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In Analysis
there are no theorems

only proofs
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In PDE
notation is a mess
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Basic formulas and concepts we’ll use a lot

Integration by parts, Greens Theorem, Stokes theorem. If Ω ⊂ Rn is a (nice) open
bounded set with outwards facing unit normal ν = (ν1, . . . , νn) : ∂Ω → Sn−1 (Sn−1 are
simply the vectors v ∈ Rn with |v| = 1, i.e. the unit sphere) and f, g are (nice) functions
then we have for any α ∈ {1, . . . , n}

(0.1)
∫

Ω
f ∂αg =

∫
∂Ω
fg να −

∫
Ω
∂αf g

Observe that if n = 1 and Ω = (a, b) then ν(a) = −1 and ν(b) = +1, and then we have the
usual one-dimension integration by parts formula

(0.2)
∫

(a,b)
f ∂αg = f(b)g(b) − f(a)g(a) −

∫
(a,b)

∂αf g

• works also for Rn or unbounded set Ω – as long as
lim

|x|→∞
f(x) = lim

|x|→∞
g(x) = 0

• Green’s formula (divergence theorem) is normaly written for vector fields G =
(G1, G2, . . . , Gn) : Ω → Rn,∫

Ω
div (G) =

n∑
α=1

∫
Ω

1 ∂αG =
n∑

α=1

∫
∂Ω
ναGα −

n∑
α=1

∫
Ω

(∂α1)︸ ︷︷ ︸
=0

Gα =
∫

∂Ω
G · ν

Exercise 0.1. Use Green’s formula∫
Ω

div (G) =
∫

∂Ω
G · ν

to prove the integration by parts formula (0.1) .

Exercise 0.2. Use (0.2) to show (0.1)

(You can use pictures and a simple set Ω – I care about the idea, not the most general
case)

Polar coordinates. Let f : B(0, R) → Rn (nice) then

(0.3)
∫

B(0,R)
f(x)dx =

∫ R

0

∫
∂B(0,ρ)

f(θ) dθ dρ

This is actually Fubini’s theorem (or Cavalieri’s principle), and really isn’t that related to
polar coordinates (well, there is a sphere...) We call it polar coordinates anyways. By a
substitution we can write this as

(0.4)
∫

B(0,R)
f(x)dx =

∫ R

0
ρn−1

∫
∂B(0,1 )

f(ρθ) dθ dρ

Exercise 0.3. Prove (0.4) using (0.3)
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Figure 0.1. M is a (sub-)manifold iff around any point x there exist a
chart Φ

A special case is the case when f : B(0, R) → R is radial. f is called radial if f(x) = f(Qx)
for all rotation matrices Q ∈ O(n) (i.e. Q ∈ Rn×n, QtQ = I).

Exercise 0.4. Show that if f is radial then there exists g : [0,∞) → R such that

f(x) = g(|x|).

Thus, one often writes “f radial” as “f(x) = f(|x|)” (this is an idiotic notation, but we’ll
still use it).

If f is radial then

(0.5)
∫

B(0,R)
f(x)dx =

∫ R

0
ρn−1f(ρ)dρ|∂B(0, 1)|,

where |∂B(0, 1)| denotes the area of ∂B(0, 1), i.e. |∂B(0, 1)| = Hn−1(∂B(0, 1)).

Exercise 0.5. Show (0.5) using (0.4) or (0.3)

Regular sets

We are often going to talk about open sets Ω with smooth boundary, ∂Ω ∈ Ck or ∂Ω ∈ C∞

or similar. When we say Ω ⊂ Rn with ∂Ω ∈ Ck we mean that M := ∂Ω is a Ck-manifold.
That is, for each x ∈ ∂Ω there exists a small ball B(x, r) ⊂ Rn and an associated chart
Φ : B(x, r) → Rn, which must be a Ck-diffeomorphism (Φ is invertible and Φ,Φ−1 are
Ck-maps in their respective domain) and

Φ(B(x, r) ∩ ∂Ω) ⊂ Rn
+ = {(x′, xn) ∈ Rn : xn > 0}

and
Φ(B(x, r) \ ∂Ω) ⊂ Rn

− = {(x′, xn) ∈ Rn : xn ≤ 0}

and Φ(x) = 0. Cf. Figure 0.1.
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Part 1. PDE 1

1. Introduction and some basic notation

When studying Partial Differential Equations (PDEs) the first question that arises is: what
are partial differential equations.

Let Ω ⊂ Rn be an open set and u : Ω → R be differentiable. The partial derivatives ∂1 is
the directional derivative

∂1u(x) ≡ ∂x1u(x) = d

dx1
u(x) = d

dt

∣∣∣∣
t=0
u(x+ te1),

where e1 = (1, 0, . . . , 0) is the first unit vector. The partial derivatives ∂2, . . . ∂n are defined
likewise.

Sometimes it is convenient to use multiinidces: an n-multiindex γ is a vector γ = (γ1, γ2, . . . , γn)
where γ1, . . . , γn ∈ {0, 1, 2, . . . , }. The order of a multiindex is |γ| defined as

|γ| =
n∑

i=1
γi.

For a suitable often differentiable function u : Ω → R and a multiindex γ we denote with
∂γu the partial derivatives

∂γu(x) = ∂γ1
x1∂

γ2
x2 . . . ∂

γn
xn
u(x).

For example, for γ = (1, 0, 0, . . . , 0) we have
∂γu(x) = ∂x1u,

i.e. a partial derivative of first order; and for γ = (1, 2, 0, . . . , 0) we have
∂γu = ∂122u ≡ ∂1∂2∂2u,

i.e. a partial derivative of 3rd order.

The collection of all partial derivatives of k-th order of u is usually denoted byDku(x) ∈ Rnk

or (the “gradient”) ∇ku. Usually these are written in matrix form, namely
Du(x) = (∂1u(x), ∂2u(x), ∂3u(x), . . . , ∂nu(x))

and

D2u(x) = (∂iju)i,j=1,...n ≡


∂11u(x) ∂12u(x) ∂13u(x) . . . ∂1nu(x)
∂21u(x) ∂22u(x) ∂23u(x) . . . ∂2nu(x)

... ...
∂n1u(x) ∂n2u(x) ∂n3u(x) . . . ∂nnu(x)


Definition 1.1. Let Ω ⊂ Rn an open set and k ∈ N ∪ {0}. A partial differential equation
(PDE) of k-th order is an expression of the form
(1.1) F (Dku(x), Dk−1u(x), Dk−2u(x), . . . , Du(x), u(x), x) = 0 x ∈ Ω,
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where u : Ω → R is the unknown (also the “solution” to the PDE) and F is a given
structure (i.e. map)

F : Rnk × Rnk−1 × . . .× Rn × R × Ω → R

• (1.1) is called linear if F is linear in u: meaning if we can find for every n-multiindex
γ with |γ| ≤ k a function aγ : Ω → R (independent of u) such that
F (Dku(x), Dk−1u(x), Dk−2u(x), . . . , Du(x), u(x), x) =

∑
|γ|≤k

aγ(x)∂γu(x)

• (1.1) is called semilinear if F is linear with respect to the highest order k, namely
if

F (Dku(x), Dk−1u(x), Dk−2u(x), . . . , Du(x), u(x), x) =
∑

|γ|=k

aγ(x)∂γu(x)+G(Dk−1u(x), Dk−2u(x), . . . , Du(x), u(x), x)

• (1.1) is called quasilinear if F is linear with respect to the highest order k but the
coefficient for the highest order may depend on the lower order derivatives of u.
Namely if we have a representation of the form

F (Dku(x), Dk−1u(x), Dk−2u(x), . . . , Du(x), u(x), x) =
∑

|γ|=k

aγ(Dk−1u(x), Dk−2u(x), . . . , Du(x), u(x), x)∂γu(x)+G(Dk−1u(x), Dk−2u(x), . . . , Du(x), u(x), x)

• If all the above do not apply then we call F fully nonlinear.

We have a system of partial differential equations of order k, if u : Ω → Rm is a vector
and/or the structure function F is also a vector

F : Rm nk × Rm nk−1 × . . .× Rm n × Rm × Ω → Rℓ

for m, ℓ ≥ 1.

The goal in PDE is usually (besides modeling what PDE describes what situation) to solve
PDEs, possibly subject to side-condition (such as prescribed boundary data on ∂Ω).

This is rarely possible explicitely (even in the linear case) – which is a huge contrast to
ODE. E.g.

u′′(x) = 2u(x) x ∈ R,
then we know that u(x) = e

√
2xA, and we can compute A by prescribing some initial value

at x = 0 or similar.

Now if we try that in two dimensions, and consider
∆u(x) ≡ ∂11u(x) + ∂22u(x) = 2u(x) x ∈ B(0, 1) ⊂ R2,

it is really difficult to see what u is (observe that also the amound of initial data – e.g.
values at ∂B(0, 1) is not one, but infinitely many!

So in general the best one can hope for is address the following main questions for PDEs
are
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• Is there a solution to a problem (and if so: in what sense? – we will learn the
distributional/weak sense and strong sense)

• Are solutions unique (under reasonable assumptions like initial data, boundary
data?)?

• What are properties of the solutions (e.g. does the solution depend continuously
on the data of the problem)?

It is important to accept that there are PDEs without (classical) solutions and there is no
general theory of PDEs. There is theory for several types of PDES.

Example 1.2 (Some basic linear equations). • Laplace equation

∆u :=
n∑

i=1
uxixi

= 0.

• Eigenvalue equation (aka Helmholtz equation)

∆u = λu.

• Transport equation

∂tu−
n∑

i=1
bi∂xi

u = 0

• Heat equation
∂tu− ∆u = 0

• Schrödinger equation
i∂tu+ ∆u = 0

• Wave equation
utt − ∆u = 0

Second order linear equations are classified into elliptic, parabolic, hyperbolic PDE. Roughly
this is understood as follows. Assume that u depends on x and t, then

• elliptic means the equation is of the form

uxx + utt = G(x, y, u, ut, ux)

• parabolic means
uxx = G(x, y, u, ut, ux)

• Hyperbolic
uxx−utt = G(x, y, u, ut, ux)

or
ux,t = G(x, y, u, ut, ux)
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Let us have a generic second order linear equation

Auxx +Buxy + Cuyy +Dux + Euy + Fu = g

(for now let us assume that A,B, . . . are constant.) We can write the second-order part as

Auxx +Buxy + Cuyy =
(

A 1
2B1

2B C

)
:
(
∂xxu ∂yxu
∂xyu ∂yyu

)
,

where : denotes the matrix scalar product (sometimes: Hilbert-Schmidt product). If AC−
1
4B

2 > 0 the determinant of the coefficient matrix is positive, i.e. either the matrix has
two positive eigenvalues λ1 > 0 and λ2 > 0 or two negative eigenvalues λ1 < 0 and λ2 < 0,
and there exists orthogonal matrices P ∈ SO(2) such that

P T

(
A 1

2B1
2B C

)
P = diag(λ1, λ2).

Then we have (
A 1

2B1
2B C

)
:
(
∂xxu ∂yxu
∂xyu ∂yyu

)
= diag(λ1, λ2) : P TD2uP.

Now consider ũ(x, y) := u(P (x, y)t), then by the chain rule,

D2ũ(x, y) = P t(D2u)(P (x, y))P,

so that if we set (x̃, ỹ)t := P (x, y)t we have

λ1ux̃x̃ + λ2uỹỹ = G(u, ux, uy),

that is if AC − 1
4B

2 > 0 we can transform our equation into an elliptic equation.

Similarly, if AC − 1
4B

2 = 0, at least one eigenvalue of the matrix in question is negative,
one is positive, so we can transform the equation into

λ1ux̃x̃−λ2uỹỹ = G(u, ux, uy),

i.e. a hyperbolic equation.

And if AC − 1
4B

2 < 0, one of the eigenvalues is zero, so that we have the structure

λ1ux̃x̃ = G(u, ux, uy),

i.e. we are parablic.

Whether one is elliptic, parabolic, hyperbolic is not purely an algebraic question – it often
determines the ways we can understand properties of the equation in question. Often we
think of elliptic equation as equilibrium or stationary equations, parabolic equations as a
flow of an energy, and hyperbolic of a wave-like equation – but this is not really always the
case, since the Schrödinger equation is parabolic in the previous sense, but it is wave-like.
It generally holds: every type of equation warrants its own methods.
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One can extend this theory, of course, to higher dimensions. If
n∑

i,j=1
Aij∂xi,xj

u+
n∑

i=1
Bi∂xi

u+ Cu = D,

then we may assume that A is symmetric (any antisymmetric part vanishes because
(∂xi,xj

u)ij is symmetric) – and thus we can discuss its eigenvalues.

• The equation is elliptic if all eigenvalues are nonzero and have the same sign.
• The equation is parabolic if exactly one eigenvalue is zero, all others are nonzero

and have the same sign.
• The equation is hyperbolic if no eigenvalue is zero, and n − 1 eigenvalues have the

same sign, and the other one has the opposite sign.

Of course there are more cases (and they may be very challenging to treat). In principle:
elliptic means the second order derivatives “move in the same direction”, parabolic means
“all but one direction move in the same direction and the remaining direction is of first
order only”, and hyperbolic “the second derivatives compete with each other”.

Of course, since in general A and B are nonconstant, the type of equation may change and
depend on the point x (e.g. tuxx + utt = 0).

Example 1.3 (Some basic nonlinear equations). • Eikonal equation

|Du| = 1

• p-Laplace equation

div (|Du|p−2Du) ≡
n∑

i=1
∂i(|Du|p−2∂iu) = 0

• Minimal surface equation

div
 Du√

1 + |Du|2

 = 0.

• Monge-Ampere
det(D2u) = 0.

• Hamilton-Jacobi
∂tu+H(Du, x) = 0

The notion of what constitutes a solution is important, as a too weak notion allows for too
many solutions, and a too strong notion of solution may allow for no solutions at all. We
illustrate this for the Eikonal equation:

Exercise 1.4. We consider different notions of solutions for the Eikonal equation:
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(1) Consider

(1.2)
|u′(x)| = 1 x ∈ (−1, 1)
u(−1) = u(1) = 0.

Show that there is no u ∈ C0([−1, 1]) ∩ C1((−1, 1)) such that (1.2) is satified.
(2) Consider instead

(1.3)
|u′(x)| = 1 all but finitely many x ∈ (−1, 1)
u(−1) = u(1) = 0.

Show that there are infinitely many solutions u ∈ C0([−1, 1]) that are differentiable
in all but finitely many points in (−1, 1) such that (1.3) is satified.

(3) Show that there is a sequence uk ∈ C0([−1, 1]) that are differentiable in all but
finitely many points in (−1, 1), such that

sup
x∈[−1,1]

|uk(x) − 0| k→∞−−−→ 0.

(4) Consider instead

(1.4)
|u′(x)| = 1 in all but one x ∈ (−1, 1)
u(−1) = u(1) = 0.

Show that there are still two solutions u ∈ C0([−1, 1]) that are differentiable in all
but at most one points in (−1, 1) such that (1.4) is satified.

In this course we will focus on the linear theory (the nonlinear theory is almost always
based on ideas on the linear theory). Almost each of the linear and nonlinear equations
warrants its own course, so we will focus on the basics (namely: mainly elliptic equations).

2. Laplace equation

2.1. Sort of a physical motivation. The following is often used to motivate Laplace’s
equation

Assume Ω is an open set in Rn (usually R3), and u describes the density of a fluid or heat
that is at an equilibrium state, i.e. no fluid is moving in or our, or not heat is exchanged
any more. This means that if we look at any subset Ω′ ⊂ Ω nothing flows out or in that
would change the density, that is ∫

∂Ω′
∇u · ν = 0.

By Green’s divergence theorem this is equivalent to saying∫
Ω′

div (∇u) = 0.
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Figure 2.1. Solve ∆u = 0 on the annulus (inner radius r = 2 and outer ra-
dius R = 4) with boundary condition g(θ) = 0 if |θ| = 2 and g(θ) = 4 sin(5σ)
for |θ| = 4 – where σ ∈ [0, 2π) is the angle such that (sin(σ), cos(σ)) = θ/|θ|.
Source: Fourthirtytwo/Wikipedia CC-SA 3

Since this happens for all Ω′ we obtain that

div (∇u) = 0

So we call div (∇u) =: ∆u and observe that ∆u = ∑n
i=1 ∂xixi

u = tr(D2u).

Often one thinks of Laplace equation ∆u = 0 in Ω as a heat distribution. Take Ω a solid,
apply some heat at its boundary: at θ ∈ ∂Ω we apply g(θ) heat. Wait until the heat had
time to fully propagate. Then the solution u : Ω → R to the Dirichlet boundary problem∆u = 0 in Ω

u = g on ∂Ω

describes the temperature u(x) at the point x ∈ Ω. Cf. Figure 2.1.

2.2. Definitions. Let Ω ⊂ Rn be an open set (this will always be the case from now on).

• We consider the homogeneous Laplace equation

(2.1) ∆u = 0 in Ω

where we recall that ∆u = tr(D2u) = ∑n
i=1 ∂iiu.

• The inhomogeneous equation (sometimes: Poisson equation) is, for a given function
f : Ω → R,

(2.2) ∆u = f in Ω

Two types of boundary problems are common:

https://commons.wikimedia.org/wiki/File:Laplace%27s_equation_on_an_annulus.svg
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• Dirichlet-problem or Dirichlet-data g : ∂Ω → R∆u = f in Ω
u = g on ∂Ω

• Neumann-problem or Neumann-data g : ∂Ω → R∆u = f in Ω
∂νu = g on ∂Ω

Here ν : ∂Ω → Rn is the outwards facing unit normal of ∂Ω. (Often this is
combined with a normalizing assumption like

∫
Ω u = 0, because u + c is otherwise

a solution if u is a solution – i.e. non-uniqueness occurs).

Definition 2.1. A function u ∈ C2(Ω) is called harmonic if u pointwise solves
∆u(x) = 0 in Ω

We also say, u is a solution to the homogeneous Laplace equation.

We say that u is a subsolution or subharmonic if
∆u(x) ≥ 0 in Ω.

If
∆u(x) ≤ 0 in Ω

we say that u is a supersolution or superharmonic.

This notion is very confusing, but it comes from the fact that −∆u is a “positive operator”
(i.e. has only positive eigenvalues).

2.3. Fundamental Solution, Newton- and Riesz Potential. There are many trivial
solutions (polynomials of order 1) of Laplace equation. But these are not very interesting.
There is a special type of solution which is called fundamental solution (which, funny
enough, is actually not a solution).

It appears when we want to compute the solution to an equation on the whole space
(2.3) ∆u(x) = f(x).
For this we make a brief (formal) introduction to Fourier transform:

The Fourier transform takes a map f : Rn → R and transforms it into Fu ≡ f̂ : Rn → R
as follows

f̂(ξ) := 1
(2π)n

2

∫
Rn
e−i⟨ξ,x⟩ f(x) dx.

The inverse Fouriertransform f∨ is defined as

f∨(ξ) := 1
(2π)n

2

∫
Rn
e+i⟨ξ,x⟩ f(x) dx.
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It has the nice property that (f∧)∨ = f .

One of the important properties (which we will check in exercises) is that derivatives
become polynomial factors after Fourier transform:

(∂xi
g)∧ (ξ) = −iξiĝ(ξ).

For the Laplace operator ∆ this implies
(∆u)∧(ξ) = −|ξ|2û(ξ).

(Side-remark: In this sense −∆ is positive operator).

This means that if we look at the equation (2.3) and apply Fourier transform on both sides
we have

−|ξ|2û(ξ) = f̂(ξ),
that is

û(ξ) = −|ξ|−2f̂(ξ),
Inverting the Fourier transform we get an explicit formula for u in terms of the data f .

u(x) = −
(
|ξ|−2f̂(ξ)

)∨
(x).

This is not a very nice formula, so let us simplify it. Another nice property of Fourier
transform (and its inverse) is that products become convolutions. Namely

(g(ξ)f(ξ))∨ (x) =
∫
Rn
g∨(x− z)f∨(z) dz.

In our case, for g(ξ) = −|ξ|−2 we get that

u(x) =
∫
Rn
g∨(x− z) f(z) dz.

Now we need to compute g∨(x− z), and for this we restrict our attention to the situation
where the dimension is n ≥ 3. In that case, just by the definition of the (inverse) Fourier
transform we can compute that since g has homogeneity of order 2 (i.e. g(tξ) = t−2g(ξ),
then g∨ is homogeneous of order 2 − n. In particular

g∨(x) = |x|2−ng∨(x/|x|).
Now an argument that radial functions stay radial under Fourier transforms leads us to
conclude that

g∨(x) = c1|x|2−n.

That is, we have arrived that (by formal computations) a solution of (2.3) should satisfy

(2.4) u(x) = c1

∫
Rn

|x− z|2−n f(z) dz.

The constant c1 can be computed explicitely, and we will check below that this potential
representation of u really is true. This potential is called the Newton potential (which is
a special case of so-called Riesz potentials). The kernel of the Newton potential is called
the fundamental solution of the Laplace equation (which, let us stress this again, is not a
solution)
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Definition 2.2. The fundamental solution Φ(x) of the Laplace equation for x ̸= 0 is given
as

Φ(x) =
− 1

2π
log |x| for n = 2

− 1
n(n−2)ωn

|x|2−n for n ≥ 2

Here ωn is the Lebesgue measure of the unit ball ωn = |B(0, 1)|.

One can explicitely check that ∆Φ(x) = 0 for x ̸= 0 (indeed, ∆Φ(x) = δ0 where δ0 is the
Dirac measure at the point zero, cf. remark 2.7).

Exercise 2.3. Show that Φ ∈ C∞(Rn \ {0}) and compute that ∆Φ(x) = 0 for x ̸= 0.

The following statement justifies (somewhat) the notion of fundamental solution: the
fundamental solution Φ(x) can be used to construct all solutions to the imhomogeneous
Laplace equation:

Theorem 2.4. Let u be the Newton-potential of f ∈ C2
c (Rn), that is

u(x) :=
∫
Rn

Φ(x− y) f(y) dy.

Here C2
c (Rn) are all those functions in C2(Rn) such that f is constantly zero outside of

some compact set.

We have

• u ∈ C2(Rn)
• −∆u = f in Rn.

Proof. First we show differentiability of u. By a substitution we may write

u(x) :=
∫
Rn

Φ(x− y) f(y) dy =
∫
Rn

Φ(z) f(x− z) dz.

Now if we denote the difference quotient

∆ei
h u(x) := u(x+ hei) − u(x)

h

where ei is the i-th unit vector, then we obtain readily

∆ei
h u(x) :=

∫
Rn

Φ(x− y) f(y) dy =
∫
Rn

Φ(z) (∆ei
h f)(x− z) dz.

One checks that Φ is locally integrable (it is not globally integrable!), that is for every
bounded set Ω ⊂ Rn,

(2.5)
∫

Ω
|Φ| < ∞.
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Indeed, (we show this for n ≥ 3, the case n = 2 is an exercise), if Ω ⊂ Rn is a bounded
set, then it is contained in some large ball B(0, R).

(2.6)
∫

Ω
|Φ| ≤ C

∫
B(0,R)

|x|2−n dx

Using Fubini’s theorem, ∫
B(0,R)

|x|2−n dx

=
∫ R

0

∫
∂B(0,r)

|θ|2−n dHn−1(θ) dr

=
∫ R

0
r2−n

∫
∂B(0,r)

dHn−1(θ) dr

=cn

∫ R

0
r2−nrn−1dr

=cn

∫ R

0
r1dr

=cn
1
2R

2 < ∞.

This establishes (2.5)

On the other hand (∆ei
h f) has still compact support for every h. In particular, by dominated

convergence we can conclude that

lim
h→0

∆ei
h u(x) =

∫
Rn

Φ(z) lim
h→0

(∆ei
h f)(x− z) dz.

that is
∂iu(x) =

∫
Rn

Φ(z) (∂if)(x− z) dz.

In the same way
∂iju(x) =

∫
Rn

Φ(z) (∂ijf)(x− z) dz.

Now the right-hand side of this equation is continuous (again using the compact support
of f). This means that u ∈ C2(Rn).

To obtain that ∆u = f we first use the above argument to get

∆u(x) =
∫
Rn

Φ(z) (∆f)(x− z) dz.

Observe that
(∆f)(x− z) = ∆x(f(x− z)) = ∆z(f(x− z)).

Now we fix a small ε > 0 (that we later send to zero) and split the integral, we have

∆u(x) =
∫
Rn

Φ(x−y) f(y) dy =
∫

B(0 ,ε)
Φ(z) (∆f)(x−z) dz+

∫
Rn\B(0 ,ε)

Φ(z) (∆f)(x−z) dz =: Iε+IIε.
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The term Iε contains the singularity of Φ, but we observe that

Iε
ε→0−−→ 0.

Indeed, this follows from the absolute continuity of the integral and since Φ is integrable
on B(0, 1):

|Iε| ≤ sup
Rn

|∆f |
∫

B(x,ε)
|Φ(z)| ε→0−−→ 0.

The term IIε does not contain any singularity of Φ which is smooth on Rn\Bε(0), so we
can perform an integration by parts1

IIε =
∫
Rn\B(0,ε)

Φ(z) (∆f)(x−z) dz =
∫

∂B(0,ε)
Φ(z) ∂νf(x−z) dHn−1(z)−

∫
Rn\B(0,ε)

∇Φ(z)·∇f(x−z) dz.

Here ν is the unit normal to the ball ∂B(0, ε), i.e. ν = −z
ε

.

By the definition of Φ one computes that (using (2.5))∣∣∣∣∣
∫

∂B(0,ε)
Φ(z) ∂νf(x− z) dHn−1(z)

∣∣∣∣∣ ≤ sup
Rn

|∇f |
∫

∂B(0,ε)
|Φ(z)| ε→0−−→ 0.

So we perform another integration by parts and have

IIε =o(1) −
∫

∂B(0,ε)
∂νΦ(z) f(x− z) dz +

∫
Rn\B(0,ε)

∆Φ(z)︸ ︷︷ ︸
=0

f(x− z) dz

= o(1) −
∫

∂B(0,ε)
∂νΦ(z) f(x− z) dz

Here in the last step we used that ∆Φ = 0 away from the origin, Exercise 2.3.

Now we observe that the unit normal on ∂B(0, ε) is ν(z) = − z
ε

and

DΦ(z) =
− 1

2π
1

|z|
z

|z| n = 2,
− 1

n(n−2)ωn
(2 − n)|z|1−n z

|z| n ≥ 3.

Thus, for |z| = ε,

∂νΦ(z) = ν ·DΦ(z) = 1
nωn

ε1−n

1 ∫
Ω

f ∂ig =
∫

∂Ω
f g νi −

∫
Ω

∂if g,

where ν is the normal of ∂Ω pointing outwards (from the point of view of Ω). νi is the i-th component of
ν. Fun exercise: Check this rule in 1D, to see the relation what we all learned in Calc 1.
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Thus we arrive at

IIε =o(1) −
∫

∂B(0,ε)

1
nωnεn−1 f(x− z) dHn−1(z)

=o(1) −
∫

∂B(0,ε)
f(x− z) dHn−1(z)

=o(1) − f(x) +
∫

∂B(0,ε)
(f(x) − f(x− z)) dHn−1(z)

Here we use the mean value notation∫
∂B(0,ε)

= 1
Hn−1(∂B(0, ε)

∫
∂B(0,ε)

.

Now one shows (exercise!) that for continuous f

lim
ε→0

∫
∂B(0,ε)

(f(x) − f(x− z)) dHn−1(z) = 0.

(Indeed this is essentially Lebesgue’s theorem). That is

IIε = o(1) − f(x) as ε → 0

and thus
∆u(x) = −f(x) + o(ε),

and letting ε → 0 we have
∆u(x) = −f(x),

as claimed. □

Exercise 2.5. Show that log |x| is locally integrable, i.e. that for any bounded set Ω ⊂ Rn

we have ∫
Ω

log |x| < ∞.

Exercise 2.6. Assume f is continuous. Show that

lim
ε→0+

∫
∂B(0,ε)

|f(x) − f(x− z)|dHn−1(z) = 0.

