreover,

(1) The W (FD̄)-algebra BD̄ representing PsR
ÂFD̄
D̄

is canonically topologically isomorphic

to B̃D̄.
(2) If ΦD̄ holds, then B̃D̄ is topologically finite type over A and Noetherian, and therefore

topologically finite type over Zp as well.

Proof. Lemma 3.1.6.7 implies that for any B ∈ obAdmA and any (P : R → B) ∈
PsRd,AdmA

R (B), P is the composite of a continuous multiplicative polynomial law P ′ : R→ C

with C → B, where C ∈ AdmA is semi-local. If P ∈ PsRAdmA

D̄
(B), then by definition

of the subfunctor, C is canonically a complete local A-algebra with residue field canonical
A-isomorphic to FD̄, i.e. C is canonically an object of ÂFD̄ . Consequently, P ′ is naturally an

element of PsR
ÂFD̄
D̄

(C).
Now Theorem 3.1.4.6 gives rise to a canonical continuous A-algebra homomorphism

BD̄ → C corresponding to P ′, and whose universal pseudodeformation of D̄ induces P ′.
Composing this map with C → B, we have the representability result, as well as the canon-
ical isomorphism BD̄

∼→ B̃D̄.
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Part (1) following directly from the arguments above along with Theorem 3.1.5.3; (2)
follows directly from definitions. �

It remains to address the representability of PsRd
R. This is best done over the category

FSA of Spf(A)-formal schemes.

Definition 3.1.6.12. Let PsRd
R = PsRd,FSA

R denote the contravariant functor sending a
Spf(A)-formal scheme X to the set of continuous d-dimensional pseudorepresentations

R⊗Spf A O(X)→ O(X).

Likewise, for any D̄ ∈ PsRd
R(F̄A), let PsRFSA

D̄
(X) ⊂ PsRd,FSA

R (X) define a subfunctor cut out

by the condition on D ∈ PsRd,FSA
R (X) that for any open affine U ⊂ X, the restriction of D

to PsRd,AdmA

R (Γ(OU)) belongs to PsRAdmA

D̄
.

Clearly the restriction of PsRd,FSA
R to (AdmA)op coincides with the opposite functor of

PsRd,AdmA

R . Note that the D ∈ PsRd,AdmA

R (B) belongs to PsRAdmA

D̄
(B) if and only if, for any

affine covering Spf(B) =
⋃
i(Ui), the image Di ∈ PsRd,FSA

R (Vi) of D belongs to PsRFSA
D̄

for
all i; this follows directly from Lemma 3.1.6.7. Now the same statement can be made of
PsRFSA

D̄
: its restriction to (AdmA)op coincides with the opposite functor of PsRAdmA

D̄
.

Corollary 3.1.6.13 ([Che11, Corollary 3.14]). Assume that condition ΦD̄ holds for all

D̄ ∈ PsRd
R(F̄A). Then PsRd,FSA

D̄
is representable by the formal scheme∐

D̄∈F̄A

Spf(BD̄).

In particular, the functor PsRd
R of continuous d-dimensional pseudorepresentations is locally

Noetherian and semi-local with local Noetherian component decomposition

PsRd
R
∼=
∐
D̄∈F̄A

PsRD̄.

As a result of the Theorem and Corollary, we will not bother to distinguish between

PsR
ÂFD̄
D̄

, PsRAdmA

D̄
, and PsRFSA

D̄
, and will simply denote these by PsRD̄ and make the source

of the functor clear. Generally, it will be the category of admissible continuous A-algebras
AdmA or the category of Spf(A)-formal schemes FSA. We will also denote the object of
AdmA representing PsRD̄ by BD̄, or by Spf(BD̄) ∈ obFSA.

3.2. Moduli of Representations of a Profinite Algebra

In analogy to §1.4 in the non-profinite case, we will introduce moduli spaces of topological
representations of the profinite A-algebra R. While we could proceed along the same lines as
§1.4, defining functors and groupoids of representations fibered over the category of Spf(A)-
formal schemes, then proving representability, etc., we will follow a different strategy. Under
the assumption of ΦD̄, we will show that the universal Cayley-Hamilton representation
E(R,Du

D̄
) of R over the universal pseudodeformation Du

D̄
of D̄ is finite as a module over BD̄

and that its native profinite topology is equivalent to its mD̄-adic topology. This will allow us
to deduce that the natural functor of continuous representations of R with constant residual
pseudorepresentation D̄ over Spf(A)-formal schemes can be found as the mD̄-adic completion
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of a finite type SpecBD̄-scheme/algebraic stack of (non a priori continuous) representations
of E(R,Du

D̄
).

Throughout this section, A represents a complete Noetherian local ring with finite residue
field FA and maximal ideal mA. We write R for a profinite continuous A-algebra, not neces-
sarily commutative. Of course, the topology on R is not necessarily the mA-adic topology.

3.2.1. Groupoids of Representations. Here are the functors and groupoids of rep-
resentations of R that we will study on the category of Spf(A)-formal schemes FSA.

Definition 3.2.1.1. Let A and R be as specified above, and let d be a positive integer.

(1) Define the functor Rep�,d
R on FSA by

X 7→ {continuous OX-algebra homomorphisms R⊗A OX −→Md(X)}.
(2) Define the groupoid RepdR, fibered over FSA, by

obRepdR(X) = {V/X rank d vector bundle,

continuous OX-algebra homomorphism R⊗A OX −→ EndOX
(V )}

and morphisms being isomorphisms of this data.

(3) Define the groupoid Rep
d

R, fibered over FSA, by

obRep
d

R(X) = {E a rank d2 OX-Azumaya algebra, with a

continuous OX-algebra homomorphism R⊗A OX −→ E}
and morphisms being isomorphisms of this data.

The basic initial observations regarding these groupoids and the natural maps to PsRd
R

hold in direct analogy to the non-topological case discussed in §1.4, although we hold off on
discussing representability of these groupoids until §3.2.4. Namely, there are canonical maps

(3.2.1.2) Rep�,d
R −→ RepdR −→ Rep

d

R

in direct analogy to (1.4.1.2). Following §1.4.2, the reduced norm on Azumaya algebras,
which is étale locally the determinant of a matrix algebra, allows us to associate to any
object of these groupoids a d-dimensional continuous pseudorepresentation. We write these
maps as

ψ� : Rep�,d
R −→ PsRd

R,

ψ : RepdR → PsRd
R, ψ̄ : Rep

d

R → PsRd
R.

Indeed, a pseudorepresentation induced by a continuous representation of R is continuous
(see Definition 3.1.0.10) because the characteristic polynomial coefficient functions Λi : E →
B on an Azumaya B-algebra E are continuous. This shows that the maps ψ�, ψ, ψ̄ are well
defined.

Just like (1.4.2.2), the canonical maps above form a commutative diagram

(3.2.1.3) Rep�,d
R

(1.4.1.2)
//

ψ�

))

RepdR
(1.4.1.2)

//

ψ

##

Rep
d

R

ψ̄
��

PsRd
R
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This allows us to consider the Spf(A)-formal groupoids of representations as PsRd
R-formal

groupoids. Now we establish notation to decompose the representation groupoids into the
fiber of ψ� (resp. ψ, resp. ψ̄) over each component PsRD̄ ⊂ PsRd

R, D̄ ∈ PsRd
R(F̄A). Indeed, an

object of any of the representation groupoids over B ∈ AdmA induces a map Spf(B)→ PsRd
R

via the appropriate ψ-map, and the condition that this map correspond to a residually
constant pseudorepresentation will define a PsRd

R-sub-fibered-groupoid, since we observe that
the residually constant condition is stable under pullbacks in the category of PsRd

R-formal
schemes (cf. Corollary 3.1.6.13).

Definition 3.2.1.4. For any D̄ ∈ PsRd
R(F̄A), we write Rep�

D̄
(resp. RepD̄, resp. RepD̄)

for the fiber of ψ� (resp. ψ, resp. ψ̄) over the component PsRD̄ ⊂ PsRd
R.

Our next goal is to show that Rep�
D̄

is representable by a Spf(A)-formal scheme, and,
moreover, that condition ΦD̄ implies that Rep�

D̄
is formally finite type over PsRD̄, i.e. that

Rep�
D̄

is a formally finite type Spf(BD̄)-formal scheme. While this may be shown rather
directly, we will deduce it from the finiteness result of the next paragraph.

3.2.2. Finiteness Results. In this paragraph, our goal is to prove Proposition 3.2.2.1.
This proposition gives us the module-finiteness of the universal Cayley-Hamilton algebra
associated to R, whose definition we will recall below. This module-finiteness is the key
result we require to prove the algebraizability of the representation functors on AdmA.

Proposition 3.2.2.1. Let B be a admissible A-algebra and let D : R ⊗A B → B be
a continuous d-dimensional residually constant pseudorepresentation D̄. Assume that D̄
satisfies ΦD̄. Then

(1) The B-algebra (R⊗A B)/CH(D) is finitely presented as a B-module.
(2) The native pro-discrete topology on (R⊗A B)/CH(D) given by open ideals is equiv-

alent to the topology induced by a fundamental system of ideals for B.

First we require some lemmas.

Lemma 3.2.2.2. Let F be a finite characteristic p field, let R be a profinite F-algebra,
and let D̄ : R→ F be a continuous d-dimensional pseudorepresentation satisfying ΦD̄. Then
R/CH(D̄) is finite dimensional as a F-vector space and, equivalently, CH(D̄) is open as a
two-sided ideal of R.

Proof. We first note that the equivalence of the conclusions is immediate from R having
the profinite topology.

Replace R with R/CH(D̄), so that (R, D̄) is a Cayley-Hamilton F-algebra. Let S :=
R/ ker(D̄), which we know from Theorem 1.3.1.3 to be a finite dimensional semisimple F-
algebra. It is naturally a quotient of R by Lemma 1.2.1.1. The proof of Proposition 2.1.2.3
shows that the assumption ΦD̄ is sufficient to imply that R/ ker(D̄)n is finite dimensional as
a F-vector space for any n ≥ 0. Now by Lemma 1.2.3.1, ker(D̄) is nilpotent. This completes
the proof that R is finite dimensional. �

Remark 3.2.2.3. We emphasize that in the proof above, we do not assume that CH(D̄)
is a closed ideal of R, nor, equivalently, that the natural surjection R/CH(D̄) is continuous.
This fact is a consequence of the proof.
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Lemma 3.2.2.4 (Infinite Nakayama Lemma). Let A be a complete Noetherian local ring
with maximal ideal mA and residue field FA and let M be an A-module. Assume that M is mA-
adically separated, i.e.

⋂
i≥0 m

i
A ·M = 0, and assume that M/mA ·M is finite dimensional as

a FA-vector space. Then M is a finite A-module generated by any set of lifts for a generating
set for M/mA ·M . In particular, one can apply the (standard) Nakayama Lemma to M .

Proof. Choose a basis m̄1, . . . , m̄n for M/mA ·M , and let m1, . . . ,mn be a choice of
lifts to M for the basis. Choose 0 6= x ∈M , and let k ≥ 0 be the greatest integer such that
x ∈ mk

A ·M ; write xk for x. Because (m̄i) is a basis and the Noetherianness of A implies
that mb

A/m
b+1
A is finite dimensional over FA for all b, there exists an A-linear combination∑n

1 aikmi such that aik ∈ mk
A and

(3.2.2.5) xk −
n∑
i=1

aikmi ∈ mk+1
A ·M

Now set xk+1 to this difference, and choose ai,(k+1) ∈ mk+1
A , 1 ≤ i ≤ n such that (3.2.2.5)

is satisfied with k + 1 in place of k; iterate this process for all j ≥ k, generating xj, aij for
j ≥ k, 1 ≤ i ≤ n.

Now set, for each i, 1 ≤ i ≤ n,

ai :=
∞∑
j=k

aij ∈ A,

where the sum is convergent because A is mA-adically complete and aij ∈ mj
A for any j ≥ k.

Observe that

x−
n∑
i=1

aimi ∈ mj
A ·M

for any j ≥ k. Therefore, by the separation hypothesis on M , x =
∑n

1 aimi. This shows
that (mi) is an A-basis for M , as desired. �

Now we can prove Proposition 3.2.2.1

Proof. First, we will prove the result when B is discrete. We already know that CH(D)
is a two-sided ideal of R⊗A B, so we must show that it is open.

By Lemma 3.1.6.7 and the definition of residual constancy of D (Defintion 3.1.6.10), D
factors through a finite cardinality Artinian local sub-A-algebra C ⊂ B (C is the image of
the canonical continuous homomorphism BD̄ → B) with residue field FD̄, i.e. there exists a
continuous deformation

DC : R⊗A C → C

of D̄ inducing D upon ⊗CB.
Consider the Cayley-Hamilton quotient (R⊗A C)/CH(DC). Using the canonical surjec-

tion C → C/mC
∼→ FD̄, we tensor DC by ⊗CFD̄. Now Lemma 1.1.8.6 implies that we have

an isomorphism

(R⊗A C)/CH(DC)⊗C FD̄
∼−→ (R⊗A FD̄)/CH(D̄).

Applying our assumption that ΦD̄ holds, Lemma 3.2.2.2 tells us that the right hand side is
a finite dimensional F-vector space. Since the C-algebra (R⊗A C)/CH(DC) is trivially mC-
adically separated because C is Artinian, the “infinite Nakayama lemma” (Lemma 3.2.2.4)
implies that it is also finite as a C-module. Since all of the involved rings are profinite and
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the maps factor through profinite completions, we may apply Lemma 3.1.2.3 so that we know
that the factor map

(R⊗A C) −→ (R⊗A C)/CH(DC)

is continuous and CH(DC) is closed in R⊗AC. The target is also finite cardinality, showing
that CH(DC) is also an open ideal of R⊗AC. We have now completed the proof in the case
that B is a finite Artinian ring.

Now we deduce the general discrete case over B from the local discrete case completed
for C above. The natural map

(R⊗A C)/CH(DC)⊗C B −→ (R⊗A B)/CH(D)

exists and is an isomorphism by Lemma 1.1.8.6; it is continuous and CH(D) ⊂ (R⊗A B) is
open, as the natural topology on both sides is discrete, proving part (2). Since the left hand
side is finitely presented as a B-module by the arguments above, so is the right hand side
proving part (1). This completes the argument.

Now we no longer assume that B is discrete. We may write B as a limit of discrete
continuous A-algebras B = lim←−λBλ where the maps are surjective with nilpotent kernel, and
write Cλ ⊂ Bλ for the algebra C in the discrete case above. Then C = lim←−λCλ is a complete
local Noetherian sub-A-algebra of B with residue field FD̄, since we are assuming condition
ΦD̄ and may apply Theorem 3.1.5.3. Write πλ : B → Bλ for the natural surjections. Write
Dλ for πλ ◦D; it is a continuous d-dimensional pseudorepresentation

Dλ : R⊗A Bλ → Bλ

that satisfies the conditions of the discrete pseudorepresentation called “D” above. Likewise,
we write DCλ the pseudorepresentations called “DC” above.

Consider the Cλ-algebra homomorphism

(R⊗A Cλ)/CH(DCλ) −→ (R⊗A Cλ′)/CH(DC′λ
).

By Lemma 1.1.8.6, it becomes an isomorphism after applying ⊗CλCλ′ to the left side. There-
fore, it is continuous and surjective; it has nilpotent kernel since the maps Cλ → Cλ′ do too.
By the same reasoning, for every λ there is a canonical surjection

(R⊗A C)/CH(DC) −→ (R⊗A Cλ)/CH(DCλ).

Therefore, the image of the natural map

(3.2.2.6) (R⊗A C)/CH(DC) −→ (R⊗̂AC)/CH(D̃C)

is dense, since the right hand side surjects onto each (R⊗ACλ)/CH(DCλ) as well. The map

(3.2.2.6) is also injective, since CH(DC) is dense in CH(D̃C). We now aim to show that it is
an isomorphism.

We know that CH(D̃C) ⊂ R⊗̂AC is closed by Lemma 3.1.2.3, so we have

(R⊗̂AC)/CH(DC)
∼−→ lim←−

λ

(R⊗̂AC)/CH(DCλ ◦ πλ).

Now [Gro60, Proposition 10.10.5] and the finiteness of (R⊗̂AC)/CH(DCλ) as Cλ-modules
proved in the discrete case above, (R⊗̂AC)/CH(DC) is a finitely generated C-module. Al-
ternatively, we can apply the infinite Nakayama lemma again. We note that the mC-adic
topology on (R⊗̂AC)/CH(D̃C) is equivalent to its profinite topology arising from the com-
plete tensor product.
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Now we observe that (3.2.2.6) is an isomorphism of finite C-modules. Indeed, the image
is a dense sub-C-module of a finite C-module. We have now completed the proof in the case
that B was a Noetherian complete local ring.

We now deduce the general case from what we have done. Lemma 1.1.8.6 shows us that
we have a natural isomorphism

(3.2.2.7) (R⊗A C)/CH(DC)⊗C B
∼−→ (R⊗A B)/CH(D),

since D arises from DC by ⊗CB. We conclude that the right hand side is finitely presented as
a B-module, since C is Noetherian, proving (1). The compatibility of (3.2.2.7) with ⊗BBλ,
yielding the isomorphism of discrete algebras

(R⊗A Cλ)/CH(DCλ)⊗Cλ Bλ −→ (R⊗A Bλ)/CH(Dλ),

shows us that (2) is true. �

3.2.3. Universality Results. Recall the (non-topological) notion of universal Cayley-
Hamilton representation of R (§1.2.4). This is a ΓdA(R)ab-algebra

E(R, d) := (R⊗A ΓdA(R)ab)/CH(Du),

with the data of the universal pseudorepresentation Du |E: E(R, d) → ΓdA(R)ab and the
canonical quotient map from R⊗AΓdA(R)ab. We have shown in Theorem 1.4.3.1 that moduli
spaces of d-dimensional representations of R are equivalent to their counterpart moduli
spaces of d-dimensional representations of E(R, d). Our goal in this paragraph is to prove
this result in the profinite topological setting of this chapter.

We will carry out this task over each component PsRD̄ of PsRd
R. There is no significant

loss of generality in doing this. Let us establish the notation for these universal Cayley-
Hamilton algebras.

Definition 3.2.3.1. Let D̄ ∈ PsRd
R(F̄A). The universal Cayley-Hamilton representation

over PsRD̄, denoted E(R,Du
D̄

), is the BD̄-algebra

E(R,Du
D̄) := (R⊗A BD̄)/CH(Du

D̄),

often considered with its canonical factor map ρu
D̄

: R ⊗A BD̄ → E(R,Du
D̄

). We establish
notation for the completed case as well,

Ẽ(R, D̃u
D̄) := (R⊗̂ABD̄)/CH(D̃u

D̄),

with the canonical factor map ρ̃u
D̄

: R⊗̂ABD̄ → Ẽ(R, D̃u
D̄

).

Before proving the universality theorem for the Cayley-Hamilton algebra E(R,Du
D̄

), we
point out the consequences of ΦD̄ for this algebra. This theorem follows directly from
Proposition 3.2.2.1, and the last part from Corollary 1.2.2.10.

Theorem 3.2.3.2. Assume that D̄ ∈ PsRd
R(F̄A) satisfies ΦD̄. Then

(1) The natural profinite completion map

E(R,Du
D̄) −→ Ẽ(R, D̃u

D̄)

is an isomorphism.
(2) E(R,Du

D̄
) is finite as a BD̄-module

(3) The native topology on E(Du
D̄

) is equivalent to the its mD̄-adic topology as a BD̄-
module.

(4) E(Du
D̄

) is finite as a module over its center and is a Noetherian ring.
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Now we prove an analogous result in our profinite topological setting to the universality
of the Cayley-Hamilton algebra (Proposition 1.2.4.3) and the resulting equivalence of repre-
sentation categories between R and E(R, d) (Theorem 1.4.3.1). The non-topological results
produce universal maps, and we check that they are continuous.

We require some notation. Following the convention that Rep�
D̄

denotes the fiber of

Rep�,d
R over PsRD̄, denote by Rep�

D̄|E
the fiber of Rep�,d

E(R,Du
D̄

) over PsRD̄|E ⊂ PsRd
E(R,Du

D̄
).

Theorem 3.2.3.3. Let X be a Spf(A)-formal scheme. Any representation in the formal
groupoids Rep�

D̄
(X),RepD̄(X),RepD̄(X) factors uniquely continuously through the universal

Cayley-Hamilton representation ρu
D̄
⊗BD̄ O(X). This factorization induces equivalences of

PsRD̄-formal groupoids
Rep�

D̄

∼−→ Rep�
D̄|E ,

RepD̄
∼−→ RepD̄|E ,

RepD̄
∼−→ RepD̄|E .

Proof. It will suffice to work formally Zariski-locally on X, so we may replace OX with
an admissible A-algebra B. As in the proof of Theorem 1.4.3.1, it will suffice to work with
a continuous B-algebra homomorphism ρ : R⊗̂AB → E in RepD̄(B), since objects of the
other groupoids amount to additional data on top of the rank d2 Azumaya B-algebra E and
the map ρ.

Recall Definition 1.2.4.1, which is the notion of a Cayley-Hamilton representation of R.
Following Remark 1.2.4.2, we note that a the data of ρ induces a d-dimensional Cayley-
Hamilton representation of R over B, namely

(B, (E , det), ρ),

where det : E → B represents the reduced norm map for the Azumaya B-algebra E .
Proposition 1.2.4.3 shows that the universal d-dimensional Cayley-Hamilton represen-

tation (ΓdA(R)ab, (E(R, d), Du|E), ρu) is initial in the category CHd(R) of Cayley-Hamilton
representations of R. Thus there exists a canonical CHd(R)-morphism

(ΓdA(R)ab, (E(R, d), Du|E), ρu) −→ (B, (E , det), ρ).

We know that the map ΓdA(R)ab → B included in this data is continuous with respect to the
topology on ΓdA(R)ab defined in Theorem 3.1.4.6 for the choice of D̄ ∈ PsRd

R(F̄A), since B has
residually constant pseudorepresentation D̄. The completion with respect to this topology
is BD̄ and B is complete, so that we have a map BD̄ → B factoring ΓdA(R)ab → B.

Therefore the continuous B-algebra homomorphism E(R, d)⊗ΓdA(R)abB → E which is part

of the data of the morphism in CHd(R) factors through E(R, d)⊗ΓdA(R)ab BD̄. Recalling that

E(R, d) := (R⊗A ΓdA(R)ab)/CH(Du), we have by Lemma 1.1.8.6 a canonical isomorphism

E(R, d)⊗ΓdA(R)ab BD̄
∼−→ (R⊗A BD̄)/CH(Du

D̄) ∼= E(R,Du
D̄),

so that we now have a canonical continuous map E(R,Du
D̄

)⊗BD̄ B → E factoring ρ.

