
THE MILNOR CONJECTURE AND THE MOTIVIC

BLOCH-KATO CONJECTURE

CARL WANG-ERICKSON

The following document consists of augmented notes for Talk 9 of the London
number theory study group on Motives, which I gave on 7 March 2018.1 The main
sources I consulted to put together these talks are [Dug04, Kah97, MVW06]. Of
course, errors I introduce are my own responsibility and I welcome emails suggesting
corrections.

This manuscript benefitted from my attendance in Ambrus Pál’s LSGNT course
in Arithmetic and Homotopy. I would also like to thank Alex Betts, Toby Gee, and
Adam Morgan for helpful conversations or comments on this manuscript.

We are now turning from developments in the theory of motives to its applica-
tions. Principal among these are the Milnor conjecture and the motivic Bloch-Kato
conjecture (henceforth “Bloch-Kato conjecture”). The main goal of this talk is to
outline how motivic cohomology is applied in order to prove these conjectures.

Outline. In §1, we state the motivic Bloch-Kato conjecture. In §2, we outline

(1) how motivic cohomology is related to the objects of the conjecture and
(2) the main property of motivic cohomology needed in order to prove the

conjecture.

The goal of §3 is to give explicit examples of the kinds of calculations that are
involved in proving (1). In §4 we give an outline of the proof of (2). In §5, we give
an outline of the full proof of (1). However, §5 is incomplete; I have decided to post
these notes anyway, since it is unclear whether I will finish §5.

1. The conjectures

The choices necessary to set up the conjectures are the following. Let m ≥ 1 be
an integer. Let F be a field.
Crucial running assumption. We will always assume that char(F ) does not
divide m, unless otherwise stated. When m is replaced by a prime `, we maintain
this assumption.

1.1. The actors. We recall the elements involved in the statements of the Milnor
and Bloch-Kato conjecture, which were developed in the previous talk (Algebraic
K-theory, by Adam Morgan).

Definition 1.1.1. The Milnor K-theory of F is the graded commutative ring

KM (F ) =
⊕
n≥0

KM
n (F ),
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generated over KM
0 = Z by the abelian group F× in degree 1, and subject to the

Steinberg relations

{a, 1− a} = 0 for all a ∈ F \ {0, 1},
i.e. the ideal of relations is generated in degree 2. Here {a1, . . . , an} denotes the
element a1 ⊗ · · · ⊗ an ∈ KM

n (F ) (or in Sym2
Z(F×), when we define the Steinberg

relation).

Remark 1.1.2. As usual, by “graded commutative” we mean “skew-commutative”
in that the product of a degree i and j element is intertwined by (−1)ij . In fact, this
relation follows from the Steinberg relations on the free tensor algebra generated in
degree 1 by F×.

Definition 1.1.3. Let µm denote the m-th roots of unity, which may be thought
of as an étale sheaf in finite abelian groups (on the big étale site of SpecZ). Let
GF be a choice of absolute Galois group of F , arising from a separable closure F .
For today, by “the Galois cohomology of F (modulo m)” we will mean the graded
ring

H(F,m) =
⊕
n≥0

Hn(F,m) :=
⊕
n≥0

Hn(GF , µ
⊗n
m ) ∼=

⊕
n≥0

Hn
ét(SpecF, µ⊗nm ),

where Hn(GF ,−) and Hn
ét(SpecF,−) denote continuous group cohomology and

étale cohomology, respectively; and we use the usual identification between the
two, depending on the usual choices.

Here the multiplication operation arises from the cup product in cohomology,
written ∪. The cup product ∪ is well-known to be graded commutative. For a
reference, see e.g. [Sha16].

1.2. The action. There is a natural candidate for a map Km(F )/m→ H(F,m).

Proposition 1.2.1 (Kummer theory). There is a canonical isomorphism

χ : (F×)/m(F×)
∼−→ H1(GF , µm)

induced by F× 3 a 7→ (σ 7→ σ(a1/m)/a1/m) for all σ ∈ GF and some choice of a1/m

in F .

Proof. See e.g. [Sha16, Prop. 2.4.12]. �

We call χ the Kummer map or Kummer isomorphism. The proof uses Hilbert
Theorem 90.

In order to draw a map Km(F )/m → H(F,m), we need to know that the
Steinberg relations on the Kummer map vanish in Galois cohomology.

Proposition 1.2.2 (Tate). For all a ∈ F \ {0, 1} and b = 1 − a, the cup product
χa ∪ χb ∈ H2(GF , µ

⊗2
m ) vanishes.

Proof. Let E := F [t]/(tm − a) and let α be a the choice t = a1/m, producing χa.
One can check that the norm map for E/F satisfies NE/F (1− α) = 1− a.

Next we use the restriction and corestriction maps in Galois cohomology

resE/F : H∗(GF ,−)→ H∗(GE ,−), coresE/F : H∗(GE ,−)→ H∗(GF ,−),

the fact that coresE/F ◦ resE/F amounts to multiplication by [E : F ], and the
compatibility with cup products

cores(res(α) ∪ β) = α ∪ cores(β).
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For a reference, see [Sha16, Props. 1.8.22 and 1.9.8]. We also need to know that
the corestriction map coresE/F : H1(GE , µm)→ H1(GF , µm) amounts to the norm
map NE/F .

Applying this to χa ∪ χb and dropping “E/F” from the notation, we find

χa ∪ χb = χa ∪ cores(χ1−α) = cores(res(χa) ∪ χ1−α) = cores(χαm ∪ χ1−α),

which is zero because χαm ∈ H1(GE , µm) ∼= E×/m(E×) is zero. �

As a result, we have the desired map.

Corollary 1.2.3. There exists a homomorphism of graded rings

η = ηm : Km(F )/m −→ H(F,m)

distinguished by sending a ∈ F× to its image χa ∈ H1(GF , µm) under the Kummer
isomorphism.

We also write ηm,n : Km
n (F )/m −→ Hn(F,m) for the degree n part of ηm.

1.3. The question. With the map ηm in place, we can state the main conjectures.

Conjecture 1.3.1 (Milnor, Bloch-Kato). For any m ≥ 1, n ≥ 0 and field F (sat-
isfying the assumption char(F ) - m, as always), the statement

K(n,m,F ) : ηm,n : KM
n (F )/m −→ Hn(F,m) is an isomorphism

is true. Equivalently, for any m ≥ 1 and field F , ηm is an isomorphism of graded
rings.