Remark 2.7. One can argue (in a distributional sense, which we learn towards the end of
the semester)

−∆Φ = δ0,

where δ0 denotes the Dirac measure at 0, namely the measure such that∫
Rn
f(x) dδ0 = f(0) for all f ∈ C0(Rn).
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Observe that δ0 is not a function, only a measure. In this sense one can justify that

−∆u(x) =∆
∫
Rn

Φ(x− z)f(z)

=
∫
Rn

∆Φ(x− z)f(z) dz

=
∫
Rn
f(z) dδx(z)

=f(x)

2.4. Green Functions. Our next goal are Green’s functions. In some way Green functions
are a restriction of the fundamental solution to domains Ω ⊂ Rn factoring in also boundary
data. Recall that for the fundamental solution Φ we showed in Theorem 2.4 that for the
Newton potential

(2.7) u(x) :=
∫
Rn

Φ(x− y)f(y) dy

we have ∆u = f . It is an interesting observation that (for reasonable f) we have
lim

|x|→∞
u(x) = 0.

That is the Newton potential approach solves an equation of∆u = f in Rn

u = 0 on the boundary, i.e. for |x| → ∞.

The Greens function is a way to restrict this construction to domains Ω. Instead of the
Fundamental solution Φ(x − y) we get the Green kernel G(x, y) . Instead of the Newton
potential we consider

u(x) =
∫

Ω
G(x, y) f(y) dy

and hope that this object solves ∆u = f in Ω
u = 0 on ∂Ω.

The Greens function G (which depends on Ω) can be computed explicitely only for very
specific Ω (balls, half-spaces) – which is somewhat related to the fact that there is not
necessarily a reasonable Fourier transform for generic sets Ω.

But one can abstractly show that the Green functions exists for reasonable sets Ω. The
idea is as follows: We know that the Newton potential as in (2.7) solves the right equation
∆u = f , but it does not satisfy u = 0 on ∂Ω. So let us try to correct the Newton potential
and choose the Ansatz

u(x) :=
∫

Ω
Φ(x− y) f(y) dy −

∫
Ω
H(x, y) f(y) dy
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By our computatins for Theorem 2.4 we have that then for x ∈ Ω

∆u(x) := f(x) −
∫

Ω
∆xH(x, y) f(y) dy,

so it would be nice if
∆xH(x, y) = 0 ∀ x, y ∈ Ω.

Moreover we would like that u(x) = 0 on ∂Ω, which would be satisfied if
Φ(x− y) = H(x, y) ∀x ∈ ∂Ω, y ∈ Ω.

That is, for each fixed y ∈ Ω we should try to find a function H(·, y) that solves

(2.8)
∆xH(·, y) = 0 in Ω,
H(·, y) = Φ(· − y) on ∂Ω.

Observe that for fixed y ∈ Ω the boundary condition Φ(· − y) ∈ C∞(∂Ω) is a smooth
function, since for y ∈ Ω we clearly have

inf
x∈∂Ω

|x− y| > 0.

That is, there is a good chance to solve this equation (2.8) (and from Theorem 2.22 we
know that there is at most one solution).

Definition 2.8 (Green function). For given Ω, if there exists H as in (2.8) then we call
G(x, y) := Φ(x− y) −H(x, y)

the Green function on Ω.

One can show that G is symmetric, i.e. that
(2.9) G(x, y) = G(y, x) ∀ x ̸= y ∈ Ω
While the Green function are usually not explicit, some properties and estimates can be
shown, and there is an extensive research literature on the subject, e.g. see [Littman et al., 1963].
The Green function is also specially important from the point of view of stochastic pro-
cesses, see e.g. [Chen, 1999].

We will only investigate the most basic property:

Theorem 2.9. Let Ω ⊂⊂ Rn, ∂Ω ∈ C1 f ∈ C0(Ω) and g ∈ C0(∂Ω). Assume that
u ∈ C2(Ω) ∩ C0(Ω) is a solution to

(2.10)
−∆u = f in Ω
u = g on ∂Ω

Then if G is the Green function for Ω from Definition 2.8 we have for any x ∈ Ω,

u(x) =
∫

Ω
G(x, y) f(y) dy −

∫
∂Ω
g(θ)∂ν(θ)G(x, θ) dHn−1(θ).
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Proof. Recall the Gauss-Green formula2 on (smooth enough) domains A,

(2.11)
∫

A
u(y)∆v(y) − ∆u(y) v(y) dy =

∫
∂A
u(θ)∂νv(θ) − ∂νu(θ) v(θ) dHn−1(θ).

We apply this to formula to A = Ω\B(x, ε) and v(y) := G(x, y). Observe that by symmetry
of G, (2.9),

∆yG(x, y) = ∆xG(x, y) = 0 x ̸= y,

so, also in view of (2.10), (2.11) becomes

(2.12) −
∫

A
G(x, y) f(y) dy =

∫
∂A
u(θ)∂νG(x, θ) − ∂νu(θ)G(x, θ) dHn−1(θ).

Now we argue as in the proof of Theorem 2.4. Observe that H is a smooth function.

We have∫
∂A
u(θ)∂νG(x, θ)dHn−1(θ)

=
∫

∂Ω
g(θ)∂νG(x, θ) −

∫
∂B(x,ε)

u(θ)∂νΦ(x− θ) dHn−1(θ) +
∫

∂B(x,ε)
u(θ)∂νH(x− θ) dHn−1(θ)

ε→0−−→
∫

∂Ω
g(θ)∂νG(x, θ) − u(x) + 0.

and ∫
∂A
∂νu(θ)G(x, θ)dHn−1(θ)

=
∫

∂Ω
∂νu(θ)G(x, θ) −

∫
∂B(x,ε)

∂νu(θ)G(x, θ) dHn−1(θ)

=0 −
∫

∂B(x,ε)
∂νu(θ)G(x, θ) dHn−1(θ)

ε→0−−→0.
This proves the claim. □

In special situations one can actually construct explicit Green’s function. Let us firstly
consider the Half-space

Rn
+ = {x = (x1, . . . , xn) ∈ Rn : xn > 0} .

So we need to find a solution to the equation∆xH(·, y) = 0 in Rn
+,

H(·, y) = Φ(· − y) on Rn−1 × {0} ≡ ∂Rn
+.

Since H at the boundary has to coincide with Φ it is likely that H should be somewhat of
the form of Φ – only the singularity has to be getten rid of – the idea is a reflection:

H(x, y) := Φ(x− y∗)
2this is a special case of the integration by parts formula



PARTIAL DIFFERENTIAL EQUATIONS I & II VERSION: August 1, 2023 30

where
y∗ = (y1, . . . , yn)∗ = (y1, . . . , yn−1,−yn).

It is a good exercise to check that

(1) H is symmetric, H(x, y) = H(y, x)
(2) H is smooth in Rn

+ × Rn
+ (since x∗ = y implies xn = −yn, so x and y cannot both

lie in the upper half-space if this happens)
(3) The reflection does not change the PDE, namely ∆xH = 0 for x, y ∈ Rn

+.
(4) Indeed H(x, y) = Φ(x− y) for x ∈ Rn−1 × {0} and y ∈ Rn

+.

So we set
G(x, y) := Φ(x− y) − Φ(x− y∗) = Φ(x− y) − Φ(x∗ − y)

When we now use the representation formula, as in Theorem 2.9, then we need to com-
pute ∂ν(y)G(x, y) for y ∈ Rn−1 × {0}. Observe that the outwards unit normal ν(y) =
(0, . . . , 0,−1), so we compute

∂ν(y)G(x, y) = −∂ynΦ(x− y) + ∂ynΦ(x∗ − y) = cn
xn−yn

|x− y|n
− cn

xn+yn

|x− y|n
= c̃n

xn

|x− y|n
.

If we write the variables in Rn
+ as x = (x′, xn), x′ ∈ Rn−1 and xn > 0, then as in Theorem 2.9

we indeed obtain, e.g., if

(2.13) u(x) := cn

∫
Rn−1

xn

(|x′ − y′|2 + |xn|2)
n
2
g(y′) dy′

then u satisfies indeed (for “reasonable” g)
∆u = 0 in Rn

+

limxn→0 u(x) = g(x′)
limxn→∞ u(x) = 0.

The formula for u is called the Poisson formula on the Half-space Rn
+, also the harmonic

extension of g from Rn−1 to Rn
+.

Exercise 2.10. (1) Show that the constant cn in (2.13) is

cn =
(∫

Rn−1

1
(|x′ − y′|2 + 12)

n
2
dy′
)−1

.

Hint: Use the maximum principle for u assuming that g ≡ 1.
(2) Show that for any xn > 0

cn =
(∫

Rn−1

xn

(|x′ − y′|2 + |xn|2)
n
2
dy′
)−1
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Example 2.11 (Dirichlet-to-Neumann formula). Let g ∈ C∞
c (Rn−1). Define u via (2.13).

We consider the Neumann-data of u:

∂nu

∣∣∣∣
xn=0

= lim
xn→0+

u(x′, xn) − u(x′, 0)
xn

= lim
xn→0+

u(x′, xn) − g(x′)
xn

E. 2.10= cn lim
xn→0+

∫
Rn−1

xn

(|x′ − y′|2 + |xn|2)
n
2

g(y′)−g(x ′)
xn

dy′

=cn lim
xn→0+

∫
Rn−1

1
(|x′ − y′|2 + |0 |2)

n
2

(g(y′)−g(x ′)) dy′

=cn lim
xn→0+

∫
Rn−1

(g(y′) − g(x′))
(|x′ − y′|2)

n
2
dy′

This looks nice, but it has the problem that the integral does not converge absolutely (only
in a principal value sense).

We try this again: Observe by substituting h′ := x′ − y′ we can write

u(x) := cn

∫
Rn−1

xn

(|h′|2 + |xn|2)
n
2
g(x′ − h′) dh′.

By substituting h′ with −h′ we also have

u(x) := cn

∫
Rn−1

xn

(|h′|2 + |xn|2)
n
2
g(x′+h′) dh′

So we can write
u(x′, xn) − g(x′)

xn

=1
2

2u(x′, xn) − 2g(x′)
xn

=1
2cn

∫
Rn−1

xn

(|h′|2 + |xn|2)
n
2

g(x′+h′) + g(x′−h) − 2g(x′)
xn

dh′

=1
2cn

∫
Rn−1

g(x′ + h′) + g(x′ − h) − 2g(x′)
(|h′|2 + |xn|2)

n
2

dh′

xn→0−−−→1
2cn

∫
Rn−1

g(x′ + h′) + g(x′ − h) − 2g(x′)
|h′|n−1+1 dh′.

In the last step we used that this integral really converges, Exercise 2.12.

This defines an operator

(−∆) 1
2 g(x′) ≡

√
−∆g(x′) := 1

2cn

∫
Rn−1

g(x′ + h′) + g(x′ − h) − 2g(x′)
|h′|n−1+1 dh′
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which is called the half-Laplacian. Indeed using the Fourier transform on Rn−1 one can
check that

F
(
(−∆) 1

2 g
)

(ξ′) = c|ξ′| Fg(ξ′) = c
√

|ξ′|2 Fg(ξ′)

So this is really the square-root of the Laplacian.

We have proven the Dirichlet-to-Neumann principle

If ∆u = 0 in Rn
+

u(x′) = g(x′) on Rn−1 × {0}

then
∂nu

∣∣∣∣
Rn−1×{0}

= c(−∆) 1
2 g on Rn−1 × {0}

In 2007, [Caffarelli and Silvestre, 2007], this formula was generalized for σ ∈ (0, 2) todiv ((xn)1−σ∇u) = 0 in Rn
+

u(x′) = g(x′) on Rn−1 × {0}

then
lim

xn→0+
(xn)1−σ∂nu

∣∣∣∣
Rn−1×{0}

= c(−∆)σ
2 g on Rn−1 × {0}

This paper has more than 1500 citations and is often referred to as the Caffarelli-Silvestre
extension formula.

Exercise 2.12. Let g ∈ C∞
c (Rd).

(1) For s ∈ (0, 1) show that for each fixed x ∈ Rd

y 7→ g(y) − g(x)
|x− y|d+s

∈ L1(Rd),

i.e. ∫
Rd

|g(y) − g(x)|
|x− y|d+s

dy < ∞.

(2) For s ∈ (0, 2) show that for each fixed x ∈ Rd

y 7→ g(x+ h) − g(x− h)
|h|d+s

∈ L1(Rd),

i.e. that ∫
Rd

|g(x+ h) + g(x− h) − 2g(x)|
|x− y|d+s

dy < ∞.
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2.4.1. On a ball. The other situation where we can compute the Green’s function is the
ball. For simplicity let us consider Ω = B(0, 1), the unit ball centered at zero. Again
the first goal is to find H(x, y) that corrects the fundamental solution. In the case of the
half-space Rn

+ we set H(x, y) = Φ(x− ỹ), i.e. we reflected the y-variable in a way that did
not interfere with the PDE but removed the singularity (and coincided with Φ(x − y) on
the boundary.

So lets do the same for the ball. The canonical operation that reflects points from the ball
B(0, 1) outside and vice versa is called the inversion at a sphere,

y∗ := y

|y|2
: B(0, 1) → B(0, 1)c.

(Although it is not explicitely used here, it is good to know: the inversion at the sphere is
a conformal transform, i.e. it preserves angles). So a first attempt would be to set

H(x, y) := Φ
(∣∣∣∣∣x− y

|y|2

∣∣∣∣∣
)
,

which takes care of the singularity of Φ (for y, x ∈ B(0, 1) we have |x − y
|y|2 | ̸= 0, and

does not disturb the PDE for G(x, y). However such a G(x, y) is not equal to Φ(x− y) for
|x| = 1. So we need to adapt G to the boundary data. Observe that for |x| = 1,

|y|2
∣∣∣∣∣x− y

|y|2

∣∣∣∣∣
2

=|y|2
(

|x|2 + 1
|y|2

− 2⟨x, y

|y|2
⟩
)

=
(
|y|2|x|2 + 1 − 2⟨x, y⟩

)
|x|=1=

(
|y|2 + |x|2 − 2⟨x, y⟩

)
=|x− y|2.

That is why we set

(2.14) GB(0,1)(x, y) := Φ
(

|y|
∣∣∣∣∣x− y

|y|2

∣∣∣∣∣
)
,

which satisfies all the requested properties.

From this we obtain (without proof)

Theorem 2.13 (Poisson’s formula for the ball). Assume g ∈ C0(∂B(0, r)). Define

u(x) := cn

∫
∂B(0,r)

1
r

r2 − |x|2

|x− θ|n
g(θ) dHn−1(θ)

Then

(1) u ∈ C∞(B(0, r))



PARTIAL DIFFERENTIAL EQUATIONS I & II VERSION: August 1, 2023 34

(2) ∆u = 0 in B(0, r)
(3)

lim
B(0,r)∋x→x0

u(x) = g(x0) for any x0 ∈ ∂B(0, r)

2.5. Mean Value Property for harmonic functions. An important property (but very
special to the “base Operator ∆”, i.e. not that easily generalizable to more general PDEs)
is the mean value property

Theorem 2.14 (Harmonic functions satisfy Mean Value Property). Let u ∈ C2(Ω) such
that ∆u = 0, then

(2.15) u(x) =
∫

∂B(x,r)
u(z) dHn−1(z) =

∫
B(x,r)

u(y) dy

holds for all balls B(x, r) ⊂ Ω.

If ∆u ≤ 0 then we have “≥”in (2.15). If ∆u ≥ 0 then we have “≤” in (2.15).

Proof. Set
φ(r) :=

∫
∂B(x,r)

u(y) dHn−1(y).

Observe that by substitution z := y−x
r

we have

φ(r) :=
∫

∂B(0,1)
u(x+ rz) dHn−1(z).

Taking the derivative in r we have

φ′(r) =
∫

∂B(0,1)
Du(x+ rz) · z dHn−1(z).

Transforming back we get

φ′(r) =
∫

∂B(x,r)
Du(y) · y − x

r
dHn−1(y).

Observe that y−x
r

is the outer unit normal of ∂B(x, r). That is

φ′(r) = |∂B(x, r)|−1
∫

∂B(x,r)
∂νu(y)dHn−1(y).

By Stokes or Green’s theorem (aka, integration by parts)

φ′(r) = |∂B(x, r)|−1
∫

B(x,r)
∆u(y)dy (2.15)= 0.

That is,
φ′(r) = 0 ∀r if B(x, r) ⊂ Ω.

which implies that φ is constant, and in particular
φ(r) = lim

ρ→0
φ(ρ).
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But (Exercise 2.6) for continuous functions u,

lim
ρ→0

φ(ρ) = lim
ρ→0

∫
∂B(x,ρ)

u(y) dHn−1(y) = u(x),

we have shown that

(2.16) u(x) =
∫

∂B(x,r)
u(y) dHn−1(y)

holds whenever B(x, r) ⊂ Ω.

Moreover, by Fubini’s theorem∫
B(x,r)

u(y) dy = 1
|B(x, r)|

∫ r

0

∫
∂B(x,ρ)

u(θ) dHn−1(θ) dρ

= 1
|B(x, r)|

∫ r

0
|∂B(x, ρ)|

∫
∂B(x,ρ)

u(θ) dHn−1(θ) dρ

(2.16)= 1
|B(x, r)|

∫ r

0
|∂B(x, ρ)|u(x)dρ

=u(x) 1
|B(x, r)|

∫ r

0

∫
∂B(x,ρ)

1 dHn−1(θ)dρ

=u(x) |B(x, r)|
|B(x, r)|

=u(x).

Together with (2.16) we have shown the claim for ∆u = 0. The inequality arguments are
left as an exercise. □

The converse holds as well (and there is actually a whole literature on “how many balls”
one has to assume the mean value property to get harmonicity, cf. [Llorente, 2015,
Kuznetsov, 2019])

Theorem 2.15 (Mean Value property implies harmonicity). Let u ∈ C2(Ω). If for all
balls B(x, r) ⊂ Ω,

(2.17) u(x) =
∫

∂B(x,r)
u(θ) dHn−1(θ)

then
∆u = 0 in Ω

Proof. Assume the claim is false.

Then there exists some x0 ∈ Ω such that ∆u(x0) ̸= 0, so (by continuity of ∆u) w.l.o.g.
∆u > 0 in a small neighborhood B(x0, R) of x0.
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On the other hand, setting as above

φ(r) :=
∫

∂B(x0,r)
u(θ)

(2.17)
≡ u(x0)

we have φ′(r) = 0 for all r > 0 such that B(x0, r) ⊂ Ω. But as computed before, for r < R,

φ′(r) = C(r)
∫

B(x0,r)
∆u dy > 0.

This (0 = φ′(r) > 0) is a contradiction, so the claim is established. □

2.6. Maximum and Comparison Principles. The mean value property as above is very
rigid in the sense that it holds only for very special operators such as the Laplacian. A much
more general property (which for the Laplacian ∆ is a direct consequence of the mean value
property) are maximum principles, which should be seen as a “forced convexity/concavity
property” for sub-/supersolutions of a large class of PDEs (2nd order elliptic).

In one-dimension a subsolution of Laplace’s equation satisfies

u′′ ≥ 0

that is, subsolutions are exactly the convex C2-functions.

On the hand, if u : Ω → R is a smooth convex function, then D2u(x) ≥ 0 (in the sence of
matrices), so ∆u = trD2u = ∑(eigenvaluesofD2u) ≥ 0.

On the other hand, the converse does not hold: if we take u(x, y) = 2x2 − y2 then u is not
convex, but ∆u ≥ 0.

Still, subsolutions have some properties of convex functions (and supersolutions have some
properties of concave functions): comparison principles:

Convexity means that on any interval (a, b) the maximum of u is obtained at a or at b
– and if the maximum is obtained in a point c ∈ (a, b) then u is constant. The curious
fact is that these properties still hold in arbitrary dimension for solutions of the Laplace
equation (and later a large class of elliptic 2nd order equations), they are the so-called
weak maximum principle and strong maximum principle.

There is also a “physical” way to explain maximum principles: For example, assume that
a solid Ω is heated from the sides with a heat source g : ∂Ω → R and assume there is
some heat source from the middle, but it only subtracts heat, −∆u ≤ 0, then what is the
maximal heat at any point in the interior (letting the system become stationary)? well
the maximum heat in the inside is the heat at the boundary (weak maximum principle).
And if the heat at any point in the interior is exactly the maximum value of the heat,
since the system is stationary, if it is colder at any other point then the heat would have
distributed to that point – meaning any other point must have the same heat (strong
maximum principle).
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Corollary 2.16 (Strong Maximum-principle). Let u ∈ C2(Ω) be subharmonic, i.e. ∆u ≥ 0
in Ω. If there exists x0 ∈ Ω at which u attains a global maximum then u is constant in the
connected component of Ω containing x0.

Proof. By taking a possibly smaller Ω we can assume w.l.o.g. Ω is connected and u still
attains its global maximum in x0 ∈ Ω.

Let
A := {y ∈ Ω : u(y) = u(x0)}.

We will show that A = Ω (and thus u is constant) by showing that the following three
properties hold

• A is nonempty
• A is relatively closed (in Ω).
• A is open

Then A is an open and closed set in Ω, and since A is not the empty set it is all of Ω.

Clearly A is nonempty since x0 ∈ A.

Also A is relatively closed by continuity of u: If Ω ∋ yk
k→∞−−−→ y0 ∈ Ω then

u(y0) = lim
k→∞

u(yk) = u(x0)

and thus y0 ∈ A.

To show that A is open let y0 ∈ A. Since Ω is open we can find a small ball B(y0, ρ) ⊂ Ω.

Observe that x0 is a global maximum of u in B(y0, ρ).

The mean value property, Theorem 2.14, and then the fact that u(x0) ≥ u(y) for all y in
B(y0, ρ), imply

u(x0) = u(y0) ≤
∫

B(y0,ρ)
u(y) dy ≤

∫
B(y0,ρ)

u(x0) dy = u(x0).

Since left-hand side and right-hand side coincide the inequality is actually an equality.

That is, we have
u(x0) =

∫
B(y0,ρ)

u(y) dy,

in other words ∫
B(y0,ρ)

u(y) − u(x0) dy = 0.

Since u(y) − u(x0) by assumption ≤ 0 the above integral becomes

−
∫

B(y0,ρ)
|u(y) − u(x0)| dy = 0.
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that is
u(y) ≡ u(x0) in B(y0, ρ),

that is B(y0, ρ) ⊂ A. That is, A is open. □

Remark 2.17. The statement of Corollary 2.16 is false if one replaces global with local
maximum (even though local maxima are locally global maxima). A counterexample is for
example

u(x) :=
0 x ≤ 0
x3 x > 0

Then u ∈ C2(R) and
∆u = u′′ ≥ 0 in (−1, 1)

Clearly u attains several local maxima, namely in (−1, 0) we have u ≡ 0, but also clearly
u is not constant. The argument above in the proof of Corollary 2.16 fails, since the point
0 is not a local maximum, and thus the set

A := {x ∈ (−1, 1) : u(x) = 0}
is not open.

For the next statement, and henceforth, we use the notation A ⊂⊂ B (“A is compactly
contained in B) which means that A is bonded and its closure A ⊂ B. I.e. for two open
sets A,B the condition A ⊂⊂ B means in particular that ∂A has positive distance from
∂B.
Corollary 2.18 (Weak maximum principle). Let Ω ⊂⊂ Rn and u ∈ C2(Ω) ∩ C0(Ω) be
subharmonic, i.e. −∆u ≤ 0 in Ω. Then

sup
Ω
u = sup

∂Ω
u,

i.e. “the maximal value is attained at the boundary”3.
Remark 2.19. This statement also holds on unbounded sets Ω, one just has to define the
meaning of sup∂Ω in a suitable sense (i.e. “sup∂Rn” should be interpreted as lim sup|x|→∞).

Proof of Corollary 2.18. Clearly by continuity
sup

Ω
u ≥ sup

∂Ω
u.

To prove the converse let us argue by contradiction and assume that
(2.18) sup

Ω
u > sup

∂Ω
u.

Since u is continuous and Ω bounded this must mean that there exists a local maximum
point x0 ∈ Ω such that
(2.19) u(x0) = sup

Ω
u > sup

∂Ω
u.

3again: think of convex functions which do have this property
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But in view of Corollary 2.16 (strong maximum principle) u is then constant on the con-
nected component of Ω containing x0. But this implies that on the boundary of this
connected component the value of u is still u(x0), which implies

sup
∂Ω

u ≥ u(x0).

But this contradicts the assumption (2.19). □

Remark 2.20. A particular consequence of the strong maximum principle is the following.
If for Ω ⊂⊂ Rn we have u ∈ C2(Ω) ∩ C0(Ω) satisfying∆u ≥ 0 in Ω

u = g on ∂Ω

for some g ∈ C0(∂Ω). Then the following (equivalent) statements are true:

• If g ≤ 0 but g ̸≡ 0 on ∂Ω then we have that u < 0 in all of Ω.
• If g ≤ 0 then either u ≡ 0 or u < 0 everywhere in Ω.

Such a behaviour is special to the PDEs of order two. Even for
∆2u = ∆(∆u) = 0 in Ω

the above statement may not hold (see e.g. [Gazzola et al., 2010]).

Corollary 2.21 (Strong Comparison Principle). Let Ω ⊂⊂ Rn open and connected. As-
sume that u1, u2 ∈ C2(Ω) ∩ C0(Ω) satisfy

∆u1 ≥ ∆u2 in Ω.
If u1 ≤ u2 on ∂Ω, then exactly one of the following statements is true

(1) either u1 ≡ u2
(2) or u1(x) < u2(x) for all x ∈ Ω.

Proof. Let w := u1 − u2, then we have∆w ≥ 0 in Ω
w ≤ 0 in ∂Ω

The claim now follows from Remark 2.20. □

The maximum principle is a great tool to get uniqueness for linear equations!

Theorem 2.22 (Uniqueness for the Dirichlet problem). Let Ω ⊂⊂ Rn, f ∈ C0(Ω) and
g ∈ C0(∂Ω) be given. Then there is at most(!) one solution u ∈ C2(Ω) ∩ C0(Ω) of∆u = f in Ω

u = g on ∂Ω



PARTIAL DIFFERENTIAL EQUATIONS I & II VERSION: August 1, 2023 40

Proof. Assume there are two solutions, u, v solving this equation. If we set w := u−v then
w is a solution to the equation ∆w = 0 in Ω

w = 0 on ∂Ω

In view of Corollary 2.18 we then have
sup

Ω
w ≤ sup

∂Ω
w = 0.

That is, w ≤ 0 in Ω. But observe that −w solves the same equation, which implies that
sup

Ω
(−w) ≤ sup

∂Ω
(−w) = 0,

that is −w ≤ 0 in Ω. But this readily implies that w ≡ 0 in Ω, that is v ≡ w. □

So comparison principles are a fantastic tool for obtaining uniqueness for PDEs. Let us also
note that via the so-called Perron’s method (which relies heavily on maximum principles)
we also can obtain existence, Section 2.8. But first we need another comparison principle:
Harnack inequality

2.7. Harnack Principle. Above we learned, e.g. in Corollary 2.16 of the strong maximum
principle. Another type of maximum principle is the Harnack inequality.

Theorem 2.23. Let Ω ⊂ Rn open. For any open, connected, and bounded U ⊂⊂ Ω there
exists a constant C = C(U,Ω) such that for any solution u ∈ C2(Ω) with u ≥ 0 and such
that

∆u = 0 in Ω
we have

sup
U
u ≤ C inf

U
u

Proof. The proof is based on the mean value formula, Theorem 2.14, namely for any x ∈ U
and any r < dist (U, ∂Ω) we have

u(x) =
∫

B(x,r)
u(z) dz

Let now R := 1
4dist (U, ∂Ω). For any x0 ∈ U and any x ∈ B(x0, R) we have (here we use

u ≥ 0 and that B(x,R) ⊂ B(y, 2R) for x, y ∈ B(x0, R))

u(x) =
∫

B(x,R)
u(z) dz ≤ 2n

∫
B(y,2R)

u(z) dz = 2n u(y).

Again, this holds for any x, y ∈ B(x0, R). Taking the supremum for x ∈ B(x0, R) and the
infimimum on y ∈ B(x0, R) we get
(2.20) sup

B(x0,R)
u ≤ 2n inf

B(x0,R)
u.
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That is we have the Harnack principle on any Ball B(x0, R). Since U is bounded, open
and compactly contained in Ω we can now cover all of U by finitely many balls (Bℓ)N

ℓ=1
which lie inside Ω centered at points in U and of radius R.