We have now exhibited a PsRD̄-groupoid morphism RepD̄ → Rep
d

E(R,Du
D̄

). We observe

that this lies inRepD̄|E because ΓdA(R)ab → B factors through BD̄. The map ρu
D̄

: R⊗ABD̄ →
E(R,Du

D̄
) induces an inverse morphism by composition. �
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Here is an interesting consequence of this universality. Once we show that the groupoids
are representable by formal algebraic stacks, this corollary says, essentially, that ψ�, ψ, ψ̄ are
adic morphisms.

Corollary 3.2.3.4. As usual, let A be a commutative Noetherian local profinite ring, let
R be a profinite A-algebra, and choose D̄ ∈ PsRd

R(F̄A) satisfying ΦD̄. Choose an admissible
A-algebra B along with a continuous d-dimensional representation ρ : R ⊗A B → E of
residually constant pseudorepresentation D̄. Then ρ is still continuous with respect to the
finer mD̄-adic topology on B.

Proof. Let B, ρ be as in the statement of the corollary. Theorem 3.2.3.3 implies that
we have a continuous map BD̄ → B and a canonical continuous factorization of ρ, and a
continuous BD̄-algebra map ED̄ → E , through which R→ E factors. The fact that BD̄ → B
is continuous means that the mD̄-adic topology on B is (not necessarily strictly) stronger
than its native topology. Clearly if we topologize E with respect to mD̄, the map ED̄ → E
will remain continuous. �

3.2.4. Representability Results. Now we will work toward showing that the for-
mal groupoids Rep�

D̄
, RepD̄, RepD̄ are representable by PsRD̄ = Spf(BD̄)-formal schemes.

In fact, we will show much more, using the universality (Theorem 3.2.3.3) and finiteness
(Theorem 3.2.3.2) of the universal Cayley-Hamilton representation of R of residually con-
stant pseudorepresentation D̄. We will show that the d-dimensional representation groupoid

Rep�,d
E(R,Du

D̄
) (resp. RepdE(R,Du

D̄
), resp. Rep

d

E(R,Du
D̄

)) for E(R,Du
D̄

) is formally finite type over

PsRD̄ and will prove this by showing that it is algebraizable with finite type algebraization

Rep�,d
E(R,Du

D̄
) (resp. RepdE(R,Du

D̄
), resp. Rep

d

E(R,Du
D̄

)). This will show, by Theorem 3.2.3.3, that

the representation groupoids above are topologically finite type, Noetherian formal schemes
over Spf(A) that are formally finite type over PsRD̄ = Spf(BD̄).

In order to prove algebraization of the formal PsRD̄-groupoids of representations of
E(R,Du

D̄
), we need to find algebraic groupoids of continuous representations. In fact, what

we will show is that, after applying a natural topology to groupoids of non-topological rep-
resentations such as RepdE(R,Du

D̄
), this non-topological groupoid of representations consists

entirely of continuous representations. This result depends critically on the finiteness condi-
tion ΦD̄ and the work done in the previous paragraphs.

Theorem 3.2.4.1. With A,R, d, D̄, and E(R,Du
D̄

) as above, assume that ΦD̄ is true.
Then the restrictions to admissible BD̄-algebras of the non-topological SpecBD̄-groupoids of
representations Rep�

E(R,Du
D̄

),Du
D̄

, RepE(R,Du
D̄

),Du
D̄

, and RepE(R,Du
D̄

),Du
D̄

of E(R,Du
D̄

) lying over

PsRD̄ are equivalent to their counterparts Rep�
D̄

, RepD̄, and RepD̄.

Proof. Because ΦD̄ is satisfied, Theorem 3.2.3.2 gives us that the BD̄-algebra E(R,Du
D̄

)

is module-finite and its native topology as a quotient of R⊗̂ABD̄ is identical to its mD̄-adic
topology. Choose B ∈ AlgBD̄ that is an admissible BD̄-algebra, and choose a non-topological

representation ρ ∈ Rep
d

E(R,Du
D̄

),Du
D̄

(B). This is the data

ρ : E(R,Du
D̄)⊗BD̄ B −→ E

where E is a rank d2 B-Azumaya algebra and det ◦ρ = (BD̄ → B) ◦ Du
D̄

. Rembering the
topology on B, we have a topology on both the source and the target of ρ, and we observe that
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ρ is a map of finitely presented B-modules, and is therefore continuous under the mD̄-adic

topology. Therefore ρ ∈ Rep
cont

E(R,Du
D̄

),Du
D̄

(B).

Likewise, one can start with ρ ∈ Rep
d

E(R,Du
D̄

),Du
D̄

(B), and observe that forgetting the

topology gives us an object of Rep
d

E(R,Du
D̄

),Du
D̄

(B), providing a quasi-inverse morphism. �

Remark 3.2.4.2. Let us note what may go wrong when ΦD̄ is not satisfied. The Cayley-
Hamilton ideal CH(Du

D̄
) ⊂ R ⊗A BD̄ is still closed by Lemma 3.1.2.3, so that E(R,Du

D̄
)

is a profinite BD̄-algebra. However, E(R,Du
D̄

)/mD̄E(R,Du
D̄

) ∼= (R ⊗A FD̄)/CH(D̄) is not
necessarily a finite FD̄-vector space, and does not necessarily carry the discrete topology.
The former fact suggests that a non-topological moduli space of representations may not be
finite type over SpecBD̄, and the latter fact implies that a non-topological moduli space of
representations may not correspond to continuous representations.

Let (−)∧
D̄

denote mD̄-adic completion of a BD̄-scheme. This is the formal completion of
a BD̄-scheme X at the subscheme X◦ := X ×SpecBD̄

SpecFD̄.

Corollary 3.2.4.3. Assume ΦD̄. The formal Spf(A)-groupoid of representations Rep�
D̄

(resp. RepD̄, resp. RepD̄) is naturally isomorphic over PsRD̄ to the mD̄-adic completion of
Rep�

D̄|E (resp. RepD̄|E , resp. RepD̄|E). In particular, it is a formally finite type, Notherian

PsRD̄-formal scheme (resp. a formally finite type Notherian PsRD̄-formal algebraic stack).
Additionally, the map

ψ : RepD̄ −→ PsRD̄, (resp. ψ̄ : RepD̄ → PsRD̄)

pushes forward coherent sheaves to coherent sheaves and is universally closed.

Remark 3.2.4.4. Note that once we know that the Rep groupoids are representable by
formal schemes/algebraic stacks, Corollary 3.2.3.4 can be used to deduce that they are adic
over Spf(BD̄).

Proof. The isomorphism between these formal groupoids follows directly from Theorem
3.2.4.1.

For the rest of the proof, we recall Corollary 1.5.4.7, which describes the properties of
ψ̄ in the non-topological case. The properties in the statement of the corollary are stable
under adic completion. The finiteness of the pushforward of coherent sheaves involves a
bit of work. Modulo each power mn

D̄
of the maximal ideal of BD̄, the map from RepD̄|E ×

SpecBD̄/m
n
D̄

to SpecBD̄/m
n
D̄

is an adequate moduli space following by a finite morphism
by [Alp10, Proposition 5.2.9(3)]. Therefore the pushforward of a coherent sheaf is coherent.
The pushforward of a coherent sheaf on the whole formal scheme consists of the inverse limit
at each of these finite levels, and this is a finite BD̄ module by e.g. Lemma 3.2.2.4. �

Remark 3.2.4.5. The result on coherent sheaves would be more straightforward if we
knew that formal GAGA holds over adequate moduli spaces. It has been recently proved in
the slightly narrower case of good moduli spaces [GZB12].

3.2.5. Consequences of Algebraization. We conclude our work on pseudorepresen-
tations by applying our best results from Chapter 1 and Chapter 2 to the moduli of contin-
uous representations and pseudorepresentations of a profinite algebra R over a Noetherian
profinite local ring A. In particular, we find pleasant conclusions as corollaries of
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(1) the projective subspaces of θ-stable representations in fibers of ψ̄, and complete
local projective deformations of these spaces (Theorem 2.2.4.1), and

(2) the adequacy of ψ and ψ̄ in the neighborhood of residually multiplicity free pseu-
dorepresentations (Corollary 2.3.3.9).

(3) the projectivity over complete local pseudodeformation rings of moduli spaces of
representations which have a certain ordering of extensions (Corollary 2.2.4.3), ver-
ifying a proposal of Kisin [Kis09a, Remark 3.2.7].

Theorem 3.2.5.1. Let A be a Noetherian profinite local ring with residue field FA and
let R be a continuous A-algebra. Choose a residual pseudorepresentation D̄ ∈ PsRd

R(FA)
satisfying finiteness condition ΦD̄. Then

(1) All continuous representations of R over admissible A-algebras factor uniquely con-
tinuously through the Cayley-Hamilton algebra E(R,Du

D̄
), which is an algebra finite

as a module over the complete Notherian local A-algebra BD̄.
(2) The Spf(A)-formal scheme (resp. formal algebraic stacks) of representations Rep�

D̄

(resp. RepD̄, resp. RepD̄) are the mD̄-adic completion of the finite type, non-
topological SpecBD̄-scheme (resp. algebraic stack) of representations Rep�

D̄|E (resp.

RepD̄|E , resp. RepD̄|E), which are also continuous representations when restricted to

admissible BD̄-algebras. Consequently, Rep�
D̄

(resp. RepD̄, resp. RepD̄) are finite
type over Spf BD̄.

(3) If the residual pseudorepresentation D̄ is split over FA and is stabilizing relative to
a character θ of the Grothendieck group of the abelian category of representations
of the finite dimensional FA-algebra E(R,Du

D̄
) ⊗BD̄ FA, there is a PsRD̄-projective

subscheme Rep
s

D̄(θ) of RepD̄ parameterizing representations whose reduction modulo
mD̄ is θ-stable.

(4) Assuming that D̄ is split and multiplicity free over FA, given an ordering of the
non-isomorphic simple representations ρ̄i, 1 ≤ i ≤ n of R over FA such that D̄ =

det ◦(⊕n1 ρ̄i), there exists a PsRD̄-projective subscheme Rep
′
D̄ ⊂ RepD̄ of represen-

tations which are residually a certain ordering of extensions given in Definition
2.2.3.2.

(5) If a d-dimensional residual representation D̄ of R is split and multiplicity free and
of characteristic greater than 2d, then ψ (resp. ψ̄ is an adequate moduli space. In
particular, this means that PsRD̄ is precisely the GIT quotient of Rep�

D̄ with respect
to the adjoint action.

Proof. Part (1) is Theorem 3.2.3.3. Part (2) is Corollary 3.2.4.3. For part (3), we
apply Theorem 2.2.4.1 to RepD̄, using the fact that the base BD̄ is complete. Part (4) is an
application of Corollary 2.2.4.3. Part (5) is Corollary 2.3.3.9, where we use the fact that BD̄

is complete and therefore henselian. �

In particular, this theorem can take A to be the universal deformation ring BD̄ of a
residual pseudorepresentation of R over FA satisfying ΦD̄.
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CHAPTER 4

p-adic Hodge Theory in Group-Theoretic Families

This chapter is a generalization of Mark Kisin’s Potentially Semistable Deformation
Rings [Kis08, §§1-2]. We also provide some additional expository content as we do this.
There, the constructions start given a continuous representation of the absolute Galois group
Γ̂ = Γ̂K := Gal(K̄/K) of K, a finite extension of Qp, on a free module over a complete Noe-
therian local Zp-algebra A with finite residue field. Then loci of SpecA[1/p] such that the
associated Galois representation satisfies conditions from p-adic Hodge theory are deter-
mined. Our goal is to generalize the arguments and constructions of [Kis08] to the case that
A is formally finitely generated over a complete Noetherian local ring R with finite residue
field, i.e. the quotient of a restricted power series ring R〈z1, . . . , za〉. We know from Corol-

lary 3.2.4.3 that the moduli spaces of representations RepD̄ of Γ̂ with a residually constant

d-dimensional pseudorepresentation D̄ : F[[Γ̂]]→ F are formally finite type over the complete
local Noetherian pseudodeformation ring RD̄ with residue field F. Because the whole moduli
space of d-dimensional pseudorepresentations is semi-local with local components Spf RD̄ in
bijective correspondence with Fp-valued d-dimensional pseudorepresentations of Γ̂ (Corollary
3.1.6.13), the results of this chapter apply to the whole moduli space of representations of

Γ̂. This means, for example, that given the condition “semistable with Hodge-Tate weights

in [0, h],” there exists a Zariski closed subspace of Rep
d

Γ̂[1/p] parameterizing precisely these
representations. See Theorem 4.12.12 for the p-adic Hodge theoretic conditions for which we
prove such a result.

As a concrete example of the application of this theorem, consider two crystalline rep-
resentations ρ1, ρ2 of Γ̂K over Qp. It is well known that the subset of the vector space of
extensions of the form (

ρ1 ∗
0 ρ2

)
that are crystalline form a sub-vector space of ExtQp[Γ̂](ρ2, ρ1). Our results show that for
a much wider set of conditions – e.g. potentially semi-stable of a certain Galois type, and
prescribed Hodge type – the locus of extensions fulfilling this representation will be Zariski
closed. This is a proper generalization of the results of Kisin [Kis08], since there is not

necessarily one finite field valued representation of Γ̂ such that the entire family of extensions
reduces to it. An example of such a case is when the mod p reductions ρ̄i are absolutely
irreducible and dimFp ExtFp[Γ̂](ρ̄2, ρ̄1) > 1.

We will not reference the moduli spaces and pseudorepresentations in what follows, but
will simply assume that A is a formally finite type R-algebra, where R is a complete Noe-
therian local Zp-algebra with finite residue field F and maximal ideal m. We will sometimes
use α for an Artinian ring R/mn.
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4.1. Changes in Notation from [Kis08]

For the reader familiar with the notation of [Kis08], we remark that we follow the notation
there with the following exceptions. For the most part, the changes come from generalizing
the coefficient ring of the representation, as described above.

(1) We use Γ for the Galois group denoted as GK in [Kis08] and Γ∞ for GK∞ .
(2) For the portions of [Kis08] where A represents an Artinian local ring with residue

field F, and VA is a free A-module with an A-linear continuous action of Γ∞, we let
A be a finitely generated over an Artinian local ring α. Here α stands in for R/mn

for some n > 0. The topology on A is the discrete (mα-adic) topology. In particular,
this means that A is finite type over Z. We let VA be a projective rank d A-module
with anA-linear action of Γ̂∞ with open kernel.

(3) When in [Kis08] A represents a complete Noetherian local ring with finite residue
field F, in the analogous sections of our work A will represent a formally finite type
R-algebra, i.e. a quotient of a finitely generated restricted power series ring over
R. The ring R is a complete Noetherian local ring with finite residue field F. This
makes A a topologically finite type Zp-algebra, where the topology on A is mR · A-
adic. We then use VA to denote a projective rank d A-module with an action of
Γ̂.

(4) When [Kis08] changes notation and uses A◦ in place of A, and then A = A◦[1/p], we
do the same. We also require that A◦ be p-torsion free along with this transition,
i.e. A◦ is a flat continuous topologically of finite type Zp-algebra.

4.2. Background for Representations of Bounded E-height (§§4.3-4.5)

Let k be a finite field of characteristic p > 0 and W := W (k) its ring of p-typical Witt
vectors. W is the ring of integers of a finite unramified extension K0 := W (k)[1/p] of Qp.
Let K/K0 be a totally ramified extension of degree e. Fix an algebraic closure K̄ of K, and

a completion Cp of K̄ and let Γ̂ := Γ̂K = Gal(K̄/K).

Our entire aim is to study the moduli of representations of Γ̂ with p-adic Hodge theoretic
properties. We recall the definitions of some p-adic period rings.

Let OK̄ be the ring of integers of K̄ and OCp the ring of integers of Cp. Let R = lim←−OK̄/p,
where each transition map is the Frobenius endomorphism of the characteristic p ring OK̄/p.
This is a complete valuation ring which is perfect of characteristic p and whose residue field
is k̄ and is also canonically a k̄-algebra [FO, Proposition 4.6]. The fraction field FrR of R is a
complete nonarchimedean algebraically closed characteristic p field. The elements x of R are
in natural bijection with sequences of elements (x(n))n≥0 of OCp such that xp(n+1) = x(n) for

all n ≥ 0. A canonical valuation on R is given by taking the valuation v on Cp normalized
so that v(p) = 1 and setting vR((x(n))n≥0) = v(x(0)). Frobenius ϕ acts on R by the pth
power map also, or, equivalently, a single shift in the limit defining R or, in terms of the
presentation x = (x(n))n≥0, ϕ(x) = (xp(n))n≥0.

Consider the ring W (R), and write an element of W (R) as (x0, x1, . . . , xn, . . . ). There is
a unique continuous surjective W -algebra map

θ : W (R) −→ OCp

(x0, x1, . . . ) 7→
∞∑
n=0

pnxn,(n)
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lifting the projection to the first factor R → OK̄/p onto the 0th truncation W0(R) of the
limit of truncated Witt vectors defining W (R) (cf. [FO, Remark 5.10]). There is a Frobenius
action on the perfect, characteristic p ring R, and therefore also a Frobenius map ϕ on W (R)
which sends (x0, x1, . . . ) to (xp0, x

p
1, . . . ).

We fix the notation S := W [[u]], the power series ring in the variable u. We equip S
with a Frobenius map denoted ϕ, which acts by the usual Frobenius map on W and sends u
to up. We think of these as the functions bounded by 1 on the open analytic unit disk over
K0, and S[1/p] as the ring of bounded functions on the open unit disk. Fix a uniformizer
π ∈ K, and elements πn

1 for n ≥ 0 such that π0 = π and πpn+1 = πn. Write E(u) ∈ W [u] for
the minimal, Eisenstein polynomial of π. We note that ϕn(E(u)) is a minimal, Eisenstein
polynomial for πn for n ≥ 0.

Write π := (πn)n≥0 ∈ R, and let [π] ∈ W (R) be its Teichmüller lift (π, 0, 0, . . . ). Because
the R is canonically a k̄-algebra, we have a canonical embedding W ↪→ W (k̄) ↪→ W (R).
We consider W (R) as a W [u]-algebra by sending u to [π]. Since θ([π]) = π, this embedding
extends to an embedding of S into W (R) (cf. the formulation of W (R) in [FO, §5.2.1]), and
we will consider W (R) and rings derived from W (R) as S-algebras via this map from now
on. From the discussion above, this map is visibly ϕ-equivariant.

We define another important element [ε] ∈ W (R). Firstly define a sequence of pnth roots
of unity

(4.2.1) ε0 = 1, ε1 6= 1, and εpn+1 = εn ∀n ≥ 0.

This sequence defines an element ε in R. Let [ε] ∈ W (R) be its Teichmülller lift. Notice
that θ([ε]− 1) = 0.

Let OE be the p-adic completion of S[1/u]. Then OE is a discrete valuation ring
with residue field k((u)) and maximal ideal generated by p. Write E for its fraction field
FrOE = OE [1/p]. The inclusion S ↪→ W (R) extends to an inclusion OE ↪→ W (FrR), since
π ∈ FrR and W (FrR) is p-adically complete. Let Eur ⊂ W (FrR)[1/p] denote the maximal
unramified extension of E contained in W (FrR)[1/p], and OEur its ring of integers. Since FrR
is algebraically closed, the residue field OEur/pOEur is a separable closure of k((u)). If OÊur is
the p-adic completion of OEur , or, equivalently, the closure of OEur in W (FrR) with respect
to its p-adic topology, set Sur := OÊur ∩W (R) ⊂ W (FrR). All of these rings are subrings of
W (FrR)[1/p], and are equipped with a Frobenius operator coming from W (FrR)[1/p].

For n ≥ 0 let Kn+1 := K(πn), and let K∞ = ∪n≥0Kn and Γ̂∞ := Gal(K̄/K∞). Clearly the

action of Γ̂∞ on W (R) fixes the subring S, since it fixes both W and πn ∀n ≥ 0. Therefore

Γ̂∞ has an action on Sur and Eur.
The discussion above provides the needed background and definitions for §§4.3-4.5, where

“representations of E-height ≤ h” are discussed. Background and definitions for the rest of
the chapter are given in §4.6.

4.3. Families of Étale ϕ-modules

In this section, let A denote an algebra of finite type over an Artinian local ring α with
finite residue field F of characteristic p. Let VA be a finite projective constant rank A-module
with an A-linear action of Γ∞ with open kernel, i.e. an object of the additive exact tensor
category

RepΓ̂∞
(A).

1In the notation above, these would be π(n).
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Write ModΓ̂∞
(A) for the category of finitely generated A-modules with an action of Γ∞ with

open kernel.
Let OE,A denote OE ⊗Zp A, with an A-linear extension ϕ of the Frobenius on OE . We

note that this is a Noetherian ring, as OE is Noetherian and A is finitely generated over Zp.
Write Φ′M(A) for the category of OE,A-modules M with an isomorphism ϕ∗(M)

∼→ M , and
write ΦM(A) for the full subcategory of projective constant rank modules. These are known
as étale ϕ-modules over A. This is also a additive exact rigid tensor category.

Much of p-adic Hodge theory has to do with equivalences between categories of Galois
representations and categories of linear algebraic data. We wish to prove an equivalence of
this sort between the categories above.

In the case that A = α = Zp, this is due to Fontaine [Fon90, A.1.2.6], who proved that
the following functors are quasi-inverse and therefore define an equivalence of categories:

M : ModΓ̂∞
(Zp) −→ Φ′M(Zp)

VZp 7→ (OEur ⊗Zp V
∗
Zp)

Γ̂∞

V : Φ′M(Zp) −→ Mod(Γ̂∞, A)

MZp 7→ (OEur ⊗OE MZp)
ϕ=1

By adding A-structure for A Artinian with residue field F (say A = α), it is immediate
that M,V extend to mutually quasi-inverse functors on the analogous abelian categories
with A-linear structure, ModΓ̂∞

(A) and Φ′M(A). It is shown in [Kis09c, Lemma 1.2.7(4)]
that this equivalence of categories restricts to an equivalence of the respective additive exact
subcategories of projective, finite, constant rank objects, RepΓ̂∞

∼= ΦM(A).
Our goal in this section is to extend this theorem to the case that A is finite type over α.