Likewise, we write K(n,m) for the statement that K(n,m,F ) holds for all fields
F (such that char(F ) - m).

In this form and generality, the conjecture is due to Kato, and is known as the
motivic Bloch-Kato conjecture. The conjecture in the case case m = 2 is due to
Milnor, so this case is known as the Milnor conjecture.

1.4. Cases of the conjecture that are already clear. Let’s immediately ob-
serve that there are some cases of the conjecture that we already know are true,
before we get close to using input from the theory of motives. This observations
are drawn from [Kah97, §1.1].

K(0,m, F ) Firstly, for the case n = 0 and any (F,m), we know that K(0,m, F )

is true because we have Z/m ∼= KM
0 (F )/m

∼→ H0(GF ,Z/m) ∼= Z/m.

K(1,m, F ) For n = 1, the map KM
1 (F )/m

∼→ H1(GF , µp) is precisely the Kum-
mer isomorphism χ.

Then there are cases that were known before Voevodsky’s application of motives
to the conjecture.

K(2,m, F ) Tate proved this in the case of global fields F , using class field theory.
This proof also applies to local fields.
More generally, using the isomorphism KM

2 (F )
∼→ K2(F ) with alge-

braic K-theory (the theorem of Matsumoto; see the previous talk),
K(2, 2) was proved by Merkurjev and K(2,m) for all m ≥ 1 was
proved by Merkurjev-Suslin.
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n ≥ 3 For such n and for global fields F , Bass and Tate proved K(n,m,F )
for all m ≥ 1. In fact, KM

n (F ) ' Z/2Z⊕r1(F ), where r1(F ) is the
number of real places of F .
For henselian discrete valuation fields F such that char(F ) = 0 and
its residue characteristic is p > 0, K(n, p, F ) is a theorem of Bloch-
Kato-Gabber.

2. Motivic cohomology

Our goal in this section is to outline, as concisely as possible, the relationship
between motivic cohomology and the actors in the Bloch-Kato conjecture K(n,m).
To this end, we first recall what has been introduced in previous talks. Most of
what we recall is in talk 7, two weeks ago (on the triangulated category of motives,
by Giada Grossi). Then we relate motivic cohomology to the Milnor K-groups and
Galois cohomology groups present in the Bloch-Kato conjecture. However, we find
it necessary, in order to be as concrete as possible, to introduce motivic cohomology
in a more lowbrow manner than in talk 7: it will be convenient to express it as
Zariski hypercohomology of certain complexes.

2.1. Recalling talk 7: Voevodsky’s triangulated category of motives. In
talk 7 we were introduced to the following categories.

• A category SmCor(F ) of smooth F -schemes with finite correspondences.
• The homotopy category Hb(SmCor(F )) of bounded complexes (of abelian

groups) over SmCor(F ).
• The category of “geometric motives” DMgm(F ), which is the pseudo-abelian

envelope of the localization of Hb(SmCor(F )) at its thick subcategory gener-
ated by A1-homotopy invariance and Mayer-Vietoris.

• The category of sheaves with transfers for the Nisnevich topology, denoted
ShNis

tr (F ). We write D−(ShNis
tr (F )) for its bounded-above derived category.

• Finally, defining the triangulated tensor category of motives DM−(F ) to be

the full subcategory of D−(ShNis
tr (F )) consisting of complexes with homotopy-

invariant cohomology sheaves.

There was some subtlety in defining a new (not the natural one)

ι : DMgm(F ) ↪→ DM−(F )

respecting both the tensor and triangulated structure. The Tate object

Z(1) := ([P1]0 → [SpecF ]1)[−2]

(where the subscripts denote the degree in the complex) exists in DMgm(F ), but
we will write Z(1) for ι(Z(1)) in DM−(F ). As usual, we write Z(n) := Z(1)⊗n and
M(n) = M ⊗ Z(n) in DM−(F ).

Remark 2.1.1. For the relationship between this notion of Tate object and the
alternate definition we will use today (Definition 2.2.1), see [MVW06, Example
6.15].

Finally, we were introduced in talk 7 to motivic cohomology Hp
mot(X,Z(q)) for

p, q ∈ Z, defined as

HomDMgm(F )(X,Z(k)[i]).
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As is common, we will write this in a bigraded form as

Hp,q
mot(X,Z) := Hp

mot(X,Z(p)),

which we will use from now on.

2.2. A most basic construction of motivic cohomology. Because our goal
today is to illustrate as much of the proof of the Bloch-Kato conjecture as pos-
sible, it will be convenient to use a more basic definition of motivic cohomology,
amenable to our desired computations. It also happens to be useful for merely stat-
ing the relationship between motivic cohomology and the actors in the Bloch-Kato
conjecture, which is why we discuss this basic definition first.

This motivic cohomology arises in the Zariski topology. Of course this motivic
cohomology can be found to be representable in the richer categories above (see
e.g. [MVW06, Lecture 13]); we will not discuss this further.

We follow [MVW06, Lecture 2-3].
Recall that a presheaf with transfers (over F ) is a contravariant additive functor

F from SmCor(F ) to abelian groups. There is a usual Yoneda embedding, from
SmCor(F ) into such presheaves, and we write such a presheaf arising from X ∈
SmF as Ztr(X).2 (Here we are implicitly using the usual faithful functor SmF →
SmCor(F ).)

In order to define the Tate object in this context, we require a few more con-
structions.3

• The presheaf with transfers (valued in abelian groups) associated to a pointed
object of SmF . Given a pointed F -scheme (X,x), let Ztr(X,x) be the cokernel
of x∗ : Z → Ztr(X) associated to x : SpecF → X. We will apply this in the
case of Gm := (A1 \ {0}, 1).

• The cosimplicial scheme

∆n := SpecF [t0, . . . , tn]/

(
1−

n∑
i=0

ti

)
,

where the i-th face maps ∆n → ∆n+1 is given by inserting xi = 0.
• Given a presheaf F on SmF , we have simplicial abelian groups F(U ×F ∆•)

for any U ∈ SmF . This presheaf of simplicial abelian groups will be written
C•F .

• Given a simplicial abelian group, there is a standard associated complex.4 It
satisfies (C•F)n = (C∗F)n for all n ∈ Z. We will write the complex associated
to C•F as C∗F .