Take any i1, i2 ∈ {1, . . . , N} and assume that Bi1 ∩Bi2 ̸= ∅. Since then infBi1
u ≤ supBi2

u

Harnack’s principle on the ball Bi1 and the ball Bi2 implies

sup
Bi1

u ≤ 22n inf
Bi2

u whenever Bi1 ∩Bi2 ̸= ∅.

Repeating the same argument, assume now that i1, i2, i3 ∈ {1, . . . , N} such that Bi1 ∩Bi2 ̸=
∅ and Bi2 ∩Bi3 ̸= ∅. Then

sup
Bi1

u ≤ 22n inf
Bi2

u ≤ 22n sup
Bi3

u ≤ 24n inf
Bi3

u whenever Bi1 ∩Bi2 ̸= ∅ and Bi2 ∩Bi3 ̸= 0.

By induction we readily conclude the following fact: Whenever we have i, j ∈ {1, . . . , N}
such that there are i1, . . . , iK ∈ {1, . . . , N} with i1 = i and iK = j and Biℓ

∩ Biℓ+1 ̸= ∅ for
all ℓ then we have

sup
Bi

u ≤ 22nK inf
Bj

u.

Cf. Figure 2.2. Since U is connected and it is covered by N balls we conclude that

sup
U
u ≤ sup

i∈{1,...,N}
sup
Bi

u ≤ 22nN inf
j∈N

inf
Bj

u ≤ 22nN inf
U
u.

Observe that N heavily depends on U ⊂⊂ Ω – and the closer the boundary of U is to Ω,
the larger N tends to be. Thus we have shown that

sup
U
u ≤ C(U,Ω) inf

U
u.

□

We observe from the proof above that we can proof Harnack inequality on a ball with a
uniform constant.

Corollary 2.24. For any dimension n ∈ N there exists a constant C = C(n) such that
the following holds:

Let B(x0, R) be a ball. If u ∈ C2(B(x0, R)) with u ≥ 0 in B(x0, R) satisfies

∆u = 0 in B(x0, R)

then
sup

B(x0,R/2)
u ≤ C inf

B(x0,R/2)
u

Exercise 2.25. Let Ω ⊂ Rn be any open set. Assume there is u ∈ C0 (Ω) such that

u ≥ 0 in Ω



PARTIAL DIFFERENTIAL EQUATIONS I & II VERSION: August 1, 2023 42

Figure 2.2. From Harnack’s inequality on balls we can conclude Harnack’s
inequality on any set U ⊂⊂ Ω: Harnack’s principle repeatedly applied on
balls implies supBi1

u ≤ 22·15 infBi15
u (as long as each ball is small enough,

so that e.g. twice the ball is in Ω). Any set U ⊂⊂ Ω can be covered by
finitely many such small balls. So we have supU u ≤ C(U,Ω) infU u.

.

and for some λ ∈ (0, 1) and Λ > 1 we know that

u(x) ≤ Λ
∫

B(x,r)
u

and
u(x) ≥ λ

∫
B(x,r)

u

holds for all x ∈ Ω with B(x, r) ⊂⊂ Ω.

Show that there exists a constant C > 0 only depending on n, λ,Λ such that
sup

B(y,ρ)
u ≤ C inf

B(y,ρ)
u

holds for all balls B(y, 2ρ) ⊂ Ω.

An important consequence of Harnack inequality is that it implies Hölder continuity. This
is of course more relevant if we do not a priori that u ∈ C2 – but we still illustrate this,
because this principles applies to many equations.
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Example 2.26 (Harnack implies Hölder estimates). Assume
∆u = 0 in Ω

For r > 0 and any xΩ such that B(x, 2r) ⊂ Ω.
M(x0, r) := sup

B(x0,r)
u, m(x0, r) := inf

B(x0,r)
u.

(We assume both values are finite)

Then
∆(M(x0, r) − u) = 0

and M(x0, r) − u ≥ 0 in B(x0, r) so we have from Harnack’s inequality Corollary 2.24 for
a uniform constant C,

sup
B(x0,r/2)

(M(x0, r) − u) ≤ C inf
B(x0,r/2)

(M(x0, r) − u) ,

and thus
M(x0, r) −m(x0, r/2) ≤ C (M(x0, r) −M(x0, r/2)) .

Similarly,
sup

B(x0,r/2)
(u−m(x0, r)) ≤ C inf

B(x0,r/2)
(u−m(x0, r)) ,

and thus
M(x0, r/2) −m(x0, r) ≤ C (m(x0, r/2) −m(x0, r)) .

We add those two equations
M(x0, r/2)−m(x0, r)+M(x0, r)−m(x0, r/2) ≤ C (m(x0, r/2) −m(x0, r) +M(x0, r) −M(x0, r/2)) .
and thus

M(x0, r/2) −m(x0, r/2) ≤M(x0, r/2) −m(x0, r/2) −m(x0, r) +M(x0, r)︸ ︷︷ ︸
≥0

≤C (M(x0, r) −m(x0, r) − (M(x0, r/2) −m(x0, r/2))) .
And thus we have

M(x0, r/2) −m(x0, r/2) ≤ C (M(x0, r) −m(x0, r) − (M(x0, r/2) −m(x0, r/2))) .
whic by absorbing becomes

(C + 1) (M(x0, r/2) −m(x0, r/2)) ≤ C (M(x0, r) −m(x0, r)) .
That is

(M(x0, r/2) −m(x0, r/2)) ≤ C

C + 1 (M(x0, r) −m(x0, r)) .

Set
γ := C

C + 1 < 1.

If we then set the oscillation
osc

B(x0,r)
u := M(x0, r) −m(x0, r),
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we have shown
osc

B(x0,r/2)
u ≤ γ osc

B(x0,r)
u.

We can iterate this: for any k ∈ N we have

osc
B(x0,r/2k)

u ≤ γk osc
B(x0,r)

u.

Now let ρ < r, then there exists exactly one k ∈ N such that ρ ∈ [r/2k−1, r/2k). And we
have (the oscillation is monotone, Exercise 2.28)

osc
B(x0,ρ)

u ≤ osc
B(x0,2kr)

u ≤ γk osc
B(x0,r)

u.

Now observe that γ = 2−σ for some σ > 0. So,

γk = (2k)−σ ≲σ

(
r

ρ

)−σ

= ρσ

rσ
.

Thus we have shown, for any ρ < r

osc
B(x0,ρ)

u ≤ ρσ

rσ
osc

B(x0,r)
u.

If B(x0, 2r) ⊂ Ω we in particular have

sup
x1∈B(x0,r)

osc
B(x1,ρ)

u ≤ ρσ

rσ
osc

B(x0,2r)
u.

This implies Hölder continuity, Exercise 2.27.

Exercise 2.27. Show that if for any ρ ∈ (0, r) we have

sup
x1∈B(x0,r)

osc
B(x1,ρ)

u ≤ Cρσ,

then u is Hölder continuous, namely

sup
x,y∈B(x0,r)

|u(x) − u(y)|
|x− y|σ

< ∞.

Exercise 2.28. Show that if u is a bounded function then if we set

osc
A
u := sup

A
u− inf

A
u.

Show that if A ⊂ B then
osc

A
u ≤ osc

B
u.
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2.8. Perrons method (illustration). Comparison principles (weak, strong maximum
principle, and Harnack) are not only great for estimates – they can also be used to show
existence (for equations that have these comparison principles – which many have not.

To illustrate this we jump a little bit ahead, and recall that we can already solve the Laplace
equation in a ball B(x,R) (via the Green’s function method, Theorem 2.13). Namely, we
shall accept that if f ∈ C0(∂BR(y)) then for a certain constant cn > 0 if we set

w(x) := R2 − |x− y|2

cnR

∫
∂BR(y)

f(z)
|z − x|n

dz, x ∈ BR(y)

then w ∈ C0(BR(y)) ∩ C2(BR(y)) and∆w = 0 in B(y, r)
w = f on ∂B(y,R).

For general open and bounded sets set with smooth boundary ∂Ω, it is not so easy to
get an explicity formula. But one can use Perrons method and local replacements to show
existence of solutions of ∆u = 0 in Ω

u = g on ∂Ω
where g ∈ C0(∂Ω).

First we extend the notion of solution and subsolution to upper- and lowercontinuous
functions.

Definition 2.29. Let Ω ⊂ Rn open.

(1) A function f : Ω → (−∞,∞) is called subharmonic in Ω if it is continuous and for
any x ∈ Ω, r > 0 Br(x) ⊂ Ω we have

f(x) ≤ 1
|∂Br|

∫
∂Br(x)

f(y)dy.

(2) A function f : Ω → [−∞,∞) is called harmonic in Ω if it is continuous and for any
x ∈ Ω, r > 0 Br(x) ⊂ Ω

f(x) = 1
|∂Br|

∫
∂Br(x)

f(y)dy.

Similar to Theorem 2.15 one can show that if u ∈ C2 then subharmonicity as defined above
coincides with subharmonicity in the sense of −∆u ≤ 0. One can show that any harmonic
function as defined above must be C2 and thus Theorem 2.15 says that indeed ourt notion
of harmonicity coincides with the earlier one.

We now need a first important ingredient: Perron’s method works locally, so somehow one
has to pass from the notion of local subsolutions to global subsolutions.
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Lemma 2.30. Let f : Ω → R be continuous and assume that for any x ∈ Ω ther exists
r = r(x) such that for any r ∈ (0, r(x)) we have

f(x) ≤ 1
|∂Br|

∫
∂Br(x)

f(y)dy.

Then f is subharmonic.

Proof. Denote ρ(x) the maximal value such that

ρ(x) := sup{ρ > 0 : f(x) ≤ 1
|∂Br|

∫
∂Br(x)

f(y)dy for all r ∈ (0, ρ)}.

We observe that
f(x) ≤ 1

|∂Bρ(x)|

∫
∂Bρ(x)(x)

f(y)dy,

which follows from the continuity (for each fixed x and r > 0)

r 7→ 1
|∂Br|

∫
∂B(x,r)

f(y)dy.

Observe also that
lim

r→0+

1
|∂Br|

∫
∂B(x,r)

f(y)dy = f(x).

Now we show that ρ is lower semicontinus, i.e.
lim inf
Ω∋y→x

ρ(y) ≥ ρ(x)

Indeed, assume that there exists a sequence yk → xk and some ε > 0 such that ρ(yk) ≤
ρ(x) − ε then there must be some rk ≤ ρ(x) − ε such that

f(yk) ≥ 1
|∂Brk

|

∫
∂Brk

(x)
f(z)dz + ε.

Clearly rk > 0. Up to taking a subsequence we can assume that rk
k→∞−−−→ r̄ ∈ [0, ρ(x) − ε].

Then we have (by continuity of f)

f(x) ≥ 1
|∂Br̄|

∫
∂Br̄(x)

f(z)dz + ε.

This is a contradiction, since r̄ < ρ(x). The contradiction also holds if r̄ = 0, then the
integral on the right-hand side would be replaced with f(x).

So we indeed have
lim inf
Ω∋y→x

ρ(y) ≥ ρ(x)

In particular on any compact subset K ⊂ Ω, ρ attains its global minimum in some x0 ∈ K,
and ρ(x0) > 0. Call this minimum ρmin.

We need to show that ρ(x) = dist (x, ∂Ω) for all x ∈ K (since K ⊂⊂ Ω is arbitrary this
implies the claim.
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Assume that x ∈ K and ρ(x) < dist (x, ∂Ω). Take δ ∈ (0, ρmin) such that R < ρ(x) + δ <
dist (x, ∂Ω).

Let h be the solution to ∆h = 0 in B(x,R)
h = f on ∂B(x,R).

We know that h exists, since we are in a ball and have the explicit Poisson formula. We
then have that h satisfies the mean value equality, and thus

h(x) = |∂B(R)|
∫

∂B(x,R)
h = |∂B(R)|

∫
∂B(x,R)

f.

If only we could show that h(x) ≥ f(x) we’d have that

f(x) ≤ |∂B(R)|
∫

∂B(x,R)
f ∀R < ρ(x) + δ,

which contradicts the definition of ρ(x).

How do we show h(x) ≥ f(x)? This is the maximum principle.

Consider f − h. We then have for any y ∈ B(x,R) and any r ≤ min{ρ(y), B(x,R)}

(f − h)(y) ≤ |∂B(r)|−1
∫

∂B(r)
(f − h)(z)dz.

This rules out that there is any local maximum of f − h anywhere in B(r), and thus there
is no local maximum of f − h in B(x,R). In particular we have that

f(x) − h(x) ≤ sup
y∈B(x,R)

(f − h)(y) ≤ sup
∂B(x,R)

f − h = 0.

Thus f(x) ≤ h(x), thus we have shown

f(x) ≤ |∂B(R)|
∫

∂B(x,R)
f ∀R < ρ(x) + δ,

a contradiction to ρ(x). Thus ρ(x) = dist (x, ∂Ω) and we can conclude.

□

(Very roughly) the idea of Perrons method is as follows.

Perron: Step 1

Consider the collection of all subsolutions (which is a nonempty set)

Sg :=
{
v ∈ C0(Ω) : v≤g on ∂Ω, v is subharmonic in Ω

}
We need to show Sg is nonempty. This is easy. Take v := minx∈∂Ω g(x). Then v is constant,
so −∆u = 0 (in particular v is subharmonic). And clearly v ≤ g on ∂Ω.

Perron: Step 2
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Here comes the trick: let u be simply the largest subsolution, for x ∈ Ω
u(x) := sup

v∈Sg

v(x).

The idea is that since u is the largest subsolution, then even locally there cannot be a
larger one. Howver if locally u was not harmonic, then we can use a harmonic replacement
technique on a ball to get a contradiction.

First we need to ensure that u is well-defined. Here we use the maximum principle, Corol-
lary 2.18 and Corollary 2.16. Observe that these arguments were based on the continuity
of a subsolution v and the mean value formula so they still apply to our situation, and we
have

v(x) ≤ sup
∂Ω

g ∀v ∈ Sg, ∀x ∈ Ω.

This implies that for each x ∈ Ω the family {v(x) : v ∈ Sg} has an upper bound, so the
supremum is well-defined. That is u is well-defined.

Next we observe that (formally) u is still subharmonic. Let x ∈ Ω and consider any ball
Br(x) ⊂ Ω.

u(x) = sup
v∈Sg

v(x) ≤ sup
v∈Sg

1
|Br|

∫
Br(x)

v(y)dy ≤ 1
|Br|

∫
Br(x)

sup
v∈Sg

v(y)dy ≤ 1
|Br|

∫
Br(x)

u(y)dy.

Alas the integral of u may not exist (for all we know u could be non-measurable!). That
won’t happen, indeed we have

Lemma 2.31. u is lower semicontinuous, that is
u(x) ≤ lim inf

y→x
u(y)

Think of u(t) := supr>0 t
r for t ∈ [0, 1] to see that u may not be continuous!

Proof. Fix any x ∈ Ω and let ε > 0. Then there must be some v̄ ∈ Sg such that
u(x) ≤ v̄(x) + ε.

Since v̄ is continuous, there exists δ > 0 such that for any
|v̄(x) − v̄(y)| ≤ ε ∀y ∈ B(x, δ) ∩ Ω.

Consequently, for any y ∈ Ω,
u(x) − u(y) ≤ v̄(x) − v̄(y) + ε ≤ 2ε ∀y ∈ B(x, δ) ∩ Ω.

Observe that we cannot do the same argument in the other direction, since x is fixed and
y is variable. In any case, now we have

u(x) ≤ u(y) + 2ε∀y ∈ B(x, δ) ∩ Ω
which implies

u(x) ≤ lim inf
y→x

u(y) + ε.
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□

The above lemma makes u measurable, and since it is bounded

min
∂Ω

g ≤ u(x) ≤ sup
∂Ω

g.

u is integrable. But still it does not say that u is a subsolution (because we haven’t shown
that u is continuous).

Fix now x̄ ∈ Ω. Then there must be a sequence of subharmonic ṽn ∈ Sg such that
limn→∞ ṽn(x̄) = u(x̄). Set

vn(z) := max{ṽ1(x), ṽ2(x), . . . , ṽn(x),min
∂Ω

g}.

As a (finite) maximum of continuous functions vn ∈ C0(Ω). As we did for u above, we can
also easily check that vn is still a subharmonic function. Moreover we have monotonicity

vn(x) ≤ vn+1(x) ∀x ∈ Ω,

all while still ensuring limn→∞ ṽn(x̄) = u(x̄).

Take now a ball B(x,R) ⊂ Ω (x is in the interior of Ω!). We now replace now vn inside of
B(x,R) with its harmonic replacment, i.e. we set

wn(x) :=


R2−|x−x|2
cnR

∫
∂BR(x)

vn(z)
|z−x|ndz x ∈ BR(x̄)

vn(x) x ∈ Ω \BR(x̄).

Then we have wn ∈ C0(Ω). Since vn was monotonically increasing, so is wn,

wn(x) ≤ wn+1(x) ∀x ∈ Ω.

Lemma 2.32. We have the following properties

(1) wn(x) ≥ vn(x) and
(2) wn ∈ Sg.

Proof. (1) We have wn ≡ vn in Ω \ B(x,R). Since wn is harmonic in B(x,R) we have
(v−w) is subharmonic in B(x,R), and since v−w = 0 on ∂B(x,R) the maximum
principle implies v − w ≤ 0 in B(x,R), i.e.

v(x) ≤ w(x) ∀x ∈ B(x,R).

(2) Since wn ≡ vn in Ω \B(x,R) we have that wn(x) ≤ g(x) for all x ∈ ∂Ω. We have

vn(x) ≤ 1
|B(r)|

∫
B(x,r)

vn(y)dy
(1)
≤ 1

|B(r)|

∫
B(x,r)

wn(y)dy

So for all x ∈ Rn \B(x̄, R), vn = wn is subharmonic.
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Let now x ∈ B(x̄, R) (which is open). Since wn is harmonic for all r < dist (x, ∂B(x̄, R))
we have

wn(x) ≤ 1
|B(r)|

∫
B(x,r)

wn(y).

We conclude that wn is subharmonic in Ω by Lemma 2.30.

□

Since wn ∈ Sg we conclude that

vn(x) ≤ wn(x) ≤ u(x) ∀x ∈ Ω
and thus in particular

lim
n→∞

wn(x̄) = u(x̄).

Lemma 2.33. For x ∈ B(x̄, R/2) set
w(x) := lim

n→∞
wn(x̄).

(This exists since wn is bounded by u and monotonicity). Then w is harmonic in B(x̄, R/2)
and w ≤ u in B(x̄, R/2).

Proof. For each n ∈ N we know that wn is harmonic in B(x̄, R) (by definition).

So wn − wm for n,m ∈ N is harmonic in B(x̄, R). We want to apply Harnack’s inequality,
Theorem 2.23, so let us assume n ≥ m, then we have wn − wm ≥ 0, and thus

sup
x∈B(x̄,R/2)

(wn(x) − wm(x)) ≤ C inf
y∈B(x̄,R/2)

(wn(y) − wn(y)) ∀n ≥ m,

i.e.
sup

x∈B(x̄,R/2)
|wn(x) − wm(x)| ≤ C inf

y∈B(x̄,R/2)
|wn(y) − wn(y)| ∀n ≥ m.

In particular,

sup
x∈B(x̄,R/2)

|wn(x) − wm(x)| ≤ C |wn(x̄) − wm(x̄)| n,m→∞−−−−→ 0.

That is, wn is a Cauchy sequence with respect to uniform convergence in B(x̄, R/2), and
since wn is continuous we conclude that there must be some w ∈ C0(B(x̄, R/2)) such that
w is the uniform limit of wn in B(x̄, R/2).

Since wn is harmonic in B(x̄, R/2) (in the sense of Definition 2.29(2)), so is w (by the
uniform convergence).

Since wn(x) ≤ u(x) for all x ∈ Ω (because wn ∈ Sg), we conclude that w(x) = limn→∞ wn(x) ≤
u for all x ∈ B(x̄, R/2). □

Lemma 2.34. Take w from Lemma 2.32. Then w = u in B(x̄, R/2).
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Proof. We already know w ≤ u from Lemma 2.32.

So assume that there is ỹ ∈ B(x̄, R/2) such that w(ỹ) > u(ỹ).

Since w(ỹ) = limn→∞ wn(ỹ) there must be some n such that

wn(ỹ) > u(ỹ).

But this is a contradiction since wn ∈ Sg, and thus

u(ỹ) = sup
v∈Sg

v(ỹ) ≥ wn(ỹ) > u(ỹ).

We can conclude. □

Corollary 2.35. Let u(x) := supv∈Sg
v(x). Then u ∈ C0(Ω) and ∆u = 0 in Ω

Proof. For every x̄ ∈ Ω there exists a small neighborhood B(x̄, R/2) where u equals a
harmonic function, Lemma 2.34. So u must be harmonic and continuous around any point
x ∈ Ω. □

It remains to show that u = g on ∂Ω.

Lemma 2.36. Assume that ∂Ω ∈ C∞ and g is continuous in ∂Ω. Let u(x) := supv∈Sg
v(x),

u ∈ C0(Ω) (not yet up to the boundary!) be the harmonic function from before.

Then u ∈ C0(Ω) and for any θ ∈ ∂Ω we have

lim
x→θ

u(x) = g(θ).

Proof. Since u(x) := supv∈Sg
v(x) and v ∈ Sg must satisfy v ≤ g on ∂Ω we conclude that

To see the other direction, we build what is called a barrier. A barrier at θ is a continuous
function b ∈ C0(Ω) which is superharmonic (i.e. −b is subharmonic) in Ω and b(x) ≥ 0 for
all x ∈ Ω and b(x) = 0 if and only if x = θ.

Fix θ ∈ ∂Ω. Since ∂Ω is smooth, there exists (nontrivial exercise!) a ball B(z̄, R) ⊂ Rn \ Ω
such that B(z̄, R) ∩ Ω = {θ} (this is called the exterior sphere condition of ∂Ω).

Here is our barrier function

b(x) :=
R2−n − |x− z̄|2−n if dimension n ≥ 3

− log(R) + log(|x− z̄|) if n = 2.

Then b ∈ C∞(Rn \ {z̄}) and since it involves the fundamental solution we know that
∆b(x) = 0 for all x ∈ Rn \ {z̄}. Since z̄ ̸∈ Ω we conclude that ∆b = 0 in Ω.

For x ∈ Rn \ B(z̄, R) we have b(x) > 0 (observe that 2 − n is a negative power!) and we
have b(θ) = 0. Since B(z̄, R) ∩ Ω = {θ} this satisfies the barrier definition in Ω.
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Fix ε > 0. Since g is continuous on ∂Ω there exists δ > 0 such that
|g(x) − g(θ)| < ε ∀x ∈ ∂Ω, |x− θ| < δ.

Set
λ := inf

z∈∂Ω\B(θ,δ)
β(z) > 0.

and
Λ := 2 sup

∂Ω
|g| < ∞.

v̄(x) := g(θ) − ε− b(x)Λ
λ
.

Then v̄ is still harmonic in Ω (in particular it is subharmonic). Moreover for x ∈ ∂Ω, if
|x− θ| < δ then

v̄(x) − g(x) = g(θ) − g(x) − ε− b(x)Λ
λ

≤ |g(θ) − g(x)| − ε ≤ 0.

If on the other hand |x− θ| ≥ δ then

v̄(x) − g(x) =g(θ) − ε− g(x) − b(x)Λ
λ

b
λ

≥1
≤ g(θ) − g(x) − Λ

≤2 sup
∂Ω

|g| − Λ ≤ 0.

So we have v̄ ≤ g on ∂Ω, and thus v̄ ∈ Sg. Since u = supv∈Sg
v we find that

u(θ) ≥ v̄(θ) = g(θ) − ε.

Since this holds for all θ ∈ ∂Ω we have shown
u(x) ≥ g(x) − ε for all x ∈ ∂Ω.

This again holds for any ε > 0 so that we have
u(x) ≥ g(x) for all x ∈ ∂Ω.

We conclude that u(x) = g(x) for all x ∈ ∂Ω and we can conclude. □

We finally can conclude

Corollary 2.37. Let u(x) := supv∈Sg
v(x). Then u ∈ C0(Ω) and ∆u = 0 in Ω and u = g

on ∂Ω.

Let us summarize some features of Perron’s method.

• Perron’s method shows existence of solutions via obtaining “a largest subsolution”
(a “smallest supersolution” would work similarly) .

• it relies on the ability to locally improve a subsolution to obtain a global solution
(but observe that we worked hard to show that a local subsolution everywhere is a
global subsolution)



PARTIAL DIFFERENTIAL EQUATIONS I & II VERSION: August 1, 2023 53

• Perron’s method relies extremely on comparison principles. Take an equation with-
out comparison principle (e.g. 4th order, or systems of equations), and there is
essentially no hope of running this idea.

• Perron’s method likes to work with some form of continuity, not differentiability;
in particular we need to define a notion of “weak” subsolution that makes sense
for continuous functions. This works for second order equations with comparison
principles often via theories like Viscosity solutions

2.9. Weak Solutions, Regularity Theory. Now we look at our first encounter with
distributional solutions. Let u ∈ L1

loc(Ω), that is u is a measurable function on Ω which is
integrable on every compactly contained set K ⊂ Ω, i.e.∫

K
|u| < ∞.

u certainly has no reason to be differentiable, it might not even be continuous. How on
earth are we going to define

∆u = 0 in Ω?
The idea is that if u ∈ C2(Ω) then

(2.21) ∆u = 0 in Ω

is equivalent to saying that

(2.22)
∫

Ω
u∆φ = 0 for all φ ∈ C∞

c (Ω).

(Recall that C∞
c (Ω) are those smooth functions that have compact support suppφ ⊂⊂ Ω).

Indeed, for φ ∈ C∞
c (Ω) and u ∈ C2(Ω) we have by integration by parts∫

Ω
u∆φ =

∫
Ω

∆uφ.

So for u ∈ C2(Ω) we clearly have that (2.22) is equivalent to

(2.23)
∫

Ω
∆uφ = 0 for all φ ∈ C∞

c (Ω).

Now if (2.21) holds then clearly (2.23) holds.

On the other hand assume that (2.23) holds, but (2.21) is false. That is assume there is
x0 ∈ Ω such that (w.l.o.g.)

∆u(x0) > 0.
Since u ∈ C2(Ω) we have ∆u ∈ C0(Ω) and thus there exists a ball B(x0, r) ⊂⊂ Ω such
that

(2.24) ∆u > 0 on B(x0, r)
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(JoshDif [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from
Wikimedia Commons)

Figure 2.3. A bump function

Now let φ ∈ C∞
c (Ω) a bump function (or cutoff function), namely a function φ such that

φ ≥ 1 in B(x0, r/2) and φ ≡ 0 in Ω\B(x0, r), and φ ≥ 0 everywhere. These bump functions
really exist: they can be build by essentially scaled and glued versions of

η(x) :=
e

− 1
1−|x|2 for |x| < 1

0 for |x| > 1
See Figure 2.9.

For this bump function φ we have from (2.24)∫
Ω
φ∆u > 0

which contradicts (2.23). This proves the equivalence of (2.22) and (2.21) for C2-functions
u.

However, we notice that while (2.21) only makes sense for functions u that are twice
differentiable, the statement (2.22) makes sense for all functions u ∈ L1

loc(Ω). This warrants
the following definition:
Definition 2.38 (Weak solutions of the Laplace equation). For a function u ∈ L1

loc(Ω) we
say that (2.21) is satisfied in the weak sense (or in the distributional sense) if

(2.22)
∫

Ω
u∆φ = 0 for all φ ∈ C∞

c (Ω).

holds. The functions φ used to “test” the equation are for this very reason called test-
functions.

To distinguish the notion of solution we used before, we say that if ∆u = 0 in a differentiable
function sense tjem u is a strong solution or classical solution.

Above, we already have shown the following statement
Proposition 2.39. Let u ∈ C2(Ω). Then the following two statements are equivalent:

(1) u is a weak solution to the Laplace equation ∆u = 0 in Ω
(2) u is a classical solution of ∆u = 0 in Ω.
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Weyl proved that this equivalence holds for u ∈ L1
loc (i.e. with no a priori differentiablity

at all) – this is our first result of regularity theory: showing that weak solutions which are
a priori only integrable are actually differentiable. Observe: the reason this works here is
that we have a homogeneous equation ∆u = 0, and that ∆ is a constant-coefficient linear
elliptic operator (and one can spend much more time for proving similar results for more
general linear elliptic operators). Having said that, in some sense, the regularity theory
for elliptic equations is always somewhat based on the following Theorem, Theorem 2.40
(albeit in a hidden way).