We make the following definitions in order to accomplish this, also reviewing the definitions
we made at the beginning of this section.

Definition 4.3.1. Let A be a finite type α-algebra, where α is a local Artinian ring with
residue field F.

(1) Let ModΓ̂∞
(A) be the category of finite A-modules with a A-linear action of Γ̂∞ with

open kernel. Let RepA
Γ̂∞

be the full subcategory whose objects are finite, projective,
and constant rank as A-modules.

(2) Let Φ′M(A) be the category of finite OE,A-modules M equipped with an A-linear

isomorphism ϕ∗(M)
∼→ M . Let ΦM(A) be the full subcategory whose objects are

finite, projective, and constant rank as OE,A-modules.
(3) Let M be the functor

M : ModΓ̂∞
(A) −→ Φ′M(A)

VA 7→ (OEur ⊗Zp V
∗
A)Γ̂∞ .

(4) Let Φ
′Gal
M (A) be the essential image of MA in Φ′M(A), and let ΦGal

M (A) be the essential
image of M in ΦM(A).

(5) Let V be the functor

V : Φ
′Gal
M (A) −→ ModΓ̂∞

(A)

MA 7→ (OEur ⊗OE MA)ϕ=1.
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Of course, it remains to be confirmed that the definition above is valid, e.g. that M(VA)
is finite as a OE,A-module when VA ∈ ob ModΓ̂∞

(A)
We note that V makes sense on all of Φ′M(A), but we only confirm after restricting it to

the full subcategory Φ
′Gal
M (A) of Φ′M(A) that it yields an object of ModΓ̂∞

(A). There, we
confirm that it defines a quasi-inverse to M , making M fully faithful and exact. Therefore
it will define equivalences of categories

ModΓ̂∞
(A)

∼−→ Φ
′Gal
M (A),

RepΓ̂∞
(A)

∼−→ ΦGal
M (A).

In summary, this is what we want to prove.

Proposition 4.3.2 (Generalizing [Kis09c, Lemma 1.2.7]).

(1) The functor M : ModΓ̂∞
(A)→ Φ′M(A) is exact and fully faithful, and is an equiva-

lence onto the full subcategory Φ
′Gal
M (A) with quasi-inverse V .

(2) If A′ is a finite A-algebra, then there is a functor ΦGal
M (A) → ΦGal

M (A′) induced by
−⊗A A′.

(3) For W a finite A-module and VA ∈ RepΓ̂∞
(A), there is a natural isomorphism

M(VA ⊗AW ) ∼= M(VA)⊗AW.
(4) M restricts to an equivalence of categories

M : RepΓ̂∞

∼−→ ΦGal
M (A).

In particular, this means that
(a) if VA is projective as an A-module of constant rank d, then MA is a projective

OE,A-module of constant rank d, equipped with an isomorphism ϕ∗MA
∼→MA.

(b) if VA is free as an A-module with rank d, then MA is a free rank d OE,A-module.

Remark 4.3.3. In the proof of this proposition, we will see that the obstruction to
proving that M and V are mutually quasi-inverse on all of Φ′M(A) is that there may not be a

filtration of MA ∈ Φ′M(A) into finite α-submodules Mi such that the structure ϕ∗(MA)
∼→MA

is the limit of such maps on Mi. The analogous filtration always exists in ModΓ̂∞
(A) because

we demand that the action of Γ̂∞ factors through a finite quotient.

First we assemble these facts on limits. We will append (−)∞ to various categories to
indicate that the A-module finiteness condition has been dropped; however, it is important
that we do not drop the condition that the action of Γ̂∞ has open kernel.

Fact 4.3.4. In a category of modules, tensor products commute with direct limits, since
tensor product operations are left-adjoint functors and therefore commute with colimits.

Lemma 4.3.5. If the maps of a filtered direct limit of finite modules in Mod∞
Γ̂∞

(α) (resp. in

Φ
′∞
M (α)) are all injective, then the functor (−)Γ̂∞ (resp. (−)ϕ=1) commutes with this direct

limit.

Lemma 4.3.6. With A as specified above, both A and OE,A are commutative Jacobson
Noetherian rings.

Proof. We know that A is a Noetherian ring because it is finitely generated over an
Artinian ring α with a finite residue field, and it is Jacobson because it is finitely generated
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as a Z-algebra. We observe that if pi = 0 in A, then

OE,A ∼= (W (k)/piW (k))[[u]][1/u]⊗Zp A.

Since the left factor of the tensor product is a Noetherian ring and the right factor is finitely
generated over Zp, OE,A is Noetherian.

A commutative Noetherian ring B is Jacobson if and only if there are no primes p such
that B/p is 1-dimensional and semi-local (see Sublemma 4.5.8). Let p be a 1-dimensional
prime of OE,A. The factor map to OE,A/p factors through the quotient ring k((u))⊗ZpA. This
induces a prime pc of A by contraction along the map A→ k((u))⊗Fp A/pA, and we observe
that since OE,A/p is 1-dimensional, so is A/pc. Since A/pc is not semi-local and injects into
OE,A/p, neither is OE,A/p semi-local. �

We also record this fact, which will be of use later.

Fact 4.3.7. Inverse limits in ModΓ̂∞
(α) (resp. Φ′M(α)) commute with the invariant func-

tor (−)Γ̂∞ (resp. (−)ϕ=1), since an invariant functor is a right-adjoint functor and therefore
commutes with limits.

In order to prove the proposition above, our basic strategy will be to forget the A-linear
structure and write the objects of the categories above as direct limits of finite α-submodules
with the respective additional structure of ϕ or a group action.

Proof (Proposition 4.3.2). Let VA ∈ ob ModΓ̂∞
(A). Because the action of Γ̂∞ has

a finite index kernel, we have a canonical isomorphism as α[Γ̂∞]-modules of VA with lim−→i
Vi,

where (Vi)i∈I ∈ ob ModΓ̂∞
(α) are the α-module-finite α[Γ̂∞]-submodules of VA. We note that

the functor M (resp. V ) commutes with injective direct limits in ModΓ̂∞
(α) (resp. Φ′M(α)),

using the fact and lemma above and the fact that the tensor product⊗ZpOEur (resp.⊗OEOEur)
preserve injective maps.

Therefore there are canonical isomorphisms of colimits of objects of Φ′M(α),

M(VA) = M(lim−→
i

Vi) = lim−→
i

M(Vi),

and the fact that M is an equivalence of categories out of ModΓ̂∞
(α) commuting with the

necessary colimits implies that there is a canonical isomorphism respecting all structures

(4.3.8) VA ⊗Zp OEur
∼

OEur ,α,Γ̂∞,ϕ

// M(VA)⊗OE OEur

The A-linear structure on the left hand side then provides a canonical A-linear structure on
the right hand side, commuting with the action of OEur , Γ̂∞, and ϕ.

Let H be the open kernel of the action of Γ̂∞ on VA. Since H acts trivially on VA, the
canonical isomorphism above induces a canonical isomorphism

(4.3.9) VA ⊗Zp (OEur)H
∼−→M(VA)⊗OE (OEur)H .

Since Γ̂∞/H is finite and (OEur)Γ̂∞ = OE , we know that (OEur)H is finite as a OE -module.
Therefore the left hand side is finite as a OE,A-module, so that the right hand side is as well.
As M(VA) is a OE,A-submodule of the right hand side and OE,A is a Noetherian ring, M(VA)
is finite as a OE,A-module. This confirms that the target of M can be taken to be Φ′M(A).
Since V commutes with the same limits as M does, we observe that V defines a quasi-inverse
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on the essential image Φ
′Gal
M (A) of M . This establishes (1). In particular, M is exact, since

lim−→ over a direct limit with injective maps is an exact functor on a category of modules.
Part (2) is clear from the fact that (2) holds when A is replaced by α (cf. [Kis09c, Lemma

1.2.7(2)]), along with the compatibility of tensor products with direct limits of modules.
For part (3), observe that this is clear for free A-modules W and then use the exactness

of M on a presentation for a general finite module W .
For part (4), first observe that the exactness of M implies that M(VA) is flat over OE,A

if and only if VA is flat over A. As these modules are finite over Noetherian rings, they
are projective. Therefore, it remains only to verify that the ranks are constant, as claimed.
Since both VA and M(VA) are flat, the rank function is locally constant. At a maximal ideal
m, we know that the ranks dimA/m VA ⊗A A/m and rkOE,A/m M(VA ⊗A A/m) are the same

since, by (2),
M(VA)⊗A A/m ∼= M(VA ⊗A A/m)

and since A/m is a finite field, [Fon90, A.1.2.4(i)] tells us that the OE,A/m-rank of M(VA/m)
is constant and is the same as the A/m-dimension of VA/m. Any maximal ideal I of OE,A
contains the kernel of the factor map OE,A → OE,A/m for some maximal ideal m of A.
Therefore the rank of M(VA) is constant and equal to the A-rank of VA at all maximal
ideals. Since OE,A is Jacobson and Noetherian by Lemma 4.3.6, this means that maximal
ideals are dense in SpecOE,A and M(VA) has constant rank. We conclude that M(VA) is a
finite, projective, constant rank OE,A-module with rank equal to rkA(VA).

We conclude by proving (4b): M(VA) is free when VA is free. The isomorphism (4.3.9)
shows that both VA ⊗Zp (OEur)H and M(VA) ⊗OE (OEur)H are free (OEur,A)H-modules. But
Spec(OEur,A)H → SpecOE,A is a finite surjective étale morphism. Because vector bundles
are locally isotrivial (i.e. Hilbert theorem 90, or GLd is special in the sense of Serre [Ser58,
Exposé 1]), M(VA) must be free. �

4.4. Functors of Lattices and Affine Grassmanians

We recall that A denotes a discrete commutative ring, finitely generated over an Artinian
commutative ring α with finite residue field F. Also, VA denotes a rank d projective A-module
with an A-linear action of Γ̂ with open kernel.

In the previous section, we established an equivalence between representations VA of
Γ̂∞ over A and certain OE,A-modules M(VA) with a Frobenius semi-linear endomorphism.
Since p is nilpotent in A (say pi = 0 in A), OE,A ∼= (Z/piZ)[[u]][1/u] ⊗Zp A. Therefore
SA[1/u] ∼= OE,A, and we may consider SA-lattices withinM(VA) with a Frobenius semi-linear
endomorphism inducing that on M(VA). The functor of such SB-sublattices of M(VA)⊗AB,
for B a commutative A-algebra, is represented by an affine Grassmannian, as we will see
below. An affine Grassmannian is an Ind-projective scheme, but a condition called “finite E-
height,” which we will describe below, cuts out a closed subscheme that turns out to be finite
type over A. It will turn out that the condition “E-height ≤ h” corresponds to the condition
“Hodge-Tate weights in [0, h]” for representations of Γ̂. These lattices are generalizations of
the functor of finite flat group scheme models for VA in the case that h = 1. This was the
case studied initially in [Kis09c].

Recall that when R is a complete local ring and B is an R-algebra, RB denotes the
mR-adic completion of the tensor product R ⊗Zp B (so this completion will be discrete in
this section). Note also that the assumptions on A imply that A is a finitely generated
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Zp-algebra. This implies that if R (for example R = S) is Noetherian and B is a finitely
generated A algebra, then RB is Noetherian as well. In particular, SA is Noetherian. We
write ŜB for the u-adic completion of SB, which is also Noetherian.

Definition 4.4.1. Where R ↪→ S is an injection of rings, we mean by a R-sublattice
of a projective rank d S-module M a R-submodule N of M that is projective rank d as an
R-module and spans M , i.e. the natural map N ⊗R S →M is surjective.

Affine Grassmannians for inner forms of GLd are functors of sublattices of projective
constant rank modules. The local affine Grassmanian parameterizes these vector bundles
over the formal one-dimensional disk D which are trivialized on the punctured disk. The
global affine Grassmanian parameterizes these vector bundles over the affine line A1 which
are trivialized on the punctured line.

Definition 4.4.2. Let M be a projective rank d A-module. Then the affine Grassmani-
ans are the following functors.

(1) The local affine Grassmanian GrlocGL(VA) for GL(VA) is the functor associating to a
A-algebra B the set of pairs (PD, η) where PD is a projective rank d B[[t]]-module
and η is an isomorphism

PD ⊗B[[t]] B((t))
∼−→M ⊗A B((t)).

(2) The global affine Grassmannian GrglobGL(VA) for GL(VA) is the functor assigning to an

A-algebra B the set of pairs (PA1 , η), where PA1 is a projective rank d B[t]-module
and η is an isomorphism

PA1 ⊗B[t] B[t][1/t]
∼−→M ⊗A B[t][1/t].

We observe that there is a natural functor

(4.4.3) GrglobGL(VA) −→ GrlocGL(VA)

given by restriction from a line to the disc. Remarkably,

Theorem 4.4.4 (Beauville-Laszlo [BL95]). The functor (4.4.3) is an isomorphism.

Therefore we can call the Ind-projective scheme which represents these functors “the”
affine Grassmanian. Let us overview this Ind-projective structure, and namely its canonical
ample line bundle, using the local affine Grassmanian for a free module.

Recalling the definition of the local affine Grassmannian, its B-points when VA is the free
module A⊕d amounts to the set of projective rank d B[[t]]-submodules L of B((t))⊕d which
are sublattices. For any such L, there exists some n ≥ 0 such that

(4.4.5) tn ·B[[t]]⊕d ⊆ L ⊆ t−n ·B[[t]]⊕d.

We call these lattices ti for short. Now let L̄ be the image of L in the finite free rank 2dn B-
module t−n/tn. Therefore L̄ defines a point in some (conventional) projective Grassmannian
parameterizing submodules of t−n/tn:

L̄ ∈
2dn∐
k=0

PGr(k, t−n/tn)(B),

where we write PGr(k, t−n/tn) for the Grassmannian PGr(k, 2dn) of rank k projective sub-
modules of a free rank 2dn B-module, identifying the lattice t−n/tn that the Grassmannian
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is constructed from. The sublattice L̄ is a t-stable submodule, i.e. it is closed under the
natural action of t. The t-stability condition is a Zariski closed condition in this disjoint
union of Grassmannians; we denote the resulting projective SpecA-scheme by

(4.4.6) PGr(t−n/tn)stable.

It turns out that any t-stable submodule L̄ of t−n/tn lifts to a well-defined sublattice L ⊂
B((t)), so that we can canonically identify PGr(t−n/tn)stable as a subfunctor of the local affine
Grassmannian for A⊕d. That is, we have for each n a canonical embedding

PGr(t−n/tn)stable ↪→ GrlocGL(A⊕d)
∼= GrlocGLd

.

There are also natural closed immersions

(4.4.7) PGr(t−n/tn)stable ↪→ PGr(t−n
′
/tn

′
)stable

for all n′ ≥ n. Since, as we noted above, any L ∈ GrlocGL(A⊕d) belongs to one of these

PGr(t−n/tn)stable, we have written the local affine Grassmannian as an Ind-projective A-
scheme.

There is a canonical line bundle on GrlocGL(A⊕d) which is very ample on every one of the pro-

jective subschemes PGr(t−n/tn)stable, and this is the determinant line bundle ∧dO(Grloc)
(L) =

detL of the universal lattice L. Strictly speaking, the canonical line bundle is the quotient
of the determinant by the determinant of the standard lattice which is, in the construc-
tion above, for any A-algebra B, the lattice B[[t]]⊕d ⊂ B((t))⊕d. One can check that this
line bundle is compatible with the maps (4.4.7), and that its restriction of detL to each
of the conventional Grassmannians PGr(k, t−n/tn)stable is canonically isomorphic to the the
restriction of the standard very ample line bundle on PGr(k, 2dn) to the t-stable locus.

As a result of the overview above, we can identify Ind-projective scheme GrGL(VA) and
the canonical very ample line bundle on GrGL(VA) even when VA is merely finite projective
and not free. Of course, this could be done directly, but we will accomplish this by gluing.
We may choose a Zariski cover of SpecA trivializing VA and then follow the construction of
the Ind-projective scheme representing the affine Grassmannian for GL(VA) on this cover,
along with its very ample line bundle. Since the very ample line bundle is canonical, it can
be glued together along with the Ind-scheme. Projectivity of a morphism is local on the base
when the base is locally Noetherian and the very ample line bundle is considered to be part
of the data of a projective morphism. This fact, and a discussion of notions of projectivity
of morphisms, are discussed in Appendix A.

We summarize our discussion in the following

Theorem 4.4.8. Let S be a locally Noetherian scheme, and let V be a projective, coherent,
constant rank OS-module. Then the affine Grassmannian GrGL(V ) is an Ind-projective S-
scheme with a canonical very ample invertible sheaf arising from the determinant of the
universal lattice.

Remark 4.4.9. For a discussion of the universal very ample determinant line bundle for
the affine Grassmannian for SLd, see [Fal03, p. 42]).

In preparation to apply the Beauville-Laszlo theorem and the affine Grassmannian to the
functor of SA-sublattices of M(VA), we give the following proposition, which says that the
functors of sublattices that arise in our study are sandwiched between the global and local
affine Grassmanians via (4.4.3), and therefore are all isomorphic to the affine Grassmanian.
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Some of these functors will not arise in the study below, but this proposition shows that
considering those functors would amount to the same thing.

Proposition 4.4.10. If VA is an object of RepΓ̂∞
(A), projective of rank d, and MA :=

M(VA) is the corresponding OE,A-module in ΦGal
M (A), then there exist equivalences between

the following functors on A-algebras.

(1) The global affine Grassmanian GrglobResW/Zp GL(VA) for ResW/Zp GL(VA)/A.

(2) The functor associating to a finitely generated A-algebra B the SB-sublattices of
MB := MA ⊗A B

(3) The functor associating to a finitely generated A-algebra B the ŜA⊗AB-sublattices

of (MA ⊗SA ŜA)⊗A B.

(4) The functor associating to a finitely generated A-algebra B the ŜB-sublattices of

M̂B := MB ⊗SB ŜB.
(5) The local affine Grassmanian ResW/Zp GrlocGL(VA) for ResW/Zp GL(VA)/A.

Remark 4.4.11. We will see in the proof that the equivalence between the affine Grass-
mannians and the functors (2), (3), (4) is not canonical. This is not a new phenomenon that
arises when A is no longer Artinian as it was in [Kis08]. There, both VA and MA were free
modules whenever they were projective of constant rank since their respective base rings
A and OE,A were semi-local, and the isomorphism between the functor of lattices of MA

and the affine Grassmannian for GLd rested on choosing non-canonical isomorphisms with a
standard free module, e.g. VA ∼= A⊕d.

Proof. First let us assume that VA is free of rank d, so that MA is as well, by Proposition
4.3.2(4). For simplicity we assume that W = Zp. Let B be a finitely generated A-algebra.
Since p is nilpotent in A (say pi = 0) we observe that OE,B ∼= Z/piZ[[u]][1/u]⊗Zp B and

B[u][1/u] ⊂ OE,B ⊆ OE,B ⊗SB (ŜA ⊗A B) ⊆ OE,B ⊗SB ŜB ⊆ B[[u]][1/u].

Likewise, we observe that

B[u] ⊂ SB ⊆ ŜA ⊗A B ⊆ ŜB ⊆ B[[u]],

and that each member of the row above is obtained by adjoining [ 1
u
] to the corresponding

member of the row below.
Let M̄A be a free A[u][1/u]-module and choose an isomorphism M̄A ⊗A[u][1/u] OE,A

∼→
MA. The functor associating to a finitely generated A-algebra B the set of B[u]-sublattices

of M̄A ⊗A B is naturally equivalent to the global affine Grassmannian GrglobGLd
. The local

affine Grassmannian is naturally equivalent to the functor (4). The natural transformations
between the functors (1) to (4) by tensoring factor the usual natural transformation from
the global affine Grassmannian to the local affine Grassmanian. Since this transformation
is known to be an equivalence by Theorem 4.4.4, all of the functors are equivalent. We note
that the choice of basis makes the equivalence between the affine Grassmannian and the
functors of lattices non-canonical.

In the case that VA is a projective, rank d OE,A-module trivialized by a Zariski cover

Spec Ã → SpecA, then Proposition 4.3.2(4) implies that the same cover trivializes MA.
Then one can apply descent (gluing) to the equivalences above to produce an Ind-projective
scheme parameterizing these lattices. Since finite étale morphisms induce equivalences of
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categories of locally free coherent sheaves (Hilbert Theorem 90), the isomorphism (4.3.9)
shows that this Ind-projective scheme is isomorphic to GrGL(VA). �

The functor of S-lattices of E-height at most h for VA is defined on the category of
A-algebras as follows. Recall that MA := M(VA).

Definition 4.4.12. For B an A-algebra, let MB = MA⊗AB; MB admits an extension of
ϕ by linearity. Choose a positive integer h. A SB-lattice of E-height ≤ h is a SB-submodule
MB ⊂MB such that

(1) MB is a finite projective SB-module of rank d which generates MB as a OE,B-
module, i.e. it is a sublattice.

(2) MB is stable by ϕ and the cokernel of ϕ∗(MB)→MB is killed by E(u)h.

We write L≤hVA (B) for the set of SB-lattices of E-height at most h in MA = M(VA).

Proposition 4.4.13 (Following [Kis09c, Proposition 2.1.7]). The functor L≤hVA sending a
commutative B algebra to the set of SB-lattices of MB of E-height at most h is represented
by a projective A-scheme L≤hVA . If A → A′ is a finite map and VA′ = VA ⊗A A′, then there

is a canonical isomorphism L≤hVA ⊗A A
′ ∼→ L≤hVA . Moreover L≤hVA is equipped with a canonical

(functorial in A) very ample line bundle.

The proof is just the same as [Kis09c, Proposition 2.1.7], except that we need Proposition
4.4.10 to see that the set of SB-sublattices of MB ⊂ MB is parameterized by the affine
Grassmannian for ResW/Zp GL(MA) over A.

Proof. To show that L≤hVA is represented by an Ind-projective SpecA-scheme, we note
that it is naturally, by Proposition 4.4.10, a subfunctor of GrResW/Zp GL(VA). The SB-sublattice

MB ⊂MB is an object listed under (2) in Proposition 4.4.10, and therefore these sublattices
define points of the affine Grassmannian. The affine Grassmannian is an Ind-projective
SpecA-scheme by Theorem 4.4.8. One can check that this subfunctor is Zariski closed, the
condition coming from the finite E-height, and therefore L≤hVA is a Ind-projective scheme. It
remains to show that this scheme is in fact finite type over A.