– As an example, when F is a constant presheaf taking the value A on all
U ∈ SmF , then C∗F is the complex

· · · id−→ A
0−→ A

id−→ A
0−→ A −→ 0 −→ 0 −→ · · ·

It is quasi-isomorphic to the complex with A concentrated in degree 0.
– Note, however, that Z(1) below is not constant. We will work on relating

Z(1) to something “more” constant in §3.

We apply these constructions in the definition of Z(1).

2It was written as L(X) in talk 7. See also [MVW06, p. 15].
3Those who attended the talk should take note of these items, as I bungled these in the talk.
4Apparently it is sometimes called the “alternating face map complex.”
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Definition 2.2.1. The Tate object or motivic 1-sphere is the complex of presheaves
with transfers

Z(1) := (C∗(Ztr(Gm)))[−1].

Likewise, we define the q-th motivic complex or motivic q-sphere to be

Z(q) := C∗ (∧q(Ztr(Gm))) [−q].

Here ∧q denotes the cokernel of the map to Ztr((A1 \ {0})×q) from

q⊕
i=1

Ztr((A1 \ {0})×q−1)

sending (x1, . . . , xq−1) to (x1, . . . , xi−1, 1, xi, . . . , xq−1) on the i-th summand.

We will attempt to give some motivating comments explaining what is going on
here, using an analogy with topological homotopy theory.

Remark 2.2.2. We attempt to explain why Z(1) can be called a “motivic 1-sphere”
and Z(q) a “motivic q-sphere.” The starting point is to aim for a (pointed) Gm to
play the role of the pointed 1-sphere (S1, ∗) in usual topological homotopy theory.
The problem is that “algebraic geometry has too few maps” for Gm to be able
to calculate homotopy groups. Therefore we move to the category of presheaves
with transfers, which has more maps, and has the flexibility to keep track of smash
products (see below) of pointed objects. The object Z(1) is simply the complex
associated to the simplicial object of maps from ∆• into (Gm, 1).

More specifically, the simplicial set C•Ztr(Gm) is analogous to the simplicial set
of singular chains of S1. And C∗Ztr(Gm) is analogous to the singular chain complex
of S1. So we expect to be able to use C∗Ztr(Gm) to calculate “π1.” We will apply
it to construct cohomology.

And while a smash product does not exist in the category of pointed schemes,
it does exist in the category of presheaves with transfers. Namely, the definition
of ∧qZtr(Gm) represents the q-th smash power of (Gm, 1), in analogy with the fact
that (Sq, ∗) is the q-th smash power of (S1, ∗).

Putting this altogether, the sequence Z(q) behaves like a spectrum (a “motivic
sphere spectrum,” I suppose), as a spectrum in topology is a sequence of topological
spaces Xi equipped with maps from the smash product Xi∧S1 → Xi+1. Evaluating
Z(q) on X ∈ SmF amounts to taking certain correspondences from X into G×qm ,
it makes sense that we are relating Z(q)(X) to cohomology. (As to any spectrum,
there is an associated cohomology theory given by taking maps into it.)

We also observe that this grading according to the q in Z(q) makes sense as a
cohomological grading, but then there is another grading by the degree p in sheaf
cohomology that will appear shortly.

Remark 2.2.3. As noted in talk 7, and in light of the previous remark, we want the
cohomology of motivic objects like Z(1) to be homotopy invariant. This is verified
in [MVW06, Cor. 2.19].

Of course the motivic complexes Z(q) have many extra properties and structures.
For example, there is a product Z(q)⊗ Z(q′)→ Z(q + q′) that is commutative and
associative up to homotopy (see e.g. [MVW06, Constr. 3.11]). But for today’s
purposes we mainly need the following.
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Lemma 2.2.4. Let X ∈ SmF . The restriction Z(q)X of Z(q) to the (small) Zarski
site over X is a complex of sheaves. Likeiwse, Z(q) is sheafy for the étale topology
on SmF .

Proof. This follows directly from Ztr(T ) being a sheaf for these topologies for any
F -scheme T . See [MVW06, Lemmas 3.2 and 6.2], and also §3. �

Now we can give our (relatively!) lowbrow definition of motivic cohomology.

Definition 2.2.5. Let X ∈ SmF . The motivic cohomolology Hp,q(X,Z) is defined
to be the hypercohomology in the Zariski topology on X of Z(q), i.e.

Hp,q
mot(X,Z) := Hpzar(X,Z(q)X).

Remark 2.2.6. As eluded to above, it is a non-trivial theorem that the incarnation
of Z(q) presented in talk 7 represents these motivic cohomology groups. For exam-
ples of motivic cohomology groups that can be computed without a great deal of
difficulty, see [MVW06, Lecture 4]. We will discuss some aspects of this when we
investigate Z(1) in §3.

2.3. Relationship with Milnor K-theory. One of the main desiderata for mo-
tivic cohomology is the following relationship with Milnor K-theory, which is our
first indication of how one hopes to prove the Bloch-Kato conjecture using motivic
cohomology.

Theorem 2.3.1. For any field F and n ≥ 0, we have

Hn,n
mot(SpecF,Z) ∼= KM

n (F ).

We will aim to illustrate the proof later in this talk (initially in §3, and concluding
in §5). The impatient reader can immediately turn to [MVW06, Lecture 5] as a
reference.

2.4. Étale motivic cohomology. While motivic cohomology arises in the Zariski
topology, so that Milnor K-theory is a Zariski hypercohomology group, we already
know that the Galois cohomology appearing in the Bloch-Kato conjecture is an
étale cohomology group. So we expect some étale realization of motivic cohomoogy.
Because we have already discussed that the motivic complexes Z(q) are also sheafy
for the étale topology on SmF , we can do this without delay.

We especially follow [MVW06, Lecture 10] here.

Definition 2.4.1. The étale motivic cohomology of X ∈ SmF is the hypercoho-
mology in the Zariski topology of Z(q), i.e.

Hp,q
L (X,Z) := Hpét(X,Z(q)|Xét

).

Here the “L” stands for “Lichtenbaum,” as he is credited with envisioning this
construction.

The following result gives us a relationship with conventional étale cohomology.

Theorem 2.4.2. For m ≥ 1 such that char(F ) - m, and X ∈ SmF ,

Hp,q
L (X,Z/m) ∼= Hp

ét(X,µ
⊗q
m )

for all p ∈ Z, q ∈ Z≥0.