Theorem 2.40 (Weyl’s Lemma). Let u ∈ L1
loc(Ω) for Ω ⊂ Rn open. If u is a weak solution

of Laplace equation, i.e.

(2.22)
∫

Ω
u∆φ = 0 for all φ ∈ C∞

c (Ω).

then u ∈ C∞(Ω) and ∆u in the classical sense.

Observe that this theorem (rightfully) does not say anything about u on ∂Ω, this is a
purely interior result!

The proof of Theorem 2.40 exhibits the structure that many proofs in PDE have. First on
obtains some a priori estimates (namely under the assumption that everything is smooth
we find good estimates). Then we show that these estimates hold also for rough solutions
by an approximation argument.

The a priori estimates for the Laplace equations are called the Cauchy estimates. These
are truly amazing: They say that if we solve the Laplace equation we can estimate all
derivatives, in pretty much any norm simply by the L1-norm of the function.

Lemma 2.41 (Cauchy estimates). Let u ∈ C∞(Ω) be harmonic, ∆u = 0 in Ω. Then we
have for any ball B(x0, r) ⊂ Ω and for any multiindex γ of order |γ| = k,

|∂γu(x0)| ≤ Ck

rn+k
∥u∥L1(B(x0,r)).

In particular we have for any Ω2 ⊂⊂ Ω that

sup
Ω2

|Dku| ≤ C(dist (Ω2,Ω), k)∥u∥L1(Ω)

Proof of the Cauchy estimates, Lemma 2.41. For k = 0 we argue with the mean value
property for harmonic functions, Theorem 2.15. We have for any ρ such that B(x0, ρ) ⊂ Ω
and any x ∈ B(x0, ρ/2),

|u(x)| =
∣∣∣∣∣
∫

B(x,ρ/2)
u(z) dz

∣∣∣∣∣ ≤ C

ρn

∫
B(x,ρ/2)

|u(z)| dz ≤ C

ρn

∫
B(x0,ρ)

|u(z)| dz.
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That is, we have obtained that for if ∆u = 0 on B(x0, ρ) then

(2.25) sup
B(x0,ρ/2)

|u| ≤ C

ρn
∥u∥L1(B(x0,ρ)).

This proves in particular the case k = 0 (taking ρ =: r).

For the case k = 1 we use a technique called “differentiating the equation” (and in more
general situations where this is used in a discretized version we will study later is due to
Nirenberg, cf. Section 5.2). Observe that ∆u = 0 in Ω implies

∆∂iu = ∂i∆u = 0 in Ω

So if we set v := ∂iu we have that ∆v = 0 in Ω. For x ∈ B(x0, ρ/4), again from the mean
value property for harmonic functions, Theorem 2.15, we get with an additional integration
by parts

|∂iu(x)| =
∣∣∣∣∣
∫

B(x,ρ/4)
∂iu(z) dz

∣∣∣∣∣ = C

ρn

∣∣∣∣∣
∫

∂B(x,ρ/4)
u(θ) νidHn−1(θ)

∣∣∣∣∣
≤C

ρn
ρn−1 sup

B(x,ρ/4)
|u|

≤C

ρn
ρn−1 sup

B(x0,ρ/2)
|u|

Now in view of the estimates in the step k = 0, namely (2.25), we arrive at

sup
B(x0,ρ/4)

|∇u(x)| ≤ C

ρn+1 ∥u∥L1(B(x0,ρ)).

Differentiating the equation again, we find by induction that (the constant changes in each
appearance!)

|∇ku(x0)| ≤ sup
B(x0,4−kρ)

|∇ku(x)| ≤ C

ρn+1 ∥∇k−1u∥L1(B(x0,41−kρ)) ≤ . . . ≤ C

ρn+k
∥u∥L1(B(x0,ρ).

If we want to show the estimate on Ω2 ⊂⊂ Ω we now pick ρ < dist (Ω2, ∂Ω) and obtain
the claim. □

Proof of Weyl’s Lemma: Theorem 2.40. We use a mollification argument, i.e. we approxi-
mate u with smooth functions uε that also solve (in the classical sense) the Laplace equa-
tion.

Let η ∈ C∞
c (B(0, 1)) be another bump function, this time with the condition η(x) = η(−x),

i.e. η is even, η ≥ 0 everywhere, and normalized such that∫
Rn
η = 1.
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We rescale η by a factor ε > 0 and set
ηε(x) := ε−nη(x/ε).

Then the convolution4 is defined as
uε(x) := ηε ∗ u(x) :=

∫
Rn
ηε(y − x)u(y) dy

Clearly this is not well-defined for all x, if u ∈ L1
loc(Ω) only. But it is defined for all x ∈ Ω

such that dist (x, ∂Ω) > ε, since supp ηε(· − x) ⊂ B(x, ε).

But observe that derivatives on uε hit only the kernel ηε (which is smooth) (there is a
dominated convergence to be used to show that, and for this we need L1

loc!)

∂γuε(x) := ηε ∗ u(x) :=
∫
Rn
∂γηε(y − x)u(y) dy

That is uε ∈ C∞(Ω−ε) where
Ω−ε = {x ∈ Ω, dist (x, ∂Ω) > ε}

The fun part (which we used above already) is that convolutions behave well with differ-
ential operators, namely we will show now that ∆uε = 0 in Ω−ε:

For this let ψ ∈ C∞
c (Ω−ε) a testfunction, then we have∫

Ω−ε

uε(x) ∆ψ(x) dx =
∫
Rn

∫
Rn
u(y)ηε(x−y) ∆ψ(x) dy dx =

∫
Rn
u(y)

∫
Rn
ηε(x−y) ∆ψ(x) dx dy

Now, by integration by parts (for any fixed y ∈ Rn)∫
Rn
η(x−y) ∆ψ(x) dx =

∫
Rn

∆xηε(x−y)ψ(x) dx =
∫
Rn

∆yηε(x−y)ψ(x) dx = ∆y

∫
Rn
ηε(x−y)ψ(x) dx

So if we set
φ(y) := ηε ∗ ψ(y) ≡

∫
Rn
ηε(x− y)ψ(x) dx

then we have by the support condition on ψ that φ ∈ C∞
c (Ω), and thus∫

Ω−ε

uε(x) ∆ψ(x) dx =
∫
Rn
u(y) ∆φ(y) dy (2.22)= 0.

This argument works for any ψ ∈ C∞
c (Ω−ε), that is uε is weakly harmonic in Ω−ε. But

since uε ∈ C∞(Ω−ε) this implies in view of Proposition 2.39 that in the strong sense
∆uε = 0 in Ω−ε.

So now uε is a smooth solution to Laplace’s equation, so we use the a priori estimates of
Lemma 2.41.

Fix Ω2 ⊂⊂ Ω. Between Ω2 and Ω we can squeeze two more set Ω3, and Ω4,
Ω2 ⊂⊂ Ω3 ⊂⊂ Ω4 ⊂⊂ Ω.

4we have seen this operation for the Fourier Transform argument above after (2.3), there we used a
nonsmooth kernel | · |2−n for the convolution
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For any ε small enough, namely
ε < dist (Ω3, ∂Ω4) and ε < dist (Ω3, ∂Ω4)

we have that ∆uε = 0 in Ω3, so by the Cauchy estimates, Lemma 2.41, we have for any
k ∈ N

sup
Ω2

|∇kuε| ≤ C(k,Ω2,Ω3) ∥uε∥L1(Ω3).

Now we estimate, by Fubini,

∥uε∥L1(Ω3) ≤
∫

Ω3

∫
Rn

|ηε(x− y)| |u(y)| dy dx =
∫
Rn

|u(y)|
∫

Ω3
|ηε(x− y)|dx dy

Since ε is small enough we have that

supp
(∫

Ω3
|ηε(x− ·)|dx

)
⊂ Ω4.

So we get

∥uε∥L1(Ω3) ≤ ∥u∥L1(Ω4) sup
y∈Rn

∫
Ω3

|ηε(x− y)|dx ≤ ∥u∥L1(Ω4)

∫
Rn

|ηε(z)|dz.

Now we use the definition of ηε to compute via substitution5∫
Rn

|ηε(z)|dz = ε−n
∫
Rn

|η(z/ε)|dz = ε−n
∫
Rn

|η(z/ε)|dz =
∫
Rn

|η(z̃)|dz̃ = 1.

The last equality is due to the normalization of η,
∫
η = 1.

That is, we have shown that for any k ∈ N ∪ {0}

sup
Ω2

|∇kuε| ≤ C(k,Ω2,Ω3) ∥u∥L1(Ω4),

and the right-hand side is finite since u ∈ L1
loc(Ω) and Ω4 ⊂⊂ Ω.

This estimate holds for any ε > 0, so uε and all its derivative are uniformly equicontinuous
(in ε). By Arzela-Ascoli (and a diagonal argument in k) we find a converging subsequence
ε → 0 and a function u0 ∈ C∞(Ω2) such that for any k ∈ N ∪ {0}.

|∇kuε(x) − ∇ku0(x)| ε→0−−→ 0 locally uniformly in Ω2.

We claim that u = u0 in almost every point (since u is an L1
loc-function it is actually a the

class of maps equal up to almost every point, u0 is a continuous representative of the class
u). Indeed, by the normalization

∫
η = 1 which implies

∫
ηε = 1 we have

|uε(x) − u(x)| =
∣∣∣∣∫ ηε(y − x) (u(y) − u(x)) dy

∣∣∣∣ ≤ C(η)
∫

B(x,ε)
|u(y) − u(x)| dy.

So, by the Lebesgue differentiation theorem, we have for almost every x ∈ Ω2,
lim
ε→0

|uε(x) − u(x)| = 0,

5observe for z̃ = z/ε we have in n space dimensions dz̃ = ε−ndz
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that is
u0 = u a.e. in Ω2.

Thus u ∈ C∞(Ω2), and ∆u = 0 in classical sense in Ω2.

Since this holds for any Ω2 ⊂ Ω we have shown

u ∈ C∞(Ω), and ∆u = 0 in classical sense in Ω. □

Corollary 2.42 (Liouville). Let u ∈ C2(Rn) and ∆u = 0 in all of Rn. If u is a bounded
function then u ≡ const.

Proof. Fix x0 ∈ Rn. In view of Lemma 2.41 we have for such a function u, for any radius
r > 0,

|Du(x0)| ≤ C

rn+1 ∥u∥L1(B(x0,r))

If u is bounded,
∥u∥L1(B(x0,r)) ≤ C rn sup

Rn
|u| < ∞

and thus
|Du(x0)| ≤ Cr−1 sup

Rn
|u|.

This holds for any r > 0, so if we let r → ∞, we get
|Du(x0)| = 0,

which holds for any x0 ∈ Rn. That is, Du ≡ 0, and by the fundamental theorem of calculus
this means u is a constant. □

The following is also often referred to as Cauchy estimates:

Exercise 2.43. Assume
∆h = 0 in B(0, R)

Show that for any ρ < R we have∫
B(0,ρ)

|h−
∫

B(0,ρ)
h|p ≤ C

(
ρ

R

)n+p ∫
B(0,R)

|h|p.

Here C is a constant only depending on p and n, but not on ρ,R, h.

Hint: First rescale the problem so that w.l.o.g. R = 1.

Then show the inequality for ρ ≥ 1
2 (no harmonicity is needed then).

If ρ < 1
2 us that

|h−
∫

B(0,ρ)
h| ≤ |ρ|∥∇h∥L∞(B(0,1/2 )).

Then use the Cauchy estimates, Lemma 2.41.



PARTIAL DIFFERENTIAL EQUATIONS I & II VERSION: August 1, 2023 60

2.10. Methods from Calculus of Variations – Energy Methods. As we have seen,
comparison principles is a strong tool for uniqueness (and also existence). These arguments
also work in some situations of nonlinear pdes, where the theory of distributional solutions
does not work, but the theory of Viscosity solutions can be applied, see [Koike, 2004].

On the other hand, the comparison methods are (currently) restricted to first or second-
order equations, and to scalar equations. For systems or higher-order PDEs they seem not
to be that helpful.

In this section we have a short look on energy methods, which is a basic tool of distributional
theory. They do not rely on any comparison principle, and they are often used for higher-
order differential equations and systems. On the other hand for some fully nonlinear
equations (“non-variational” equations, equtions “not in divergence form”) they cannot be
well applied.

The ideas should be reminiscent of the arguments we employed for the weak solutions in
Theorem 2.40.

Assume that we have

(2.26)
∆u = f in Ω
u = 0 on ∂Ω

We have seen before Theorem 2.40 that this equation is related to the integral equation∫
Ω
Du ·Dφ+ fφ = 0 ∀φ ∈ C∞

c (Ω).

The interesting point is that this expression is a Frechet-Derivative of a function acting on
the map u in direction φ.

Indeed one can characterize solutions as minimizers of an energy functional. This is some-
times called the Dirichlet principle.

Theorem 2.44 (Energy Minimizers are solutions and vice versa). Assume f ∈ C0(Ω).

Denote the class of permissible functions

X :=
{
u ∈ C2(Ω), u = 0 on ∂Ω

}
and define the energy

E(u) :=
∫

Ω

1
2 |Du|2 + fu.

Let u ∈ X be a minimizer of E in X, i.e.
E(u) ≤ E(v) ∀v ∈ X.

Then u solves (2.26).

Conversely, if u ∈ X solves (2.26), then u is a minimizer of E in the set X.
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Proof. We compute what is called the Euler-Lagrange equation(s) of E : Let φ ∈ C∞
c (Ω),

then certainly u + tφ ∈ X for all t ∈ R. That is the minimizing property says that the
function

E(t) := E(u+ tφ)

has a minimum in t = 0. By Fermats theorem (one checks easily that E is differentiable
in t)

d

dt

∣∣∣∣
t=0
E(t) ≡ E ′(0) = 0.

Now observe that
d

dt

∣∣∣∣
t=0

|D(u+ tφ)|2 = 2⟨Du,Dφ⟩

and
d

dt

∣∣∣∣
t=0
f (u+ tφ) = f φ.

Thus, we arrive at

0 = d

dt

∣∣∣∣
t=0
E(t) =

∫
Ω
Du ·Dφ+ fφ = 0.

That is, u is a weak solution of (2.26). But u ∈ C2(Ω), so we argue similar to the proof of
Proposition 2.39:

By an integration by parts (for φ ∈ C∞
c (Ω) there are no boundary terms), we thus have

0 =
∫

Ω
Du ·Dφ+ fφ = 0 = −

∫
Ω
(∆u− f)φ.

Since ∆u − f is continuous, and the last estimate holds for any smooth φ ∈ C∞
c (Ω) we

get that (as for Proposition 2.39, or otherwise by the fundamental lemma of calculus of
variations, Lemma 2.45,

∆u− f = 0.

That is the first claim is proven: minimizers are solutions.

For the converse assume u solves (2.26). Let w be any other map in X. Then we have∫
Ω
(∆u− f)(u− w) = 0.

Observe that u and w have the same boundary value 0 on ∂Ω. Thus, when we perform
the following integration by parts we do not find boundary terms,

(2.27) 0 = −
∫

Ω
∇u · ∇(u− w) + f(u− w) = 0.
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Now we compute (using Young’s inequality or Cauchy-Schwarz 2ab ≤ a2 + b2)∫
Ω

|∇u|2 + fu
(2.27)=

∫
Ω

∇u · ∇w + fw

≤
∫

Ω

1
2 |∇u|2 + 1

2 |∇w|2 + fw

=1
2

∫
Ω

|∇u|2 + E(w)

Subtracting 1
2
∫

Ω |∇u|2 from both sides in the estimate above we obtain

E(u) ≤ E(w).

That is, we have shown: if u solves the equation, then u is a minimizer. □

Above we have used the following statement for continuous functions. It is worth recording
that this works also for locally integrable functions.

Lemma 2.45 (Fundamental Lemma of the Calculus of Variations). Let Ω ⊂ Rn be any
open set and assume f ∈ L1

loc(Ω), i.e. for any Ω′ ⊂⊂ Ω we have∫
Ω′

|f | < ∞.

(1) If ∫
Ω
f(x)φ(x) ≥ 0 for all φ ∈ C∞

c (Ω) that are nonnegative, φ ≥ 0,

then
f ≥ 0 almost everywhere in Ω.

(2) If ∫
Ω
f(x)φ(x) = 0 for all φ ∈ C∞

c (Ω) that are nonnegative, φ ≥ 0,

then
f ≡ 0 almost everywhere in Ω.

The proof is left as an exercise, it is a combination of convolution arguments as in Theo-
rem 2.40 and the argument used for Proposition 2.39.

Theorem 2.46 (Uniqueness). Assume f ∈ C0(Ω) ∩ L1(Ω)

Denote the class of permissible functions

X :=
{
u ∈ C2(Ω), u = 0 on ∂Ω

}
Then there is at most one solution u ∈ X to (2.26)
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Proof. Assume u,w ∈ X are two solutions, then
∆(u− w) = 0.

Multiplying by u−w and integrating by parts (observe that there are no boundary terms
since u = w on ∂Ω, we obtain ∫

Ω
|∇(u− w)|2 = 0.

But this implies ∇(u − w) ≡ 0, so u − w ≡ const. Since u = w on the boundary that
constant is zero, and u ≡ w. □

Exercise 2.47. Let Ω ⊂ Rn be a bounded open set with smooth boundary. Assume f ∈
C0(Ω) and A ∈ C2(Ω,Rn×n), A symmetric, and all eigenvalues strictly positive in Ω, and
let c ∈ C0(Ω).

Denote the class of permissible functions
X :=

{
u ∈ C2(Ω), u = 0 on ∂Ω

}
and define the energy

E(u) :=
∫

Ω

1
2⟨ADu,Du⟩Rn + 1

2

∫
c|u|2 + fu.

Let u ∈ X be a minimizer of E in X, i.e.
E(u) ≤ E(v) ∀v ∈ X.

Then u solves

(2.28)
div (A∇u) − cu = f in Ω
u = 0 on ∂Ω

Conversely, if u ∈ X solves (2.28), then u is a minimizer of E in the set Y .

These methods can be extended, e.g. for higher order differential equations (where no
maximum principle holds), e.g. the Neumann boundary problem. Let ν : ∂Ω → Rn be the
outwards facing unit normal. The Neumann problem is the equation

(2.29)
∆u = f in Ω
∂νu = 0 on ∂Ω

Exercise 2.48. Let Ω ⊂ Rn be a bounded open set with smooth boundary. Assume f ∈
C0(Ω).

Denote the class of permissible functions
Y :=

{
u ∈ C2(Ω)

}
and define the energy

E(u) :=
∫

Ω

1
2 |Du|2 + fu.
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Let u ∈ Y be a minimizer of E in Y , i.e.
E(u) ≤ E(v) ∀v ∈ Y.

Then u solves (2.29).

Conversely, if u ∈ Y solves (2.26), then u is a minimizer of E in the set Y .

Exercise 2.49 (Uniqueness modulo constants). Let Ω ⊂ Rn be a connected, bounded, open
set with smooth boundary. Assume f ∈ C0(Ω). Assume f ∈ C0(Ω)

Denote the class of permissible functions
Y :=

{
u ∈ C2(Ω)

}
Then any two solutions u, v ∈ Y to (2.29) must satisfy u− v ≡ constant

2.11. Linear Elliptic equations. From now on we often use the Einstein summation
convention, often described as “summing over repeated indices”. We write

aij∂iju ⇔
∑
i,j

aij∂iju.

bi∂iu ⇔
∑

i

bi∂iu.

bul
bi∂ju ̸⇔

∑
i,j

bi∂ju.

In particular
∆u ⇔ ∂iiu.

Second order elliptic equations are a class of equations that in some sense are governed by
the Laplacian operator.

Definition 2.50 (Linear elliptic equations). (1) (“non-divergence form”) linear second
order operators are defined to be operators of the form

L := aij∂ij + bi∂i + c

for coefficents aij, bi, c : Ω → R. They act as follows on functions u ∈ C2(Ω)
Lu(x) := aij(x)∂iju(x) + bi(x)∂iu(x) + c(x)u(x).

L is called a constant coefficient operator, if the coefficients aij, bi and c are all
constant.

(2) (“divergence form”) linear second order operators are defined to be operators of the
form

L := ∂i (aij∂j) + bi∂i + c

for coefficents aij, bi, c : Ω → R. They act as follows on functions u ∈ C2(Ω)
Lu(x) := ∂i (aij(x)∂ju(x)) + bi(x)∂iu(x) + c(x)u(x).
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(3) Clearly, divergence on non-divergence form are very similar if aij is smooth enough,
but they are different if a is not smooth (or, has happens often in applications: a
depends on u).

(4) (divergence-form or non-divergence form) operators L are called elliptic (also often
called uniformly elliptic and bounded) if there exists an ellipticity constants Λ > 0
such that

ξTAξ ≡ ξiaijξ
j ≥ 1

Λ
and

sup
Ω

|aij|, |bi|, |c| < ∞.

For simplicity, although this is not strictly necessary we will below always assume A is
symmetric.
Example 2.51. • The operator ∆ is clearly elliptic in the above sense, with

aij = δij :=
1 if i = j

0 else

• Operators like div (|∇u|p−2∇u) are not (uniformly elliptic), since |∇u| = 0 cannot
be excluded. These operators are called degenerate elliptic.

Definition 2.52. u ∈ C2(Ω) is called a subsolution of −Lu = f for an elliptic operator L,
if

−Lu ≤ 0 in Ω
and a supersolution if

−Lu ≥ 0 in Ω.
u ∈ C2(Ω) is called a solution if it is both sub- and supersolution.

In the following we will restrict ourselves to elliptic non-divergence operators!

2.12. Maximum principles for linear elliptic equations. The first result is a gener-
alization of the weak maximum principle for ∆, Corollary 2.18.
Theorem 2.53 (Weak maximum principle for c = 0). Let Ω ⊂⊂ Rn, u ∈ C2(Ω) ∩ C0(Ω)
be an L-subsolution, i.e.
(2.30) −Lu ≤ 0 in Ω
If L is (non-divergence form) linear elliptic operator with c ≡ 0, then

sup
Ω
u = sup

∂Ω
u.

If instead of (2.30) we have
−Lu ≥ 0 in Ω

then
inf
Ω
u = inf

∂Ω
u.
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Proof. First we assume instead of (2.30)
(2.31) −Lu > 0 in Ω
Clearly, by continuity of u in Ω,

sup
Ω
u ≥ sup

∂Ω
u

If we had
sup

Ω
u > sup

∂Ω
u,

then we would find the global (and thus a local) maximum x0 ∈ Ω, at which we have
Du(x0) = 0 and D2u(x0) ≤ 0. But this implies (recall c ≡ 0)

Lu(x0) = aij(x0)∂iju(x0) + bi(x0) ∂iu(x0)︸ ︷︷ ︸
=0

Since aij(x0) is elliptic, and ∂iju(x0) ≥ 0 we have
aij(x0)∂iju(x0) ≥ 0.

(This is a general Linear Algebra fact, if A,B are symmetric, nonnegative matrices, then
their Hilbert-Schmidt Scalar product A : B := aijbij ≥ 0, Exercise 2.55.) That is, we have

Lu(x0) ≥ 0
which is a contradiction to (2.31).

We conclude that under the assumption (2.31) we have
sup

Ω
u = sup

∂Ω
u.

In order to weak the assumption to (2.31) we consider, for some γ > 0, vγ(x) := eγx1 ,
where x1 is the first component of x = (x1, . . . , xn). Observe that

Lvγ(x) =
(
a11(x)γ2 + b1(x)γ

)
eγx1

Since L is elliptic we have a11 ≥ 1
Λ and b1 ≥ −Λ, so

Lvγ(x) = a11(x)γ2 + b1(x)γ ≥ eγx1γ
( 1

Λγ − Λ
)
.

If we choose γ = 3Λ we thus find
Lvγ(x) > 0 in Ω.

Consequently, under the assumption (2.30) we have for any ε > 0, for wε := u+ εvγ,
Lwε(x) > 0 in Ω.

and thus by the first step
sup

Ω
wε = sup

∂Ω
wε

Since wε = u+ εvγ and vγ is continuous (and Ω is bounded) we have∣∣∣∣∣sup
Ω
u− sup

∂Ω
u

∣∣∣∣∣ ≤ C(Ω)ε.
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Letting ε → 0 we obtain the claim.

The inf claim follows by taking −u instead of u. □

Exercise 2.54. Let A ∈ Rn×n be a symmetric matrices, i.e. At = A. Show that the
following two conditions are equivalent

(1) A ≥ 0 in the sense of matrices, i.e.
ξtAξ ≥ 0

(2) all eigenvalues of A are nonnegative.

Exercise 2.55. Let A,B ∈ Rn×n be two symmetric matrices, i.e. At = A, Bt = B.
Assume that A,B ≥ 0 in the sense of matrices, i.e.

ξtAξ ≥ 0, ξtBξ ≥ 0 ∀ξ ∈ Rn

Show that
A : B ≡

n∑
i=1

n∑
j=1

AijBij ≥ 0.

Also in the case c ̸≡ 0 a type of weak maximum principle holds (essentially mimmicking
the above argument):

Theorem 2.56 (Weak maximum principle for c ≤ 0). Let Ω ⊂⊂ Rn, and consider
L := aij(x)∂ij + bi(x)∂i + c(x).

where c ≤ 0 in Ω.

Assume u ∈ C2(Ω) ∩ C0(Ω).

(1) If u solves
−Lu ≤ 0 in Ω

Then
sup

Ω
u≤ sup

∂Ω
u+,

where u+ denotes the positive part of u, namely
u+ = max{0, u}.

(2) If on the other hand u solves
−Lu ≥ 0 in Ω

we have
inf
Ω
u ≥ inf

∂Ω
(−u−),

where u− denotes the positive part of u, namely
u+ = max{0, u}, u− = − min{0, u}
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(3) In particular, if Lu = 0 then
sup

Ω
|u| ≤ sup

∂Ω
|u|

Proof. Let us assume −Lu ≤ 0. First we observe that if
sup

Ω
u ≤ 0

then there is nothing to show, since we have u+ ≥ 0 by definition and thus
sup

Ω
u ≤ 0 ≤ sup

∂Ω
u+.

So w.l.o.g. we may assume that supΩ u > 0. Set
Ω+ := {x ∈ Ω : u(x) > 0} ≠ ∅

Since u is continuous Ω+ = u−1((0,∞)) is a nonempty, open set.

Define the elliptic operator L0 by
L0u := Lu− cu = aij∂iju+ bi∂iu.

Since −Lu ≤ 0 we have −L0u ≤ cu ≤ 0 in Ω+ — since by assumption c ≤ 0. So, using the
weak maxum principle for c ≡ 0, Theorem 2.53,

sup
Ω
u

u≤0: Ω\Ω+
≤ sup

Ω+

u
T. 2.53= sup

∂Ω+

u = sup
∂Ω+

u+ ≤ sup
∂Ω

u+.

In the last step we used that ∂Ω+ ⊂ Ω can be split into two parts: the part ∂Ω+ ⊂ Ω (on
this part we have u = u+ = 0), and the part ∂Ω+ ⊂ ∂Ω where u+ ≥ 0.

This settles the claim for −Lu ≤ 0.

If we assume −Lu ≥ 0 then −u satisfies −L(−u) ≥ 0, and we obtain the claim from the
previous case

− inf
Ω
u = sup

Ω
(−u) ≤ sup

∂Ω
(−u)+ = sup

∂Ω
u− = − inf

∂Ω
(−u−)

so
inf
Ω
u ≥ inf

∂Ω
(−u−).