Choose a SA-sublattice NA ⊂ MA (with no ϕ-structure). In direct analogy with the
construction of the Ind-projective model for GrlocGLd

out of projective subschemes (4.4.6), the
condition

unNB ⊂MB ⊂ u−nNB

(which is analogous to (4.4.5)) is a projective subscheme of GrResW/Zp GL(VA). We will complete

the proof by showing that there exists an n such that all MB of E-height ≤ h satisfy this
condition.

In this we follow the proof of [Kis09c, Proposition 2.1.7] directly. The only modification
we need to make is to remark that we can reduce to the case that VA and MA are free by
replacing SpecA with a Zariski cover. This reduction is possible because the affine Grass-
mannian can be canonical glued together, cf. the discussion immediately before Theorem
4.4.8. Let B be a finitely generated commutative A-algebra and choose MB ∈ L≤hVA (B). Let
r be the least integer such that

urNB ⊂ (1⊗ ϕ)ϕ∗(NB) ⊂ u−r,

and let i be the least integer such that NB ⊂ u−iBMB. Consider a matrix which transforms
a SB-basis of NB into a SB-basis of MB. From this we see that, as ϕ(u) = up, the least
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integer j such that

(4.4.14) (1⊗ ϕ)ϕ∗(NB) ⊂ u−j(1⊗ ϕ)ϕ∗(MB)

is equal to ip. Therefore we have inclusions

(4.4.15) (1⊗ ϕ)ϕ∗(NB) ⊂ u−rNB ⊂ u−i−rMB = E(u)−hu−i−r(E(u)hMB).

Recall that e denotes the degree of E and let s be the least integer such that ps = 0 in A.
Now because E(u) = ue + pf(u) for some f(u) ∈ W [u] of degree e− 1,

E(u)−1 =
1

ue + pf(u)
=

u−e

1 + u−epf(u)
= u−e(1− pu−ef(u) + · · ·+ (−1)s−1u−e(s−1)f(u)s−1).

Therefore E(u)−h · N ⊂ u−ehsN for any S-lattice N . We also know that E(u)h ·MB ⊂
(1⊗ ϕ)ϕ∗(MB) because MB has E-height ≤ h, by definition. Therefore (4.4.15) extends to
an inclusion

(1⊗ ϕ)ϕ∗(NB)
(4.4.15)
⊂ E(u)−hu−i−r(E(u)hMB) ⊂ u−i−r−ehs(1⊗ ϕ)ϕ∗(MB).

Combining this inclusion with the fact that ip is the least integer satisfying (4.4.14) means
that

ip ≤ ehs+ i+ r, i.e. i ≤ ehs+ r

p− 1
.

On the other hand, if i is the least integer such that MB ⊂ u−i(1⊗ ϕ)ϕ∗(NB), then

(1⊗ ϕ)ϕ∗(MB) ⊂MB ⊂ u−iNB ⊂ u−i−r(1⊗ ϕ)ϕ∗(NB),

by definition of r. Then since ip is the least integer satisfying (4.4.14), we have

ip ≤ i+ r, i.e. i ≤ r

p− 1
.

To summarize, we first showed that if we set n = b ehs+r
p−1
c, then unNB ⊂ MB. Then

we showed that n is large enough so that MB ⊂ u−nNB, and in fact the lesser number
br/(p − 1)c would work in place of n. Therefore n has the desired property that for any

lattice MB of E-height ≤ h in MB, unNB ⊂ MB ⊂ u−iNB. This shows that L≤hVA is finite
type and projective, as desired.

To get the equivalence L≤hVA ⊗A A
′ ∼→ L≤hVA , firstly we recall Proposition 4.3.2(2-3), which

implies that M(V ⊗A A′) ∼= M(VA) ⊗A A′. Then the fact that the affine Grassmannian is

compatible with base change, i.e. GrGL(VA) ×SpecA SpecA′
∼→ GrGL(VA⊗AA′), completes the

proof.
Finally, the canonical very ample line bundle on L≤hVA arises by restriction from the canon-

ical very ample line bundle on the affine Grassmannian, cf. Theorem 4.4.8 and the discussion
preceding it. �

Write ΘA for the projective map ΘA : L≤hVA → SpecA. Write M for the universal sheaf of

Θ∗A(SA)-modules on L≤hVA and M̂ for its u-adic completion.
Now we prove a generalization of [Kis08, Lemma 1.4.1], showing that the global sections

of the universal SA-lattice in MA, with its Frobenius semi-linear structure, can recover VA in
a similar fashion to the correspondence between VA and MA = M(VA) in Proposition 4.3.2,
but without simply recovering MA from its S-sublattice and using Proposition 4.3.2.
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Lemma 4.4.16 (Following [Kis08, Lemma 1.4.1]). Set Ã := ΘA∗(OL≤hVA
). There is a

canonical Ã-linear Γ̂∞-equivariant isomorphism

(4.4.17) VÃ := VA ⊗A Ã
∼−→ HomSÃ,ϕ

(ΘA∗(M),Sur
Ã

).

In the case that A is Artinian, this was proved in [Kis08, Lemma 1.4.1]. An important
input to this argument is the result of Fontaine [Fon90, B.1.8.4], showing that if N is a finite
S-module with a Frobenius semi-linear isomorphism of bounded E-height, then the natural
Zp[Γ̂∞]-linear map

(4.4.18) HomS,ϕ(N,Sur) −→ HomS,ϕ(N,OEur).

induced by the inclusion Sur ↪→ OEur is an isomorphism. When N has A-linear structure
then taking A-linear maps induces a canonical A[Γ̂∞]-linear isomorphism

(4.4.19) HomSA,ϕ(N,Sur
A )

∼−→ HomSA,ϕ(N,OEur,A).

When A is Artinian with finite residue field and N is finite as a SA module, then N is finite
as a S-module. Our contribution is to generalize the argument of [Kis08, Lemma 1.4.1] when
this is not the case.

Proof. Let M∗
A denote the OE,A-dual of MA := M(VA), equipped with the induced

structure of an object of ΦGal
M (A). Using the canonical isomorphism

HomOE,Ã(M∗
Ã
,OEur,Ã) ∼= MÃ ⊗OE,Ã OEur,Ã

and applying (−)ϕ=1 to the canonical isomorphism (4.3.8), we have a canonical isomorphism.

(4.4.20) VÃ
∼−→ (M∗

Ã
⊗OE,Ã OEur,Ã)ϕ=1 ∼−→ HomOE,Ã,ϕ(MÃ,OEur,Ã)

We want to show that the rightmost factor of (4.4.20) and the rightmost factor of (4.4.17)

are canonically Γ̂∞-equivariantly isomorphic.
Note that ΘA∗(M) is a finite ΘA∗Θ

∗
A(SA) = S⊗A Ã-module, and the ϕ-semi-linear OL≤hVA

-

linear endomorphism of M descends to ΘA∗(M) with E-height ≤ h: for upon applying ΘA∗
to a linear endomorphism ϕ∗(M)→M we have a SA-linear map

ΘA∗(ϕ
∗(M) −→ ΘA∗(M).

By pre-composing this map with the natural map ϕ∗(ΘA∗(M)) → ΘA∗(ϕ
∗(M)) (which is

an isomorphism because ϕ is finite and flat as a morphism SpecS→ SpecS), we have the
required structure

ϕ∗(ΘA∗(M))
∼−→ ΘA∗(ϕ

∗(M)) −→ ΘA∗(M).

By the projection formula, we have

ΘA∗(M)⊗S OE
∼−→ ΘA∗(Θ

∗
A(MA))

∼−→MA ⊗A Ã = MÃ

The SA-linear map ΘA∗(M) → MA, x 7→ x ⊗ 1 is injective because it is the global sections
of the canonical injection M ↪→MA ⊗A OL≤hVA

.

Choose now some Vi ⊂ VÃ, an α[Γ̂∞]-submodule, finite as an α-module (i.e. an object of

ModΓ̂∞
(α)), such that the natural map Vi ⊗α Ã → VÃ is an surjection. Clearly such a Vi

exists, since VA is finitely generated as an A-module and the action of Γ̂∞ factors through
a finite quotient. Let Mi = M(Vi) ⊂ M(VÃ) = MÃ be the corresponding OE,α-submodule,
an object of Φ

′Gal
M (α); by Proposition 4.3.2, this is naturally a submodule and the canonical

148



Φ
′Gal
M (A)-morphism Mi ⊗α Ã→MÃ is surjective. Let N be the intersection

N := ΘA∗(M) ∩Mi ⊂MÃ,

which we observe is a Sα-submodule of MÃ. We have the natural surjection N ⊗α Ã �
ΘA∗(M).

Now the result of Fontaine (4.4.18) discussed above makes for the isomorphism (4.4.19),
which we repeat here:

HomSα,ϕ(N,Sur
α )

∼−→ HomSα,ϕ(N,OEur,α).

Thinking of Ã as an α-module for a moment, applying ⊗αÃ to this isomorphism induces an
isomorphism

HomSα,ϕ(N,Sur
Ã

)
∼−→ HomSα,ϕ(N,OEur,Ã).

Then tensor-Hom adjunction results in an isomorphism

HomSÃ,ϕ
(N⊗α Ã,Sur

Ã
)
∼−→ HomSÃ,ϕ

(N⊗α Ã,OEur,Ã).

Finally, because the map Sur
Ã
→ OE,Ã inducing this isomorphism may be checked to be

an injection, an element of the left hand side factors through the quotient ΘA∗(M) if and
only if its image on the right hand side factors through ΘA∗(M). As all of the maps in
this construction were canonical, this completes the construction of the desired canonical
Ã[Γ̂∞]-linear isomorphism

HomSÃ,ϕ
(ΘA∗(M),Sur

Ã
)
∼−→ HomOE,Ã,ϕ(MÃ,OEur,Ã). �

Now, extending the results of [Kis08, §1.5] where A is taken to be a complete local ring
with finite residue field, we extend the above situation to mR-adic limits. Let A be a finite
type (in the sense of formal schemes) R-algebra, compatibly with the representation VA and
its induced determinant. This means that A is complete and separated with respect to the
mRA-adic topology. As in [Kis08], for any Zp-algebra R we denote by RA for the mR-adic
completion of R⊗Zp A.

The functor M generalizes to this setting naturally from the above, since

(4.4.21) MA = (OEur⊗̂ZpV
∗
A)Γ̂∞ ∼→ lim←−(OEur ⊗Zp V

∗
A ⊗A A/(mRA)i)Γ̂∞

by Fact 4.3.7. This isomorphism follows from the fact that inverse limits commute with
invariant functors, and the ideal (p⊗A)+(OEur⊗mRA) (with which the left side is completed)
is equal to OEur⊗̂ZpmRA (with which the right side is completed). This means that MA is a
projective OE,A-module of rank d as expected.

For B an A-algebra such that mi
R ·B = 0 for some i ≥ 1, set L≤hVA (B) = L≤hVA/(mRA)i

(B).

Corollary 4.4.22. The functor L≤hVA on A-algebras B such that mi
R · B = 0 for some

i ≥ 1 is represented by a projective A-scheme L≤hVA .

Proof. By Proposition 4.4.13, this functor is represented by a projective formal scheme
with a very ample line bundle compatible with its limit structure. By applying formal GAGA
(perhaps locally and gluing) we conclude that L≤hVA is the mR-adic completion of a projective
A-scheme. �

It will be useful later to know that SA is Noetherian. This is the main technical use of
the condition that A is finite type (in the sense of formal schemes) over R.
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Lemma 4.4.23. The formal scheme Spf(SA) is Noetherian.

Proof. Firstly, we claim that SR is Noetherian. This is the case because of two facts:
the standard complete tensor product −⊗̂Zp− is the tensor product in the category of com-

plete Noetherian local rings with finite residue fields. Therefore S⊗̂ZpR is Noetherian (see
e.g. [Gro64, 0IV, Lemme 19.7.1.2]). It is also isomorphic as a ring (though not necessarily as
a topological ring) to SR, the mR-adic completion of S⊗Zp R, because the residue fields of
both S and R are finite, and therefore SR is Noetherian.

Now note that SA, defined to be the mR-adic completion of S ⊗Zp A, is isomorphic to

SR⊗̂RA, where this completed tensor product is taken in the category of adic R-algebras,
i.e. this is the categorical dual of the fiber product of formal Spf(R) schemes. Because
Spf(A)/ Spf(R) is finite type and Spf(SR) is Noetherian, [Gro60, Proposition 10.13.5(ii)]
implies that Spf(SA) is Noetherian. �

4.5. Universality of M in Characteristic 0

We now study the image of the map ΘA : L≤hA → SpecA in characteristic 0, i.e. after
inverting p, following [Kis08, §1.6]. We will study these properties through their points in
finite local W (F)[1/p]-algebras B, and therefore will need to study S-modules or OE -modules
with coefficients in such rings B. Therefore very little new is needed in addition to [Kis08]
to accomplish this. The main new content is Lemma 4.5.6, which is needed in order to draw
conclusions about ΘA[1/p] by its behavior on finite W (F)[1/p]-algebras alone.

Remark 4.5.1. We are venturing outside the realm of linearly topologized rings in con-
sidering W (F)[1/p]-algebras. For example, there is no filtered set of ideals giving a basis of
the p-adic topology on Qp around 0 since all ideals are trivial!

However, even big rings like A[1/p] are still Noetherian. For A is the quotient of
Zp[[t1, . . . , ta]]〈z1, . . . , zb〉 for some a, b ≥ 0 by the Cohen structure theorem (see e.g. [MR10,
Theorem 3.2.4]), and this ring is Noetherian since is is the (p, t1, . . . , ta)-adic completion of
Z[t1, . . . , ta, z1, . . . , zb]. Then A[1/p] is Noetherian by the Hilbert basis theorem.

The preparatory Lemmas 4.5.2, 4.5.3, and 4.5.4 require no modification from [Kis08].

Lemma 4.5.2 ([Kis08, Lemma 1.6.1]). Let B be a finite Qp-algebra, and MB a finite
SB
∼= S⊗Zp B-module, which is flat over S[1/p] and equipped with a map ϕ∗(MB)→MB

whose cokernel is killed by E(u)h. Suppose that E ⊗S[1/p] MB is finite free over E ⊗Qp B.
Then MB is a finite projective SB-module.

The statement proof is identical to that of [Kis08], so we have omitted the proof. The
same is true of the next two results.

Lemma 4.5.3 ([Kis08, Lemma 1.6.2]). Let B be a finite Qp-algebra, and J ⊂ K0[[u]]B =
K0[[u]] ⊗Qp B be an ideal such that ϕ(J)K0[[u]]B = J , where ϕ acts B-linearly. Then J is
induced by an ideal of B.

Corollary 4.5.4 ([Kis08, Corollary 1.6.3]). Let A be a finite flat Zp-algebra, and VA a

finite free A-module equipped with a continuous action of Γ̂∞. Set MA := (OEur⊗̂ZpV
∗
A)Γ̂∞.

Suppose that VA, considered as a Zp[Γ̂∞]-module, is of E-height ≤ h, and let MA ⊂ MA be
the unique S-lattice of E-height ≤ h.

Then MA is a SA-submodule of MA, and MA ⊗Zp Qp is finite projective over SA[1/p].
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In the following proposition, we we work in characteristic zero, translating the uniqueness
of S-lattices of E-height ≤ h into a statement about ΘA (part (1)) and showing that the
scheme theoretic image of ΘA has the property we expect (part (2)).

Proposition 4.5.5 (Following [Kis08, Proposition 1.6.4]). Let A and VA be as specified
above. Then

(1) The map ΘA : L≤hVA → SpecA is a closed immersion after inverting p.

(2) If A≤h is the quotient of A corresponding to the scheme-theoretic image of ΘA, then
for any finite W (F)[1/p]-algebra B, a continuous A→ B factors through A≤h if and
only if VB = VA ⊗A B is of E-height ≤ h.

Proof. Omitted. All of the elements of the proof of Proposition 4.5.5 are entirely local,
but depend on the fact that A[1/p] is Jacobson with residue fields of closed points finite over
Qp, and that the image of A lies in the ring of integers of the residue fields. This property
of S[1/p] when S is a complete Noetherian local Zp-algebra, and this is what is used in
[Kis08]. Lemma 4.5.6 will show that A[1/p] has this property even though A is no longer
local. Otherwise the proof requires no modification from that of [Kis08], so we omit it. �

The following lemma is the main new content needed to generalize [Kis08, Proposition
1.6.4] to Proposition 4.5.5. It is well-known, and quoted and deduced from [Gro66, §§10.4-
10.5] in what follows.

Lemma 4.5.6. Let A be a finite type (in the sense of formal schemes) R-algebra, where
R is a complete Noetherian local Zp-algebra. Then

(1) A[1/p] is Jacobson and Noetherian,
(2) all residue fields of maximal ideals are finite extension of Qp, and
(3) the image of A in any such residue field is contained in its ring of integers.

We develop some notation that will be used in the proof of Lemma 4.5.6 and record a
few basic facts about these notions in Sublemma 4.5.8.

Definition 4.5.7. Let R be a commutative ring.

(1) If R is a domain, we call it a Goldman domain if its fraction field is finitely generated
over itself.

(2) A prime ideal p ⊂ R is called a Goldman prime ideal provided that R/p is a Goldman
domain, i.e. provided that the residue field κ(p) of p is finitely generated over R/p.

(3) We call R a Hilbert ring provided that every Goldman prime ideal is maximal.

The following facts will be useful in proving Lemma 4.5.6.

Sublemma 4.5.8. Let R be a commutative ring.

(1) R is Jacobson if and only if R is Hilbert.
(2) A Noetherian Goldman domain that is not a field must be of height 1 and have

finitely many prime ideals.
(3) The fraction field of a Goldman domain R can be generated by one element over R.

Proof. Parts (1), (2), and (3) are proved in [Gro66, Proposition 10.4.5], [Gro66, Propo-
sition 10.5.1], and [Gro66, Proposition 10.4.4] respectively. �

Proof. (Lemma 4.5.6) Invoking the Cohen structure theorem, we can write R as a
continuous quotient of Zp[[t1, . . . , ta]]. Then, as A is finite type over R, we can find a surjection
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from Zp[[t1, . . . , ta]]〈z1, . . . , zb〉 to A. We will replace A with Zp[[t1, . . . , ta]]〈z1, . . . , zb〉 and show
that it has the desired property.

First we show that all residue fields of all maximal ideals are finite extensions of Qp. Let
B = [[t1, . . . , ta]] ⊂ A. First we address the case that A = Zp[[t1, . . . , ta]]. Choose a maximal
ideal m ⊂ A[1/p], and let F = A[1/p]/m be the residue field with ω representing the quotient
map. Since A is complete with respect to the I-adic topology where I = (p, t1, . . . , ta), the
maximal ideals of A are contractions of the maximal ideals of A/I ∼= Fp[z1, . . . , zb]. In
particular, these maximal ideals have finite, characteristic p residue fields. But since F
has characteristic zero, the image of ω(A) ⊂ F must not be a field and the canonical map
Zp → ω(A) is injective. This means that F is generated by 1/p over ω(A), so that ω(A) is a
Goldman domain by definition. Therefore, by Sublemma 4.5.8(2), ω(A) is a Krull dimension
one Noetherian domain containing Zp and having finitely many primes. This domain is also
complete with respect to ω(I). As ω(I) is not (0) and ω(A) has dimension 1, its radical
r(ω(I)) must be maximal. Therefore ω(A) is a r(ω(I))-adically complete local Noetherian
domain of dimension 1. By Noether’s normalization lemma for complete Noetherian mixed-
characteristic local rings [MR10, Theorem 3.2.4], ω(A) is finite as a module over a subring
isomorphic to Zp[[s1, . . . , sd − 1]] where d = dimω(A). Therefore ω(A) is finite over Zp and
is the ring of integers of F , a finite extension of Qp. This proves parts (2) and (3) of the
lemma.

Now we show that A[1/p] is Jacobson and Noetherian. Indeed, A[1/p] is Noetherian
(cf. Remark 4.5.1. Now, because p is in the Jacobson radical of A and A is Noetherian, we
may directly apply [Gro66, Corollaire 10.5.8] to say that A[1/p] is Jacobson. �

Now we replicate [Kis08, Corollary 1.7]. Much of the work in [Kis08] goes through in the
same way, except the construction of MA≤h .

Proposition 4.5.9 (Following [Kis08, Corollary 1.7]). There exists a finite SA≤h-module
MA≤h such that

(1) MA≤h is equipped with a map ϕ∗(MA≤h)→MA≤h whose cokernel is killed by E(u)h.
(2) MA≤h ⊗Zp Qp is a projective SA≤h [1/p]-module.
(3) For any finite W (F)[1/p]-algebra B, any map h : A≤h → B and any C ∈ IntB

through which h factors, there is a canonical, ϕ-compatible isomorphism of S⊗ZpB-
modules

MA≤h ⊗A≤h B
∼→MC ⊗C B.

(4) There is a canonical isomorphism

VA≤h ⊗Zp Qp
∼→ HomS

A≤h [1/p],ϕ(MA≤h ⊗Zp Qp,S
ur
A≤h [1/p]).

Proof. Recall that SA is the mR-adic completion of S ⊗Zp A and is Noetherian by

Lemma 4.4.23. Let L̂≤hVA be the mR-adic completion of L≤hVA . Then

Θ̂SA : L̂≤hVA ×Spf A Spf SA → Spf SA

is a projective morphism of Spf(A)-formal schemes over a Noetherian formal scheme. The

mR-adic completion M̂ of M may be regarded as a formal coherent (further, locally free)

sheaf on L̂≤hVA×Spf ASpf SA. Applying formal GAGA to ΘSA (which requires that SA be Noe-

therian), M̂ is the completion of a coherent (further, locally free) sheaf M on the projective
SA-scheme

ΘSA : SpecL≤hVA ×SpecA SpecSA → SpecSA.
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The scheme theoretic image of ΘSA is SA≤h . We set

MA≤h := ΘSA∗(M).

With this work done, the proofs of part (1), (2), (3) and (4) may be repeated from [Kis08,
Corollary 1.7].

Part (1) results from the fact that M has the desired map ϕ∗(MA≤h)→MA≤h , and that,
as ϕ is a flat map on S, ϕ∗ commutes with direct images. Part (2) follows from the fact
that ΘA is the identity operator after p is inverted, and M is a locally free coherent sheaf on
L≤hA ×SpecA SpecSA. Part (3) builds on Proposition 4.5.5(2) and its proof. The statement
of Proposition 4.5.5(2) tells us that VC = VA ⊗A C is of E-height ≤ h, which means that
MC = M(VC) contains a unique S-lattice of E-height ≤ h, MC . Now consider the image
of MA≤h ⊗A≤h C in MC : this is a torsion free, ϕ-stable SC-submodule of MC such that the
cokernel of ϕ∗(M′

C) → M′
C is killed by E(u)h. Following the proof of Proposition 4.5.5(2),

this implies that OE ⊗S M′
C ∩M′

C [1/p] is a S-lattice of E-height ≤ h in MC , and therefore
is equal to MC . This shows that M′

C ⊗C C[1/p] ∼= MC ⊗C C[1/p], from which the statement
of part (3) follows.