The proof will be discussed in §5.1.
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Remark 2.4.3. This theorem is to-be-expected given the discussion of realization
functors on motivic cohomology discussed at the end of talk 7. Indeed, `-adic étale
cohomology is built out of Hp

ét(X,µ
⊗q
m ) for m = `a.

The following particular case is relevant for the Bloch-Kato conjecture.

Corollary 2.4.4. For char(F ) - m and some n ≥ 0,

Hn,n
L (SpecF,Z/m) ∼= Hp(GF , µ

⊗n
m ).

2.5. The Bloch-Kato conjecture restated in terms of motivic cohomology.
With Theorem 2.3.1 and Corollary 2.4.4 in hand, we have a new way to understand
the map ηm,n between the actors in the Bloch-Kato conjecture. Namely, we have
the morphism of sites αX : XÉt → XZar inducing maps Hp,q

mot(X,A)→ Hp,q
L (X,A)

for an abelian group A – from motivic cohomology to étale motivic cohomology.
Unsurprisingly, the resulting map in the case p = q = n and X = SpecF is
compatible with the map η of the the motivic Bloch-Kato conjecture.

Lemma 2.5.1. For n ≥ 0 and char(F ) - m ≥ 1, the square

Hn,n
mot(SpecF,Z/m)

αF //

��

Hn,n
L (SpecF,Z/m)

��
KM
n (F )/m

ηm,n // Hp(GF , µ
⊗n
m )

commutes.

Proof. This lemma will follow from the discussion of the case n = 1 appearing in
§3. �

Therefore, assuming Theorem 2.3.1 and Corollary 2.4.4, we have the following
equivalent formulation of the Bloch-Kato conjecture.

Theorem 2.5.2. Let m ≥ 1 such that char(F ) - m. The map (SpecF )’Et →
(SpecF )Zar induces an isomorphisms, for all n ≥ 0,

Hn,n
mot(SpecF,Z/m)

∼−→ Hn,n
L (SpecF,Z/m).

Therefore, the remaining goals of this talk are to illustrate as much as possible
of the proofs of the following three statements.

Motivic-Milnor i.e. Theorem 2.3.1, that motivic cohomology Hn,n
mot(SpecF,Z) realizes Mil-

nor K-theory KM
n (F ).

– For this, see §5 for a reference.
Motivic-Galois i.e. Corollary 2.4.4, that étale motivic cohomolgogy Hn,n

L (SpecF,Z/m) re-
alizes Galois cohomology Hn(GF , µ

⊗n
m ) when char(F ) - m.

– For this, see §5.1.
• Theorem 2.5.2.

– For this, see §4.

3. Explicating Z(1): “motivic Kummer theory”

Both Motivic-Milnor and Motivic-Galois relations have a common starting point,
which is understanding the Tate object motivic complex, known as Z(1). We mainly
follow [MVW06, Lecture 4]. This amounts to a motivic setting of Kummer theory,
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and immediately gives rise to facts about motivic cohomology that are of interest
independent of the Bloch-Kato conjecture.

This study, combined with a brief calculation, will result in the proof of the
Motivic-Galois relation and Motivic-Milnor relations in degree n = 1 only. We will
discuss general n in §5.

The reason that we are especially dwelling on Z(1) is that it is a fitting laboratory
to see how motives and correspondences are related to objects we are used to
approaching from other perspectives. The proof of Theorem 3.1.1 is the most
detail we will give in these notes.

3.1. The main result on Z(1). Our goal is to illustrate this theorem. First we
state it and observe some consequencs. We follow [MVW06, Lecture 4] very closely,
so here we give the main points and refer the reader to loc. cit. for further details.

Theorem 3.1.1. There is a quasi-isomorphism of complexes of presheaves with
transfers

Z(1)
∼−→ O×[−1].

Firstly we should note that the transfers on O× are not completely obvious from
the start. Indeed, it is not representable as the presheaf with transfers Ztr(Gm)
arising from Gm, even though O×(X) = Gm(X) as groups. When we write O×,
we are considering the transfers to arise from the norm map on functions fields
[MVW06, Ex. 2.4]).

3.2. Consequences of Theorem 3.1.1. Here are some immediate consequences
of the theorem.

Corollary 3.2.1. Let X ∈ SmF .

(1) H1,1
mot(X,Z) ∼= H1,1

L (X,Z) ∼= O×(X).

(2) H2,1
mot(X,Z) ∼= Pic(X).

(3) Hp,1
mot(X, |Z) = 0 for p 6= 1, 2.

We can also deduce some consequences toward the Bloch-Kato conjecture. Ap-
plying the theorem, we have

Z/m(1) ' O×[−1]⊗L
Z Z/m = [O× m−→ O×],

where the complex is concentrated in degrees 0 and 1. Computing with this, we
have

Corollary 3.2.2. There is a quasi-isomorphism of étale sheaves Z/m(1)ét
∼= µm,

where (−)ét denotes étale sheafification.

From this we can derive the Motivic-Galois relation (Corollary 2.4.4) in degree
n = 1. Combining this with Corollary 3.2.1, we can deduce that the Zariski to étale
motivic cohomology map in H1,1

(−)(SpecF,Z) realises the Bloch-Kato conjecture in

the already-known case n = 1.
Because no aspect of the extension of these results to n > 1 is trivial, further

discussion in this direction is delayed to §5.
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3.3. Beginning the proof of Theorem 3.1.1: Constructions. The main con-
structions of the proof are a presheaf with transfers M and a map λ. Throughout
this discussion, we let t denote the standard coordinate on P1 ⊃ A1 ⊃ A1 \ {0}.

Definition 3.3.1. Let M denote the functor (and, one readily observes, Zariski
sheaf) SmF → Ab sending X to the group of rational functions on X ×P1 that are
regular in an open neighborhood of X × {0,∞} and equal to 1 on X × {0,∞}.

We want there to be a morphism of presheaves with transfersM ↪→ Ztr(A1\{0})
given by sending f ∈ M(X) to the Weil divisor of D(f) on X × A1 of f |X×A1 . It
will then be clear enough that this is a monomorphism. The least obvious part of
this claim is that D(f) is finite and surjective over X. The proof is straightforward
and appears in [MVW06, Lem. 4.3]: reducing to the affine case X = SpecA, one
can find that f is a ratio of elements of A[t] and check that these two polynomials
have the same degree with leading coefficients in A×.