For the last case assume that −Lu = 0. By the arguments before we have then (observe
that |u| = u+ + u−).

sup
Ω
u ≤ sup

∂Ω
u+ ≤ sup

∂Ω
|u|.

and
inf
Ω
u ≥ inf

∂Ω
(−u−),

which can be rewritten as
− inf

Ω
u ≤ − inf

∂Ω
(−u−) = sup

∂Ω
(u−) ≤ sup

∂Ω
|u|.
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Now at least one of the following cases holds:

sup
Ω

|u| = sup
Ω
u, or sup

Ω
|u| = − inf

Ω
u

but in both cases the estimates above imply

sup
Ω

|u| ≤ sup
∂Ω

|u|

□

Exercise 2.57 (Counterexample for c ≥ 0). Consider

Lu = ∆u+ 5u

for Ω = (−1, 1) × (−1, 1). Take

u = (1 − x2) + (1 − y2) + 1

Show that

(1) −Lu =≤ 0 in Ω
(2) supΩ u ≥ u(0) = 3
(3) sup∂Ω u = 2
(4) Why is this no contradiction to Theorem 2.56?

Corollary 2.58 (Eigenvalues of ∆). ∆ with Dirichlet-boundary has no nonnegative eigen-
values. Namely there is no nontrivial solution u ∈ C2(Ω) ∩ C0(Ω) for λ ≥ 0 to∆u = λu in Ω

u = 0 on ∂Ω

(Here, nontrivial means u ̸≡ 0).

Proof. The above equation is for L := ∆ − λ equivalent to−Lu = 0 in Ω
u = 0 on ∂Ω

Since λ ≥ 0, Theorem 2.56 is applicable, so for any solution to the above equation we’d
have

sup
Ω

|u| ≤ sup
∂Ω

|u| = 0.

Thus u ≡ 0, i.e. u is the trivial solution. □

As it was the case for the ∆-operator, Theorem 2.22, the weak maximum principle implies
uniqueness results.
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Corollary 2.59 (Uniqueness for the Dirichlet problem). Let L be as above a non-divergence
form linear elliptic operator, Ω ⊂⊂ Rn with smooth boundary, c ≤ 0, f ∈ C0(Ω), g ∈
C0(∂Ω). Then there exists at most one solution u ∈ C2(Ω) ∩ C0(Ω) of the Dirichlet
boundary problem Lu = f in Ω

u = g on ∂Ω

Exercise 2.60. Prove Corollary 2.59.
Corollary 2.61 (Comparison principle). Let L be a linear elliptic differential operator
(non-divergence form), and assume that c ≤ 0 in Ω ⊂⊂ Rn. Let u, v ∈ C2(Ω) ∩ C0(Ω)
satisfy −Lu ≤ −Lv in Ω. Then u ≤ v on ∂Ω implies u ≤ v in Ω.
Exercise 2.62. Prove Corollary 2.61
Corollary 2.63 (Continuous dependence on data). Let L be a linear elliptic differential
operator (non-divergence form), and assume that c ≤ 0 in Ω ⊂⊂ Rn.

Let u ∈ C2(Ω) ∩ C0(Ω) satisfy −Lu = f in Ω
u = g on ∂Ω

where f ∈ C0(Ω) and g ∈ C0(∂Ω).

Then for some constant C = C(a, b, c,Ω) we have

sup
Ω

|u| ≤ C

(
sup
∂Ω

|g| + sup
Ω

|f |
)
.

Exercise 2.64. Prove Corollary 2.63.

Hint: Set vλ := u + λeµ|x−x0 |2 supΩ |f | where x0 ∈ Rn \ Ω. Choose µ ≫ 1. Then choose λ
so that Lvλ ≤ 0 and use the weak maximum principle. Then choose λ so that Lvλ ≥ 0,
and again use the weak maximum principle.

Our next goal is the the strong maximum principle, for this we use the following result by
Hopf:
Lemma 2.65 (Hopf Boundary point Lemma). Let B ⊂ Rn be a ball, and let L be as above.
Let u ∈ C2(B) ∩ C0(B) and assume that for x0 ∈ ∂B we have

• u(x) < u(x0) for all x ∈ B
• −Lu ≤ 0 in B.
• One of the following

(1) c ≡ 0
(2) c ≤ 0 and u(x0) ≥ 0
(3) u(x0) = 0
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Figure 2.4. Illustration of the setup in Hopf’s boundary lemma, Lemma 2.65

Then for ν the outwards facing normal of B at x0 (i.e. if B = B(y0, ρ) then for
ν = y0−x0

ρ

∂νu(x0) > 0,
if that derivative exists.

An illustration of the setup of Lemma 2.65 is in Figure 2.4. Observe that ∂νu(x0) ≥ 0 is
clear, the Hopf-Lemma says this must be a strict inequality!

Proof. W.l.o.g. we may assume
(2.32) B = B(0, R), c ≤ 0, u(x0) = 0, u < 0 in B(0, R) :
Indeed, the condition B = B(0, R) can be assumed simply by shifting. As for the other
conditions set (recall that c+ = max{c, 0})

L̃ := L− c+.

and
ũ := u− u(x0).

Then in B,
−L̃ũ = −(L− c+)(u− u(x0)) = −Lu+ c+u+ cu(x0) − c+u(x0) ≤ c+ (u− u(x0)) + c u(x0)
If c ≡ 0 then we readily have −L̃ũ ≤ 0.

If c ≤ 0 we have c+ ≡ 0, and again obtain −L̃ũ ≤ 0.

If u(x0) = 0 then c+u ≤ 0, since u ≤ u(x0) = 0 by assumption.

Since c − c+ ≤ 0 we observe that L̃ is an operator that satisfies the missing conditions in
(2.32). Thus, indeed, (2.32) can be assumed w.l.o.g.
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So assume (2.32) from now on.

Set for some α > 0
vα(x) := e−α|x|2 − e−αR2

.

Clearly 0 ≤ vα ≤ 1 in B = B(0, R). Moreover
vα ≡ 0 on ∂B(0, R).

For ρ ∈ (0, R) denote by A(ρ,R) the annulus B(0, R)\B(0, ρ). We will show next
(2.33) For any ρ ∈ (0, R) there exists α > 0 such that − Lvα < 0 in A(ρ,R)
For this we first compute
(2.34) ∂ivα(x) = −2αxie

−α|x|2 .

Next we compute
∂ijvα(x) =

(
−2αδij + 4α2xixj

)
e−α|x|2

so (using the ellipticity conditions, aijxixj ≥ λ|x|2, and |a|, |b|, |c| ≤ Λ,
−Lv(x) = − aij∂ijv − bi∂iv − cv

= − aij

(
−2αδij + 4α2xixj

)
e−α|x|2 − bi

(
−2αxie

−α|x|2
)

− ce−α|x|2 + ce−αR2︸ ︷︷ ︸
≤0

≤
(
2αΛ−4α2λ|x|2 + 2αΛ|x| + Λ

)
e−α|x|2 .

That is, for x ∈ A(ρ,R),

−Lv(x) ≤
(
−4λα2ρ2 + 2αΛ + 2αΛR + Λ

)
︸ ︷︷ ︸

≤0 for α ≫ 1

e−α|x|2

If we take α large, the (negative) α2-term dominates, that is for α ≫ 1 (depending on
ρ > 0, Λ, λ and R) we have (2.33).

Next, we consider the equation for u+ εv, which in view of (2.33) becomes
−L(u+ εv) < 0 in A(ρ,R).

The weak maximum principle, Theorem 2.56, implies
(2.35) sup

A(ρ,R)
u+ εv ≤ sup

∂A(ρ,R)
(u+ εv)+.

The boundary ∂A(ρ,R) is the union of ∂B(0, R) and ∂B(0, ρ).

On ∂B(0, R) we know v ≡ 0 and since u is continuous and u < 0 in B(0, R) we have u ≤ 0
on ∂B(0, R). That is (u+ εv)+ = 0 on ∂B(0, R).

On ∂B(0, ρ), since u < 0 on B(0, R) we have sup∂B(0,ρ) u < 0, and consequently, since
v ≤ 1 we have for all 0 < ε < ε0 := − sup∂B(0,ρ) u

u+ εv < 0 on ∂B(0, ρ)
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That is (2.35) implies

(2.36) u+ εv ≤ 0 in A(ρ,R).

Now fix ρ ∈ (0, R), choose ε, α so that the above is true.

Denote ν := x0
|x0| the outwards unit normal to ∂B at x0 ∈ ∂B. Observe that for all small

0 < t ≪ 1 (depending on ρ) we have x0 − tν ∈ A(ρ,R).

Recall that by assumption u(x0) = 0, then (2.36) implies for any small t > 0,

u(x0 − tν) + εv(x0 − tν)
(2.36)
≤ 0 = u(x0) + εv(x0).

This leads to (again: for all 0 < t ≪ 1)

u(x0 − tν) − u(x0)
t

≤ −εv(x0 − tν) − v(x0)
t

Letting t → 0+ on both sides we obtain

(2.37) −∂νu(x0) ≤ ε∂νv(x0).

Observe that (2.34) implies

∂νv(x0) = ∂iv(x0)
(x0)i

R
= −2α |x0|2

R
e−αR2

< 0

That is (2.37) implies
−∂νu(x0) < 0

which implies the claim. □

The Hopf Lemma, Lemma 2.65 implies the strong maximum principle.

Corollary 2.66 (Strong maximum principle). Let Ω ⊂ Rn be an open and connected set,
(but Ω may be unbounded). Let u ∈ C2(Ω) ∩ C0(Ω) satisfy

−Lu ≤ 0 in Ω.

Assume either

• c ≡ 0, or
• c ≤ 0 and supΩ u ≥ 0.

Then we have the following: If there exists x0 ∈ Ω such that

u(x0) = sup
Ω
u

then u ≡ u(x0) in Ω.
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Proof. Assume the claim is false. Via the modification as in the proof of Lemma 2.65, we
may assume w.l.o.g. u ≤ 0 in Ω and u(x0) = 0 for some x0 ∈ Ω, but u ̸≡ 0.

Let
Ω− := {x ∈ Ω : u(x) < 0}.

Observe that Ω− is open (u is continuous) and Ω− ̸= ∅ (because u ≤ 0 and u ̸≡ 0).

Since x0 ∈ Ω and u(x0) = 0, the boundary of Ω− cannot be contained in ∂Ω, i.e. we have
∂Ω− ∩ Ω ̸= ∅.

Indeed, this follows from connectedness: Let γ ⊂ Ω be a continuous path from x0 to a
point in Ω−. Then there has to be a point on γ where γ leaves Ω−. This point lies in ∂Ω−
and in Ω.

This means we can find a point x1 ∈ Ω− which is close to ∂Ω− but not close to ∂Ω, i.e.
x1 ∈ Ω−, ρ := dist (x1, ∂Ω−) < 10dist (x1, ∂Ω).

By definition of the distance
B(x1, ρ) ⊂ Ω−, B(x1, ρ)\Ω− ̸= ∅.

Let x2 ∈ ∂B(x1, ρ)\Ω−. Since by construction x2 ∈ ∂Ω− ∩ Ω we have u(x2) = 0 by
continuity. Moreover u < 0 in B(x1, ρ) ⊂ Ω−.

Since everything takes place well within Ω, the conditions of the Hopf Lemma, Lemma 2.65,
are satisfied and thus for ν the outwards facing normal at x2 to ∂B(x1, ρ)

∂νu(x2) > 0.
But on the other hand x2 ∈ Ω is a local maximum for u, so Du(x2) = 0, which is a
contradiction. The claim is then proven. □

A consequence of the Hopf Lemma, Lemma 2.65, and the strong maximum principle,
Corollary 2.66, is the uniqueness for the Neumann problem.

Corollary 2.67 (Uniqueness for Neumann-boundary problem). Let Ω ⊂⊂ Rn be open and
connected. Moreover we assume a boundary regularity of ∂Ω, the interior sphere condition6:

Assume that for any x0 ∈ ∂Ω there exists a ball B ⊂ Ω such that x0 ∈ B.

Then the following holds for any elliptic operator as above with c ≡ 0: For any given
f ∈ C0(Ω) and any g ∈ C0(∂Ω) there is at most one solution u ∈ C2(Ω) ∩ C1(Ω) of the
Neumann boundary problem −Lu = f in Ω

∂νu = g on ∂Ω,

6This condition does not allow for outwards facing cusps. One can show that every set Ω whose boundary
∂Ω is a sufficiently smooth manifold satisfies the interior sphere condition
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up to constant functions. That means, the difference of two solutions u, v is constant,
u− v ≡ c.

Proof. The difference of two solutions u, v, w := u− v satisfies7−Lw ≤ 0 in Ω
∂νw = 0 on ∂Ω,

Firstly, assume that there exists x0 ∈ Ω such that supΩ w = w(x0). Then, by the strong
maximum principle, Corollary 2.66, we have w ≡ w(x0) and the claim is proven. If this is
not the case, then there must be x0 ∈ ∂Ω with w(x0) > w(x) for all x ∈ Ω. If we take a
ball from the interior sphere condition of ∂Ω at x0 then on this ball B we can apply Hopf
Lemma, Lemma 2.65, which leads to ∂νw(x0) > 0, which is ruled out by the Neumann
boundary assumption ∂νw = 0. □

3. Heat equation

3.1. Again, sort of a physical motivation. This is somewhat similar to Section 2.1.

The Laplacian ∆u(x) describes the difference between the average value of a function
around a point x and the value at the point x (cf. the mean value formula)

∆u ≈
∫

∂B(x,r)
u− u(x).

If we think of u as a temperature, then ∆u(x) > 0 means that the material surrounding x
is hotter than u, and ∆u(x) < 0 means the surroundings are colder than u. Heat will flow
from the hotter areas to the lower areas, and the speed of this propagation is proportional
to the difference in temperature (second law of thermodynamics). That is,

∂tu = c∆u

could describe the change in heat distribution over time (where c is a material property
like conductivity). So if we solve

∂tu− ∆u = 0 in Ω × (0, T )
u(0, ·) = u0 onΩ
u(x, t) = g(x, t) on∂Ω × (0, T )

then u(x, t) describes the heat of the body at time t at the point x in the body Ω, of a
system that started with the heat distribution u0 and heat source at ∂Ω which is g(x, t).

The equation is thus called the heat equation, or it is said that u solves the heat flow.

7actually we have = in the equation below, but the argument works for ≤ as well
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We can believe that as time passes, there will be less and less change in the energy, so at
T = ∞ maybe we have that ∂tu = 0. That is at T = ∞ the solution u(∞, x) solves

−∆u = 0
that is stationary solutions (could be, this is not always true) appear as limt→∞ of flows.

3.2. Sort of an optimization motivation. We have discussed in Section 2.10 that we
can solve the equation −∆u = f in Ω

u = 0 on ∂Ω
by minimizing the energy

E(u) := 1
2

∫
Ω

|∇u|2 − uf

among functions with u = 0 on ∂Ω (to make this precise we need Sobolev spaces).

So, in some sense ∇E (which we usually write as the variation δE corresponds to ∆u+ f .
(δE = 0 means that we have found a minimizer of this convex functional.

What is the relation to ∂tu− ∆u = f in Ω × (0, T )?
u = 0 on ∂Ω

Well, this is
∂tu = −δE(u).

If u was a finite dimensional vector, then
∂tu = −∇E(u)

would be that u follows the steepest gradient descent.

3.3. Fundamental solution and Representation. We consider
∂tu− ∆u = f in Rn+1

+

u(0, ·) = g on Rn.
(3.1)

If f = 0. then (3.1) is called homogeneous heat equation. For f ̸= 0 it is called inhomoge-
neous.

Trivial solutions of the homogeneous equation constant maps u(x, t) ≡ c, or (not completely
trivial) time-independent harmonic functions u(x, t) := v(x) with ∆v = 0 (these are called
stationary solutions).

For elliptic equations we had the notion of a fundamental solution, Section 2.3; There
exists a similar concept for the heat equation, the heat kernel, which we will (formally)
derive now.
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If we fix x ∈ Rn and look at (3.1) as an equation in time t then it looks like an ODE, and
naively the solution should be (Duhamel principle!)

u(x, t) = et∆u(x, 0) +
∫ t

0
e(t−s)∆f(x, s) ds.

Of course, et∆ does not make any sense for now (it can be defined via semi-group theory).

To make (still formally, but more precise) sense of the “ODE argument”, we use the
Fourier-transform (with respect to the variables x ∈ Rn):

Let u be a solution of ∂tu = ∆u. Taking the Fourier transform (in x) on both sides we find
d

dt
û(ξ, t) = ∂̂tu(ξ, t) = ∆̂u(ξ, t)

= −|ξ|2û(ξ, t).

(There should be a constant c in front of −|ξ|2, but we ignore that for now)

Let ξ be fixed and let
v(t) = û(ξ, t).

Then the above reads as
d

dt
v(t) = −|ξ|2v̂(t).

There is one solution to this ODE (starting from a given value v(0)):

v(t) = e−t|ξ|2v(0).
Observe that in particular v(∞) = 0, ∂tv(∞) = 0, etc. (i.e. we have strong “decay at
infinity”).

Ansatz: v(0) = 1, resp. u(0) = δ0. This means

û(ξ, t) = e−t|ξ|2 .

In this case we have
u(x, t) = 1

(4πt)n
2
e− |x|2

4t ,

which seems to be a special solution.

Definition 3.1.

Φ(x, t) =


1

(4πt)
n
2
e− |x|2

4t , t > 0, x ∈ Rn

0, t < 0, x ∈ Rn.

is called fundamental solution or heat kernel.

One has
∂tΦ − ∆Φ = 0, for t > 0
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and

lim
t→0

Φ(x0, t) =
0, x0 ̸= 0

∞, x0 = 0.

Lemma 3.2.
∀t > 0 :

∫
Rn

Φ(x, t) dx = 1.

Proof. ∫
Rn

Φ(x, t) dx = Φ̂(0, t) = 1.

□

Analogously to the fundamental solution for the Laplace equation, the heat kernel Φ gen-
erates solutions to the heat equation. Indeed, if we set

u(x, t) := Φ(·, t) ∗ g(x)

=
∫
Rn

Φ(x− y, t)g(y) dy

Then
û(ξ, t) = ̂(Φ(·, t) ∗ g)(ξ) = Φ̂(ξ, t)ĝ(ξ).

That is,

û(ξ, 0) = ĝ(ξ), ( d
dt

+ |ξ|2)û(ξ, t) = 0.

Revert the Fourier-transformation to obtain(∂t − ∆)u = 0 in Rn+1
+

u(x, 0) = g(x) x ∈ Rn.

Motivated by this calculation we set

u(x, t) =
∫
Rn

Φ(x− y, t)g(y) dy.

Theorem 3.3 (Potential representation). Let g ∈ C0(Rn) ∩ L∞(Rn). Let u as in (3.3).
Then u is defined in Rn and there holds:

(i) u ∈ C∞(Rn+1
+ ),

(ii) ∂tu− ∆u = 0 in Rn+1
+ und

(iii)
∀x0 ∈ Rn : lim

(x,t)→(x0,0)
u(x, t) = g(x0).
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Figure 3.1. An illustration of the heatball E(0, 0; 1) in n = 1 dimension
taken from [user9464, ]. Observe that this heatball is “centered” at (x, t) =
(0, 0), i.e. a heatball always goes backwards in time.

Next we search a potential representation for
(∂t − ∆)u = f in Rn+1

+

u(·, 0) = 0 on Rn.
(3.2)

From the argument in the beginning, using the inverse Fourier transform, and Duhamel
principle,

(3.3) u(x, t) =
∫ t

0

∫
Rn

Φ(x− y, t− s)f(y, s) dyds.

Theorem 3.4. Let f ∈ C2(Rn × [0,∞)) with compact support and let u as in (3.3). Then

(i) u ∈ C2(Rn × (0,∞)),

(ii) (∂t − ∆)u = f in Rn × (0,∞)

(iii) ∀x0 ∈ Rn : lim(x,t)→(x0,0) u(x, t) = 0.

3.4. Mean-value formula. (cf. [Evans, 2010, Chapter 2.3])

Use the fundamental solution to construct a parabolic ball, or heat ball

E(x, t; r) ⊂ Rn+1.(3.4)

Definition 3.5 (Heat ball). Let (x, t) ∈ Rn+1. Set

E(x, t; r) =
{

(y, s) ∈ Rn+1 : s ≤ t,Φ(x− y, t− s) ≥ 1
rn

}
.(3.5)

Cf. Figure 3.1.

Theorem 3.6 (mean value). Let X ⊂ Rn+1 be open and u ∈ C2(X) solve (∂t − ∆)u = 0
in X. Then there holds

u(x, t) = 1
4rn

∫
E(x,t;r)

u(y, s) |x− y|2

(t− s)2 dyds(3.6)

for all E(x, t; r) ⊂ X.
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Figure 3.2. If Ω is an open set in Rn then ΩT := Ω×(0, T ] and the parabolic
boundary is ΓT := ∂Ω × [0, T ) ∪ Ω × {0}.

3.5. Maximum principle and Uniqueness.

Definition 3.7. Let Ω ⊂ Rn be an open set and denote with ΩT := Ω × (0, T ] for some
time T > 0. It is important to note that the top Ω × {T} belongs to ΩT . The parabolic
boundary ΓT of ΩT is the boundary of ΩT without the top,

ΓT = ΩT \ΩT = ∂Ω × [0, T ) ∪ Ω × {0}.
See Figure 3.2.

Theorem 3.8. Let Ω be bounded and u ∈ C2(ΩT ) ∩ C0(ΩT ) be a solution of ∂tu = ∆u in
ΩT . Then there holds

(1) the weak maximum principle:
max

ΩT

u = max
ΓT

u(3.7)

(2) and the strong maximum principle: If Ω is connected and if there is (x0, t0) ∈ ΩT

(i.e. t0 ∈ (0, T ], x ∈ Ω) with
u(x0, t0) = max

ΩT

u,(3.8)

then u is constant on all prior times, i.e.
u(x, t) = u(x0, t0) ∀(x, t) ∈ Ωt0 .(3.9)

Exercise 3.9. Show that the strong maximum principle Theorem 3.8(2) implies the weak
maximum principle Theorem 3.8(1).

Proof of Theorem 3.8 (2). Suppose there is (x0, t0) ∈ ΩT with
u(x0, t0) = M = max

ΩT

u.(3.10)

Since t0 > 0, there exists a small heat ball E(x0, t0, r0) ⊂ ΩT and we have by Theorem 3.6

M = u(x0, t0) = 1
4r0n

∫
E(x0,t0,r0)

u(y, s) |y − x|2

(t− s)2 dsdy ≤ M.(3.11)

Hence u ≡ M in E(x0, t0; r0).
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Now we need to show u = M in all of Ωt0 . It suffices to show u ≡ M in any Ωt1 for any
t1 < t0, by continuity u ≡ M in all of Ωt0 . So let (x1, t1) ∈ Ωt0 and t1 < t0. Then there
exists a continuous path γ : [0, 1] → Ω connecting x0 and x1. In the spacetime set

Γ(r) = (γ(r), rt1 + (1 − r)t0).(3.12)

Let

ρ = max{r ∈ [0, 1] : u(Γ(r)) = M}.(3.13)

Show that ρ = 1. Suppose ρ < 1. Then we use the proof above to find a heat ball

E = E(Γ(ρ), r′),(3.14)

where u = M. Since Γ crosses E (time parameter is decreasing along Γ), we obtain a
contradiction to the maximality of ρ. □

Exercise 3.10. Use Theorem 3.8 to show the following infinite speed of propagation:

Assume u ∈ C2(ΩT ) satisfies


∂tu− ∆u = 0 in ΩT

u = 0 on ∂Ω × [0, T ]
u = g in Ω × {0}

(1) Show the following: if g ≥ 0 in Ω but there exists any x0 ∈ Ω such that g(x0) > 0
then u(x, t) > 0 in every point in (x, t) ∈ ΩT .

(2) Think about how this is a non-relativistic behaviour: any at an arbitrary point
influences the whole universe instantaneously.

For general X ⊂ Rn+1 open we have a similar maximum principle:

Exercise 3.11. In Theorem 3.15 we learned of the strong maximum principle in parabolic
Cylinders. Use this to obtain the strong maximum principle in general open sets X:

let X ⊂ Rn+1 be a bounded, open set. Assume that u ∈ C∞(X) and

∂tu− ∆u in X.

Assume moreover that for some (x0, t0) ∈ X we have

M := u(x0, t0) = sup
(x,t)∈X

u(x, t).

(1) Describe (in words) in which set C the function is necessarily constant

C := {(x, t) ∈ X : u(x, t) = M} .
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(2) Assume the set X (grey) and the point (x0, t0) are given in the picture. Draw (in
orange) the set C from the question above.

Theorem 3.12 (Uniqueness on bounded domains). Let Ω ⋐ Rn bounded and g ∈ C0(ΓT ),
f ∈ C0(ΩT ). Then there is at most one solution C2(ΩT ) ∩ C0(ΩT ) to

∂tu− ∆u = f in ΩT

u = g on ΓT .
(3.15)

Exercise 3.13. Prove Theorem 3.12.

Theorem 3.14. Let u ∈ C2(Rn × (0, T ]) ∩ C0(Rn × [0, T ]) be a solution of
(∂t − ∆)u = 0 in Rn × (0, T )

u = g on Rn × {t = 0}
(3.16)

with the growth condition

u(x, t) ≤ Aea|x|2 ∀(x, t) ∈ Rn × [0, T ](3.17)

for some a,A > 0. Then there holds
sup

Rn×[0,T ]
u ≤ sup

Rn
g.(3.18)

Proof. It suffices to show this estimate for small times, by splitting up the time interval
into many small time steps. For this reason we assume first:

4aT < 1.(3.19)
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For ε > 0 and µ chosen below, let

v(x, t) = u(x, t) − µ

(T + ε− t)n
2
e

|x|2
4(T +ε−t)(3.20)

for some µ > 0. Then vt − ∆v = 0 in Rn × [0, T ] (observe that t appears in the negative
above). Theorem 3.8 implies

∀Ω ⊂⊂ Rn : max
ΩT

v ≤ max
ΓT

v ≤ max(max v(·, 0), max
∂Ω×[0,T ]

v(x, t)).(3.21)

We have

v(x, 0) = g(x) − µ

(T + ε)n
2
e

|x|2
4(T +ε) ≤ sup

Rn
g.(3.22)

Let Ω = BR(0), then

max
B̄R(0)×[0,T ]

v ≤ max
(

sup
Rn

g, max
|x|=R,t∈[0,T ]

v(x, t)
)
.(3.23)

For |x| = R and t ∈ (0, T )

v(x, t) = u(x, t) − µ

(T + ε− t)n
2
e

R2
4(T +ε−t)

≤ AeaR2 − µ

(T + ε− t)n
2
e

R2
4(T +ε−t)

≤ AeaR2 − µ

(T + ε)n
2
e

R2
4(T +ε)

Since 4aT < 1, there exist ε > 0, γ > 0, such that

a+ γ = 1
4(T + ε)(3.24)

and hence

v(x, t) ≤ AeaR2 − µ

(T + ε)n
2
eaR2+γR2

.(3.25)

In particular, the right term dominates for R >> 0: in particular for all large R > 0 we
have v(x, t) ≤ g(0). So for large R and |x| = R we have for all t ∈ (0, T ],

v(x, t) ≤ g(0) ≤ sup
Rn

g(3.26)

and so
max

(x,t)∈BR(0)×(0,T ]
v(x, t) ≤ sup

Rn
g ∀R >> 1.(3.27)

Letting R → ∞ we find that
sup

Rn×[0,T ]
v(x, t) ≤ sup

Rn
g,(3.28)
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i.e.

sup
Rn×[0,T ]

(
u(x, t) − µ

(T + ε− t)n
2
e

|x|2
4(T +ε−t)

)
≤ sup

Rn
g(3.29)

This holds for any any µ > 0.

Now fix ρ > 0. Then we have in particular
sup

B(0,ρ)×[0,T ]
v(x, t) ≤ sup

Rn
g,

and thus
sup

B(0,ρ)×[0,T ]
u(x, t) − µ sup

B(0,ρ)×[0,T ]

1
(T + ε− t)n

2
e

|x|2
4(T +ε−t)

︸ ︷︷ ︸
<∞

≤ sup
Rn

g.

Letting µ → 0 for fixed8 ρ

sup
B(0,ρ)×[0,T ]

u(x, t) ≤ sup
Rn

g,

Now we let ρ → ∞ to conclude
sup

Rn×[0,T ]
u(x, t) ≤ sup

Rn
g,

i.e. we have the claim under the assumption that 4aT < 1.