For part (4), we use Lemma 4.4.16: Let Ã := Θ̂SA∗(OL̂≤hVA
). We observe that there is a

canonical isomorphism
VÃ

∼→ HomSÃ,ϕ
(Θ̂SA∗(M̂),Sur

Ã
)

by combining Lemma 4.4.16, which implies this statement for Ã replaced by Ã/mi
R, and

the theorem on formal functions. Applying formal GAGA, inverting p, and noting that
Proposition 4.5.5 implies that A≤h[1/p]

∼→ Ã[1/p], we get a canonical isomorphism

VA≤h ⊗Zp Qp = VÃ ⊗Zp Qp
∼→ HomSÃ,ϕ

(MA≤h ⊗Zp Qp,S
ur
Ã

[1/p]).

Since the map A≤h → Ã has p-torsion kernel and cokernel, the same is true of Sur
A≤h → Sur

Ã
and SA≤h → SÃ, completing the proof. �

4.6. Background for Families of Filtered (ϕ,N)-modules (§§4.7-4.12)

Following [Kis08, §2], we change notation, now denoting with A◦ the adic R-algebra A
from above. We now assume that A◦ is p-torsion free, i.e. flat over Zp, and write A for
A◦[1/p], which (Lemma 4.5.6) is Jacobson with residue fields of maximal ideals finite over
Qp.

For R a Zp-algebra we write RA := RA◦ [1/p], where we recall that RA◦ is the mRA-adic
completion of R⊗Zp A

◦. We extend ϕ to an A-linear endomorphism of SA. We will use the

canonical isomorphism SA/uSA
∼→ WA

∼= W [1/p]⊗Qp A.
Let O := lim←−n(W [[u, un/p]][1/p]), which we may think of as the ring of rigid analytic

functions on the open disk of radius 1, including S[1/p] the dense subring of bounded
functions. The Frobenius endomorphism ϕ has a unique continuous extension from S[1/p]
to each ring W [[u, un/p]][1/p], and therefore to O as well.

Let c0 = E(0) be the constant coefficient of the Eisenstein polynomial for π, and set

λ :=
∞∏
n=0

ϕn(E(u)/c0) ∈ O

Denote by Ŝ0 the completion of K0[u] at the ideal (E(u)).
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In order to study families over A of ϕ-modules over O, we need to define the correct
notion of the ring of coefficients. In fact, two candidate definitions end up being the same:

OA := lim←−
n

(W [[u, un/p]]A) ∼= lim←−
n

(WA◦ [[u, u
n/p]][1/p].

While it is clear that these rings are isomorphic when A◦ is local, we prove the isomorphism
here in the general case.

Lemma 4.6.1. The natural inclusions

W [[u, un/p]]A ↪→ WA◦ [[u, u
n/p]][1/p]

induce an isomorphism

OA := lim←−
n

(W [[u, un/p]]A)
∼−→ lim←−

n

(WA◦ [[u, u
n/p]][1/p]).

Proof. Write Bn := W [[u, un/p]]A and Cn := WA◦ [[u, u
n/p]][1/p], with the canonical map

Bn ↪→ Cn that we get from considering an element of Bn as a power series in u. Since the
maps making up these limits are injective, it will suffice to show for f ∈ C2n that its image
in Cn under the inclusions making up the limit lies in the image of Bn in Cn. With f ∈ C2n

chosen, write it as

f =
∑
m≥0

fm
um

pbm/2nc

where fm ∈ p−NA◦ ⊆ A for some fixed N ≥ 0. This expression also denotes the natural
image of f in Cn under inclusion. We rewrite it as

f =
∑
m≥0

fmp
bm/nc−bm/2nc um

pbm/nc
.

We want to show that f lies in the image of Bn in Cn. This is the case because the coefficient

fmp
bm/nc−bm/2nc of un/pbm/nc lies in m

i(n)
A◦ where limn→+∞ i(n) = +∞; this is the case because

p ∈ mA◦ . �

We observe that SA ↪→ OA, and we extend ϕ to an A-linear endomorphism of OA as it

was for O above. Write Ŝ0,A for the completion of K0[u]⊗Qp A at the ideal (E(u)).
Now, following [Kis08, §2.3], we consider period rings over the base A. Firstly, we recall

the period rings themselves (the basic case A◦ = Zp). Let Acris be the p-adic completion of the
divided power envelope of W (R) (see §4.2) with respect to ker(θ), and let B+

cris := Acris[1/p].
The action of ϕ on W (R) extends to an action on Acris [FO, §6.1.2]. The map S[1/p] ↪→ B+

cris

extends uniquely to an continuous inclusion O ↪→ B+
cris, because S[1/p] is dense in O, and

the eth power of the image [π] of u in W (R) is in the divided power ideal (ker θ, p) for Acris

[FO, Proposition 6.5] (for more detail on the radius of rigid analytic functions appearing in
B+

cris, see Lemma 4.6.6).
Define B+

dR to be the ker(θ)-adic completion of W (R)[1/p], where θ is extended to a map
θ : W (R)[1/p] � Cp, and let BdR be its fraction field. This is a discrete valuation ring
with residue field Cp and maximal ideal ker θ and BdR is its valuation field, but the topology
of B+

dR as a (complete) discrete valuation ring does not agree with its topology induced by
the constructions we have made so far, and we use the latter topology. General theory of
characteristic zero complete local rings implies that θ has a section, but there is no choice of
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section that is Γ̂-equivariant, nor is there a section which is continuous. The rings Acris, B
+
cris

are canonically subrings of B+
dR.

Recall from §4.2 the definition of [π], the image of u in W (R), and [ε] of (4.2.1). The
“logarithms” of these elements are important elements of B+

dR, which we now define.
Write `u ∈ B+

dR for

`u = log [π] :=
∞∑
i=1

(−1)i−1

i

(
[π]− π
π

)i
.

This series converges in B+
dR because θ([π] − π) = π − π = 0, and B+

dR is by definition
the ker θ-adic completion of W (R)[1/p]. Because θ([ε] − 1) = 0 and B+

dR is the ker(θ)-adic
completion of W (R)[1/p], the series

t = log[ε] :=
∞∑
i=1

(−1)i+1 ([ε]− 1)i

i

converges to an element in B+
dR, which we call t. In fact, because the denominators in this

series are sufficiently bounded in terms of the powers of ([ε]− 1), one can show that t ∈ Acris

and tp−1 ∈ pAcris [FO, Proposition 6.6].
Using `u and t, we can define several more period rings: Bcris := B+

cris[1/t] ⊂ BdR,
B+

st := B+
cris[`u] ⊂ B+

dR, and Bst := Bcris[`u], which we can think of as a polynomial ring
because `u is transcendental over the fraction field of Bcris [FO, Proposition 6.11]. As both
`u and t are “logarithms,” it is not hard to see that ϕ(`u) = p`u and ϕ(t) = pt, so we extend
ϕ to these rings according to those rules.

Equip B+
st with an endomorphism N , by formal differentiation of the variable `u with

coefficients in B+
cris, i.e. so that N(B+

cris) = 0. Extend ϕ to B+
st as well, with ϕ(`u) = p`u.

We note that ϕ and N define endomorphisms of the polynomial subring K0[`u] ⊂ B+
st , with

N again acting by formal differentiation with respect to the variable `u. We observe that
pϕN = Nϕ on Bst. Neither ϕ nor N extend continuously to an action of B+

dR (cf. [FO,
Remark 5.18(3)]); only the filtrations that we will now describe come from B+

dR.
There is an exhaustive, decreasing filtration on each of Acris, B

+
cris, written

FiliAcris,FiliB+
cris

where Fil0Acris = Acris (resp. Fil0B+
cris = B+

cris) induced by their inclusion in the filtered ring
B+

dR. The filtration on B+
dR is given by

FiliB+
dR := (ker θ)i, i ≥ 0.

In fact, t ∈ Fil1B+
dR and t 6∈ Fil2B+

dR [FO, Proposition 5.19], so also t ∈ Fil1Acris, and t is
a generator for the maximal ideal of B+

dR. We note that the associated graded ring of B+
dR

may be represented as Cp[t], and, when we naturally extend the filtration to BdR
∼= B+

dR[1/t],
grBdR

∼= Cp[t, 1/t]. We also note that

(4.6.2) FiliAcris · Filj Acris ⊆ Fili+j Acris,

and similarly for B+
cris.

Now we discuss the action of Γ̂ on these period rings. The action arises from the action
of Γ̂ on OK̄/p, and extends from there to continuous actions on R, W (R), and all of the

subrings of BdR defined above. That B+
st is stable under Γ̂ follows from Lemma 4.6.4 below,

where we calculate the action of Γ̂ on `u, finding that for σ ∈ Γ̂ that σ(`u) differs from `u by
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a product of an element of Zp and t. It will also be useful to know the action of Γ̂ on t: we
see that

σ(εn) = εχn(σ)
n ,

where χn : Γ̂ → Z/pnZ is the reduction modulo pn of the p-adic cyclotomic character

Zp(1) = χ : Γ̂ → Zp. We find that σ(ε) = εχ(σ), and a calculation with the “logarithm”
defining t = log [ε] tells us that

(4.6.3) σ(t) = χ(σ) · t.
Now we calculate the Galois action on `u. For σ ∈ Γ̂, define β(σ) ∈ B+

cris as

β(σ) := σ(`u)− `u.

Lemma 4.6.4. The map β is a 1-cocycle with respect to the cyclotomic character, belong-
ing to the cohomology class associated to π by Kummer theory. When β(σ) 6= 0, it generates
the maximal ideal of B+

dR.

Proof. For σ ∈ Γ̂ and n ≥ 1, define ηn(σ) ∈ Z/pnZ by the relation

σ(πn) = εηn(σ)
n · πn.

As πpn+1 = πn and εpn+1 = εn, we see that ηn+1(σ) ≡ ηn(σ) (mod pn) and we have a well

defined map η : Γ̂ → Zp. We observe that η is a cocycle for the cyclotomic character

χ : Γ̂→ Z×p , because

εηn(τσ)
n =

τσ(πn)

πn
=
τ(ε

ηn(σ)
n · πn)

πn
=
ε
χn(τ)ηn(σ)
n · εηn(τ)

n

πn
= εχn(τ)ηn(σ)+ηn(τ)

n .

A change in the choice of roots of unity (εn) amounts to a change in η by a coboundary for
χ; the same is true for a new choice of pnth roots (πn) of π. This η is the definition of the

“Kummer cocycle” in H1(Γ̂,Zp(1)) induced by π under the map

K×/(K×)p
n ∼−→ H1(Γ̂,Zp/pnZp(1)), n ≥ 1

coming from the long exact sequence in Galois cohomology, which is an isomorphism by
Hilbert’s Theorem 90.

We now see that σ(π) = π ·εη(σ). Therefore σ([π]) = [π]·[ε]η(σ), and one can quickly verify
that even though `u = log [π], t = log [ε] are not standard logs, we still have the expected
identity

σ(log [π]) = log [π] + η(σ) · log [π].

Now β is given in terms of η:

β(σ) = σ(`u)− `u = log [π] + η(σ) · log [π]− log [π] = η(σ) · t.
It is also clear that β(σ) = 0 if and only if σ ∈ Γ̂∞. Therefore we see that because t ∈ Acris, we

have for any σ ∈ Γ̂ that β(σ) ∈ Acris, and when β(σ) 6= 0, then β(σ) generates the maximal
ideal ker θ of B+

dR because t is a generator and ker θ/(ker θ)2 ∼= Cp as a Zp-module. �

As this maximal ideal generates the filtration on B+
dR, if β(σ) 6= 0 then

(4.6.5) β(σ) ∈ Fil1B+
cris, β(σ) 6∈ Fil2B+

cris.

Having completed our summary of the period rings we will need, we now explain the
construction of period rings with coefficients in A.
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Define B+
cris,A := Acris,A◦ [1/p], where Acris,A◦ is, as usual, the mRA

◦-adic completion of

Acris ⊗Zp A
◦. For any A-algebra B, we write B+

cris,B for B+
cris,A ⊗A B. Set B+

st,A := B+
cris,A[`u]

and B+
st,B := B+

st,A ⊗A B. The map ϕ extends to each of these rings B-linearly, with N

again acting as formal differentiation with respect to `u here. In particular, N(B+
cris,B) =

0. Analogous notation is used for the elements of the filtration on these rings: denote
by FiliAcris,A◦ the mRA

◦-adic completion of FiliAcris ⊗Zp A
◦, and for any A-algebra B let

FiliB+
cris,B := FiliAcris,A◦ ⊗A◦ B. Basic properties over Zp, mainly (faithful) flatness of both

period rings and graded pieces of their filtrations, are extended to these period rings and
filtrations with coefficients in Lemmas 4.8.1 and 4.8.2.

It will be important to know in the construction of (4.9.4) that there is a canonical
inclusion OA ↪→ B+

cris,A extending the map O ↪→ B+
cris discussed above, and also a map

Sur
A ↪→ B+

cris,A. By Lemma 4.6.1, it will suffice to show that for large enough n,

W [[u, un/p]]A◦ ↪→ Acris,A◦ .

In order to construct the map, it will suffice to draw, for sufficiently large n, maps

W [[u, un/p]]⊗Zp A
◦/(mRA

◦)j ↪→ Acris ⊗Zp A
◦/(mRA

◦)j

for each j ≥ 1. We will get such maps if we show, for large enough n, the existence of maps

W [[u, un/p]] ↪→ Acris.

Then Lemma 4.8.1 implies that this map will remain injective after tensoring with A◦ and
completing with respect to the mRA

◦-adic topology. This same construction gives us a
canonical map Sur

A ↪→ B+
cris,A.

In fact we will show much more than this, which will be useful later (e.g. the proof of
Lemma 4.9.9).

Lemma 4.6.6. For r ∈ (0, 1) let Or denote the coordinate ring of the open rigid analytic
disk over K0 with radius r. Then for any r > (e(p − 1))−1, O ↪→ B+

cris factors through Or.
In particular, W [[u, un/p]] ↪→ Acris for n > e(p− 1).

Proof. Recall that u is sent to [π] in Acris, and Acris is the p-adic completion of the
divided power envelope of W (R) with respect to ker θ. In fact, the kernel of θ̄, which is
defined as the composition

Acris
θ−→ OCp � OCp/p,

is also a divided power ideal of Acris [FO, Proposition 6.5]. Recall that θ([π]) = π and that
π is the uniformizer of an extension K of Qp with ramification degree e, so that [π]e is in
the divided power ideal. Since denominators m! may accompany the image of powers of u
as small as uem, and the p-adic valuation of m! satisfies vp(m!) ∼ m/(p − 1) as m → +∞,
we see that Acris is a W [[u, ua/pb]]-algebra whenever a/b > e(p− 1). �

4.7. Families of (ϕ,N)-modules over the Open Unit Disk

Following the conclusion of §4.5, we assume that we are given a finite projective SA-
module MA of constant rank d with a ϕ-semilinear, A-linear endomorphism ϕ : MA →MA

such that the induced SA-linear ϕ∗(MA)→MA has cokernel killed by E(u)h. We write

MA := MA ⊗SA OA, DA :=MA/uMA,

each of which have a natural induced action of ϕ.
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Lemma 4.7.1 ([Kis08], Lemma 2.2). There is a unique, ϕ-compatible, WA-linear map
ξ : DA →MA, whose reduction modulo u is the identity on DA.

The induced map DA ⊗WA
OA → MA has cokernel killed by λh, and the image of the

map DA ⊗WA
Ŝ0,A →MA ⊗OA Ŝ0,A is equal to that of

ϕ∗(MA)⊗OA Ŝ0,A →MA ⊗OA Ŝ0,A.

The proofs of [Kis08, Lemma 2.2 and Lemma 2.2.1] go through verbatim. None of
it depends on A◦ being local. They are a generalization of [Kis06, Lemma 1.2.6], where
A◦ = Zp.

Proof. Let s0 : DA →MA be any WA-linear section of the projectionMA → DA. Our
candidate for the map ξ is the sum

s = s0 +
∞∑
i=0

(ϕi+1 ◦ s0 ◦ ϕ−i−1 − ϕi ◦ s0 ◦ ϕ−i).

We claim that s converges to a well-defined WA-linear map from DA toMA. Accepting this,
we see immediately that s is equivalent to the identity modulo u and that ϕ ◦ s = s ◦ ϕ, as
desired.

Let D◦A ⊂ DA be a finitely generated WA◦-submodule which spans DA. Similarly, we
choose a finitely generated SA◦-submodule M◦

A ⊂ MA which spans MA. We may choose
M◦

A so that
ϕ ◦ s0 ◦ ϕ−1 − s0 : DA −→ uMA

takes D◦A into uM◦
A. Acting on this map by ϕ, we find that

ϕi+1 ◦ s0 ◦ ϕ−i−1 − ϕi ◦ s0 ◦ ϕ−i : DA → up
i

MA

as well. Choose j ≥ 0 with the property that ϕ induces a map M◦
A → p−jM◦

A and ϕ−1

induces a map D◦A → p−jDA. Then for each i ≥ 0, we have

ϕi+1 ◦ s0 ◦ ϕ−i−1 − ϕi ◦ s0 ◦ ϕ−i : D◦A → p−2ijup
i

M◦
A.

Because the exponential outraces the polynomial, for arbitrarily large n ≥ 0 this series
converges to a well defined map

D◦A −→M◦
A ⊗SA◦ WA◦W [[u, up

n

/p]]A,

and therefore to a map ξ : DA →MA.
To see the uniqueness of ξ, we argue following [Kis06, Lemma 1.2.6]. Given another

map ξ′ satisfying the stipulations of the statement of the lemma, we consider the image
X = (ξ − ξ′)(DA) of (ξ − ξ′). The image lies in uMA because both maps are sections of the

projection onto DA. Then because ϕ is an automorphism of DA, X ⊂ ϕj(uMA) ⊆ up
jM

for all j ≥ 0. Therefore X ∼= 0 as desired.
Note that ξ reduces to the identity modulo u and that its determinant, being an element

of OA, may be safely said to belong to W [[u/p]]A. As a result, Lemma 4.7.4 tells us that for
sufficiently large n ≥ 0, ξ induces an isomorphism

(4.7.2) DA ⊗WA
W [[u/pn]]A

∼−→MA ⊗OA W [[u/pn]]A.

Denote by ξs the map

DA ⊗WA
W [[up

s

/pn]]A −→MA ⊗OA W [[up
s

/pn]]A.

induced by ξ.
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Consider the commutative diagram

ϕ∗(DA ⊗WA
OA)

ϕ∗ξ //

∼
��

ϕ∗MA

1⊗ϕ
��

DA ⊗WA
OA

ξ //MA

Let r be the least integer such that e < pr/n. Applying ⊗OAW [[u, up
s
/pn]]A to the diagram

above for s = 0, . . . , r− 1 yields a diagram where the right vertical arrow is an isomorphism,
because π ∈ K× lies outside the radius of convergence of some of the elements of W [[u, up

s
/pn]]

when e ≥ ps/n, and the cokernel of this map is supported at π. Using the fact that the
vertical arrows send u to up and ξ is ϕ-equivariant, we see that if we tensor the top row by
W [[up

s
/pn]]A to get ξs, we may tensor the lower row by W [[up

s+1
/pn]]A to get ξs+1:

(4.7.3) DA ⊗WA
W [[up

s
/pn]]A

∼
��

ξs //MA ⊗OA W [[up
s
/pn]]A

1⊗ϕ
��

DA ⊗WA
W [[up

s+1
/pn]]A

ξs+1 //MA ⊗OA W [[up
s+1
/pn]]A

We now have a visible argument by induction with base case (4.7.2) that ξs is an isomor-
phism for s = 0, 1, . . . , r − 1.

Now consider the case for s = r − 1, where the radius of convergence will contain π but
not π1/p. Now the top row of (4.7.3) will be an isomorphism, but the right side vertical
arrow will may have non-trivial cokernel killed by E(u)h. We also see the final claim of the
lemma, which is that the image of the right vertical arrow coincides with the image of the
lower horizontal arrow formally locally around π.

Repeating the argument as above shows, for any s ≥ 0, that the cokernel of ξs is killed
by
∏s

i=r ϕ
s−r((E(u)/c0)h). Therefore, recalling the definition of OA, we see that λh kills the

cokernel of ξ ⊗WA
OA. �

Lemma 4.7.4 ([Kis08, Lemma 2.2.1]). Let I ⊂ W [[u]] be a finitely generated ideal such
that IW [[u/p]]A/uW [[u/p]]A is the unit ideal. Then for n sufficiently large, IW [[u/pn]]A is the
unit ideal.

Proof. Suppose first that I is principal, equal to (f) for f ∈ W [[u/p]]A. The assumptions
imply that the image of f in W [[u/p]]A/uW [[u/p]]A

∼= WA is a unit. Because there is a natural
injection WA ↪→ W [[u/p]]A, f may be multiplied by a unit in W [[u/p]]A so that its image in
W [[u/p]]/uW [[u/p]]A = WA is 1. In particular, f ∈ 1 + uW [[u/p]]A. There exists some j ≥ 0
such that f ∈ 1 +p−jW [[u/p]]◦A since W [[u/p]]A = W [[u]]A◦ [1/p] by definition. Therefore f has
an inverse in W [[u/pj+1]]A◦ . This is the desired n of the statement of the lemma.

In general, write I = (f1, . . . , fr) for f1, . . . , fr ∈ W [[u/p]]A. Write f̄i for the image of
fi in W [[u/p]]A/uW [[u/p]]A. Then 1 =

∑r
i+1 ḡif̄i for some ḡi ∈ W [[u/p]]A/u. Choose lifts

gi ∈ W [[u/p]]A of the ḡi. Then by the first part,
∑r

i=1 gifi is a unit in W [[u/pn]] for some
sufficiently large n. �
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4.8. Period Rings in Families

We will now record some lemmata to ensure that the large rings B+
cris, Acris, and so forth

behave well in families. This will allow us to show later that, for example, (ϕ,N)-modules
in families behave as one would expect (cf. Theorem 4.10.9).