The following basic lemma will be useful for understanding the image of M ↪→
Ztr(A1 \ {0}). I am elaborating on it because I found its very quick treatment in
the proof of [MVW06, Lem. 4.4] confusing at first.

Lemma 3.3.2. Given some Z ∈ Cor(X,A1), there exists a unique rational function
f on X×P1 and an integer n such that the Weil divisor of its restriction to X×A1

satisfies D(f |X×A1) = Z and (f/tn)|X×∞ = 1, where t is the coordinate on P1.

Proof. The main input to the proof of this lemma is that there is an isomorphism
Pic(X × P1) ∼= Pic(X) × Pic(P1), the rightward map arising from restriction on
the factors and the leftward map sending a line bundles L/X, L′/P1 to L � L′.
Consequently, the following a priori right exact sequence (see e.g. [Har77, Prop.
II.6.5]5)

Pic(X × {∞}) −→ Pic(X × P1) −→ Pic(X × A1) −→ 0

is actually short exact. Therefore we have an induced isomorphism Pic(X ×A1)
∼→

Pic(P1). Applying this isomorphism to divisors, we find that any divisor in X×A1,
thought of as a divisor in X × P1, is linearly equivalent to a divisor that is a
multiple n of X × {∞}. Therefore, thinking of Z as a divisor of X × P1, there
exists f ∈ F (X × P1) and n ∈ Z such that D(f) = Z + n(X × {∞}). As any
non-constant rational function on P1 has a non-trivial divisor, there is a unique
unit u ∈ O×(X × P1) such that uf/tn|X×{∞} = 1. �

Definition 3.3.3. For each X ∈ SmF , we use the lemma to define a map of abelian
groups

λ : Ztr(A1 \ {0}) −→ Z⊕O×(X)

by sending Z ∈ Cor(X,A1 \ {0}) to

Z 7→ (n, (−1)nf(0)),

where f, n are associated uniquely to Z in the lemma and f(0) refers to the restric-
tion f |X×{0}. It is clear from the lemma that f(0) ∈ O×(X).

Lemma 3.3.4. There is a short exact sequence of presheaves

0 −→M −→ Ztr(A1 \ {0}) λ−→ Z⊕O× −→ 0.

5Check that this reference is appropriate.
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Proof. We have discussed above that we have an injection M ↪→ Ztr(A1 \ {0}).
The sequence is exact in the middle because those Z ∈ Ztr(A1 \ {0})(X) sent to
(0, 1) ∈ Z×O×(X) are exactly those Z where there exists (by the lemma) a unique
f ∈ F (X × P1) such that f(0) = 1, f(∞) = 1, and D(f) = Z.

The sequence is exact on the right because if one chooses u ∈ O×(X × {∞}), u
extends to X×P1 constant along the fibres and then one observes that λ(D(t−u)) =
(1, u). Similarly, λ(D(t− u)−D(t− 1)) = u), so λ is surjective. �

3.4. Properties of λ and M. The right two terms of the short exact sequence
are endowed with transfers. We want to prove the following lemma in order to
compatibly endow M with transfers as well.

Lemma 3.4.1. λ is compatible with transfers.

Proof. The source Ztr(A1 \ {0}) is representable, as is the factor Z = Ztr(SpecF )
of the target. The projection of λ onto Z is compatible with transfers because it
arises from the structure morphism A1 \ {0} → SpecF . It remains to address the
projection onto O×.

Here one may first reduce to case that X is the spectrum of a finitely generated
field over F . This is given in [MVW06, Exercise 1.13]: X ∈ SmF can be replaced
with its function field F (X). Abusing notation by writing F for such a field, and
then E/F for a finite extension, it remains to verify the compatibility with transfers

CorF (SpecE,A1 \ {0}) λ //

α

��

E×

NE/F

��
CorF (SpecF,A1 \ {0}) λ // F×.

As a special case of Lemma 3.3.2, we observe that CorF (SpecE,A1 \ {0}) ∼=
CorE(SpecE,A1

E \ {0}) (where this equivalence comes from [MVW06, Exer. 1.12])
is in bijective correspondence with elements of E(t) that can be written as a ratio of
monic polynomials f, f ′ ∈ E[t] with constant coefficients in E×. Then λ sends f/f ′

to f(0)/f ′(0). It will suffice to prove the commutativity of the square assuming
f ′ = 1, i.e. we work only with f ∈ E[t].

We see that α amounts to intersecting D(f) = V (f) ⊂ A1
E with A1

F ⊂ A1
E .

Write this intersection as α(V (f)) = V (fF ), for some monic fF ∈ F [t]. Choose a
primitive element s ∈ E so that E = F [s]/(g(s)), where g ∈ F [s] is monic. We
observe that fF (0) = λ(α(V (f))) is the constant coefficient (as a polynomial in s)
of f(0) ∈ E×. This is known to be NE/F (f(0)) = NE/F (λ(V (f))), irrespective of
the choice of s. �

Now we have the desired consequence.

Corollary 3.4.2. M has a structure of a presehaf with transfers determined by the
isomorphism M ∼→ ker(λ) of presheaves. Thus the short exact sequence of Lemma
3.3.4 is a short exact sequence in the category of presheaves with transfers.

Applying the exact functor C∗ this short exact sequence and excising the extra
copy of C∗Z (changing Ztr(A1\{0}) to Ztr(Gm)) gives rise to a short exact sequence
of complexes of presheaves with transfers

(3.4.3) 0 −→ C∗(M) −→ Z(1)[1] −→ C∗(O×) −→ 0.

The main goal of this section, Theorem 3.1.1, now follows from this final lemma.
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Lemma 3.4.4. C∗(M) is an acyclic complex. That is, for every X ∈ SmF ,
C∗(M)(X) is an acyclic complex of abelian groups.

For this proof, we use the normalized chain complex6 CDK
∗ (M) associated to the

simplicial presheaf with transfers C•(M). It is a subcomplex of C∗(M) consisting of
those elements of Cn(M) that vanish under the face maps di : Cn(M)→ Cn−1(M)
for 0 < i ≤ n. The differential on CDK

n (M) is the 0-th face map. Therefore a cycle
in CDK

n (M) is an element of Cn(M) vanishing under every face map.
A crucial property of the CDK

∗ (A•) of a simplicial abelian group A• is that
CDK
∗ (A•) ↪→ C∗(A•) is a quasi-isomorphism. That is why we can deal with

CDK
∗ (M) in place of C∗(M) in this proof.