If 4aT ≥ 1, we can slice the time interval (0, T ] into parts (0, T1] ∪ (T1, T2] ∪ . . . ∪ (TK , T ]
with 4a(Ti+1 − Ti) < 1 for all i. Using the estimate in each of these time intervals we
conclude. □

Theorem 3.15. Let g ∈ C0(Rn), f ∈ C0(Rn × [0, T ]). Then there is at most one solution
u ∈ C2(Rn × (0, T ]) ∩ C0(Rn × [0, T ]) of

(∂t − ∆)u = f in Rn × (0, T )
u = g on Rn × {0}

(3.30)

with

|u(x, t)| ≤ Aea|x|2 ∀(x, t) ∈ Rn × (0, T ).(3.31)

Exercise 3.16. Prove Theorem 3.15

Without the assumption (3.31), Theorem 3.15 may fail. These solutions are sometimes
called non-physical solutions, since they grow too fast.

8this does not work if ρ = ∞!
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Exercise 3.17. (cf. [John, 1991]) Define the following Tychonoff-function,

u(x, t) :=
∞∑

k=0

g(k)(t)
(2k)! x2k.

Here g(k) denotes the k-th derivative of g, given as

g(t) :=
e(−t−α) t > 0

0 t ≤ 0.

(1) Show that u ∈ C2(R2
+) ∩ C0(R × [0,∞)).

(2) Show moreover that

(3.32)
(∂t − ∆)u = 0 in Rn × (0, T ),
u(x, 0) = 0 für x ∈ Rn.

(3) Find a different solution v ̸≡ u of (3.32).
(4) Why (without proof) does this not contradict 3.15?

3.6. Harnack’s Principle. In the parabolic setting an “immediate” Harnack principle is
not true in general, to compare sup and inf of a function one needs to wait for an (arbitrary
short) amount of time.

Theorem 3.18 (Parabolic Harnack inequality). Assume u ∈ C2(Rn × (0, T ]) ∩ L∞(Rn ×
[0, T ]) and solves

∂tu− ∆u = 0 in Rn × (0, T )
and

u ≥ 0 in Rn × (0, T )

Then for any compactum K ⊂ Rn and any 0 < t1 < t2 < T there exists a constant C, so
that

sup
x∈K

u(x, t1) ≤ C inf
y∈K

u(y, t2)

Proof. By the representation formula, Section 3.3, and uniqueness of the Cauchy problem

u(x2, t2) =
∫
Rn

1
(4πt2)

n
2
e

− |x2−y|2
4t2 u0(y) dy.

Now, for t1 < t2 whenever |x1|, |x2| ≤ Λ < ∞, there exists a constant C = C(|t1 − t2|,Λ)
so that

−|x2 − y|2

4t2
≥ −|x1 − y|2

4t1
− C. ∀y ∈ Rn

See Exercise 3.19.
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Consequently,

u(x2, t2) ≥
(
t1
t2

)n
2
e−C

∫
Rn

1
(t1)

n
2
e

− |x1−y|2
4t1 u0(y) dy =

(
t1
t2

)n
2
e−Cu(x1, t1).

□

Exercise 3.19. Show the following estimate, which we used for Harnack-principle, Theo-
rem 3.18:

If K ⊂ Rn is compact and 0 < t1 < t2 < ∞, then there exists a constant C > 0 depending
on K and t2, t1 > 0, such that

|x1 − y|2

t2
≤ |x2 − y|2

t1
+ C ∀x1, x2 ∈ K, y ∈ Rn.

Exercise 3.20 (Counterexample Harnack). (1) Let u0 : Rn → [0,∞) a smooth func-
tion with compact support such that u0(0) = 1. Set

u(x, t) :=
∫
Rn

Φ(x− y, t) u0(y) t > 0

Show that
inf

x∈Rn
u(x, t) = 0 for all t > 0.

However
sup
x∈Rn

u(x, t) > 0 for all t > 0.

Why does this not contradict Harnack’s principles, Theorem 3.18?
(2) Let us consider one space-dimension. Let ξ ∈ R be given and u defined as

uξ(x, t) := (t+ 1)− 1
2 e− |x+ξ|2

4(t+1) .

Show that u is a solution of (∂t − ∆)u = 0 in R × (0,∞).
Moroever show for each fixed t > 0 there is no constant C = C(t) > 0 such that

sup
x∈[−1,1]

uξ(x, t) ≤ C inf
y∈[−1,1]

uξ(y, t) ∀ξ ∈ Rn.

Why does this not contradict Harnack’s principles, Theorem 3.18?
Hint: Choose x = − ξ

|ξ| and y = 0. What happens if |ξ| → ∞?

3.7. Parabolic scaling. While we will not use it in this (short) section, let us introduce
the notion of parabolic scaling.

Exercise 3.21. Assume that Ω ⊂ Rn is an open set and u ∈ C2(Ω), f ∈ C0(Ω) solve
∆u = f in Ω

Let r > 0 and set
ur(x) := u(rx), fr := f(rx).
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Figure 3.3. The sets C(0, 0, r), C(0, 0, 3
4r) and C(0, 0, 1

2r) with r = 1
2

from the proof of Theorem 3.23.

Show that
∆ur = r2fr in 1

r
Ω

where
1
r

Ω =
{1
r
y : y ∈ Ω

}
.

If we try to get the same for the equation (∂t − ∆)u = f we have to use a parabolic scaling

Exercise 3.22. Assume that Ω ⊂ Rn, T > 0 is an open set and u ∈ C2(Ω) solves
(∂t − ∆)u = f in Ω × (0, T ]

Let r > 0 and set
ur(x, t) := u(rx, r2 t), fr := f(rx, r2 t).

Show that
(∂t − ∆)ur = r2fr in 1

r
Ω × (0, Tr2 ]

where
1
r

Ω =
{1
r
y : y ∈ Ω

}
.

3.8. Regularity and Cauchy-estimates.

Theorem 3.23 (Smoothness). Let u ∈ C2(ΩT ) satisfy
∂tu = ∆u in ΩT .(3.33)

Then u ∈ C∞(int(ΩT )).

Proof. The main idea is to transform the equation in ΩT into an equation in Rn × [0, T ]
and use the representation from Theorem 3.4. This is a very common and very useful
technique:

Fix some (x0, t0) ∈ ΩT , i.e. x0 ∈ Ω and t ∈ (0, T ].
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We will use the parabolic regions

C(x, t; r) = {(y, s) : |x− y| ≤ r, t− r2 ≤ s ≤ t}.(3.34)

We set

C1 = C(x0, t0; r), C2 = C
(
x0, t0;

3
4r
)
, C3 = C

(
x0, t0;

r

2

)
(3.35)

for some suitably small r > 0 such that C1 ⊂ ΩT . Cf. Figure 3.3.

We now choose a cut-off function
η ∈ C∞(Rn × [0, t0])(3.36)

with 0 ≤ η ≤ 1, η|C2 ≡ 1, η ≡ 0 around Rn × [0, t0]\C1.

Set
v(x, t) = η(x, t)u(x, t) ∀(x, t) ∈ Rn × (0, t0].(3.37)

This is well defined for all (x, t) ∈ Rn × (0, t0] because η ≡ 0 where u is not defined!

Then in Rn × (0, t0] we have the following equation (using that (∂t − ∆)u = 0 in any point
where η ̸= 0.

∂tv − ∆v = ∂tuη + ∂tηu− η∆u− u∆η − 2 ⟨∇u,∇η⟩
= ∂tηu− u∆η − 2 ⟨∇u,∇η⟩
=: f(x, t).

(3.38)

Observe, v ∈ C2(Rn × [0, t0] and f ∈ C1(Rn × [0, t0]).

By Theorem 3.4

v(x, t) =
∫ t

0

∫
Rn

Φ(x− y, t− s)f(y, s) dyds

=
∫ t

0

∫
Rn

Φ(x− y, t− s)
(
u(y, s)∂tη(y, s) − u(y, s)∆η(y, s)

− 2 ⟨∇u(y, s),∇η(y, s)⟩
)
dyds

(3.39)

If we assume (x, t) ∈ C3 we see that ∂tη(y, s),∆η(y, s),∇η(y, s) ≡ 0 around y = x and
s = t.

That is for any (x, t) ∈ C3 we have

v(x, t) =
∫
Rn
K(x, y, s, t)u(y, s) dyds(3.40)

where K(x, ·, s, t) has uniformly compact support in Rn and is K(·) is smooth in all vari-
ables.
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Thus v is smooth and so is u ≡ v around (x0, t0). □

We can make the above more precise

Theorem 3.24 (Cauchy estimates). For all k, l ∈ N there exists C > 0 such that for all
u ∈ C2,1(ΩT ) (u ∈ L1

loc will be sufficient), solving

(∂t − ∆)u = 0,(3.41)

there holds

max
C(x0,t0; r

2 )
|Dk

x∂
l
tu| ≤ C

rk+2l+n+2 ∥u∥L1(C(x0,t0;r))(3.42)

for all C(x0, t0; r) ⊂ ΩT .

Proof. Suppose first (x0, t0) = (0, 0) and r = 1. Set

C(1) = C(0, 0; 1).(3.43)

Then as in the proof of Theorem 3.23 we have

u(x, t) =
∫

C(1)
K(x, t, y, s)u(y, s) dyds ∀(x, t) ∈ C

(1
2

)
.(3.44)

Then

Dk
x∂

l
tu(x, t) =

∫
C(1)

(
Dk

x∂
l
tK(x, t, y, s)

)
u(y, s) dyds(3.45)

and hence

|Dk
x∂

l
tu(x, t)| ≤ Ck,l∥u∥L1(C(1)) ∀(x, t) ∈ C

(1
2

)
.(3.46)

Thus the claim is proven for r = 1. For r > 0 and (x0, t0) ∈ Rn+1 set

v(x, t) = u(x0 + rx, t0 + r2t).(3.47)

Then
max
C( 1

2)
|Dk

x∂
l
tv| ≤ Ck,l∥v∥L1(C(1)).(3.48)

Hence

max
C(x0,r0; r

2 )
|Dk

x∂
l
tu|rk+2l ≤ Ck,lr

−(n+2)∥u∥L1(C(1)).(3.49)

□
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3.9. Variational Methods. Consider∂tu− ∆u = f in Ω ∈ (0, T )
u = g on Ω × {0}, ∂Ω × [0, T ),

and we want to discuss uniqueness – but for some reason we dont want to use maximum
principles.

Assume there is anothter solution of the same problem, lets call it v. Then set w := u− v,
then that would solve ∂tw − ∆w = 0 in Ω ∈ (0, T )

w = 0 on Ω × {0}, ∂Ω × [0, T ),

As in the Laplace equation case, we multiply this equation by w, and we find

∂t

∫
Ω

|w|2 = −2
∫

Ω
|Dw|2

Observe the right-hand side is negative (unless w is constant, then it is zero – this is called
the energy decay). Anyways, integrating this equation we obtain∫

Ω
|w(t)|2 −

∫
Ω

|w(0)|2 = −2
∫ ∫

Ω
|Dw|2.

That implies that if w(0) = 0 (which it is by assumption), then w(T ) = 0. That is w(t) ≡ 0,
i.e. u = v.

4. Wave Equation

The wave equation is written as
∂ttu− ∆u = 0.

Alternatively we can think of it as
∂ttu = ∆u.

In this form, we can consider it as Newton’s law: Force equals mass times acceleration. The
mass is set to 1. If we think about u(x, t) as the dilation of a surface from an equilibrium
state (if x is one dimensional, then height of string) then ∆u(x, t) is proportional to the
stress that this dilation exacts on the surface, i.e. the force. By Newton’s law, this force
∆u is equal to the acceleration ∂ttu – and this is the wave equation.

In one space dimension
∂ttu− ∂xxu = (∂t − ∂x) (∂t + ∂x)u.

So we could hope by solving the one-dimension wave equation by considering solutions of
∂tu± ux = 0.

This is a transport equation which could be solved via the method of characteristics.
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In more than one space dimension this is more complicated, because Du is a vector, so
∂ttu− ∆u = (∂t −D) (∂t +D)

does not really make sense. What would make sense it so

∂ttu− ∆u =
(
∂t − i

√
−∆

) (
∂t + i

√
−∆

)
u

if only we understood
√

−∆ (we can e.g. via Fourier transform). This is called the halfwave
decomposition.

4.1. Global Solution via Fourier transform. We want to consider the wave equation{
(∂tt − ∆x)u = 0 in Rn × R

If we again take the point of view that this is an ODE in time then this is a second order
ODE, so the initial value problem should depend on u(0) and ∂tu(0).

(∂tt − ∆x)u = 0 in Rn × R
u(0, x) = u0(x) in Rn

∂tu(0, x) = v0(x) in Rn

Let us take the Fourier transform in space, then the above becomes
∂ttu(ξ̂, t) + c|ξ|2u(ξ̂, t) = 0, in Rn × R
u(0, x) = u0(x) in Rn

∂tu(0, x) = v0(x) in Rn

This is an equation of the type
g′′(t) = −cg(t)

Fundamental solutions to this equation are sin(
√
ct) and cos(

√
ct) – which gets messy. It

is more convenient to use complex notation: For some A ∈ C,
g(t) = Aei

√
c|ξ|t +B e−i

√
c|ξ|t

and we must choose A,B ∈ C so that
û0(ξ) = g(0) = A+B

and
v̂0(ξ) = g′(0) = i

√
c |ξ| (A−B) .

or equivalently (unless |ξ| = 0)
v̂0(ξ)
i
√
c|ξ|

= (A−B) .

We add the equation for A+B to the equation for A−B and find

A = 1
2 û0(ξ) + 1

2i
√
c|ξ|

v̂0(ξ)
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and subtracting the equation for A−B from the equation for A+B we have

B = 1
2 û0(ξ) − 1

i
√
c|ξ|

v̂0(ξ)

Together we have found that

g(t) = û0(ξ)
(1

2e
i
√

c|ξ|t + 1
2e

−i
√

c|ξ|t
)

+ 1
2i

√
c|ξ|

v̂0(ξ)
(
ei

√
c|ξ|t − e−i

√
c|ξ|t

)

If we call suggestively

eit
√

−∆f := F−1(eit
√

c|ξ|Ff)

we have the semigroup representation

u(x, t) = eit
√

−∆ + e−it
√

−∆

2 u0(x) + eit
√

−∆ − e−it
√

−∆

2i
√

−∆−1
v0(x)

We next discuss the Duhamel principle:

If we want to consider


(∂tt − ∆x)u = f in Rn × R
u(0, x) = u0(x) in Rn

∂tu(0, x) = v0(x) in Rn

u(x, t) =e
it

√
−∆ + e−it

√
−∆

2 u0(x) + eit
√

−∆ − e−it
√

−∆

2i
√

−∆−1
v0(x)

+
∫ t

0

ei(t−s)
√

−∆ − e−i(t−s)
√

−∆

2i
√

−∆−1
f(x, s)ds.

Indeed,
∫ t

0

ei(t−s)
√

−∆ − e−i(t−s)
√

−∆

2i
√

−∆−1
f(x, s)ds

∣∣∣∣
t=0

= 0

∂t

∣∣∣∣
t=0

∫ t

0

ei(t−s)
√

−∆ − e−i(t−s)
√

−∆

2i
√

−∆−1
f(x, s)ds = 0



PARTIAL DIFFERENTIAL EQUATIONS I & II VERSION: August 1, 2023 93

and

∂tt

∫ t

0

ei(t−s)
√

−∆ − e−i(t−s)
√

−∆

2i
√

−∆−1
f(x, s)ds

=∂t

ei0
√

−∆ − e−i0
√

−∆

2i
√

−∆−1
f(x, t) +

∫ t

0
∂t
ei(t−s)

√
−∆ − e−i(t−s)

√
−∆

2i
√

−∆−1
f(x, s)ds


=∂t

∫ t

0
∂t
ei(t−s)

√
−∆ − e−i(t−s)

√
−∆

2i
√

−∆−1
f(x, s)ds


=∂t

∫ t

0

ei(t−s)
√

−∆i
√

−∆+i
√

−∆e−i(t−s)
√

−∆

2i
√

−∆−1
f(x, s)ds


=e

i0
√

−∆i
√

−∆+i
√

−∆e−i0
√

−∆

2i
√

−∆−1
f(x, t)

+
∫ t

0
∂t
ei(t−s)

√
−∆i

√
−∆+i

√
−∆e−i(t−s)

√
−∆

2i
√

−∆−1
f(x, s)ds

=
√

−∆
√

−∆−1
f(x, t) +

∫ t

0

−ei(t−s)
√

−∆√
−∆2+

√
−∆2

e−i(t−s)
√

−∆

2i
√

−∆−1
f(x, s)ds

=f(x, t) −
√

−∆2
∫ t

0

ei(t−s)
√

−∆−e−i(t−s)
√

−∆

2i
√

−∆−1
f(x, s)ds

=f(x, t)+∆
∫ t

0

ei(t−s)
√

−∆−e−i(t−s)
√

−∆

2i
√

−∆−1
f(x, s)ds

or, in other words,

(∂tt−∆)
∫ t

0

ei(t−s)
√

−∆ − e−i(t−s)
√

−∆

2i
√

−∆−1
f(x, s)ds

=f(x, t)

4.2. Energy methods. Cf. [Evans, 2010, 2.4.3].

Consider solutions to the inhomogeneous wave equation.

(4.1)


(∂tt − ∆)u = f in Ω × (0, T )
u = g on Ω × {0} ∪ ∂Ω × (0, T )
∂tu = h on Ω × {0}

Theorem 4.1 (Uniqueness). There exist at most one function u ∈ C2(Ω × [0, T )) which
solves (4.1).
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Proof. Assume there are two solutions u, v ∈ C2(Ω × [0, T )). Then we can consider w :=
u− v which solves

(4.2)


(∂tt − ∆)w = 0 in Ω × (0, T )
w = 0 on Ω × {0} ∪ ∂Ω × (0, T )
∂tw = 0 on Ω × {0}

For t ∈ [0, T ) define

E(t) := 1
2

∫
Ω

|∂tw(x, t)|2 dx+
∫

Ω
|Dw(x, t)|2 dx.

We compute the derivative of E (which we can do since w ∈ C2,

Ė(t) =
∫

Ω
∂tw(x, t) ∂ttw(x, t) dx+

∫
Ω
Dw(x, t)D∂tw(x, t) dx

=
∫

Ω
∂tw(x, t) ∂ttw(x, t) dx−

∫
Ω

div (Dw(x, t))∂tw(x, t) dx

=
∫

Ω
∂tw(x, t) (∂tt − ∆)w(x, t) dx

(4.2)=
∫

Ω
∂tw(x, t) 0 dx = 0.

That is we have Ė(t) = 0 for all t ∈ (0, T )

E(t) = E(0) (4.2)= 0
In particular Dw ≡ 0, so w is constant, and because of the boundary conditions in (4.2)
we conclude w ≡ 0. Thus u ≡ v. □

5. Black Box – Sobolev Spaces

A remark on literature: A standard reference for Sobolev spaces is [Adams and Fournier, 2003].
Very readable is also [Evans and Gariepy, 2015]. Popular is also the introduction to Sobolev
spaces in [Evans, 2010]. A classical reference Sobolev spaces in PDEs is [Gilbarg and Trudinger, 2001].
Also [Ziemer, 1989]. For very delicate problems one might also consult [Maz’ya, 2011].

Definition 5.1. (1) Let 1 ≤ p ≤ ∞, k ∈ N and Ω ⊂ Rn open, nonempty. The Sobolev
space W k,p(Ω) is the set of functions

u ∈ Lp(Ω)
such that for any multiinidex γ, |γ| ≤ k we find a function (the distributional
γ-derivative or weak γ-derivative) “∂γu”∈ Lp(Ω) such that∫

Ω
u ∂γφ = (−1)|γ|

∫
Ω

“∂γu”φ ∀φ ∈ C∞
c (Ω).

Such u are also sometimes called Sobolev-functions.
(2) For simplicity we write W 0,p = Lp.
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(3) The norm of the Sobolev space W k,p(Ω) is given as
∥u∥W k,p(Ω) =

∑
|γ|≤k

∥∂γu∥Lp(Rn)

or equivalently (exercise!)

∥u∥W k,p(Ω) =
∑

|γ|≤k

∥∂γu∥p
Lp(Rn)

 1
p

.

(4) We define another Sobolev space Hk,p(Ω) as follows

Hk,p(Ω) = C∞(Ω)
∥·∥

W k,p(Ω) .

that is the (metric) closure or completion of the space (C∞(Ω), ∥ · ∥W k,p(Ω)). In yet
other words, Hk,p(Ω) consists of such functions u ∈ Lp(Ω) such that there exist
approximations uk ∈ C∞(Ω) with

∥uk − u∥W k,p(Ω)
k→∞−−−→ 0.

We will later see that Hk,p is the same as W k,p locally, or for nice enough domains;
and use the notation H or W interchangeably.

(5) Now we introduce the Sobolev space Hk,p
0 (Ω)

Hk,p
0 (Ω) = C∞

c (Ω)
∥·∥

W k,p(Ω) .

We will later see that this space consists of all maps u ∈ Hk,p(Ω) that satisfy
u,∇u, . . .∇k−1u ≡ 0 on ∂Ω in a suitable sense (the trace sense, for a precise
formulation see Theorem 5.28). – Again, later we see that H = W and thus,
W k,p

0 (Ω) = Hk,p
0 (Ω) for nice sets Ω.

Observe that Lp(Ω) = W 0,p(Ω) = W 0,p
0 (Ω).

(6) The local space W k,p
loc (Ω) is similarly defined as Lp

loc(Ω). A map belongs to u ∈
W k,p

loc (Ω) if for any Ω′ ⊂⊂ Ω we have u ∈ W k,p(Ω′).
Remark 5.2. Some people write Hk,p(Ω) instead of W k,p(Ω). Other people use Hk(Ω) for
Hk,2 – notation is inconsistent...

Some people claim that W stand for Weyl, and H for Hardy or Hilbert.
Example 5.3. For s > 0 let

f(x) := |x|−s.

Observe that f is only defined for x ̸= 0, but since measurable functions need only be
defined outside of a null-set this is still a reasonable function.

We have already seen, when working with fundamental solutions, that f ∈ Lp
loc(Rn) for

any 1 ≤ p < n
s
.

We can compute for x ̸= 0 that
(5.1) ∂if(x) = −s |x|−s−2xi

https://en.wikipedia.org/wiki/Hermann_Weyl
https://en.wikipedia.org/wiki/G._H._Hardy
https://en.wikipedia.org/wiki/David_Hilbert
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and by the same argument as above we could conjecture that ∂if ∈ Lq
loc(Rn) for any

1 ≤ q < n
s+1 .

Exercise 5.4. Show that

(1) (5.1) holds in the distributional sense, i.e. that if n ≥ 2 and 0 < s < n− 1 then for
any φ ∈ C∞

c (Rn),∫
Rn
f(x) ∂iφ(x) dx =

∫
Rn
s |x|−s−2xiφ(x) dx.

(2) to conclude that f ∈ W 1,q
loc (Rn) for any 1 ≤ q < n

s+1 .

However pointwise a.e. derivatives and the Sobolev/distributional derivative does not
necessarily coincide always:

Exercise 5.5. Let Ω = (−1, 1) and consider the Heaviside function

f(x) =
−0 x < 0

1 x ≥ 0
Show that

(1)
f ′(x) = 0 for a.e. x ∈ (−1, 1)

(2) f ′ ̸∈ L1((−1, 1)) in the sense of Sobolev spaces – i.e. f ̸∈ W 1,1((−1, 1)).
Hint: You can first show ∫

Ω
fφ′(x) = φ(0).

Exercise 5.6. Let
f(x) := log |x|.

One can show that f ∈ Lp
loc(Rn) for any 1 ≤ p < ∞, and f ∈ W 1,p

loc (Rn) for all p ∈ [1, n),
if n ≥ 2.

Exercise 5.7. Let
f(x) := log log 2

|x|
in B(0, 1)

One can show that for n ≥ 2, f ∈ W 1,n(B(0, 1)).

Moreover, for n = 2, in distributional sense
−∆f = |Df |2

Observe that this serves as an example for solutions to nice differential equations that are
not continuous!

Proposition 5.8 (Basic properties of weak derivatives). Let u, v ∈ W k,p(Ω) and |γ| ≤ k.
Then
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(1) ∂γu ∈ W k−|γ|,p(Ω).
(2) Moreover ∂α∂βu = ∂β∂αu = ∂α+βu if |α| + |β| ≤ k.
(3) For each λ, µ ∈ R we have λu+ µv ∈ W k,p(Ω) and

∂α(λu+ µv) = λ∂αu+ µ∂αv

(4) If Ω′ ⊂ Ω is open then u ∈ W k,p(Ω′)
(5) For any η ∈ C∞

c (Ω), ηu ∈ W k,p and (if k ≥ 1), and we have the Leibniz formula
(aka product rule)

∂i(ηu) = ∂iη u+ η∂iu.

(6) if f : R → R is Lipschitz and bounded, and u ∈ W 1,p(Ω) then f(u) ∈ W 1,p(Ω), and
Df(u) = Df(u) ·Du

Proposition 5.9. (W k,p(Ω), ∥ · ∥W k,p(Ω)), (Hk,p(Ω), ∥ · ∥W k,p(Ω)), (Hk,p
0 (Ω), ∥ · ∥W k,p(Ω)) are

all Banach spaces.

For p = 2 they are Hilbert spaces, with inner product

⟨u, v⟩ =
∑

|γ|≤k

∫
∂γu ∂γv.

For p ∈ (1,∞) (not p = 1 and not p = ∞), W k,p(Ω) and W k,p
0 (Ω) are reflexive. In particular

we have the following consequence of Banach-Alaoglu:
Theorem 5.10 (Weak compactness). Let 1<p<∞, k ∈ N, Ω ⊂ Rn open. Assume that
(fi)i∈N is a bounded sequence in W k,p(Ω), that is

sup
i∈N

∥fi∥W k,p(Ω) < ∞.

Then there exists a function f ∈ W k,p(Ω) and a subsequence fij
such that fij

weakly W k,p-
converges to f , that is for any |γ| ≤ k and any g ∈ Lp′(Ω), where p′ = p

p−1 is the Hölder
dual of p, we have ∫

Ω
∂γfij

g
i→∞−−−→

∫
Ω
∂γf g.

We have lower semicontinuity of the norm,
∥f∥W k,p(Ω) ≤ lim inf

i→∞
∥fi∥W k,p(Ω).

The same statement holds when we replace W k,p(Ω) with W k,p
0 (Ω).

5.1. Approximation by smooth functions. It is often ok to think of Sobolev maps as
(essentially) smooth functions with bounded W k,p-norm. The reason is approximation:
Proposition 5.11 (Local approximation by smooth functions). Let Ω be open, u ∈
W k,p(Ω), 1 ≤ p<∞. Set

uε(x) := ηε ∗ u(x) =
∫
Rn
ηε(y − x)u(y) dy x ∈ Ω−ε.
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Here ηε(z) = ε−nη(z/ε) for the usual bump function η ∈ C∞
c (B(0, 1), [0, 1]),

∫
B(0,1) η = 1.

Then

(1) uε ∈ C∞(Ω−ε), where as before
Ω−ε := {x ∈ Ω : dist (x, ∂Ω) > ε}

for each ε > 0 such that Ω−ε ̸= ∅.
(2) Moreoever for any Ω′ ⊂⊂ Ω,

∥uε − u∥W k,p(Ω′)
ε→0−−→ 0.

We call this W k,p
loc -approximation.

If we want to approximate W k,p(Ω) with functions u ∈ C∞(Ω) we need regularity of Ω.

Theorem 5.12 (Smooth approximation for Sobolev functions). Let Ω ⊂ Rn be open and
bounded, and ∂Ω ∈ C1. For any u ∈ W k,p(Ω) there exist a smooth approximating sequence
ui ∈ C∞(Ω) such that

∥ui − u∥W k,p(Ω)
i→∞−−−→ 0.

On Rn approximation is much easier, indeed we can approximate with respect to the W k,p-
norm any u ∈ W k,p(Rn) by functions uk ∈ C∞

c (Rn). That is, W k,p(Rn) = W k,p
0 (Rn). We

could describe this as “u ∈ W k,p(Rn) implies that u and k − 1-derivatives of u all vanish
at infinity”.

Proposition 5.13. (1) Let u ∈ W k,p(Ω), p ∈ [1,∞). If suppu ⊂⊂ Rn then there
exists uk ∈ C∞

c (Ω) such that

∥u− uk∥W k,p(Ω)
k→∞−−−→ 0.