Lemma 4.8.1 ([Kis08], Lemma 2.3.1). For any A◦-module M , denote by M̂ its mR-adic
completion. If M is a flat A◦-module, then

(1) For any finite A◦-module N , the natural map

N ⊗A◦ M̂ → ̂N ⊗A◦ M
is an isomorphism.

(2) M̂ is flat over A◦. If M is faithfully flat over A◦, then so is M̂ .

(3) The functor M 7→ M̂ preserves short exact sequences of flat A◦-modules.

For completeness, we elaborate on the proof in [Kis08].

Proof. First we claim that the functor on finite A◦-modules N 7→ ̂N ⊗A◦ M is exact.
Say that we have an exact sequence of finite A◦-modules

0→ N1 → N2 → N3 → 0.

The Artin-Rees Lemma implies that the filtrations (mRA
◦)n · Ni have bounded difference,

i.e. there exists k such that for all n ≥ k,

(mRA
◦)n ·N1 ⊆ ((mRA

◦)n ·N2) ∩N1 ⊆ (mRA
◦)n−kN1,

and the filtrations on N2 and N3 are easily seen to be equal. This implies that the na-
tive mRA

◦-adic topologies on N1 and N3 are equivalent to the topologies induced by the
mRA

◦-adic topology on N2. Therefore completion with respect to these topologies maintains
exactness (AM Cor. 10.3). We claim that since M is flat, tensoring this exact sequence
and these adic filtrations by M preserves the bounded difference of the filtrations. Indeed,
because M is flat, for any ideal I of A◦ and A◦-module N , (I ·N)⊗A◦ M ∼= I · (N ⊗A◦ M).
Therefore the composition of the −⊗A◦M -functor with the (mRA

◦)-adic completion functor
is exact as desired.

To see (1), let N be a finite A◦ module and observe that (1) is obvious when N is free.
For N a general finite A◦-module, we take a presentation by free modules Fα ↪→ Fβ and find

Fα ⊗A◦ M̂ //

o
��

Fβ ⊗A◦ M̂ //

o
��

N ⊗A◦ M̂

����

// 0

o
��

0 // ̂Fα ⊗A◦ M // ̂Fβ ⊗A◦ M // ̂N ⊗A◦ M // 0

The five-lemma shows that N ⊗A◦ M̂
∼→ ̂N ⊗A◦ M as desired.

The first part of (2) follows from the fact that the injectivity of the map I ⊗A◦ M →M
is preserved under mRA

◦-adic completion. For the second part, if M is faithfully flat over
A◦ if and only if Mm 6= 0 for all maximal ideals of the (formal scheme corresponding to) A◦.
This property is clearly preserved under completion.

(3) follows from the same considerations on filtrations discussed above. If N1 ⊆ N2 are
flat A◦-modules, then the native mRA

◦-adic filtration on N1 and the filtration induced from
the native filtration on N2 are equal. �
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Lemma 4.8.2 (Following [Kis08, Lemma 2.3.2]).

(1) For i ≥ 0, the ideal FiliAcris,A◦ of Acris,A◦ is a faithfully flat A◦-module.
(2) For i ≥ 0, FiliAcris,A◦ is a faithfully flat A◦-module, which is isomorphic to the

mR-adic completion of (FiliAcris/Fili+1 Acris)⊗Zp A
◦.

(3) For any A-algebra B, i ≥ 1, and σ ∈ Γ̂, B+
cris,B/(β(σ)B + FiliB+

cris,B) is a flat

B-module. If β(σ) 6∈ FiliB+
cris, then β(σ) 6∈ FiliB+

cris,B.
(4) Let B◦ be a finite continuous A◦-algebra with ideal of definition I. Then the I-adic

completion of Acris ⊗Zp B
◦ is canonically isomorphic to Acris,A◦ ⊗A◦ B◦.

(5) The map

Acris,A◦ →
∏

Acris,A◦/q

is injective, where q runs over ideals of A◦ such that A◦/q is a finite flat Zp-algebra.
(6) If 0 6= f ∈ Acris, then f is not a zero divisor in Acris,A◦.

Proof. For part (1), since FiliAcris is a faithfully flat Zp-module, FiliAcris ⊗Zp A
◦ is a

faithfully flat A◦-module. Then Lemma 4.8.1(2) implies that FiliAcris,A◦ is a faithfully flat
A◦-module.

To demonstrate part (2), take the exact sequence of faithfully flat Zp-modules

0→ Fili+1Acris → FiliAcris → FiliAcris/Fili+1Acris → 0,

apply the exact functor ⊗ZpAcris, and the mRA
◦-adic completion functor. The latter functor

is exact by Lemma 4.8.1(3) and preserves the condition “fully faithful” by 4.8.1(3). The
desired result is then visible in the resulting exact sequence of faithfully flat A◦-modules.

To prove part (3), first consider the case β(σ) = 0. Using the logic of part (2) and applying
it by induction on i to Acris/FiliAcris, thinking of it as an extension of Acris/Fili−1Acris by
Fili−1Acris/FiliAcris, we find that Acris,A◦/FiliAcris,A◦ is a flat A◦-module. We may then
apply ⊗A◦B for any A-algebra B to the exact sequence

0→ FiliAcris,A◦ → Acris,A◦ → Acris,A◦/FiliAcris,A◦ → 0

to get the result.
Now allow β(σ) 6= 0. Let j be the largest integer such that β(σ)/pj ∈ Acris/FiliAcris ⊂

(Acris/FiliAcris)[1/p] ∼= B+
cris/FiliB+

cris. Then Acris/(β(σ)/pj · Zp + FiliAcris) will be Zp-flat
(cf. the argument after (4.12.4)). We then apply the reasoning of the proof of part (2) and
the first case of (3) found above to the exact sequence of flat Zp-modules

0→ Zp
·β(σ)/pj−→ Acris/FiliAcris → Acris/(β(σ)/pj · Zp + FiliAcris)→ 0

in order to conclude that B+
cris,B/(β(σ) ·B + FiliB+

cris,B) is a flat B-module.
It remains to prove the final statement in part (3). Because tensor products and direct

limits commute, we may assume that B is a finitely generated A-algebra. Then there exists
a map B → B′, where B′ is a finite W (F)[1/p]-algebra. We show the contrapositive: If
β(σ) ∈ FiliB+

cris,B, then β(σ) ∈ FiliB+
cris,B′ as well, which implies that β(σ) ∈ FiliB+

cris

(because B′ is trivially a flat Qp-algebra).
For part (4), the fact that f : A◦ → B◦ is finite and continuous implies that f is adic,

i.e. that f(mRA
◦) · B◦, like the ideal I of B◦,, is an ideal of definition for B◦. So we simply

take I to be f(mRA) · B◦. Then because B◦ is a finite A◦-algebra, the mRA
◦-adic topology

on Acris,A◦ ⊗A◦ B◦ is equivalent to its I-adic topology by the Artin-Rees lemma. Now we
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apply Lemma 4.8.1(1) to conclude that the natural map

Acris,A◦ ⊗A◦ B◦ → lim←−
n

(Acris ⊗A◦ B◦)⊗B◦ B◦/In

is an isomorphism as desired.
Now we prove (5). Let M be the set of maximal ideals of Spf(A◦) as a Spf(Zp)-formal

scheme, corresponding to maximal ideals of A◦/mRA
◦. For m ∈ M , let Acris,A◦m denote the

completion of Acris ⊗Zp A
◦ at 1⊗m. First, we will reduce to the case that A◦ is a complete

local Noetherian ring by showing that the natural map

(4.8.3) Acris,A◦ −→
∏
m∈M

Acris,A◦m

is injective. Therefore we may assume that the connected components of SpecA◦/mRA
◦ are

positive-dimensional.
The map

(4.8.4) A◦ →
∏
m∈M

A◦m

is injective and flat, since A◦ is Noetherian and A◦/mRA
◦ is Jacobson since it is finitely

generated over Z. Since Acris is a flat Zp-module, Lemma 4.8.1(2) implies that that the map

Acris,A◦ −→ Acris,A◦ ⊗A◦
∏
m∈M

A◦m

is injective. To complete the proof that the map (4.8.3) is injective, we will show that for
any 0 6= f ∈ Acris,A◦ , there exists a finite subset Mf ⊂ M such that the image of f in∏

m∈Mf
Acris,A◦m is not 0.

Having chosen a nonzero f ∈ Acris,A◦ , there exists some n ≥ 1 such that the image of f ,
call it f̄ , in Acris ⊗Zp A

◦ is not 0. Write out f̄ in tensor form as

f̄ =
∑
j

ḡj ⊗ h̄j

where ḡj ∈ Acris/p
nAcris (resp. h̄j ∈ A◦/(mRA

◦)n) are Zp-linearly independent in Acris/p
nAcris

(resp. h̄j ∈ A◦/(mRA
◦)n), i.e. such that this tensor product cannot be reduced. Let H ⊂

A◦/(mRA
◦)n be the Zp-linear span of {h̄j}. Because (4.8.4) is injective and we are assuming

that the connected components of SpecA◦/mRA
◦ are positive dimensional, for each nonzero

h̄ ∈ H, there exist infinitely many m ∈ M such that there exists a power k = k(m, h̄) of

m such that the image of h̄ in Acris ⊗Zp A
◦/((mRA)n + mk(m,h̄)) is not zero. Since there are

only finitely many h̄j, this means that there are finitely many powers of maximal ideals
mkm such that the images of {h̄j} in Acris ⊗Zp A

◦/((mRA
◦)n + ∩mkm) remain Zp-linearly

independent. We set Mf to be this finite set of maximal ideals. Since Acris is p-adically
complete, the corresponding statement for the ḡj is trivial: we need only make sure that
pn−1 remains nonzero, which we can do by increasing each km to at least n. Now we have
shown that the reduced tensor form of f̄ in Acris⊗Zp A

◦/((mRA)n +∩mkm) remains reduced,
so that it cannot vanish. Therefore the image of f in

∏
Mf

Acris,A◦m has nonzero image in∏
Mf

Acris,A◦m/(mAcris,A◦m)km , and is nonzero as desired.

Now we prove (5) in the case that A◦ is a complete local Noetherian Zp-algebra with
maximal ideal m and finite residue field, simply adding more detail to the proof in [Kis08],
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Lemma 2.3.2. First we deduce that for any n ≥ 1, there exists q ⊂ A◦ such that A◦/q is
a finite flat Zp-algebra and q ⊆ mn. For since A◦[1/p] is Jacobson with maximal ideals a
and residue fields Ka being finite extensions of Qp with rings of integers Oa, there exists an
injective map

A◦ −→
∏
a

Oa

such that the kernel consists of nilpotents (recall the standing assumption that A◦ is a flat
as a Zp-algebra). Let N be the nilradical of A◦. Choose a finite set S of maximal ideals of
A◦[1/p] such that the induced map

(A◦/N) −→
∏
a∈S

Oa

is injective after tensoring with (A◦/N)/((mn+N)/N). Such an S exists because of the finite
length of (A◦/N)/((mn + N)/N). Now choose representatives in A◦ of the finite cardinality
set N/(N ∩mn). Then there exists a finite set of powers aka of maximal ideals a of A◦[1/p]
such that the image of these representatives in

∏
aA
◦[1/p]/aka does not vanish. Now we

observe that
A◦ −→

∏
a∈S

A◦/(A◦ ∩ aka)

is injective after tensoring with A◦/mn, showing that the ideal

q := A◦ ∩
⋂
a∈S

aka

of A◦ satisfies the desired condition: the quotient A◦/q is a finite flat Zp-algebra, and q ⊆ mn.
Now choose 0 6= f ∈ Acris,A◦ . Then there exists n ≥ 1 such that the image of f in

Acris ⊗Zp A
◦/mn is not zero. Using the ideal q constructed above, we see that the image of

f in Acris ⊗Zp A
◦/mn is nonzero as desired.

To show (6), we use (5) to reduce to the case that A◦ is a finite flat Zp-algebra. Then
Acris,A◦

∼= Acris⊗ZpA
◦ because both rings have the p-adic topology. Now (6) follows from the

flatness of A◦ over Zp, considering that the injective map from Acris to itself by multiplication
by 0 6= f ∈ Acris remains injective after tensoring with A◦. �

Lemma 4.8.5 (Generalization of [Kis08, Lemma 2.3.3]). Let M be an A◦-module and
x ∈ Acris,A◦ ⊗A◦ M . The set of A◦-submodules N ⊂ M such that x ∈ Acris,A◦ ⊗A◦ N has a
smallest element N(x).

Here we cannot repeat the proof of [Kis08], for that proof only covers the case that A◦

is local.

Proof. Assume that mn
R ·M = 0 for some n ≥ 1. Therefore there is a natural isomor-

phism of A◦-modules
Acris,R ⊗RM

∼→ Acris,A◦ ⊗A◦ M.

Applying [Kis08, Lemma 2.3.3] to the right hand side, there exists a smallest R-submodule
P of M such that x ∈ Acris,R ⊗R P . We claim that the image N of the natural map

P ⊗R A◦ →M

is the smallest A◦-submodule of M with the required property. Clearly it contains x. If there
were a A◦ submodule N ′ with the property, then N ′ ⊃ P since N ′ is also a R-module with
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the property. But then N ′ must contain N , which is the A◦-span of P . This shows that N
is the smallest A◦-submodule of M with the property.

Now we allow M to be any finite A◦-module. Now the proof may be completed according
to [Kis08, Lemma 2.3.3]. The same is true for the generalization to an arbitrary A◦ module
M . �

4.9. Period Maps

Following [Kis08, §2.4], recall our situation: A◦ is an adic and finite type R-algebra,

where the structure map is compatible with the action of Γ̂ on a projective, rank d A◦-
module VA◦ . Suppose that (A◦)≤h = A◦. Write MA◦ for the finite projective SA◦-module
of given by Proposition 4.5.9, with a map ϕ∗(MA◦) → MA◦ with cokernel killed by E(u)h.
Also set MA := MA◦ ⊗Zp Qp. Write VA := VA◦ ⊗A◦ A, so that Proposition 4.5.9(4) provides

a canonical, Γ̂∞-equivariant isomorphism

(4.9.1) ι : VA
∼→ HomSA,ϕ(MA,S

ur
A ).

We will follow [Kis08, §2.4] in deducing a period map from the data above. This gives us

a Γ̂∞-equivariant comparison with coefficient ring A between the Galois representation VA
and the periods of MA. We will then discuss additional data needed in order to extend this
to a Γ̂-equivariant map, although this additional data ends up simply being a restriction
(Proposition 4.9.11). In what follows, B is an arbitrary A-algebra.

We deduce from the map ι a SA-linear, ϕ-equivariant map

(4.9.2) MA → HomA(VA,S
ur
A ); m 7→ (v 7→ 〈m, ι(v)〉).

Tensoring this map by ⊗SAOA and using the map ξ : DA → MA from Lemma 4.7.1, we
have a ϕ-equivariant map

(4.9.3) DA
ξ→MA → HomA(VA,S

ur
A )⊗SA OA → HomA(VA, B

+
cris,A).

Tensoring the composition of these maps by ⊗AB for B our chosen A-algebra, there is a
B+

cris,B-linear map

(4.9.4) DB ⊗WB
B+

cris,B → HomA(VA, B
+
cris,A)⊗A B ∼= HomB(VB, B

+
cris,B).

We see that the right hand side has an action of Γ̂, and the left hand side has an action of
Γ̂∞ through the action on B+

cris,B. This map is Γ̂∞-equivariant because Γ̂∞ acts equivariantly

on the inclusions S ↪→ O ↪→ B+
cris and that ι above is Γ̂∞-equivariant. In order to extend

the action of Γ̂∞ on the left hand side of (4.9.4) to an action of Γ̂, we suppose that there is
a WB-linear map

N : DB → DB

which satisfies the identity pϕN = Nϕ. Then the action of Γ̂ on DB ⊗WB
B+

cris,B is

(4.9.5) σ(d⊗ b) =

(
∞∑
i=0

N i(d)⊗ β(σ)i

i!

)
σ(b) = exp(N ⊗ β(σ)) · d⊗ σ(b)
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for σ ∈ Γ̂. Then we observe that such an action of Γ̂ commutes with ϕ, using the fact that
ϕ(β(σ)) = pβ(σ). Here is the calculation:

σϕ(d⊗ b) = exp(N ⊗ β(σ))ϕ(d)⊗ σ(ϕ(b))

=

(
∞∑
i=0

N i(ϕ(d))⊗ β(σ)i

i!

)
ϕ(σ(b))

=

(
∞∑
i=0

piϕ(N i(d))⊗ β(σ)i

i!

)
ϕ(σ(b))

=

(
∞∑
i=0

ϕ(N i(d))⊗ ϕ(β(σ)i)

i!

)
ϕ(σ(b))

= ϕσ(d⊗ b).
Now we set up a theory for semistable representations, recalling that we adjoin `u to

B+
cris,B to get B+

st,B = B+
cris,B ⊗K0 K0[`u], naturally extending the actions of ϕ and N to the

tensor product, with N acting as d
d`u

on K0[`u]. Consider the composite of the isomorphisms

(4.9.6) DB ⊗K0 K0[`u]
∼→ (DB ⊗K0 K0[`u])

N=0 ⊗K0 K0[`u]
(`u 7→0)⊗1−→ DB ⊗K0 K0[`u]

where the first map is the inverse to the natural isomorphism

(DB ⊗K0 K0[`u])
N=0 ⊗K0 K0[`u]

∼→ DB ⊗K0 K0[`u]

induced by polynomial multiplication in K0[`u]. Tensoring (4.9.6) by B+
cris,B over WB and

tensoring (4.9.4) by K0[`u] over K0, we obtain the composite map

(4.9.7) DB ⊗WB
B+

st,B

(4.9.6)−→ DB ⊗WB
B+

st,B

(4.9.4)−→ HomB(VB, B)⊗B B+
st,B.

We claim that (4.9.4) is Γ̂-equivariant if and only if (4.9.7) is equivariant when Γ̂ is
regarded as acting trivially on DB. A key observation is that the an inverse to the bijection

(D⊗K0 K[`u])
N=0 `u 7→0−→ D is given by d 7→ exp(−N ⊗ `u) · d. We give the calculations in the

form of this lemma.

Lemma 4.9.8. The map

DB ⊗WB
B+

st,B −→ DB ⊗WB
B+

st,B

given by tensoring (4.9.6) by ⊗WB
B+

cris,B is Γ̂-equivariant, when Γ̂ is given the trivial action
on DB on the left side and the action of (4.9.5) on the right.

Proof. We write f, g for the isomorphisms

g : D −→ (D ⊗K0 K0[`u])
N=0

d 7→ exp(−N ⊗ `u) · d.
f : (D ⊗K0 K[`u])

N=0 −→ D

`u 7→ 0

To see that g is an inverse to f note that any element of (D ⊗K0 K[`u])
N=0 has the form∑

i≥0

di`
i
u, where idi +N(di−1) = 0 ∀ i ≥ 1,
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so that it is determined by the coefficient d0, i.e. f is an injection. Now observe that

g(d0) =
∑
j≥0

(−1)jN i(d0)`ju
j!

,

which certainly has the correct form with constant coefficient, so that f and g are inverse.
Now we wish to show that g ⊗K0 B

+
st,B is Γ̂-equivariant with Γ̂-actions defined in the

statement of the lemma. Since this map is clearly equivariant on elements of B+
st,B, it will

suffice to show for d0 ∈ D (letting B = Qp for simplicity) that

g ◦ σ(d0) = σ ◦ g(d0),

where σ acts according to (4.9.5)on the left side and with the trivial action on the right side.
First we calculate the left hand side. We will use the fact that that N(β(σ)) = 0 for all

σ ∈ Γ̂, since β(σ) ∈ B+
cris. Or one can use the chain rule: since N commutes with the action

of Γ̂,
N((σ(`u)− `u)i) = i(σ(`u)− `u)i−1(σ(N(`u))−N(`u)) = 0

since N(`u) = 1. Now here is the calculation:

g ◦ σ(d0) := g

(∑
i≥0

N i(d0)⊗ β(σ)i

i!

)

=
∑
i,j≥0

(−1)jN j(N i(d0))⊗ β(σ)i`ju
i!j!

,

which is sent by f to d0, since f kills `u and β(σ) = σ(`u)− `u. We observe that this result,
namely f ◦ g ◦ σ(d0) = d0, is exactly the same as f ◦ σ ◦ g(d0), where σ is given the trivial
action in this second expression. Since f and g are mutually inverse, we have completed the
proof. �

Lemma 4.9.9 (Following [Kis08, Lemma 2.4.6]). For each A-algebra B, the maps (4.9.4)
and (4.9.7) are injective, and their cokernels are flat B-modules.

As usual our proof follows the proof in [Kis08], adding some additional exposition and
making the points of generalization clear.

Proof. First we note that it suffices to prove the assertions only for (4.9.4), and for
B = A. For if there is an exact sequence of A-modules 0→ N ′ → N → N ′′ → 0 and N ′′ is
flat, then this sequence remains exact after applying − ⊗A B for any A-algebra B. It also
suffices to prove the statement for (4.9.4) alone, since (4.9.6) is an isomorphism.

Recall Lemma 4.8.2(5), which states that

Acris,A◦ →
∏
q

Acris,A◦/q

is injective, where q varies over ideals ofA◦ such that A◦/q is a finite flat Zp-algebra. Applying
this lemma, we may confine ourselves to the case that A◦ is a finite flat Zp-algebra.

We are remanded to the case that A◦ is local, so we can repeat the proof of injectivity
from [Kis08, Lemma 2.4.6]. Recall that (4.9.4) as defined in (4.9.3): it is the composition of
the map ξ constructed in Lemma 4.7.1 with the map (4.9.2), tensored up through the maps
SA ↪→ OA and OA ↪→ B+

cris,A.
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Consider the commutative diagram

Sur
A ⊗SA MA

��

// HomA(VA,S
ur
A )

��
OEur,A◦ [1/p]⊗SA MA

// HomA(VA,Our
E,A◦ [1/p])

where the top map is obtained from (4.9.2). From (4.4.21), we know that the bottom row
is an isomorphism. The left arrow is injective, because the finiteness of A◦ over Zp gives us
that this arrow is obtained by applying −⊗SMA to the canonical inclusion Sur ↪→ OEur , and
MA is flat as a S-module. This means that the top map must be injective. Furthermore,
it is an injective map of finite free Sur

A -modules of equal rank and remains injective after
tensoring by −⊗Sur B+

cris. Therefore the map

MA ⊗OA B+
cris,A

∼→MA ⊗SA B
+
cris,A → HomA(VA, B

+
cris,A)

obtained from (4.9.2) by tensoring up to B+
cris is injective.