Proof. Let f ∈ CDK
n (M)(X) be a cycle. This means that f is a regular function

on some open neighborhood of

Z := X ×∆n × {0,∞} ⊂ X ×∆n × P1

that vanishes on Z as well as on every face ' X ×∆n−1 × P1. Now consider that
hX(f) := 1− t(1− f) is an element of C∗(M)(A1 ×X), where t is the coordinate
on A1. Moreover, it follows from our discussion of what a cycle is in CDK

n (M)(X)
that hX(f) is a cycle in CDK

n (M)(A1 × X). We claim that hX(f)|t=0 = 1 and
hX(f)|t=1 = f are chain homotopic in Cn(M)(X). The lemma follows from the
claim, because CDK

∗ produces a subcomplex of C∗ and all boundaries in C∗ are also
in CDK

∗ .
It remains to prove the claim. In fact this is a general lemma that is useful

for observing that certain presheaves with transfers are homotopy invariant, so we
separate it off. �

Lemma 3.4.5. Let F be a presheaf and let X ∈ SmF . Then the maps

i∗0, i
∗
1 : C∗(F)(A1 ×X) −→ C∗(F)(X)

are chain homotopic.

Proof. Omitted. �

Remark 3.4.6. This lemma appears as [MVW06, Lem. 2.18], and the reader can see
in that context the relation of this lemma to homotopy invariance of presheaves.
We omit the proof as I feel that I have especially little to add on this point.

3.5. Conclusion of the proof of Theorem 3.1.1. One final observation is
needed.

Proof. We have a short exact sequence of complexes of presheaves with trans-
fers (3.4.3). Lemma 3.4.4 tells us that C∗λ induces a quasi-isomorphism Z(1)

∼→
C∗(O×)[−1]. It remains to observe that C∗(O×) is quasi-isomorphic to O×. This

follows from the fact that O×(X×An)
∼→ O×(X) for all n ∈ N and X ∈ SmF , along

with the observation that C∗(A•) of a constant simplicial abelian group A• = A is
quasi-isomorphic to the complex with A concentrated in degree 0. �

6It is also known as the Moore complex.
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4. Outline of the proof of the conjecture

Having completed the Motivic-Milnor relation and the Motivic-Galois relation,
it remains to show Theorem 2.5.2, i.e. the statement that

αF : Hn,n
mot(SpecF,Z/m)→ Hn,n

L (SpecF,Z/m)

is an isomorphism. In this we follow [Kah97].

4.1. Reduction steps. First we give some reduction steps that do not require
motivic cohomology, following [Kah97, §1.2]. The conclusion of the reduction will
be that we can address only primes m = ` and fields F of characteristic zero.

Proposition 4.1.1. Let n ≥ 0.

(1) Let m1,m2 ≥ 1, not divisible by char(F ) and such that (m1,m2) = 1. Then
K(n,m1m2, F ) is equivalent to (K(n,m1, F ) and K(n,m2, F )).

(2) For char(F ) - m and E/F of degree prime to m, K(n,m,E)⇒ K(n,m,F ).
(3) Let ` be a prime number, ` 6= char(F ). Then K(n− 1, `, F ) and K(n, `, F )

imply K(n, `v, F ) for all v ≥ 1.

Proof. See [Kah97, Prop. 1.1]. �

Proposition 4.1.2. Let E be a complete discrete valuation field with residue field
F . Then for all m ≥ 1 such that char(F ) - m and for all n ≥ 1,

K(n,m,E) ⇐⇒ (K(n,m,F ) and K(n− 1,m, F )).

Proof. We have a map F× → E×/m(E×) defined by choosing lifts from F× to
O×E . It is unique because any two choices of a lift have ratio equal to a unit of O×E
reducing to 1 ∈ F×, and any such unit has an m-th root in O×E by Hensel’s lemma
and the fact that char(F ) - m. This map extends to a map of commutative graded
rings

KM (F ) −→ KM (E)/m.

Next we rely on this lemma of Milnor [?, Lem. 2.1]: given a choice of uniformizer
π ∈ E, there exists a unique group homomorphism

KM
n (E) −→ KM (F )

mapping {π, u2, . . . , un} to {u2, . . . , un}, where the ui vary over elements of O×E .
Then one checks that

0 −→ KM
n (F )/m −→ KM

n (E)/m −→ KM
n−1(F ) −→ 0

is a short exact sequence.
We now construct a corresponding short exact sequence in Galois cohomology,

following [Ser02, p. 111]. We use the splittable short exact sequence of Galois
groups

1 −→ IE −→ GE −→ GF −→ 1.

It is clear enough that µm is an unramified GE-module, and it follows that the
Hochschild-Serre spectral sequence degenerates, resulting in short exact sequences

0 −→ Hn(GF , µ
⊗n
m ) −→ Hi(GE , µ

⊗n
m ) −→ Hi−1(GF ,Hom(I, µ⊗nm )) −→ 0.

Finally, we note that a choice of uniformizer π ∈ F results in an isomorphism
Hom(I, µ⊗nm )

∼→ µ⊗n−1
m .

Now we consider the maps η between the elements of these short exact sequences.
Each of these short exact sequences relied on a choice of a uniformizer π ∈ F , and
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it can be checked that a common choice of uniformizer results in η defining a map
of short exact sequences.

An isomorphism of the middle arrow amounts to K(n,m,E), while (K(n,m,F )
and K(n − 1,m, F )) amount to isomorphisms of the outer two arrows. So the
proposition follows from the five lemma. �

Corollary 4.1.3. K(n,m) =⇒ K(n− 1,m).

Proof. Apply the proposition to the discrete valuation field F ((t)). �

Corollary 4.1.4. K(n,m) in characteristic zero implies K(n,m) in all character-
istics (prime to m).

Proof. Assume that F has positive characteristic. Upon a reduction step [Kah97,
Prop. 1.1(b)], one may assume that F is perfect. Then one may take E to be the
fraction field of the Witt ring of F and apply the propositions above. �

4.2. Motivic Hilbert theorem 90. As a result of the reduction steps we have
just discussed, it suffices to restrict to studying K(n, `, F ) for primes ` and F of
characteristic zero. Also, we can work by induction on n. We are aiming towards
the motivic translation of the Bloch-Kato conjecture, Theorem 2.5.2.

Here is a main claim toward proving Theorem 2.5.2.