(2) Let u ∈ W k,p(Rn), p ∈ [1,∞). Then there exists uk ∈ C∞
c (Rn) such that

∥u− uk∥W k,p(Rn)
k→∞−−−→ 0.

That is W k,p(Rn) = W k,p
0 (Rn)

(3) Let u ∈ W k,p(Rn
+) = Rn−1 × (0,∞)). Then there exists u ∈ C∞

c (Rn−1 × [0,∞) (i.e.
u may not be zero on (x′, 0) for small x′) such that

∥u− uk∥W k,p(Rn
+)

k→∞−−−→ 0.

5.2. Difference Quotients. We used above, e.g. for the Cauchy estimates, Proof of
Lemma 2.41 the method of differentiating the equation (e.g. that if ∆u = 0 then also
for v := ∂iu we have ∆v = 0 – so we can easier estimates for ∂iu). In the Sobolev space
category this is also a useful technique. Sometimes, the “first assume that everything is
smooth, then use mollification”-type argument as for Lemma 2.41 is difficult to put into
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practice. In this case, a technique developed by Nirenberg, is discretely differentiating the
equation (which does not require the function to be a priori differentiable):

∆u = 0 ⇒ v(x) := (∆ei
h u)(x) := u(x+ hei) − u(x)

h
: ∆v = 0

For this to work, we need some good estimates. Recall that (by the fundamental theorem
of calculus), for C1-functions u,

∥∆eℓ
h u∥L∞ ≤ ∥∂ℓu∥L∞ .

This also holds in Lp for W 1,p-functions u, which is a result attributed to Nirenberg, see
Proposition 5.15.

One important ingredient is that the fundamental theorem of calculus holds for Sobolev
functions:

Lemma 5.14. Let u ∈ W 1,1
loc (Ω). Fix v ∈ Rn. Then for almost every x ∈ Ω such that the

path [x, x+ v] ⊂ Ω we have

u(x+ v) − u(x) =
∫ 1

0
∂αu(x+ tv)vα dt.

Proposition 5.15. (1) Let k ∈ N, (i.e. k ̸= 0), and 1 ≤ p < ∞. Assume that
Ω′ ⊂⊂ Ω are two open (nonempty) sets, and let 0 < |h| < dist (Ω′, ∂Ω). For
u ∈ W k,p(Ω) we have

∥∆eℓ
h u∥W k−1,p(Ω′) ≤ ∥∂ℓu∥W k−1,p(Ω).

Moreover we have

∥∆eℓ
h u− ∂ℓu∥W k−1,p(Ω′)

h→0−−→ 0.

(2) Let u ∈ W k−1,p(Ω), 1 < p ≤ ∞. Assume that for any Ω′ ⊂⊂ Ω and any ℓ = 1, . . . , n
there exists a constant C(Ω′) such that

sup
|h|<dist (Ω′,∂Ω)

∥∆eℓ
h u∥W k−1,p(Ω′) ≤ C(Ω′, ℓ)

Then we u ∈ W k,p
loc (Ω), and for any Ω′ ⊂ Ω we have

(5.2) ∥∂ℓu∥W k−1,p(Ω′) ≤ sup
|h|<dist (Ω′,∂Ω)

∥∆eℓ
h u∥W k−1,p(Ω′).

If p = ∞ we even have u ∈ W k,∞(Ω) with the estimate

(5.3) ∥∂ℓu∥W k−1,∞(Ω) ≤ sup
Ω′⊂⊂Ω

sup
|h|<dist (Ω′,∂Ω)

∥∆eℓ
h u∥W k−1,∞(Ω′).

https://en.wikipedia.org/wiki/Louis_Nirenberg
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5.3. W 1,∞ is Lipschitz. Let Ω be a bounded set with smooth boundary ∂Ω ∈ C∞ (this
is not optimal).

From our definition we have f ∈ W 1,∞(Ω) if and only if f ∈ L∞(Ω) and Df ∈ L∞(Ω,Rn).

Assume that f is Lipschitz, i.e. f is continuous (so f ∈ L∞(Ω)) and we have
|f(x) − f(y)| ≤ Λ|x− y| x, y ∈ Ω.

From Proposition 5.15, we conclude that f ∈ W 1,∞(Ω).

The other direction is also true. Assume that f ∈ W 1,∞(Ω). Then in particular f ∈
W 1,2(Ω), and thus by mollification we can approximate

f(x) = lim
ε→0

f ∗ ηε(x) in Ω′ ⊂⊂ Ω.

The right-hand side is smooth, and we observe
sup

ε
∥D (f ∗ ηε) ∥L∞(Ω′) ≲ ∥Df∥L∞(Ω).

That is, f ∗ ηε all have a Lipschitz constant which is uniformly bounded. By Arzela Ascoli
we get that (up to subsequence) f ∗ ηε

ε→0−−→ g uniformly in Ω′. Thus g is Lipschitz. Is
g = f? Yes, but only almost everywhere!

Since f ∗ ηε converges to f in L2(Rd), we have (up to subsequence) that f ∗ ηε converges
to f almost everywhere. Thus f = g a.e.

So what we have is the following

Theorem 5.16. Let Ω ⊂ Rn be an open, bounded set with smooth boundary ∂Ω ∈ C∞.

Then the following are equivalent

(1) u ∈ W 1,∞(Ω)
(2) There exists a representative ũ ∈ C0,1(Ω) such that u = ũ almost everywhere.

One can also show now that Dũ (from Rademeacher’s theorem) equals a.e. Du (from
Sobolev space definition) – in particular we can prove Rademacher’s theorem like this: any
Lipschitz function has a.e. a derivative.

In the same vein we can identify W k,∞(Ω) with Ck−1,1(Ω).

5.4. Composition. We have, cf. [Ziemer, 1989, Theorem 2.1.11].

Theorem 5.17 (Composition with Lipschitz functions). Let u ∈ W 1,p(Ω) and f : R → R
be Lipschitz continuous, f ∈ C0,1 then f ◦ u ∈ W 1,p(Ω).

Moreover if f ′ ∈ L∞(R) denotes the distributitonal derivative (since f is Lipschitz, f ∈
W 1,∞, so f ′ makes sense), then

∂αu = f ′ ◦ u ∂αu a.e. in Ω
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ALthough it is not extremely clear, but a special case implies the following, cf. [Evans and Gariepy, 2015,
§4.2.2., Theorem 4]

Lemma 5.18. Let u ∈ W 1,1(Ω), then we have Du = 0 almost everywhere in {u(x) = 0}9.

5.5. Embedding Theorems.

Theorem 5.19 (Rellich-Kondrachov). Let Ω ⊂⊂ Rn, ∂Ω ⊂ C0,1, 1 ≤ p ≤ ∞. Assume
that (uk)k∈N ∈ W 1,p(Ω) is bounded, i.e.

sup
k∈N

∥uk∥W 1,p(Ω) < ∞.

Then there exists a subsequence ki → ∞ and u ∈ Lp(Ω) such that uki
is (strongly) conver-

gent in Lp(Ω), moreover the convergence is pointwise a.e..

Theorem 5.20 (Poincaré). Let Ω ⊂⊂ Rn be open and connected, ∂Ω ∈ C0,1, 1 ≤ p ≤ ∞.

Let K ⊂ W 1,p(Ω) be a closed (with respect to the W 1,p-norm) cone with only one constant
function u ≡ 0. That is, let K ⊂ W 1,p(Ω) be a closed set such that

(1) u ∈ K implies λu ∈ K for any λ ≥ 0.
(2) if u ∈ K and u ≡ const then u ≡ 0.

Then there exists a constant C = C(K,Ω) such that
(5.4) ∥u∥Lp(Ω) ≤ C∥∇u∥Lp(Ω) ∀u ∈ K.

In one dimension this is an easy consequence of the fundamental theorem, and sometimes
called Wirtinger’s inequality. Denote (u) := 1

2
∫ 1

−1 u the mean value. Then

∥u− (u)∥p
Lp((−1,1)) =

∫
(−1,1)

|u(x) − (u)|p ≤1
2

∫
(−1,1)

∫
(−1,1)

|u(x) − u(z)|p dx dz

≤1
2

∫
(−1,1)

∫
(−1,1)

|
∫ z

x
u′(y)dy|pdxdz

≤2p−2
∫

(−1,1)

∫
(−1,1)

∫ 1

−1
|u′(y)|pdydxdz

=2p
∫ 1

−1
|u′(y)|p dy.

Corollary 5.21 (Poincaré type lemma). Let Ω ⊂⊂ Rn be open, connected, and ∂Ω ∈ C0,1.

(1) There exists C = C(Ω) such that for all u ∈ W 1,p(Ω) we have
∥u− (u)Ω∥Lp(Ω) ≤ C(Ω)∥∇u∥Lp(Ω)

9Check this for smooth functions: Either {u(x) = 0} is a zeroset. On the other hand, on the “substantial”
parts of {u(x) = 0} we should think of u as constant



PARTIAL DIFFERENTIAL EQUATIONS I & II VERSION: August 1, 2023 102

(2) For any Ω′ ⊂⊂ Ω open and nonempty there exists C = C(Ω,Ω′) such that for all
u ∈ W 1,p(Ω) we have

∥u− (u)Ω′∥Lp(Ω) ≤ C(Ω,Ω′)∥∇u∥Lp(Ω)

(3) There exists C = C(Ω) such that for all u ∈ W 1,p
0 (Ω)

∥u∥Lp(Ω) ≤ C(Ω)∥∇u∥Lp(Ω)

If Ω = B(x, r) (and in the second claim Ω′B(x, λr)) then C(Ω) = C(B(0, 1)) r (and for
the second claim: C(Ω,Ω′) = C(B(0, 1), B(0, λ)) r).

Exercise 5.22. Let B(x0, r) ⊂ Rn a ball. Show that there exists a constant C > 0
independent of r and x0 such that the following holds

(1) ∥u− (u)B(x0,r)∥Lp(B(x0,r)) ≤ C r∥∇u∥Lp(B(x0,r)) for all u ∈ W 1,p(B(x0, r)). (Here, as
before (u)B(x0,r) = |B(x0, r)|−1 ∫

B(x0,r) u).
(2) ∥u∥Lp(B(x0,r)) ≤ C r∥∇u∥Lp(B(x0,r)) for all u ∈ W 1,p

0 (B(x0, r)).

Theorem 5.23 (Sobolev inequality). Let p ∈ [1,∞) such that p∗ := np
n−p

∈ (1,∞) (equiv-
alently: p ∈ [1, n)). Then W 1,p(Rn) embedds into Lp∗(Rn). That is, if u ∈ W 1,p(Rn) then
u ∈ Lp∗(Rn) and we have10

∥u∥Lp∗ (Rn) ≤ C(p, n) ∥Du∥Lp(Rn).

Corollary 5.24 (Sobolev-Poincaré embedding). Let u ∈ W 1,p(Rn), 1 ≤ p < n. For any
q ∈ [p, p∗] we have u ∈ Lq(Rn) with the estimate

∥f∥q
Lq(Rn) ≤ C(q, n)

(
∥f∥p

Lp(RN ) + ∥Df∥p∗

Lp(Rn)

)
.

Corollary 5.25 (Sobolev-Poincaré embedding on domains). Let Ω ⊂ Rn and ∂Ω be C1.
For 1 ≤ p < n we have for any u ∈ W 1,p(Ω),

∥u∥Lp∗ (Ω) ≤ C(Ω)
(
∥u∥Lp(Ω) + ∥Du∥Lp(Ω)

)
Also, for any q ∈ [p, p∗] 11

∥u∥Lq(Ω) ≤ C(Ω, q, ∥u∥W 1,p(Ω)).

If moreover Ω ⊂⊂ Rn and u ∈ W 1,p
0 (Ω) then

∥u∥Lp∗ (Ω) ≤ C(Ω) ∥Du∥Lp(Ω).

10The optimal constant C(p, n) has actually a geometric meaning, and is related to the isoperimetric
inequality, cf. [Talenti, 1976]

11This means the following: For any Λ > 0 there exists a constant C(Ω, q, Λ) such that
∥u∥Lq(Ω) ≤ C(Ω, q, Λ) ∀u : ∥u∥W 1,p(Ω) ≤ Λ.
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Lastly, if 1 ≤ p < ∞ and Ω ⊂⊂ Rn, u ∈ W 1,p(Ω) then for any q ∈ [1, p∗] (if p < n) or for
any q ∈ [1,∞) (if p ≥ n)

∥u∥Lq(Ω) ≤ C(Ω, q, p, n) ∥u∥W 1,p(Ω).

Theorem 5.26 (Sobolev Embedding). Let Ω ⊂⊂ Rn be open, ∂Ω ∈ C0,1, k ≥ ℓ for
k, ℓ ∈ N ∪ {0}, and 1 ≤ p, q < ∞ such that

(5.5) k − n

p
≥ ℓ− n

q
.

Then the identity is a continuous embedding W k,p(Ω) ↪→ W ℓ,q(Ω). That is,
(5.6) ∥u∥W ℓ,q(Ω) ≤ C(∥u∥W k,p(Ω))
If k > ℓ and we have the strict inequality

(5.7) k − n

p
> ℓ− n

q
,

then the embedding above is compact. That is, whenever (ui)i∈N ⊂ W k,p(Ω) such that
sup

i
∥ui∥W k,p(Ω) < ∞

then there exists a subsequence (uij
)j∈N such that (uij

)j∈N is convergent in W ℓ,q(Ω).

Theorem 5.27 (Morrey Embedding). Let Ω ⊂⊂ Rn with ∂Ω ∈ Ck, k ∈ N. Assume that
for p ∈ (1,∞), α ∈ (0, 1) and ℓ < k we have

k − n

p
≥ ℓ+ α.

Then the embedding W k,p(Ω) ↪→ Cℓ,α(Ω) is continuous.

If k − n
p
> ℓ+ α then the embedding is compact.

5.6. Trace Theorems. Let Ω be a smoothly bounded domain, i.e. ∂Ω ⊂ Rn is a smooth
(compact) manifold.

For s ∈ (0, 1), p ∈ [1,∞) and for u ∈ C∞(∂Ω) we set (one of) the fractional Sobolev space
norm, often called Gagliardo-seminorm or Sobolev-Slobodeckij-norm as

[u]W s,p(∂Ω) :=
(∫

∂Ω

∫
∂Ω

(
|u(x) − u(y)|

|x− y|s

)p
dxdy

|x− y|n−1

) 1
p

.

We say u ∈ W s,p(∂Ω) if u ∈ Lp(∂Ω) and [u]W s,p(∂Ω) < ∞.

These spaces are sometimes called trace space, because of the following property: they
describe the trace of W 1,p-function

Theorem 5.28 (Trace theorem). Let Ω be open, bounded domain with smooth boundary
∂Ω and p ∈ (1,∞). Then



PARTIAL DIFFERENTIAL EQUATIONS I & II VERSION: August 1, 2023 104

• W 1,p(Ω) ↪→ W 1− 1
p

,p(∂Ω) in the following sense.
For every u ∈ W 1,p(Ω), if we restrict u

∣∣∣∣
∂Ω

(in the right way), then

[u
∣∣∣∣
∂Ω

]
W

1− 1
p ,p(∂Ω)

≲ ∥∇u∥Lp(Ω)

and
∥u
∣∣∣∣
∂Ω

∥Lp(∂Ω) + [u
∣∣∣∣
∂Ω

]
W

1− 1
p ,p(∂Ω)

≲ ∥u∥Lp(Ω) + ∥∇u∥Lp(Ω).

“In the right way” means that the restriction operator T : u ∈ C∞(Ω) → C∞(∂Ω),
u 7→ u

∣∣∣∣
∂Ω

has the above estimates. By density this operator than is defined for any
u ∈ W 1,p(Ω).

• For any u ∈ W 1− 1
p

,p(∂Ω) there exists U ∈ W 1,p(Ω) and
∥∇U∥Lp(Ω) ≲p,Ω [u]

W
1− 1

p ,p(∂Ω)

and
∥U∥Lp(Ω) + ∥∇U∥Lp(Ω) ≲ ∥u∥Lp(∂Ω) + [u]

W
1− 1

p ,p(∂Ω)

‘

The statement above holds also for p = ∞ (if we recall that W 1,∞ are simply Lipschitz
maps. For p = 1 there are versions in the spirit of the above trace (observe 1 − 1/1 = 0)

6. Existence and L2-regularity theory for Laplace Equation

In this section we want to discuss the basic existence and regularity theory, namely we want
to show existence and regularity for the following model equation for an elliptic equation.
We will later extend this to more complicated linear equations Section 6.6.

Let Ω ⊂ Rn be an open set (and we shall for now always assume Ω to be bounded and
∂Ω ∈ C∞). We want to find a solution to

(6.1)
−div (A∇u) = f in Ω
u = 0 on ∂Ω,

which we equivalently write as
∑n

α,β=1 ∂α (Aαβ∂βu) = f in Ω
u = 0 on ∂Ω,

and using the Einstein summation convention∂α (Aαβ∂βu) = f in Ω
u = 0 on ∂Ω,
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Here f is a given datum (we discuss below what assumptions we need). A ∈ C∞(Ω,Rn×n)
are symmetric matrices which are (uniformly) elliptic and bounded. It is important that
each and any of the previous assumptions can be relaxed, and leads to interesting, and
possibly very challenging theories – we focus on a simple, basic model case.

Uniform boundedness means that there exists Λ > 0 such that
sup
x∈Ω

|A| ≤ Λ < ∞.

Uniform ellipticity means that all eigenvalues of A(x) (which is symmetric) are positive
and bounded from below. Equivalently, there exits λ > 0 such that

inf
|v|=1,x∈Ω

⟨A(x)v, v⟩ ≥ λ > 0.

The above will be our standing assumptions below (again, some assumptions can be weak-
ened).

The following theorems describe a very typical way of action in order of finding solutions
to the above equation:

Theorem 6.1 (Existence in W 1,2
0 ). Let f ∈

(
W 1,2

0 (Ω)
)∗

, that is f is a linear bounded
functional on W 1,2

0 (Ω) such that
|f [φ]| ≲ ∥f∥(W 1,2

0 (Ω))∗ ∥φ∥W 1,2(Ω) ∀φ ∈ C∞
c (Ω).

Then there exists a solution u ∈ W 1,2(Ω) to−div (A∇u) ≡ ∑
αβ ∂α(Aαβ∂βu) = f in Ω

u = 0 on ∂Ω,

in the sense that u ∈ W 1,2
0 (Ω) and∫

Ω
Aαβ ∂αu ∂βφ = f [φ] ∀φ ∈ C∞

c (Ω).

Our particular solution u satisfies
∥u∥W 1,2(Ω) ≤ C(Ω)∥f∥(W 1,2(Ω))∗ .

Exercise 6.2. Show that

(1) if f ∈ L2(Ω) then f ∈
(
W 1,2

0 (Ω)
)∗

, via the identification

f [φ] :=
∫

Ω
fφ, φ ∈ W 1,2

0 (Ω).

Show that
∥f∥(W 1,2(Ω))∗ ≤ C(Ω)∥f∥L2(Ω).

Hint: Poincarè inequality.
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(2) For some g ∈ L2(Ω) and α ∈ {1, . . . , n} define

f [φ] :=
∫

Ω
g∂αφ

Show that f ∈ (W 1,2(Ω))∗ and
∥f∥(W 1,2(Ω))∗ ≤ ∥g∥L2(Ω).

Theorem 6.3 (Uniqueness in W 1,2
0 ). For fixed f ∈ (W 1,2

0 (Ω))∗ there is at most one solution
u ∈ W 1,2(Ω) that solves in the above sense−div (A∇u) ≡ ∑

αβ ∂α(Aαβ∂βu) = f in Ω
u = 0 on ∂Ω,

That is, if u and v are both solutions, then u = v a.e.

Theorem 6.4 (Interior L2-regularity). Let f ∈ L2(Ω) and assume u ∈ W 1,2(Ω) solves{
−div (A∇u) = f in Ω

in the above sense. (Observe we assume nothing on the boundary).

Then u ∈ W 2,2
loc (Ω), and we have for any Ω′ ⊂⊂ Ω

∥D2u∥L2(Ω′) ≤ C(A,Ω′,Ω)
(
∥u∥W 1,2(Ω) + ∥f∥L2(Ω)

)
.

More generally, if f ∈ W k,2(Ω) then u ∈ W k+2,2
loc (Ω) and for any Ω′ ⊂⊂ Ω we have

∥Dk+2u∥L2(Ω′) ≤ C(A, k,Ω′,Ω)
(
∥u∥W 1,2(Ω) + ∥f∥L2(Ω)

)
.

In particular if f ∈ C∞ then u ∈ C∞ – and the equation holds in the classical sense12.

Remark 6.5. In the estimate above one can replace the ∥u∥W 1,2(Ω)-term on the right-hand
side with ∥u∥L2(Ω), cf. Exercise 6.7, e.g. get an estimate of the form

∥Dk+2u∥L2(Ω′) ≤ C(Ω′,Ω)
(
∥u∥L2 (Ω) + ∥f∥L2(Ω)

)
.

Theorem 6.6 (Global L2-regularity). Assume Ω is a bounded open set with smooth bound-
ary ∂Ω ∈ C∞. Let f ∈ L2(Ω) and assume u ∈ W 1,2

0 (Ω) solves−div (A∇u) = f in Ω
u = 0 on ∂Ω,

in the above sense.

Then u ∈ W 2,2(Ω), and we have

∥D2u∥L2(Ω) ≤ C(Ω)
(
∥u∥W 1,2(Ω) + ∥f∥L2(Ω)

)
.

12this last part follows from the Morrey embedding, Theorem 5.27, and then by convolution
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As for regularity theory: there is also Lp-theory, but this is way more involved, and called
Calderón-Zygmund theory. We can also obtain regularity theory in the sense of Hölder
spaces, which is called Schauder theory, Section 8.

6.1. Existence: Proof of Theorem 6.1. The PDE is in divergence form, which means
its variational – which essentially means that the direct method of Calculus of Variations
works: 13

Proof of Theorem 6.1. We use what is called the direct method of Calculus of Variations:
Set

E(u) := 1
2

∫
Ω
Aαβ∂αu∂βu+ f [u].

As in Section 2.10 one can check that there is at most one minimizer in W 1,2
0 (Ω) of this

functional, that any minimizer is a solution to (6.1) and that any solution is a minimizer.

So all that is needed to show is the existence of a minimizer with the claimed estimate.

Let uk ∈ W 1,2
0 (Ω) be a sequence that approximates inf E (this exists by the very definition

of inf),
lim

k→∞
E(uk) = inf

W 1,2
0 (Ω)

E .

In particular, we can assume that E(uk) ≤ E(0) = 0 for all k ∈ N. Now observe that by
ellipticity14,

λ|Du|2 ≤ Aαβ∂αu ∂βu.

Thus,
λ

2 ∥Duk∥2
L2(Ω) = E(uk)−f [uk] ≤ E(0) + ∥f∥(W 1,2(Ω))∗ ∥uk∥W 1,2(Ω).

That is, by Poincaré inequality, Corollary 5.21,

∥uk∥2
W 1,2(Ω) ≤ C∥f∥(W 1,2(Ω))∗ ∥uk∥W 1,2(Ω).

Dividing both sides by ∥uk∥W 1,2(Ω) we get

sup
k

∥uk∥W 1,2(Ω) ≤ C∥f∥W 1,2(Ω).

That is uk is uniformly bounded in W 1,2(Ω).

The property we have just shown (of the energy E and the space W 1 ,2
0 (Ω)) is called coerciv-

ity: sequences uk ∈ W 1 ,2
0 (Ω) with bounded supk E(uk) < ∞ must satisfy supk ∥uk∥W 1 ,2 <

∞.
13we did something very similar in the variational methods section, Section 2.10, but we did not have

the tools to show existence of a minimizer
14Einstein summation!!!
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By the weak compactness theorem, Theorem 5.10, we can thus (up to taking a subsequence)
assume uk weakly converging to u ∈ W 1,2

0 (Ω), which in particular implies

f [uk] k→∞−−−→ f [u].

We also have by symmetry of A15

0 ≤
∫

Ω
Aαβ∂α(u− uk) ∂β(u− uk)

= −
∫

Ω
Aαβ∂αu ∂βu+

∫
Ω
Aαβ∂αuk ∂βuk − 2

∫
Ω
Aαβ∂α(uk − u) ∂βu

Thus, ∫
Ω
Aαβ∂αu ∂βu ≤

∫
Ω
Aαβ∂αuk ∂βuk − 2

∫
Ω
Aαβ∂α(uk − u) ∂βu.

This holds for any k ∈ N, so taking the liminf on both sides we have, using weak conver-
gence, ∫

Ω
Aαβ∂αu ∂βu ≤ lim inf

k→∞

∫
Ω
Aαβ∂αuk ∂βuk + 2 lim inf

k→∞

∣∣∣∣∫
Ω
Aαβ∂α(uk − u) ∂βu

∣∣∣∣︸ ︷︷ ︸
=0 since uk − u ⇀ 0

Thus, we conclude
E(u) ≤ lim inf

k→∞
E(uk) = inf

W 1,2
0 (Ω)

E.

This property (again of the energy E and the topology of weak convergence W 1,2(Ω)) is
called lower semicontinuity: if uk converges to u w.r.t. weak convergence W 1,2(Ω) then
E(u) ≤ lim infk→∞ E(uk).

We can now conclude: since u ∈ W 1,2
0 (Ω) we also have

E(u) ≥ inf
W 1,2

0 (Ω)
E,

and thus
E(u) = inf

W 1,2
0 (Ω)

E.

That is we have found a minimizer of E. □

Remark: The above is a variational technique (Direct Method of Calculus of Variations).
Other possible techniques are: Lax-Milgram. More advanced methods are fixed point theo-
rems (Banach, or Leray-Schauder/Schaefer). Fredholm-alternative, Closed Range theorem.

15we could also use more abstractly that norms are weakly lower semicontinuous



PARTIAL DIFFERENTIAL EQUATIONS I & II VERSION: August 1, 2023 109

6.2. Uniqueness: Proof of Theorem 6.3. There are two proofs of uniqueness which
are both very useful (here both work – in general this might not be the case):

Proof of Theorem 6.3 by convexity. Any solution to−div (A∇u) ≡ ∑
αβ ∂α(Aαβ∂βu) = f in Ω

u = 0 on ∂Ω,

is a minimizer in W 1,2
0 (Ω) of

E(u) := 1
2

∫
Ω
⟨Aαβ∂αu∂βu+ f [u].

We have already discussed one direction: if u is a minimizer then u solves the PDE.

For the other direction assume that u solves the PDE and v is any other map in W 1,2
0 (Ω).

Then we have (recall that A is symmetric)

Aαβ∂αv∂βv − Aαβ∂αu∂βu

=Aαβ∂α(v − u)∂βu+ Aαβ∂αu∂β(v − u) + Aαβ∂α(v − u)∂β(v − u)
=2Aαβ∂αu∂β(v − u) + Aαβ∂α(v − u)∂β(v − u)
≥2Aαβ∂αu∂β(v − u) + λ|D(v − u)|2

≥2Aαβ∂αu∂β(v − u).

Thus,

E(v) − E(u) ≥ 2
2

∫
Ω
⟨Aαβ∂αu∂β(v − u) + f [v − u] = 0,

by the PDE. That is u is a minimizer.

Now we observe that u 7→ E(u) is strictly convex. Indeed, let u ̸= v and µ ∈ (0, 1) then

Aαβ∂α(µu+ (1 − µ)v) ∂β(µu+ (1 − µ)v)
=µ2Aαβ∂αu ∂βu+ (1 − µ)2Aαβ∂αv ∂βv + 2µ(1 − µ)Aαβ∂αu ∂βv

=µAαβ∂αu ∂βu− µ(1 − µ)Aαβ∂αu ∂βu

+ (1 − µ)Aαβ∂αv ∂βv − (1 − µ)µAαβ∂αv ∂βv

+ 2µ(1 − µ)Aαβ∂αu ∂βv

=µAαβ∂αu ∂βu+ (1 − µ)Aαβ∂αv ∂βv

− µ(1 − µ)Aαβ (∂αu ∂βu+ ∂αv ∂βv − 2∂αu ∂βv)
=µAαβ∂αu ∂βu+ (1 − µ)Aαβ∂αv ∂βv

− µ(1 − µ)Aαβ (∂α(u− v) ∂β(u− v))
≤µAαβ∂αu ∂βu+ (1 − µ)Aαβ∂αv ∂βv − λµ(1 − µ)|D(u− v)|2.
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That is, whenever D(u − v) ̸≡ 0 (i.e. u − v not constant, which by the same boundary
data means u ̸≡ v), and µ ∈ (0, 1) we have
E(µu+ (1 −µ)v) ≤ µE(u) + (1 −µ)E(v) −λµ(1 −µ)∥D(u−v)∥2

L2(Ω) < µE(u) + (1 −µ)E(v),
which is strict convexity.