It remains to address the map ξ : DA → MA, which induces the first factor in (4.9.4).
From the first part of Lemma 4.7.1, we know that the determinant of

(4.9.10) DA ⊗WA
B+

cris,A

ξ⊗1−→MA ⊗OA B+
cris,A

is a divisor of λs for some positive integer s. However, the image in B+
cris of each of the factors

ϕn(E(u)/c0, n ≥ 1 of λ are units in B+
cris because the p-adic radius of convergence of these

functions with respect to u is (e(p − 1))−1 (Lemma 4.6.6). Since the zeros of ϕn(E(u)/c0)
have p-adic valuation (epn)−1, they lie outside this radius of convergence for n ≥ 1. Therefore
the determinant of (4.9.10) is supported at the ideal (E([π])) is a divisor of E([π])s. Now as
E([π]) is not a zero divisor in Acris, neither is it a zero divisor in B+

cris,A. This completes our
proof of the injectivity statement.

It remains to show that the cokernel of (4.9.4), appearing in the exact sequence

0→ DA ⊗WA
B+

cris,A

(4.9.4)−→ HomA(VA, B
+
cris,A) −→ coker→ 0,

is flat as an A-module. Because an A-module M is flat if and only if TorA1 (A/I,M) = 0
for all ideals I of A and TorR1 (A/I,HomA(VA, B

+
cris,A)) = 0 for all finitely generated ideals

I ⊂ A because HomA(VA, B
+
cris,A) is flat, the cokernel will be flat if and only if (4.9.4) remains

injective after tensoring with A/I for any finitely generated ideal I of A. This is what we
will now prove.

If we had started our proof with A/I in the place of A, we would still have the injectivity
statement for A/I, just as we proved it for A above. This almost completes our proof, for
we want to show that

DA ⊗WA
B+

cris,A ⊗A A/I
(4.9.4)⊗AA/I−→ HomA(VA, B

+
cris,A)⊗A A/I

is injective, and we know that

DA/I ⊗WA/I
B+

cris,A/I

(4.9.4)−→ HomA/I(VA/I , B
+
cris,A/I)

is injective.
One can check that there is a natural isomorphism DA⊗AA/I

∼→ DA/I , with an implicit
choice of I◦ ⊂ A◦ such that A◦/I◦[1/p] ∼= A/I needed to draw the map. It remains to show
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that that natural map B+
cris,A ⊗A A/I → B+

cris,A/I is an isomorphism. This is precisely what

Lemma 4.8.2(4) tells us, completing the proof. �

Proposition 4.9.11 (Following [Kis08, Proposition 2.4.7]). The functor which to an A-
algebra B assigns the collection of WB-linear maps N : DB → DB which satisfy pϕN = Nϕ
and such that (4.9.4) is compatible with the action of Γ̂ is representable by a quotient Ast of
A.

This proof requires very little modification from that of [Kis08].

Proof. Since we will require a basis for VA, we replace A with the coordinate ring of a
trivialization of VA if necessary, and note that the constructions to produce Ast can be glued
together.

We consider the functor sending an A-algebra B to the set of WB-linear maps

N : DB → DB

satisfying pϕN = Nϕ. This is a closed condition on the representable functor B →
EndB(DA ⊗A B). Write AN for the representing A-algebra, which is of finite presentation
over A.

Write ψB for the map of (4.9.4). Let B = AN with the universal map N : DAN → DAN ,

and let Γ̂ act on DAN ⊗WAN
B+

cris,AN
according to (4.9.5). For any d ∈ DAN and σ ∈ Γ̂, let

δσ(d) measure the failure of ψAN to commute with the action of Γ̂ as follows:

δσ(d) := ψAN (σ(d))− σ(ψAN (d)).

Then δσ(d) ∈ Q := HomAN (VAN , B
+
cris,AN

). Fix a B+
cris,AN

-basis for Q, and let x1, . . . , xr
denote the coordinates of δσ(d) with respect to this basis. Applying Lemma 4.8.5 with
M = AN and x = xi for i = 1, . . . , r, we obtain A◦ submodules N(xi) ⊂ AN . Let Iσ,d ⊂ AN

be the ideal generated by the N(xi), so that Iσ,d is the smallest ideal I ⊂ AN such that
δσ(d) ∈ IQ. We take

Ast := AN/
∑
σ,d

Iσ,d,

where d runs over all elements of DAN and σ over Γ̂. Clearly if B = Ast with the induced N
from AN , then ψAst is Galois -equivariant. We must show that this property holds functorially
on A-algebras.

If B is an A-algebra, then a map AN → B factors through Ast if and only if the kernel K
contains Iσ,d for each σ ∈ Γ̂, d ∈ DAN . Since Q is faithfully flat over AN by Lemma 4.8.1(2),
it is the same to ask that for all σ, d that Iσ,dQ ⊂ KQ, or equivalently that δσ(d) ∈ KQ for
all σ, d. As noted above, this last condition amounts to saying that ψB is compatible with the
action of Γ̂. Hence Ast represents the functor as claimed in the statement of the proposition.
Now we must show that SpecAst is a closed subscheme of SpecA, which we will accomplish
by showing that it is a proper monomorphism. This remaining work is no different than
what was done in [Kis08, Proposition 2.4.7], so we include it only for convenience.

To show that SpecAst → SpecA is a monomorphism, we show, given two maps N,N ′ :
DB → DB satisfying the conditions of the proposition, that they are equal. Since Lemma
4.9.9 provides a canonical injection into a Galois module, the Galois action on DB⊗WB

B+
cris,B

induced by N in (4.9.5) is identical to that of N ′. Thus for σ ∈ Γ̂, d ∈ DB, we have an equality

d = exp(N ⊗ β(σ)) · exp(−N ′ ⊗ β(σ)) = exp((N −N ′)⊗ β(σ))d
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of elements of DB ⊗WB
B+

cris,B. Recall from (4.6.5) that β(σ) ∈ Fil1B+
cris,B. Recalling also

the multiplicativity of the filtration (4.6.2), we see that

(N −N ′)(d)β(σ) ∼= 0 modulo Fil2B+
cris,B.

Then by (4.6.5) and the second part of Lemma 4.8.2, β(σ) 6∈ Fil2B+
cris,B whenever σ 6∈ Γ̂∞,

so N = N ′ as desired.
Now we will check the valuative criterion of properness. Suppose that the A-algebra

B is a discrete valuation ring with uniformizer πB. Let N : DB[1/πB ] → DB[1/πB ] be an

endomorphism satisfying the conditions of the proposition. Let σ ∈ Γ̂ be such that β(σ) 6= 0.
If d ∈ DB, then

(4.9.12) exp(N ⊗ β(σ)) · d ∈ DB ⊗WB
B+

cris,B[1/πB] ∩ HomB(VB, B
+
cris,B),

using (4.9.4) to consider both DB ⊗WB
B+

cris,B[1/πB] and HomB(VB, B
+
cris,B) as a subset of

HomB[1/πB ](VB[1/πB ], B
+
cris,B[1/πB ]). Since the cokernel of (4.9.4) is flat over B by Lemma

4.9.9, it has no πB-torsion so that the intersection in (4.9.12) is the isomorphic image of
DB ⊗WB

B+
cris,B.

Therefore, modulo the ideal Fil2B+
cris,B ⊂ B+

cris,B,

d− exp(N ⊗ β(σ))d ∼= −N(d)⊗ β(σ) ∈ DB ⊗WB
B+

cris,B/Fil2B+
cris,B.

The first part of Lemma 4.8.2(3) may be used to show that N(d) ∈ DB as follows: in
this diagram, (where we use Fil2 as an abbreviation for Fil2B+

cris,B or Fil2B+
cris,B[1/πB ] as

appropriate, write F = B[1/πB], and we assume σ 6∈ Γ̂∞)

0

��

0

��
DB

·β(σ)
��

// DF

·β(σ)
��

DB ⊗WB
B+

cris,B/Fil2

��

// DF ⊗WF
B+

cris,F/Fil2

��

DB ⊗WB
B+

cris,B/(β(σ) ·B + Fil2) //

��

DF ⊗WF
B+

cris,F/(β(σ) · F + Fil2)

��
0 0

where both columns are exact and all of the horizontal maps are injective, with Lemma
4.8.2(3) being used to show that the lowest horizontal map is injective. Now we know that
N(d)⊗β(σ) lies in the image of the middle horizontal map. Since all of the horizontal maps
are injective, N(d) ∈ DB. Therefore we see that N induces a map N : DB → DB as desired.
This endomorphism will satisfy the conditions of the proposition because it does so after
extending scalars to F = B[1/πB]. �
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4.10. Moduli Space of Semistable Representations

Because this section deals entirely with coefficient rings being finite Qp-algebras, there is
no fundamentally new content. We simply reprise [Kis08, §2.5].

Our goal here is to show that Ast is the maximal quotient of A over which the represen-
tation VA is semistable with Hodge-Tate weights in [0, h], in the sense that for any A-algebra
B which is finite as a Qp-algebra, the representation VA ⊗A B is semi-stable if and only if
A→ B factors through Ast. In order to prove this, we recall the following relations between
weakly admissible filtered (ϕ,N)-modules and S-lattices of finite E-height, due to Kisin
[Kis06].

Theorem 4.10.1 ([Kis06], e.g. Corollary 1.3.15). Let D be a weakly admissible filtered
(ϕ,N)-module with Fil0D = D and Filh+1 D = 0. Then there is a finite free S[1/p]-module
M and a map ϕ∗(M)→M whose cokernel is killed by E(u)h such that

(1) There is a canonical ϕ-equivariant isomorphism M/uM
∼→ D.

(2) If M := M⊗S[1/p] O, then M admits a unique logarithmic connection

∇ :M→M⊗O Ω1
O[1/uλ]

such that ∇ ◦ ϕ = ϕ ◦ ∇ and induces a differential operator

N∇ :M→ cM, m 7→ 〈∇(m),−uλ d
du
〉

such that N∇|u=0 = N .
(3) M admits a lattice, i.e. there exists a finite free S-module M◦ which spans M and

such that the cokernel of 1⊗ ϕ : ϕ∗(M◦)→M◦ is killed by E(u)h.

There is also a Γ̂∞-equivariant isomorphism

(4.10.2) HomS[1/p],ϕ(M,Sur[1/p])
∼−→ HomFil,ϕ,N(D,B+

st)

which is constructed using some maps that have already appeared in this text (see [Kis08,
p. 18] for the recipe). There is also an isomorphism

(4.10.3) HomB+
cris,Fil,ϕ(D ⊗K0 B

+
cris, B

+
cris)

∼−→ HomFil,ϕ(D,B+
cris)

∼−→ HomFil,ϕ,N(D,B+
st)

and an isomorphism

(4.10.4) HomS[1/p],ϕ(M,Sur[1/p])
∼−→ HomFil,ϕ(D,B+

cris)

constructed as in [Kis08, p. 18].
We now show that the candidate Ast of Proposition 4.9.11 for the moduli space of semi-

simple representations satisfies this property.

Proposition 4.10.5 ([Kis08, Proposition 2.5.4]). Assume that A◦ = (A◦)≤h. Let B be
a finite Qp-algebra, ζ : A → B a map of Qp-algebras, and VB := VA ⊗A B. Then ζ factors

through Ast if and only if VB is semistable as a representation of Γ̂ over Qp.

Proof. Suppose that ζ factors through Ast. Then Proposition 4.9.11 implies that (4.9.7)

is a Γ̂-equivariant map

DB ⊗Qp B
+
st
∼= DB ⊗WB

B+
st,B −→ V ∗B ⊗B+

st,B
∼= VB ⊗Qp B

+
st .

which is injective according to Lemma 4.9.9. We get an injection of Galois invariants

DB ↪→ (VB ⊗Qp B
+
st)

Γ̂
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so that the dimension of the right side as a K0-vector space is at least as much as that of the

left side. But dimK0 DB = dimQp VB. Therefore dimQp VB ≥ dimK0(VB⊗Qp B
+
st)

Γ̂, so that VB
is semistable.

Now suppose that VB is semistable. Let

D̃B := HomB[Γ̂](VB, B
+
st ⊗Qp B)

be the weakly admissible filtered (ϕ,N)-module associated to V ∗B. Denote by M̃B the S[1/p]-

module attached to D̃B according to the discussion at the beginning of §4.10. Let MB :=
MA ⊗A B as usual, where MA◦ was produced in Proposition 4.5.9 and MA := MA◦ ⊗A◦ A.
Composing the map ι−1⊗AB of (4.9.1) with (4.10.2) and taking B-linear maps, we find that

(4.10.6) HomSB ,ϕ(MB,S
ur
B )

∼→ VB
∼→ HomB,Fil,ϕ,N(D̃B, B

+
st,B)

∼→ HomSB ,ϕ(M̃B,S
ur
B ).

Because S-lattices of height ≤ h are unique in MB = (Êur ⊗Qp V
∗
B)Γ̂ by [Kis06, Propo-

sition 2.1.12], we may identify MB and M̃B. Using this identification and the maps in
(4.10.6), Theorem 4.10.1 allows us to identify D̃B with DB = MB/uMB (WB-linearly and
ϕ-equivariantly), and then endow DB with an operator N coming from the operator on D̃B.

We then have a commutative diagram, where the top right horizontal arrow comes from
(4.10.4).
(4.10.7)

VB
∼ //

id

��

HomSB ,ϕ(M̃B,S
ur
B [1/p])

∼
��

∼ // HomB+
cris,B ,Fil,ϕ(D̃B ⊗WB

B+
cris,B, B

+
cris,B)

��
VB

∼ // HomSB ,ϕ(MB,S
ur
B [1/p]) // HomB+

cris,B ,Fil,ϕ(DB ⊗WB
B+

cris,B, B
+
cris,B)

The maps in the top horizontal row are Γ̂-equivariant. Observing the diagram, it follows
that the same holds for the maps in the bottom row. The composite of the bottom row maps
induces a Γ̂-equivariant map

(4.10.8) DB ⊗WB
B+

cris,B → HomB(VB, B
+
cris,B).

We claim that this map is identical to that of (4.9.4). Since (4.9.4) is Γ̂-equivariant, it follows
by Proposition 4.9.11 that ζ factors through Ast. �

Theorem 4.10.9. As is standard in this section, let A◦ be an algebra formally finitely
generated over R, with a continuous action of Γ̂ on a projective rank d A◦ module VA◦. If h
is a non-negative integer, then there exists a quotient Ast,h of A such that

(1) If B is a finite Qp-algebra, and ζ : A → B a map of Qp-algebras, then ζ factors
through Ast,h if an only if VB = VA ⊗A B is semistable with Hodge-Tate weights in
[0, h].

(2) There is a projective WAst,h-module DAst,h of rank d equipped with a Frobenius semi-
linear automorphism ϕ and with a WAst,h-linear automorphism N such that for all
ζ : A→ B factoring through Ast,h, there is a canonical isomorphism

DB = DAst,h ⊗Ast,h B
∼−→ HomB[Γ̂](VB, B

+
st ⊗Qp B)

respecting the action of ϕ and N .
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Proof. Assume that VB is semistable with Hodge-Tate weights in [0, h]. Then VB is
of E-height ≤ h: for we call VB of E-height ≤ h when the cokernel associated map of SB-
modules ϕ∗(MB)→MB of Proposition 4.5.9(1) is killed by E(u)h. The proof of Proposition

4.10.5 identifies this S-module with another one, denoted M̃B, created from the (ϕ,N)
module associated to VB. Now [Kis06, Lemma 1.2.2] associates the Hodge-Tate weights of
the (ϕ,N)-module with the cokernel in the way that we require.

Because VB is of E-height ≤ h, we know that A → B factors through (A◦)≤h[1/p].
Therefore we may replace A◦ by the quotient (A◦)≤h defined in Proposition 4.5.5. Let Ast,h

be the ring Ast of Proposition 4.9.11 and set DAst := MA/uMA ⊗A Ast. If VB is semistable
then ζ factors through Ast by Proposition 4.10.5.

Conversely, if ζ factors through Ast then Proposition 4.10.5 implies that VB is semistable

of E-height ≤ h. If D̃B := (V ∗B⊗QpB
+
st)

Γ̂ and M̃B is the S[1/p]-module associated to D̃B as in
the proof of Proposition 4.10.5, then the uniqueness of S-lattices of finite E-height [Kis06,

Proposition 2.1.12] implies that M̃B has E-height ≤ h, and the claim about Hodge-Tate
weights once more follows from [Kis06, Lemma 1.2.2].

To see (2), concatenate the Γ̂-equivariant isomorphisms

(4.10.10) VB
∼−→ HomB+

cris,B ,Fil,ϕ(D̃B ⊗WB
B+

cris,B, B
+
cris,B)

∼−→ HomB,Fil,ϕ,N(DB, B
+
st,B),

where the first isomorphism appears on the top line of (4.10.7) and is deduced from in
(4.10.3) by taking B-linear maps. Now (2) follows from applying HomB[Γ̂](−, B

+
st,B) and the

fact that this functor is inverse to HomB,Fil,N,ϕ(−, B+
st,B). �

4.11. Hodge Type

In this section we follow [Kis08, §2.6] and the erratum [Kis09b, §A.4] to construct a
quotient of Ast,h corresponding to semistable representations with a specified p-adic Hodge
type. First we recall the notion of p-adic Hodge type. For this, we fix an finite extension
field E of Qp and suppose that A admits the structure of an E-algebra.

Definition 4.11.1. Suppose we are given a finite dimensional E-vector space DE with
a filtration of DE,K := DE ⊗Qp K by E ⊗Qp K-submodules such that the associated graded

is concentrated in degrees [0, h]. Let v := {DE,FiliDE,K , i = 0, . . . , h}.

If B is a finite E-algebra and VB ∈ Repd
Γ̂
(B) such that VB is a de Rham representation,

then we say that VB is of p-adic Hodge type v if the Hodge filtration on the associated
filtered (ϕ,N)-module has the same graded degrees as v. That is, VB has all its Hodge-Tate
weights in [0, h] and for i = 0, . . . , h there is an isomorphism of B ⊗Qp K-modules

gri HomB[Γ̂](VB, BdR ⊗Qp B)
∼−→ griDE,K ⊗E B.

Theorem 4.11.2 ([Kis08, Corollary 2.6.2]). With v as above, there exists a quotient
Ast,v of Ast corresponding to a union of connected components of SpecAst with the following
property. If B is a finite E-algebra and ζ : A → B is a map of E-algebras, then ζ factors
through Ast,v if and only if VB = VA ⊗A B is semistable of p-adic Hodge type v.

Proof. To begin with, we establish some notation. Let

(4.11.3) Fili ϕ∗(MA) = (1⊗ ϕ)−1(E(u)iMA) ⊂ ϕ∗(MA).
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The second part of Lemma 4.7.1 identifies DB ⊗WB
OB and ϕ∗(MB ⊗SB OB in a formal

neighborhood of the ideal (E(u)) ⊂ OB. In particular, we have a ϕ-compatible identification

DB ⊗K0 K
∼−→ ϕ∗(MB)/E(u)ϕ∗(MB).

From here we equip DB ⊗K0 K with a filtration, setting

(4.11.4) Fili(DB ⊗K0 K) := Fili ϕ∗(MA)/(E(u)ϕ∗(MA) ∩ Fili ϕ∗(MA))⊗A B.
Next we check that this filtration on DB ⊗K0 K coincides with the one induced by the

isomorphism of Theorem 4.10.9(2), namely

DB
∼−→ HomB[Γ̂](VB, B

+
st ⊗Qp B.

Write D̃B for DB equipped with the filtration from Theorem 4.10.9(2). This is the standard

weakly admissible (ϕ,N) module over B attached to V ∗B. Now let M̃B be the S[1/p]-module

attached to D̃B as summarized in Theorem 4.10.1. The uniqueness of lattices of E-height
≤ h implies that MB may be identified with MA ⊗A B. We conclude the proof by recalling
[Kis06, 1.2.6-1.2.7], which reconstructs the filtration on D̃B⊗K0 K from M̃B as the preimage

filtration on DB ⊗WB
OB the filtration defined in (4.11.3) (with M̃B in the place of MA)

under the map ξ of Lemma 4.7.1, specialized at OB/E(u)OB. This is precisely the same as
the filtration of (4.11.4), as desired.

Notice that we have identified Fili ϕ∗(MA)/(E(u)ϕ∗(MA)∩Fili ϕ∗(MA))⊗AB, which was
originally used to define the filtration on DB ⊗K0 K, with the a priori projective WB ⊗K0 K-
module Fili(D̃B⊗K0 K). Since this is valid for all finite local E-algebras B, this implies that
Fili ϕ∗(MA)/(E(u)ϕ∗(MA)∩Fili ϕ∗(MA)) is a projective A-module. Moreover, the discussion
above shows that, over A-algebras B that are finite E-algebras, the graded components
of these modules determine the Hodge type of the associated Galois representation VB =
VA⊗AB. Since projective modules have locally constant rank, this shows that the points of
SpecA corresponding to a given hodge type v form a union of connected components, whose
coordinate ring we will denote by Av. Namely, these are points p of SpecA such that for
i = 0, 1, . . . , h, there is an isomorphism of WAp ⊗K0 K-modules

Fili ϕ∗(MA)/(E(u)ϕ∗(MA) ∩ Fili ϕ∗(MA))⊗A Ap
∼−→ FiliDE,K ⊗E Ap.