Theorem 4.2.1 (Motivic Hilbert theory 90, i.e. HT90). Let ` be a prime number
and assume that char(F ) = 0. Let n ≥ 0. For all p ≤ n,

Hp+1,p
L (SpecF,Z(`)) = 0

We write H90(n, `) for the veracity of this theorem for a particular n and `.

Example 4.2.2. Using the Motivic-Galois relation, we record cases of motivic
Hilbert theorem 90 that we already know.
H90(0, `) amounts to H1(GF ,Z(`)) = 0, which is clear because GF is profinite.

H90(1, `) amounts to H1
ét(SpecF,Gm)⊗Z(`) = 0, which follows from the classical

Hilbert theorem 90, H1(GF , F
×

) = 0.

It turns out that HT90(n, `) implies that motivic cohomology and étale motivic
cohomology (of any smooth variety) are identical in many cases. We formulate this
as follows.

Let α denote the morphism from the étale site to the Zariski site on SmF . Our
maps Hmot → HL arise from Z(q) 7→ α∗Z(q).

Definition 4.2.3. Let B(n) denote the Zariski sheaf τ≤n+1Rα∗α
∗Z(n). We denote

by Bn the natural morphism

Bn : Z(n)→ B(n).

Theorem 4.2.4. The following are equivalent.

(1) HT90(n, `) is true.
(2) For all p ≤ n, (Bp)⊗ Z(`) is a quasi-isomorphism.

Remark 4.2.5. Here is a more concrete interpretation of condition (2), demonstrat-
ing the broad impact of HT90(n, `). It means that

Hp,q
mot(X,Z/`)

α∗

−→ Hp,q
L (X,Z/`)
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is an isomorphism with q ≥ 0 and p ≤ q ≤ n; and it is a monomorphism for
p−1 = q ≤ n.7 The Milnor conjecture is merely the case p = q = n and X = SpecF .

Proof. We have seen firsthand that Z(n) is concentrated in degree ≤ n, so it is clear
that (2) implies (1).

Of course (1) implies (2) is more interesting, but we simply refer to [Kah97,
Thm. 2.3] for now. �

Remark 4.2.6. The easy vanishing properties of H∗,∗mot and H∗,∗L are different. For
example, for A an abelian group, Hp,q

mot(X,A) = 0 for p > q+dimX [MVW06, Thm.
3.6]; in particular, Hp,q

mot(SpecF,A) = 0 for p > q. In contrast, this is non-trivial

for Hn+1,n
L (SpecF,A): HT90 is an example.

4.3. Discussion of the strategy. With the role of motivic Hilbert theorem 90 in
place, we can give an outline of the remainder of the proof, following [Dug04, §2.2].

(1) Prove HT90(n, `) for “big fields,” i.e. those with no extensions of degree
prime to `, and also satisfying `KM

n (F ) = KM
n (F ).

(2) If F were some other counterexample to HT90(n, `) (but we have assumed
HT90(n− 1, `)), produce a “bigger” counterexample, eventually producing
a counterexample for the “big fields” of step (1).

4.4. Proof of the conjecture for “big fields”. To be written. See [Kah97, §3].
Here is the main result.

Theorem 4.4.1. Let char(F ) = 0 and let ` be prime. We fix n ≥ 0. Assume that
F has no extensions of degree prime to ` and also that `KM

n (F ) = KM
n (F ). Then

HT90(n− 1, `)⇒ HT90(n, `).

Thus, for fields F that are “big” (i.e. they satisfy the conditions of the theorem),
we can prove the Bloch-Kato conjecture at the prime `.

The proof of the theorem is not trivial, but reduces to calculations in Galois
cohomology.

4.5. Making counterexamples “bigger”. For concreteness, and due to follow-
ing [Dug04, §2.6], we restrict to the case ` = 2.

Suppose that F has characteristic zero and is a counterexample to HT90(n, 2),
despite satisfying HT90(n′, 2) for n′ ≤ n− 1. Proposition 4.1.1(2) implies that any
odd degree extension of F is also a counterexample, so we may assume that F has
no such extensions. Thus Theorem 4.4.1 implies that 2KM

n (F ) 6= KM
n (F ).

Choose some a = {a1, . . . , an} ∈ KM
n (F ) \ 2KM

n (F ). Next, we want to find a
splitting variety for a.

Definition 4.5.1. A splitting variety for a ∈ KM
n (F ) is an object of SmF such

that a ∈ 2KM
n (F (X)).

The extension F (X)/F is the “bigger” extension advertised above. In fact, the
composite of F (X) all a and X = Xa provides exactly such an extension.

Here is the exact X that we will use.

7Check this statement of [Dug04, Prop. 2.4].
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Definition 4.5.2. Let φ : {0, . . . , 2n−1 − 1} ∼→ P({1, . . . , n − 1}) be a bijection,
where P denotes power set. Given a ∈ KM

n (F ), we let Qa be the projective quadric

in P2n−1

given by 2n−1−1∑
i=0

x2
i

∏
j∈φ(i)

(−aj)

− anx2
2n−1 = 0.

Proposition 4.5.3. Qa is a splitting variety for a.

Proof. See [Kah97, Thm. 4.13]. �

4.6. The argument. Now we summarise the remainder of the argument to prove
HT90(n, 2). What remains to prove is

Proposition 4.6.1. If HT90(n, 2, F ) is false and HT90(n− 1, 2, F ) is true, then
HT90(n, 2, F (Qa)) is false. More specifically,

Hn+1,n
L (SpecF,Z(2)) −→ Hn+1,n

L (SpecF (Qa),Z(2))

is injective.

We now summarise the proof of the proposition, basically repeating the summary
given in [Dug04, §2].

(1) Consider the Čech complex ČQa of Qa, which is a simplicial F -scheme homo-

topy equivalent to SpecF . It turns out that this means that ČQa ' SpecF in

the étale world (i.e. ČQa is “étale contractible”), but this is not necessarily so
in the Zariski = motivic setting. Therefore we have that all of the étale motivic
cohomology groups of SpecF and ČQa are identical, and, in particular,

Hn+1,n
L (SpecF,Z(2))

∼−→ Hn+1,n
L (ČQa,Z(2)).

This is purely homotopy theory and étale descent, and has nothing to do with
our special choice of Qa.

(2) Let C̃ be defined by the cofiber sequence

ČQa −→ SpecF −→ C̃,

so the reduced motivic cohomology of C̃ calculates the difference between the
motivic cohomology of ČQa vs. SpecF . Using a long exact sequence in the

degree p of Hp,q
mot, and the fact that Hi,n(SpecF,Z) = 0 for i > n,8 we have

Hn+1,n
mot (ČQa,Z(2))

∼−→ H̃n+2,n
mot (C̃,Z(2)).

The fact that Qa has a point valued in a degree 2 extension of F , along with
Proposition 4.1.1(2), implies that this group is 2-torsion. So it will suffice to
show that the image of

H̃n+2,n
mot (C̃,Z(2)) −→ H̃n+2,n

mot (C̃,Z/2)

is zero.
(3) Now we prepare to apply Steenrod operations on motivic cohomology with

coefficients in Z/2. These consist of the Bockstein homomorphism with bi-

degree (1, 0) and maps Sq2i

of bi-degree (2i, 2i−1) for i ≥ 1. Milnor modified
these to produce operators Qi of bi-degree (2i+1 − 1, 2i − 1).

8As the complex defining Z(n) is concentrated in degrees ≤ n, recall.
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(4) We use this input, which again is not specific to Qa, but simply applies to
quadrics.

Proposition 4.6.2. Let X ⊂ P2n

be a smooth quadric and define C̃X by the
cofiber sequence

ČX −→ SpecF −→ C̃X.

Then for i ≤ n, every element of Hi,n
mot(C̃X,Z/2) killed by Qi is also in the

image of Qi.

Dugger tells us that the tools to prove this result are the Steenrod opera-
tions, along with basic properties of quadric and motivic cohomology.

(5) Finally, we use this input, which is where the motivic approach finally pays off
by using input from geometry about Qa.

Proposition 4.6.3.

H̃2n,2n−1

mot (C̃,Z(2)) = 0.

Proof. This is a result of Voevodsky, using the a result of Rost that the motive
of Qa has a certain direct summand. �

(6) Now we complete the proof as follows. I appreciate Dugger’s concrete example
of the argument: for concreteness let n = 4, so we want to show that certain
elements in H̃6,4

mot(C̃,Z/2) are zero.
Dugger observes that the induction hypothesis, applied as in Remark 4.2.5,

implies that

H̃p,q
mot(C̃,Z/2) = 0 for p ≤ q ≤ n− 1.

Applying these vanishings in small degrees, along with Proposition 4.6.2, we
get that both

Q1 : H6,4 −→ H9,5 and Q2 : H9,5 → H16,8

are injective. Altogether we inject Q2 ◦ Q1 : H̃6,4
mot(C̃,Z/2) ↪→ H̃16,8

mot (C̃,Z/2),
but elements in the target coming from cohomology with Z(2)-coefficients is
zero, by Proposition 4.6.3.

5. The Motivic-Milnor and Motivic-Galois relations

The goal of this section is to illustrate, to some extent, the proof of the Motivic-
Milnor and Motivic-Galois relations: Theorem 2.3.1 and Corollary 2.4.4. We hoped
to be relatively thorough in discussing Motivic-Milnor, following [MVW06, Lecture
5], but have decided to put this online as more time has passed without doing this.
We will only give an outline of Motivic-Galois relation.

5.1. The Motivic-Galois relation: sketch of the proof. We will actually
sketch the proof of the isomorphism

(5.1.1) Hp,q
L (X,Z/m) ∼= Hp

ét(X,µ
⊗q
m )

(where m ≥ 1 such that char(F ) - m, and X ∈ SmF ) of Theorem 2.4.2, of which
the Motivic-Galois relation needed for the Bloch-Kato conjecture is just the special
case X = SpecF .

All that it needed is to prove
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Theorem 5.1.2. For all q ≥ 0, m ≥ 1 such that char(F ) - m, and X ∈ SmF , we
have an quasi-isomorphism of complexes of étale sheaves

Z/m(q)|Xét
∼= µ⊗qm .

We have given a full proof of this theorem for q = 1, finishing in Corollary 3.2.2.
Thus we already know (5.1.1) for q = 1 and arbitrary p.

One might suspect that Theorem 5.1.2 arises from simply taking tensor powers
of this relation. This is indeed the case – the catch is that one has to make sense
of this tensor product. So, here, we will simply list the steps involved, based on a
cursory reading of [MVW06]. The interested reader should definitely go directly to
this source. As in talk 7 in this series, dealing with the tensor product is non-trivial.

• Show that étale sheafification preserves transfers [MVW06, Lecture 6].
• Produce a tensor product on the derived category of étale sheaf with trans-

fers [MVW06, Lecture 8], so that we can make sense of Z(1)⊗qét .
• Set up A1-weak equivalence in this category, appropriately setting up A1-

homotopy equivalence [MVW06, Lecture 9]. For objects known as A1-local,
Homs into them from weakly equivalent objects are identifiable.
• Prove that

– Both µ⊗qm and Z/m(q) are A1-local;
– Using the multiplication map Z(1)⊗q → Z(q) (not discussed in these

notes; see [MVW06, Const. 3.11]), produce µ⊗qm → (Z/m)(1)⊗qét →
(Z/m)(q)ét and show that the composite is a A1-weak equivalence,

from which Theorem 5.1.2 follows.

5.2. Beginning the proof of the Motivic-Milnor relation. Unfortunately I
have not yet written this. See [MVW06, Lecture 5] for the proof.
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No. 834, 5, 379–418, 1997. Séminaire Bourbaki, Vol. 1996/97.
[MVW06] Carlo Mazza, Vladimir Voevodsky, and Charles Weibel. Lecture notes on motivic coho-

mology, volume 2 of Clay Mathematics Monographs. American Mathematical Society,

Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2006.
[Ser02] Jean-Pierre Serre. Galois cohomology. Springer Monographs in Mathematics. Springer-

Verlag, Berlin, english edition, 2002. Translated from the French by Patrick Ion and
revised by the author.

[Sha16] Romyar Sharifi. Group and Galois cohomology. Lecture notes, available at http://

math.ucla.edu/~sharifi/groupcoh.pdf, 2016.

Department of Mathematics, Imperial College London, London SW7 2AZ, UK
E-mail address: c.wang-erickson@imperial.ac.uk

http://math.ucla.edu/~sharifi/groupcoh.pdf
http://math.ucla.edu/~sharifi/groupcoh.pdf