Let Ast,v := Ast,h ⊗A Av. �

4.12. Galois Type

In this section we further stipulate that B is local with residue field E, so that it is a
finite, local E-algebra with residue field E. Let VB ∈ Repd

Γ̂
(B). Following [Fon94], set

D∗pst(VB) = lim−→
K′

HomB[Γ̂K′ ]
(VB, Bst ⊗Qp B),

where K ′ runs over finite field extensions of K.
Let K̄0 ⊂ K̄ denote the maximal unramified extension of K0, and let Γ̂0 ⊂ Γ̂ be the inertia

group of Γ̂. Then D∗pst(VB) is a B ⊗Qp K̄0-module with a Frobenius semi-linear Frobenius

automorphism ϕ, a nilpotent endomorphsm N such that pϕN = Nϕ, and a B⊗Qp K̄0-linear

action of Γ̂0 which has open kernel and commutes with ϕ and N .
We claim that D∗pst(VB) is finite and free as a B⊗Qp K̄0-module. We will show this using

the fact that ϕ is an automorphism and following the line of reasoning of [Kis09c, Lemma
1.2.2(4)]. Firstly, we know that this module is finite and flat over B ⊗Qp K̄0 by definition
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of the functor. To check that D∗pst(VB) is free, we need only check that the fibers over the

residue fields, i.e. the points of SpecE ⊗Qp K̄0, are of constant rank. This module arises by
⊗K′0K̄0 from a free, rank d (ϕ,N)-module D over E⊗QpK

′
0, where K ′/K is a finite extension

making VB semistable as a representation of Γ̂K′ . Since an unramified base change cannot
make “potentially semistable” into “semistable,” we may assume that K ′0 = K0. For any
unramified extension L0/K0, now let K ′0 (resp. L′0) denote K0 ∩ E (resp. L0 ∩ E), and also
let E0 be the maximal subfield of E unramified over Qp. We observe that ϕ permutes the
factors labeled by µ of the decomposition

E ⊗Qp L0
∼=
∏
µ

E ⊗Qp K0,

where µ runs over the set of embeddings {µ : E0 ↪→ L′0 fixing K ′0}. This shows that ϕ will
permute the factors of D⊗K0 L0 under this decomposition by {µ}, and each of these factors
is free of rank d. Therefore D∗pst(VB) is free of rank d as a B ⊗Qp K̄0-module, as desired.

Since the action of Γ̂0 commutes with the action ϕ, the traces of elements of Γ̂0 are
contained in B, and D∗pst descends to a representation of Γ̂0 on a finite free B-module P̃B.
Because characteristic zero representations of finite groups are rigid, i.e. the deformations
of an action of a finite group on a vector space over a characteristic zero field E to artinian
E-algebras arise by extension of scalars, this representation must be an extension of scalars
from a representation PB of Γ̂0 over E.

We have associated to a potentially semistable d-dimensional representation VB of Γ̂ over
B a representation of the inertia group of K over E which reflects the failure of VB to be
semistable. We will call this the “Galois type” of VB, as follows.

Fix an algebraic closure Q̄p of Qp.

Definition 4.12.1. Let T : Γ̂0 → GLd(Q̄p) be a representation with open kernel. We
say that VB is potetially semistable of type T provided that PB defined above is isomorphic
to T .

Because we are working over a characteristic 0 field, it is equivalent to say that for any
γ ∈ Γ̂0, the trace of T (γ) is equal to the trace of γ on D∗pst(VB).

Our goal is to find a moduli space for Galois representations that are both potentially
semistable and have Galois type T . Before we give a supporting lemma, we recall that the
element t ∈ Acris ⊂ B+

dR, which generates the maximal ideal of B+
dR, is used in the definitions

Bst = B+
st [1/t] and Bst,A = B+

st,A[1/t] (see §4.6).

Lemma 4.12.2 (Following [Kis08, Lemma 2.7.1]). For i ≥ 0 there is an isomorphism

WA · ti
∼→ HomA[Γ̂](A(i), B+

st,A)

induced by multiplication by p−ri for ri a positive integer defined below, where A(i) denotes

A with Γ̂ acting via the ith power of the p-adic cyclotomic character χ. In particular, if

Bst,A := B+
st,A[1/t], then BΓ̂

st,A = WA.

This proof was done for local A◦ in [Kis08], based on the well known case when A◦ is a
finite flat Zp-algebra. The general case requires additional notions, much along the lines of
Lemma 4.8.2(5).

Proof. First we will show, following [Kis08], that any element x ∈ B+
st,A such that Γ̂

acts on x via χi lies in B+
cris,A. We may represent x as x =

∑n
i=0 ai`

i
u where ai ∈ B+

cris,A. As
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the lemma is well known for A◦ finite over Zp, one can apply Lemma 4.8.2(5) to conclude
that ai = 0 for i > 0. Therefore, replacing x with a multiple of itself by a power of p, we see
that it suffices to prove that x ∈ Acris,A◦ such that Γ̂ acts on it via χi lies in

(4.12.3) WA◦ ·
ti

pri
⊂ Acris,A◦ ,

where ri is the largest non-negative integer such that ti/pri ∈ B+
cris lies in Acris.

In the case that A◦ is a complete local Noetherian Zp-algebra with finite residue field, this
Lemma was proved in [Kis08]. We will reduce the proof to this case, and then recapitulate
the proof from [Kis08] afterwards.

First we note that if ri is the integer defined for (4.12.3), then the cokernel of the map
of Zp-modules

(4.12.4)

W −→ Acris

x 7→ x · t
i

pri

is torsion-free, and therefore also flat as a Zp-module. Since ri is chosen to saturate the
sub-Zp-module W · ti ⊂ Acris, this is clear enough: choose a representative y ∈ Acris of a
nonzero element of the cokernel of this map. If y is a torsion element of the cokernel, then
there exists some positive integer n such that pn · y ∼= x · ti

pri
for some x ∈ W but pn−1 · y

does not lie in W · ti
pri

. But since Acris is a flat Zp-module, this would imply that x is a unit

in W , and without loss of generality x = 1. But then pn−1y ∼= ti

pri+1 ∈ Acris, a contradiction.

Secondly, we note that the image of (4.12.3) lies in the submodule Acris⊗ZpA
◦ of Acris,A◦ .

Recall that since Acris is p-adically complete, the natural map Acris⊗ZpA
◦ → Acris,A◦ is indeed

an inclusion. Also observe that the natural map W ⊗Zp A
◦ → WA◦ is an isomorphism: since

W/Zp is finite, W ⊗Zp A
◦ is mRA-adically complete. Therefore we can factor the inclusion

(4.12.3) as the composition of natural inclusions

(4.12.5)

W ⊗Zp A
◦ ↪→ Acris ⊗Zp A

◦

x⊗ y 7→ x · t
i

pri
⊗ y

followed by the inclusion
Acris ⊗Zp A

◦ ↪→ Acris,A◦ .

Recall from the proof of Lemma 4.8.2(5) the following notions: let M be the set of
maximal ideals of Spf(A◦) as a Spf(Zp)-formal scheme, corresponding to maximal ideals of
A◦/mRA

◦. In the proof, we showed that the natural maps

(4.12.6) A◦ →
∏
m∈M

A◦m, Acris,A◦ →
∏
m∈M

Acris,A◦m

are injective. Of course, everything in the discussion about (4.12.5) applies to A◦m in the
place of A◦, so that for each m ∈M there are maps

(4.12.7) W ⊗Zp A
◦
m ↪→ Acris ⊗Zp A

◦
m

factoring WA◦m
∼= W ⊗Zp A

◦
m ↪→ Acris,A◦m . Therefore, assuming the result of this lemma when

A◦ is a complete local ring with finite residue field, we can deduce the general case (i.e.
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A◦ not necessarily local) from the truth of the result over complete local rings A◦m of A◦ as
follows.

Consider the inclusions

W ⊗Zp A
◦ //

(4.12.5)

��

∏
m∈M W ⊗Zp A

◦
m

(4.12.7)

��
Acris ⊗Zp A

◦ (4.12.6)
//
∏

m∈M Acris ⊗Zp A
◦
m

We will be done if we can show that the image of W ⊗Zp A
◦ in the bottom right is the

intersection of the images of (4.12.7) and (4.12.6). Using the fact that the cokernel of
(4.12.4) (and therefore the cokernel of the vertical maps as well) is flat, we apply Lemma
4.12.8 to draw this conclusion and finish the proof.

We have finished the deduction of the proof of the lemma in the general case from the
proof in the case that A◦ is local. It remains to prove the case that A◦ is local, reprising
[Kis08].

Let A◦ be a complete local Noetherian Zp-algebra with finite residue field F and maximal

ideal m. Let x ∈ B+
st,A such that Γ̂ acts on it by χi. The beginning of this proof has reduced

our remaining work to the case that x ∈ Acris,A◦ ; we must show that x is in the image of
(4.12.3).

Let q1 ⊃ q2 ⊃ · · · be a decreasing sequence of ideals of A such that ∩∞j=1qj = {0} and
A/qj is a finite W (F)[1/p]-algebra. Let q◦j := A◦ ∩ qj. Then for each m ≥ 0, it follows that

we have q◦j ⊂ mm
A◦ for large enough j. Since A◦ is m-adically complete, A◦

∼→ lim←−j A
◦/q◦j .

Moreover, (q◦j) is a sequence of ideals of definition for the topology on A◦. Therefore

Acris,A◦
∼→ lim←−

j

Acris,A◦/q◦j
.

The same is true with W in place of Acris.
Using the integer ri defined for (4.12.3), then for all j ≥ 1, the image of x in Acris,A◦/q◦j

is contained in the image of WA◦ · t
i

pri
in Acris,A◦/q◦j

because the lemma is known for A◦ finite

over Zp. This property is stable under taking the inverse limit indexed by j, so that we

conclude that x ∈ WA◦ · t
i

pri
as desired. �

Lemma 4.12.8. Let R be a commutative ring and let M,N, S, and T be flat R-modules.
Fix injective maps M ↪→ N , S ↪→ T such that M is a pure submodule of N , i.e. the cokernel
of the inclusion is flat. Consider N ⊗R S, M ⊗R T , and M ⊗R S as submodules of N ⊗R T
under the natural inclusion maps. Then

N ⊗R S ∩M ⊗R T = M ⊗R S.
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Proof. Let L be the cokernel of M ↪→ N , which is a flat R-module. Let U be the
cokernel of S ↪→ T . Then we have the following diagram of exact sequences:

0

��

0

��
0 // M ⊗R S

��

// M ⊗R T

��

// M ⊗R U

��

// 0

0 // N ⊗R S

��

// N ⊗R T

��

// N ⊗R U

��

// 0

0 // L⊗R S

��

// L⊗R T

��

// L⊗R U

��

// 0

0 0 0

Let x be an element of N ⊗R S which is in the intersection described in the statement of
the lemma. Then the image of x in L⊗R T is 0, so that the image of x in L⊗R S is also 0.
Therefore x is in the image of M ⊗R S in N ⊗R S, as desired. �

Now we show that the theory of (ϕ,N)-modules with coefficients functions as expected.

Proposition 4.12.9 (Following [Kis08, Proposition 2.7.2]). Suppose that A = Ast,h.
Then the map

(4.12.10) DA ⊗WA
Bst,A −→ HomA(VA, Bst,A)

induced from (4.9.7) by setting B = A and tensoring by ⊗B+
st,A
Bst,A is an isomorphism. In

particular,

(4.12.11) DA
∼−→ HomA[Γ̂](VA, Bst,A).

This proof requires small modifications from that of [Kis08].

Proof. Lemma 4.9.9 tells us that (4.12.10) is an injection. Furthermore, because A =
Ast,h, Theorem 4.10.9 tells us that the right hand side and left hand side of (4.12.10) are
finite free Bst,A-modules of the same rank. Therefore it will suffice to show that this map
induces an isomorphism on top exterior powers, and we freely restrict ourselves to the case
that VA◦ is free of rank 1 over A◦. We note that in either of these cases, VA◦ arises by
extension of scalars from a complete local Noetherian ring. This is the case because the
universal moduli space of 1-dimension representations of Γ̂ is semi-local, and in particular,
the underlying scheme is the disjoint union of spectra of finite fields. Therefore, once we
show that (4.12.10) is stable under extension of coefficients in a sense we will define in a
moment, we can resort with no concern to the arguments of [Kis08], which are working in
the case that A◦ is a complete Noetherian local ring with finite residue field.

We will now show that the property that (4.12.10) is an isomorphism is preserved by
extension of coefficients which are adic R-algebras, in a sense we now define. This extends
an observation made at the beginning of the proof of [Kis08, Proposition 2.7.2]. Let A◦ → A′◦

be a map in the category of adic R-algebras, and write A′ := A′◦[1/p] as usual. We claim
that the map (4.12.10) for VA′ , i.e. the representation arising by extension of scalars from
VA′◦ := VA◦ ⊗A◦ A′◦, is obtained from (4.12.10) by extending scalars by ⊗Bst,A

Bst,A′ . To see

177



this, we observe that each of the factors of the map (namely (4.9.6), (4.9.2), which arises from
Proposition 4.5.9, and the map ξ of Lemma 4.7.1) are compatible with the scalar extension
process.

1-dimensional semistable representations are crystalline and crystalline characters are the
product of an unramified character and a Lubin-Tate character2 determined by the Hodge
filtration. Therefore, VA|Γ̂0

is locally constant on SpecA because, according to Theorem
4.11.2, the Hodge type is constant on connected components of SpecA. Replacing SpecA
with one of its connected components, we may assume that VA|Γ̂0

∼ θ|Γ̂0
, where θ is the

product of conjugates of Lubin-Tate characters. It will suffice to prove the proposition in
two cases, VA ∼ θ and VA an unramified character. This is the case because we may tensor
the factors in (4.12.10) for VA ∼ θ with the factors for VA unramified to derive the general
case.

If VA ∼ θ, then VA arises by extension of scalars from a representation valued in the
ring of integers of a finite extension of Qp. The observation about extension of scalars given
above now allows us to assume that A◦ is such a ring of integers. Therefore this case follows
directly from Theorem 4.10.9(2), as A is finite as a Qp-algebra.

Now for the unramified case, the filtration on DA is trivial so h = 0. Let k̄ be the residue
field of K̄. As a result (cf. [FO, §7.2.2]), the slope of DA is zero so that (4.9.4) arises by
extension of scalars ⊗AB+

cris,A from an isomorphism

DA
∼−→ HomA[Γ̂](VA,W (k̄)A),

and therefore is an isomorphism as well.
Now we come to the second statement of the proposition. Lemma 4.12.2 gives us that

BΓ̂
st,A = WA, so that the usual regular G-ring formalism (e.g. [FO, §2]) will apply, and allow

us to conclude that
DA

∼−→ HomA[Γ̂](VA, Bst,A).

As elements of the image of DA under (4.12.10) have image in B+
st,A ⊂ Bst,A, (4.12.11)

follows. �

Recall that we have fixed E as a finite extension of Qp such that A admits the structure
of a E-algebra. Let v be a p-adic Hodge type as in Definition 4.11.1. We fix a representation

T : Γ̂0 → EndE(DE)
∼−→ GLd(E).

Theorem 4.12.12 ([Kis08, Theorem 2.7.6]). There exists a quotient AT,v of A such that
for any finite E-algebra B, a map of E-algebras ζ : A→ B factors through AT,v if and only
if VB = VA ⊗A B is potentially semistable of Galois type T and p-adic Hodge type v.

Proof. Let L/K be a finite Galois extension such that the inertia subgroup IL ⊂ IK
is contained in kerT . The group change map along with Theorem 4.11.2 give us a quotient
Apst,v of A such that ζ factors through Apst,v if and only if VB|Γ̂L is semistable of p-adic

Hodge type v. Assume A = Apst,v from now on.
Let WL denote the ring of integers of L0, the maximal unramified subfield of L. Set

WL,A := (WL)A. Proposition 4.12.9 gives us an isomorphism of finite free WL,A-modules

DA
∼−→ HomA[Γ̂L](VA, B

+
st,A)

2See e.g. [Ser68, III.A.4] for a discussion of Lubin-Tate characters.
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that is compatible with the natural action of ϕ. The Galois group Gal(L/K) acts L0-semi-
linearly on HomA[Γ̂L](VA, B

+
st,A), and the inertia group IL/K ⊂ Gal(L/K) acts L0-linearly

(cf. [FO, Prop. 6.58]). Since the action of Gal(L/K) commutes with ϕ, if σ ∈ IL/K , then the
trace Tr(σ) is in (WL,A)ϕ=1 = A. Because characteristic 0 representations of finite groups
are rigid, Tr(σ) is a locally constant function on SpecA. Denote by AT,v the quotient of
A corresponding to the union of components of SpecA where Tr(σ) = Tr(T (σ)) for all

σ ∈ Γ̂0. �

Corollary 4.12.13 ([Kis08, Corollary 2.7.7]). There exists a quotient AT,vcr of A such
that for any finite E-algebra B, a map of E-algebras ζ : A→ B factors through AT,vcr if and
only if VB = VA ⊗A B is potentially crystalline of Galois type T and p-adic Hodge type v.

Proof. Theorem 4.10.9 provides for us a finite projective WAT,v-module DAT,v equipped
with a linear endomorphism N . We know that VB is potentially crystalline if and only if the
specialization of N by ζ to B vanishes. Therefore we may take AT,vcr to be the quotient of
AT,v defined by the relation N = 0. �

4.13. Final Remarks

Combining the results of Chapter 3 (see Theorem 3.2.5.1) with Chapter 4, we have

several the following results. Let Γ̂ is the absolute Galois group of a finite field extension
K of Qp, and choose a residual pseudorepresentation D̄. Recall that PsRD̄ = Spf BD̄ is the

deformation space of D̄, which is Noetherian since Γ̂ is finitely generated. Also recall that
RepD̄ denotes the groupoid of Azumaya algebra-valued continuous representations of Γ̂ with
constant residual pseudorepresentation D̄. The natural map

ψ̄ : RepD̄ → PsRD̄

is universally closed, formally of finite type, and is the algebraization of a finite type SpecBD̄-
algebraic stack RepE(R,Du

D̄
),D̄, where E(R,Du

D̄
) is the universal Cayley-Hamilton BD̄-algebra

E(R,Du
D̄) := (Zp[[Γ̂]]⊗Zp BD̄)/CH(Du

D̄),

which is finitely generated as a BD̄-module.
Here are a few observations regarding the implications of what we have proved.

Observation 4.13.1. Combining the algebraicity of RepΓ̂ over PsRΓ̂ with the projec-
tivity of the moduli of Kisin modules L≤h over RepΓ̂, the moduli of Kisin modules is alge-
braizable over PsRΓ̂ and universally closed, with projective PsRΓ̂-subschemes.

Observation 4.13.2. Let A◦ denote the admissible coefficient Zp-algebra of a continuous
A◦-Azumaya algebra-valued representation

ρ : Zp[[Γ̂]]⊗Zp A
◦ −→ E

of Γ̂ with constant residual pseudorepresentation D̄, which we can assume to be formally
finitely generated over BD̄ (i.e. the quotient of a restricted power series over BD̄ in finitely
many indeterminates). For example, one can think of A◦ as the universal coefficient sheaf
of rings ORepD̄

. Chapter 4 constructs closed subspaces Xcond = Spec(A◦[1/p])/Icond of the

Noetherian Jacobson schemeX := SpecA◦[1/p], which are precisely the loci of specializations
of ρ to A-algebras, finite as Qp-algebras, satisfying certain conditions from p-adic Hodge
theory. Now consider the algebraization statement over PsRD̄. It implies that there exists
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a universal finite type SpecBD̄-algebraic stack RepE(R,Du
D̄

),D̄ such that ρ arises from the

universal representation of E(R,Du
D̄

) over RepE(R,Du
D̄

),D̄ by pullback along some morphism

fρ : SpecA◦ −→ RepE(R,Du
D̄

),D̄.

(We have set R := Zp[[R]].) Therefore there is a finitely generated BD̄-subalgebra Afg of A◦

with a (BD̄-typically) continuous representation

ρfg : E(R,Du
D̄)⊗BD̄ A

fg → Efg

such that ρ ' ρfg ⊗Afg A◦. We can now consider the closed subscheme of SpecAfg[1/p]
corresponding to the condition “cond” from p-adic Hodge theory: it is cut out by the ideal
that is the quotient of the composite map

Afg[1/p] −→ A◦[1/p] −→ A◦[1/p]/Icond.

This is an example of finite type SpecBD̄[1/p]-schemes which are universal moduli spaces
for representations of the module finite BD̄[1/p]-algebra E(R,Du

D̄
)[1/p] which are required

to satisfy a p-adic Hodge theoretic condition.

Observation 4.13.3. One can make sense of the notion of a K-valued pseudorepresen-
tation D of Γ̂ satisfying or not satisfying certain conditions from p-adic Hodge theory, where
K is a finite field extension of Qp. After a finite extension of K, D is realizable as the
determinant of a semisimple K-valued representation ρssD . Then one can say that D has a
p-adic Hodge theoretic property if ρssD does. Of course, this does not imply that all represen-

tations of Γ̂ with semisimplification ρssD (i.e. representations in the fiber of ψ̄ over D) have
this property.

Observation 4.13.4. Since φ̄ is universally closed, the constructions above give a closed
subspace of PsRD̄[1/p] corresponding to certain p-adic Hodge theory conditions, say cut out
by an ideal Icond

PsR ⊂ BD̄[1/p]. As a result, one can construct a quotient

E(R,Du
D̄)cond := E(R,Du

D̄)[1/p]⊗BD̄[1/p] BD̄[1/p]/Icond
PsR

through which all representations satisfying this condition must factor. Conversely, it seems
that its semisimple, p-adic field-valued representations must satisfying the condition, as long
as they induce pseudorepresentations parameterized by SpecBD̄[1/p]. This construction may
even be able to be refined if representations satisfying this condition are shown to cut out
appropriately linear subspaces of the projective spaces of extensions described in §2.2. In
this case, there should exist a quotient algebra of E(R,Du

D̄
)cond whose representations (given

that they are parameterized by SpecBD̄[1/p]) are precisely those satisfying the condition.

We are curious if there is any useful application of these observations.
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APPENDIX A

A Remark on Projective Morphisms

There are several notions of projectivity of a morphism of schemes. We will use the
following terminology.

Definition A.1 ([Sta, Definition 01W8]). Let f : X → S be a morphism of schemes.

(1) We say f is projective if X is isomorphic as an S-scheme to a closed subscheme of
a projective bundle P(E) for some quasi-coherent finite type OS-module E .

(2) We say that f is H-projective if there exists an integer n and a closed immersion
X → PnS over S.

(3) We say that f is locally projective if there exists an open cover of S such that the
restriction of f to each element of the cover is projective.

Example A.2. A finite morphism is always projective, but is not always H-projective.

Local projectiveness and local H-projectiveness are equivalent. Though H-projectivity is
preserved under composition using the Segre embedding ([Sta, Lemma 01WE]), this property
of projectivity requires quasi-compactness of the base [Vak12, Exercise 18.3.B]. Projectivity
is not a local property on the base. However, given a (very) ample line bundle for a projective
morphism, one can check projectivity locally when the base is locally Noetherian [Vak12,
Exercise 18.3.G].

We will use “projective” morphisms so that we can prove projectivity of a morphism
locally on the base (as long as we can glue together the ample line bundle).
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[Fro96] G. Frobenius, Über die Primfactoren der Gruppendeterminante., Berl. Ber. 1896
(1896), 1343–1382 (German).
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