Now, strictly convex functions have at most one global minimizer. Indeed assume that
u, v are both global minimizer (thus E(u) = E(v) ≤ E(w) for any competitor w). We set
w := 1

2(u+ v). Unless u ≡ v we’d then have

E(w) < 1
2E(u) + 1

2E(v) = E(u) ≤ E(w),

a contradiction. □

Uniqueness by testing. Assume we have two solutions u and v then (by linearity) w := u−v
solves the equation −div (A∇w) = 0 in Ω

w = 0 on ∂Ω,
We can use w as the test function of this PDE and have

λ∥Dw∥2
L2 ≤

∫
Ω
Aαβ∂αw∂βw = 0.

Thus ∥Dw∥L2 = 0 and since w ∈ W 1,2
0 (Ω) we have w ≡ 0. □

6.3. Interior regularity theory: Proof of Theorem 6.4. Many techniques in regular-
ity theory of PDE are based on using (a version of) the solution u as a test function, or
colloquiually “multiply by u and integrate by parts”.

Let us illustrate this (without getting any good estimate). Assume u solves
−div (A∇u) = f in Ω

The basic idea by using u as a test function, we obtain good estimates.

Formally, we could the equation with u and (if we ignore the boundary data) integrating
we obtain

λ
∫

Ω
|∇u|2 ≤

∫
Ω
Aαβ∂αu∂βu =

∫
fu ≲ ∥f∥L2∥u∥L2 .

Now we have an estimate of u in terms of the W 1,2-function of u (assuming that f ∈ L2!).

But we made a mistake! u is not a permissible test-function, since u is not zero at the
boundary (and we cannot ignore the boundary data – which we actually do not know).

But don’t despair. Pick any Ω′ ⊂⊂ Ω. We can find a cutoff function η ∈ C∞
c (Ω, [0, 1])

such that η ≡ 1 in Ω′. It is enough to find a good estimate for ηu. So let us compute the
equation of ηu.

−div (A∇(ηu)) = −div (ηA∇u) − div (A(∇η)u) = ηf − (∂βη)Aαβ∂βu− div (A(∇η)u).
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Observe that even for u ∈ L2, the right-hand side belongs to (W 1,2
0 )∗ in a nice way, e.g.∫

(∂βη)Aαβ∂βuφ = −
∫
u∂β ((∂βη)Aαβ∂βφ) ≲ ∥u∥L2∥φ∥W 1,2 .

So, we can use existence, Theorem 6.1 to show that there exists v ∈ W 1,2
0 (Ω)

−div (A∇v) = ηf − (∂βη)Aαβ∂βu− div (A(∇η)u).

and we have

(6.2) ∥v∥W 1,2 ≲ ∥ηf − (∂βη)Aαβ∂βu− div (A(∇η)u)∥(W 1,2
0 (Ω))∗ ≲ ∥f∥L2 + ∥u∥L2 .

But on the other hand we have uniqueness, Theorem 6.3, so ηu = v and we have found an
estimate, cf. Exercise 6.7.

Exercise 6.7. Let u ∈ W 1,2(Ω) solves the equation

div (A∇u) = f

Show that for any Ω1 ⊂⊂ Ω

∥u∥W 1,2(Ω1) ≲ ∥f∥(W 1,2
0 (Ω))∗ + ∥u∥L2(Ω),

where the constants in ≲ depends on A and Ω1.

Hint: Use the argument that lead to Equation (6.2) and Theorem 6.3.

We want to apply this idea to the derivative, i.e. we compute the PDE for η∂γu.

−div (A∇(η∂γu)) = − div (A∇ (∂γ(ηu))) + div (A∇ ((∂γη)u)))
= − ∂γdiv (A∇ ((ηu))) + div (∂γA∇ ((ηu))) + div (A∇ ((∂γη)u)))
= − ∂γdiv (ηA∇ (u)) + ∂γdiv (A∇η u) + div (∂γA∇ ((ηu))) + div (A∇ ((∂γη)u)))
= − ∂γ (ηdiv (A∇ (u))) + ∂γ∂αβηAαβ∂βu+ ∂γdiv (A∇η u) + div (∂γA∇ ((ηu))) + div (A∇ ((∂γη)u)))
= − ∂γ(ηf) + ∂γ (∂αβηAαβ∂βu) + ∂γdiv (A∇η u) + div (∂γA∇ ((ηu))) + div (A∇ ((∂γη)u))).

Now as above16 we have that this implies

∥ − div (A∇(η∂γu))∥(W 1,2
0 (Ω))∗ ≲ ∥u∥W 1,2(Ω).

So, again using existence, Theorem 6.1, to find v ∈ W 1,2
0 (Ω) such that

−div (A∇(η∂γu)) = −div (A∇v) in Ω

v is is unique – but here is the problem: uniqueness, Theorem 6.3, is in W 1,2
0 ! and η∂γu ∈

L2(Ω) ⊋ W 1,2
0 (Ω). So all we get are a priori estimates

16We will do this computation in details below, for the discrete differentiation
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Lemma 6.8 (A priori estimates). Assume that u ∈ W 2 ,2(Ω) solves
−div (A∇u) = f in Ω

Then in any open Ω′ ⊂⊂ Ω we have the estimate∫
Ω′

|D2u|2 ≤ C(λ,Λ,Ω,Ω′)
(
∥f∥2

L2(Ω) + ∥u∥2
W 1,2(Ω)

)
Proof. Fix γ ∈ {1, . . . , n}, Ω′ ⊂⊂ Ω and let η ∈ C∞

c (Ω) such that η ≡ 1 in Ω′. Take
v ∈ W 1,2

0 (Ω) solving
−div (A∇(η∂γu)) = −div (A∇v) in Ω,

which by the above argument satisfies
∥v∥W 1,2(Ω) ≲ ∥ − div (A∇(η∂γu))∥(W 1,2

0 (Ω))∗ ≲ ∥f∥L2(Ω) + ∥u∥W 1,2(Ω).

Since u ∈ W 2,2(Ω) we have that η∂γu ∈ W 1,2
0 (Ω), so we have uniqueness, Theorem 6.3,

which implies that v = η∂γu. Thus we have
∥η∂γu∥W 1,2(Ω) ≲ ∥f∥L2(Ω) + ∥u∥W 1,2(Ω).

Since η ≡ 1 in Ω,
∥∂γu∥W 1,2(Ω′) ≤ ∥η∂γu∥W 1,2(Ω) ≲ ∥f∥L2(Ω) + ∥u∥W 1,2(Ω).

Since this holds for any γ ∈ {1, . . . , n} we have
∥u∥W 2 ,2(Ω′) ≤ ∥η∂γu∥W 1,2(Ω) ≲ ∥f∥L2(Ω) + ∥u∥W 1,2(Ω).

We can conclude.

□

So how do we show that u ∈ W 2,2? There are different ways to do this, the one we illustrate
here is using difference quotients (i.e. discrete differentiation of the PDE):
Proposition 6.9. Assume that u ∈ W 1 ,2(Ω) solves

−div (A∇u) = f in Ω
Then u ∈ W 2,2

loc (Ω) (and thus we have the estimate from the previous theorem).

We will use discrete differentiation (which in view of Proposition 5.15 we can relate do
Sobolev space estimates) for which we will use some properties
Exercise 6.10 (Discrete differentiation). For h ∈ Rn \{0} denote by δhf(x) := f(x+h)−
f(x).

(1) Show the discrete product rule: δh(fg)(x) = δhf(x)g(x)+f(x)δhg(x)+δhf(x)δhg(x)
(2) Let Ω be an open set and Ω2 ⊂⊂ Ω. Assume |h| ≤ 1

2dist (Ω2, ∂Ω). Show the discrete
integration by parts formula∫

Ω
fδhg =

∫
Ω
δ−hfg if supp f ⊂ Ω2 or supp g ⊂ Ω2.
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(3) Use the discrete integration by parts formula to show the usual integration by parts
formula ∫

Ω
f∂γg = −

∫
Ω
∂γfg

for all smooth functions f and g which vanish in a neighborhood of ∂Ω, where
γ ∈ {1, . . . , n}.

Proof of Proposition 6.9. Fix Ω′ ⊂⊂ Ω2 ⊂⊂ Ω. Let η ∈ C∞
c (Ω2, [0, 1]) with η ≡ 1 in Ω′.

Fix h ∈ Rn with |h| ≤ 1
100dist (supp η, ∂Ω2).

Denote by δhu(x) := u(x+h) −u(x). We now do what we did above, but with ∂γ replaced
by δh.

We observe that we have a discrete analogue of the product rule and the discrete integration
by parts, see Exercise 6.10.

So let us compute
g := −div (A∇ (ηδhu)) in Ω.

and show that

(6.3) ∥g∥(W 1,2
0 )∗(Ω) ≲ |h|∥u∥W 1,2(Ω).

The computation is quite involved and long.

We have

−div (A∇ (ηδhu)) = −div (A∇δh (ηu)) + div (A∇ (δhη u)) − div (A∇ (δhηδhu))

Set
Γ1 := div (A∇ (δhη u)), Γ2 := −div (A∇ (δhηδhu))

Both Γ1 and Γ2 satisfy the estimate in (6.3). Indeed, for φ ∈ C∞
c (Ω) we have

|Γ1[φ]| =
∣∣∣∣∫

Ω
Aαβ∂β (δhη u) ∂αφ

∣∣∣∣
≲∥A∥L∞∥D (δhη u) ∥L2(Ω)∥Dφ∥L2(Ω)

≲∥A∥L∞

(
∥δh(Dη) u∥L2(Ω) + ∥ (δhη Du) ∥L2(Ω)

)
∥Dφ∥L2(Ω)

≲∥A∥L∞

(
|h|∥D2η∥L∞∥u∥L2(Ω2 ) + |h|∥Dη∥L∞∥Du∥L2(Ω2 )

)
∥Dφ∥L2(Ω)

≤C(Λ, η)|h|∥u∥W 1,2(Ω)∥φ∥W 1,2(Ω2 ).

Thus,
∥Γ1∥(W 1,2

0 )∗(Ω) ≤ C(Λ, η)|h|∥u∥W 1,2(Ω2 ) ≤ C(Λ, η)|h|∥u∥W 1,2(Ω).
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We argue the same way for Γ2 and have

∥Γ2∥(W 1,2
0 )∗(Ω) ≤C(Λ, η)|h|∥δhu∥W 1,2(Ω2)

≲C(Λ, η)|h|
(
∥u∥W 1,2(Ω2) + ∥u∥W 1,2(Ω2 +h)

)
≲2C(Λ, η)|h| ∥u∥W 1,2(Ω)

So, we have shown

−div (A∇ (ηδhu)) = −div (A∇δh (ηu)) + Γ1 + Γ2

where Γ1 and Γ2 satisfy the estimate we want, (6.3). Since there will be many Γi we are
going to call Γ any “good term” that satisfies the estimate (6.3), i.e. whenever

(Γ) ∥Γ∥(W 1,2
0 )∗(Ω) ≲ |h|∥u∥W 1,2(Ω).

– and Γ will change from line to line. For now we have

−div (A∇ (ηδhu)) = − div (A∇δh (ηu)) + Γ
= − δhdiv (A∇ (ηu)) + div (δhA∇ (ηu)) + div (δhAδh∇ (ηu)) + Γ

Set

Γ3 := div (δhA∇ (ηu)), Γ4 := div (δhAδh∇ (ηu)).

We check that Γ1 and Γ3 are of the type Γ: For φ ∈ C∞
c (Ω) we have

div (δhA∇ (ηu))[φ] = −
∫

Ω
δhAαβ ∂β (ηu) ∂αφ

≲∥δhAαβ∥L∞∥∂β (ηu) ∥L2∥Dφ∥L2

≲|h|∥DA∥L∞C(η)∥u∥W 1,2(Ω2)∥φ∥W 1,2(Ω)

The estimate for Γ4 is similar, with the same adaptations as for Γ2 (using that η ∈ C∞
c (Ω2)

localizes everything to Ω2). Thus, we have shown (for a new Γ but still satisfying (6.3))

−div (A∇ (ηδhu)) = − δhdiv (A∇ (ηu)) + Γ
= − δhdiv (A (η∇u)) − δhdiv (A (∇η u)) + Γ

We show that

Γ5 := −δhdiv (A (∇ηu))
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is of type Γ. Let φ ∈ C∞
c (Ω) then (using discrete integration by parts, again η localizes

everything to Ω2)

Γ5[φ] = −
∫

Ω
div (A (∇η u))δ−hφ

≤∥div (A (∇η u))∥L2(Ω)∥δ−hφ∥L2(Ω2 )
P 5.15
≲ |h| ∥div (A (∇η u))∥L2(Ω)∥Dφ∥L2(Ω)

≲|h|
(
∥DA∥L∞ ∥Dη∥L∞∥u∥L2(Ω) + ∥A∥L∞∥D (∇η u))∥L2(Ω)+

)
∥φ∥W 1,2(Ω)

≲|h|
(
∥DA∥L∞ ∥Dη∥L∞∥u∥L2(Ω) + ∥A∥L∞

(
∥D2η∥L∞∥u∥L2(Ω) + ∥Dη∥L∞∥Du∥L2(Ω)

))
∥φ∥W 1,2(Ω)

≲C(A, η) |h| ∥u∥W 1,2(Ω) ∥φ∥W 1,2(Ω).

Thus, Γ5 is of type (Γ), and we have
−div (A∇ (ηδhu)) = − δhdiv (A (η∇u)) + Γ

= − δh (ηdiv (A∇u)) − δh (∂α) η Aαβ∂βu) + Γ
= − δh (ηf ) − δh (∂αη Aαβ∂βu) + Γ

So we finally set
Υ := −δh (ηf ) , Γ6 := −δh (∂αη Aαβ∂βu) .

We first show that Γ6 is of type Γ. Let φ ∈ C∞
c (Ω), then by an discrete integration by

parts (again: the integral is actually in a strict subset of Ω because of η ∈ C∞
c (Ω2) and

|h| ≪ 1),

Γ6[φ] =
∫

Ω
−δh (∂αη Aαβ∂βu)φ

= −
∫

Ω
(∂αη Aαβ∂βu) δ−hφ

≲∥Dη∥L∞∥A∥L∞∥Du∥L2(Ω)∥δ−hφ∥L2(Ω2 )
P 5.15
≲ C(η, A)∥u∥W 1,2(Ω) ∥φ∥W 1,2(Ω).

So Γ6 is of type Γ.

Lastly we need to show an estimate for Υ – and here is the first and only time we use that
f ∈ L2(Ω): Let φ ∈ C∞

c (Ω)

Υ[φ] = −
∫

Ω
ηf δ−hφ ≲ ∥f∥L2(Ω) ∥δ−hφ∥L2(Ω2 )

P 5.15
≲ |h| ∥f∥L2(Ω) ∥φ∥W 1,2(Ω).

In conclusion, we have shown
−div (A∇ (ηδhu)) = Υ + Γ,

and we have
∥Υ∥(W 1,2

0 (Ω))∗ ≲ |h|∥f∥L2(Ω)
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and
∥Γ∥(W 1,2

0 (Ω))∗ ≲ |h| ∥u∥W 1,2(Ω)

On the other hand from Theorem 6.1 there exists some v = vh ∈ W 1,2
0 (Ω) such that

−div (A∇v) = Υ + Γ,
and v comes with the estimate

∥v∥W 1,2(Ω) ≲ ∥Υ∥(W 1,2
0 (Ω))∗ + ∥Γ∥(W 1,2

0 (Ω))∗ ≲ |h|
(
∥f∥L2(Ω) + ∥u∥W 1,2(Ω)

)
.

By Theorem 6.3 v is unique in W 1,2
0 – and we observe that (ηδhu) ∈ W 1,2

0 (Ω). So we
actually have v = (ηδhu) and thus

∥ηδhu∥W 1,2(Ω) ≲ |h|
(
∥f∥L2(Ω) + ∥u∥W 1,2(Ω)

)
.

Since η ≡ 1 in Ω′ we conclude that
|h|−1∥δhu∥W 1,2(Ω′) ≲

(
∥f∥L2(Ω) + ∥u∥W 1,2(Ω)

)
.

This holds for any |h| ≪ 1. So by Proposition 5.15 we conclude that

∥u∥W 2,2(Ω′) ≤ C(A,Ω′,Ω)
(
∥f∥L2(Ω) + ∥u∥W 1,2(Ω)

)
.

This argument works for any Ω′ ⊂⊂ Ω, so we conclude that u ∈ W 2,2
loc (Ω). □

We are essentially done, now we argue by induction to get

Proof of Theorem 6.4. We claim that for all k ∈ N ∪ {0}, whenever v ∈ W 1,2
loc (U) and

g ∈ W k,2(Ω) solves
div (A∇v) = g in U

then for any U1 ⊂⊂ U2 ⊂⊂ U we have
∥v∥W k+2,2(U1) ≲ C(U1, U2, A)

(
∥g∥W k,2(Ω2) + ∥v∥W 1,2(U2)

)
.

For k = 0 this is proven in Proposition 6.9 (nevermind the “loc” in v ∈ W 1,2
loc (U) – the

equation is then satisfied in U2 and we have u ∈ W 1,2(U2)).

Now fix k ≥ 1 and assume the claim is shown already for k − 1.

Let u ∈ W 1,2
loc (Ω) and assume f ∈ W k,2(Ω) solves

div (A∇u) = f in Ω.
Then from the induction hypothesis

∥u∥W k+1,2(Ω1) ≲ C(Ω1,Ω2, A)
(
∥f∥W k−1,2(Ω2) + ∥u∥W 1,2(Ω2)

)
.

Since k ≥ 1 we thus already know u ∈ W 2,2
loc (Ω) so ∂γu ∈ W 1,2

loc (Ω) for each fixed γ ∈
{1, . . . , n}. We then can differentiate the equation

−div (A∇∂γu) = ∂γf + div (∂γA∇u)
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Applying the induction hypothesis to v := ∂γu ∈ W k,2
loc (Ω) ⊂ W 1,2

loc (Ω) we find for any
Ω1 ⊂⊂ Ω2 ⊂⊂ Ω3 ⊂⊂ Ω

∥∂γu∥W k+1,2(Ω1)

≲C(Ω1,Ω2, A)
(
∥∂γf∥W k−1,2(Ω2) + ∥div (∂γA∇u)∥W k−1,2(Ω2) + ∥∂γu∥W 1,2(Ω2)

)
≲C(Ω1,Ω2, A)

(
∥f∥W k,2(Ω2) + C(D2A)∥∇u∥W k−1,2(Ω2) + C(DA)∥D2u∥W k−1,2(Ω2) + ∥u∥W 2 ,2(Ω2)

)
≲C(Ω1,Ω2, A)

(
∥f∥W k,2(Ω2) + ∥u∥W k,2(Ω2) + ∥u∥W k+1 ,2(Ω2) + ∥u∥W 2 ,2(Ω2)

)
≲C(Ω1,Ω2, A)

(
∥f∥W k,2(Ω2) + ∥u∥W k+1 ,2(Ω2)

)
This holds for any γ ∈ {1, . . . , n} so we actually find

∥u∥W k+2 ,2(Ω1) ≲max{γ ∈ {1, . . . , n}}∥∂γu∥W k+1,2(Ω1)

≲C(Ω1,Ω2, A)
(
∥f∥W k,2(Ω2) + ∥u∥W k+1 ,2(Ω2)

)
Applying once more the induction hypothesis (to u this time) we have

∥u∥W k+1 ,2(Ω2 ) ≲C(Ω2,Ω3 , A)
(
∥f∥W k−1,2(Ω3 ) + ∥u∥W 1,2(Ω3 )

)
≲C(Ω2,Ω3 , A)

(
∥f∥W k,2(Ω3 ) + ∥u∥W 1,2(Ω3 )

)
So, we have shown

∥u∥W k+2 ,2(Ω1) ≲max{γ ∈ {1, . . . , n}}∥∂γu∥W k+1,2(Ω1)

≲C(Ω1,Ω2,Ω3, A)
(
∥f∥W k,2(Ω3) + ∥u∥W 1 ,2(Ω3)

)
.

This holds for any Ω1 ⊂⊂ Ω3 (we can always find a suitable Ω2), so we have shown the
induction step and can conclude.

□

Exercise 6.11. Prove the statement in Remark 6.5.

6.4. Global/Boundary regularity theory: Proof of Theorem 6.6. Assume u is a
solution to −div (A∇u) = f in Ω

u = 0 on ∂Ω,
Since ∂Ω is a smooth manifold, for any point x0 ∈ ∂Ω there exists a small radius r(x0) > 0
and a diffeomorphism

Φ : B(0, 1) → Rn

with Φ(0) = x0, Φ(B(0, 1)∩Rn
+) ⊂ Ω, Φ(B(0, 1)∩Rn

−) ⊂ Rn \Ω and Φ(B(0, 1)) ⊃ B(x0, r).

Take η ∈ C∞
c (B(x0, r)) such that η ≡ 1 in B(x0, r/2). It suffices to show that ηu ∈ W 2,2(Ω)

and
(6.4) ∥ηu∥W 2,2(Ω) ≲ ∥u∥W 1,2(Ω) + ∥f∥L2(Ω).
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Indeed, if we can do that we can find finitely many balls (B(xi, ri))N
i=1 such that B(xi, ri/2)

covers a neighborhood of ∂Ω (because ∂Ω is compact). Set Ω0 := Ω \⋃i B(xi, ri/4) ⊂⊂ Ω.
Then we take a partition of unity ηi of Ω: ηi ∈ C∞

c (B(xi, ri)), ηi ≡ 1 in B(xi, ri/2), and
η0 ∈ C∞

c (Ω0) such that
N∑

i=0
ηi ≡ 1 in Ω.

From the interior theory we have already the estimate

∥η0u∥W 2,2(Ω) ≲ ∥u∥W 1,2(Ω) + ∥f∥L2(Ω).

If we have (6.4) then we’d get

∥u∥W 2,2(Ω) ≲
N∑

i=0

∑
∥ηiu∥W 2,2(Ω) ≲ N

(
∥u∥W 1,2(Ω) + ∥f∥L2(Ω)

)
.

Observe that the choice of ηi and B(xi, ri) and N only depends on the set Ω.

As before,
div (A∇ (ηu)) = ηf + div (A(∇η)u) + ∂αηAαβ∇u in Ω

If we set
g := ηf + div (A(∇η)u) + ∂αηAαβ∇u,

we see that
∥g∥L2(Ω) ≲ C(A, η)

(
∥f∥L2(Ω) + ∥u∥W 1,2(Ω)

)
.

So if we set ũ := (ηu) we actually have to consider W 2,2 estimates the equation−div (A∇ũ) = g in B(x0, r) ∩ Ω
ũ = 0 on ∂ (B(x0, r) ∩ Ω)

Now we proceed with a method called flattening the boundary.

We set B(0, 1)+ := B(0, 1) ∩ Rn
+ and define

v(x) := ũ ◦ Φ ∈ W 1,2
0 (B(0, 1) ∩ Rn

+).

We then have (also in the distributional sense which is proven by approximation)

∂αv(x) = (∂γũ) (x)∂αΦγ(x).

Denote the matrix (DΦ(x))αβ := ∂αΦγ(x). This matrix is invertible, and we call this
inverse (DΦ)−1(x). Observe that by chain rule

(DΦ)−1(x) = D(Φ−1)(Φ(x)).

Set
Ã(x) :=

(
| det(DΦ)|

(
DΦ−1

)t
ADΦ−1

)
(Φ(x)) : B(0, 1)+ → Rn×n.
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This is a smooth, symmetric, elliptic matrix-valued map (using heavily that Φ is a dif-
feomorphism!). Moreover we have for any φ ∈ C∞

c (B(0, 1)+), setting ψ := φ ◦ Φ−1 ∈
C∞

c (B(x0, r) ∩ Ω)∫
B(0,1)+

∂β ṽ(x)Ãαβ(x)∂αφ(x) dx

=
∫

B(0,1)+
∂β (ũ ◦ Φ) (x)Ãαβ(x)∂α (ψ(Φ)) (x) dx

=
∫

Ω∩B(x0 ,r)
∂β (ũ ◦ Φ) (Φ−1(z))Ãαβ(Φ−1(z))∂α (ψ(Φ)) (Φ−1(z)) | det(DΦ−1(z))| dz

=
∫

Ω∩B(x0,r)
∂βũ(z)

(
| det(DΦ)|−1DΦtÃDΦ

)
αβ

(Φ−1(z)) ∂αψ(z) dz

=
∫

Ω∩B(x0,r)
∂βũ(z)A(z) ∂αψ(z) dz

=
∫

Ω∩B(x0,r)
gψ dz

=
∫

B(0,1)+
g ◦ Φ | det(DΦ)|φ

We have reduced Theorem 6.6 to the following

Proposition 6.12. Let u ∈ W 1,2
0 (Rn

+) solve the equation
−div (A∇u) = f in Rn

+.

Also assume that u ≡ 0 in Rn
+ \B(0, 1).

If f ∈ L2(Rn
+) then u ∈ W 2,2(Rn

+) with the estimate
∥u∥W 2,2(Rn

+) ≲ ∥f∥L2(Rn
+) + ∥u∥W 1,2(Rn

+).

We sketch the idea of the proof.

Sketch of the proof of Proposition 6.12. The idea is – yet again – differentiation of the
equation. If we consider i ∈ {1, . . . , n−1} then

−div (A∇∂xiu) = ∂xi
f − div (∂xi

A∇u) in Rn
+.

Observe that since i ̸= n we still believe we could have ∂xi
u = 0 on ∂Rn

+ = Rn−1 × {0}. As
before the right-hand side belongs to

(
W 1,2

0 (Rn
+)
)∗

,

∥∂xi
f − div (∂xi

A∇u)∥(W 1,2
0 (Rn

+))∗ ≲ ∥f∥L2(Rn
+) + ∥u∥W 1,2(Rn

+).

So it sounds believable that by the same strategy as before (testing with ∂xi
u) we would

get
∥∂xi

u∥W 1,2(Rn
+) ≲ ∥f∥L2(Rn

+) + ∥u∥W 1,2(Rn
+).

This holds for any i ∈ {1, . . . , n − 1}. We call this a tangential estimate. But it does not
work for i = n, since ∂nu is possibly nonzero on ∂Rn

+ = Rn−1 × {0}!
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So what we get is
(6.5) ∥∂αβu∥L2(Rn

+) ≲ ∥f∥L2(Rn
+) + ∥u∥W 1,2(Rn

+) ∀α, β ∈ {1, . . . , n} : (α, β) ̸= (n, n).
How do we get information on ∂nnu? We use that ∆ = ∂nn +∑n

i=1 ∂xixi
!

Namely observe that
∂n(Ann∂nu) = f −

∑
(α,β)̸=(n,n)

∂α(Aαβ∂βu)

Since (α, β) ̸= (n, n) we have from the previous estimate (6.5)

∥∂α(Aαβ∂βu)∥L2(Rn
+) ≲ ∥u∥W 1,2(Rn

+) + max
i∈1,...,n−1

∥∂xi
u∥W 1,2(Rn

+)

(6.5)
≲ ∥f∥L2(Rn

+) + ∥u∥W 1,2(Rn
+).

and we conclude that
∥∂n(Ann∂nu)∥L2(Rn

+) ≲ ∥f∥L2(Rn
+) + ∥u∥W 1,2(Rn

+).

Thus, since Ann∂nnu = ∂n(Ann∂nu) − ∂nAnn ∂nu,
∥Ann∂nnu∥L2(Rn

+) ≲ ∥∂n(Ann∂nu)∥L2(Rn
+) + ∥u∥W 1,2(Rn

+) ≲ ∥f∥L2(Rn
+) + ∥u∥W 1,2(Rn

+).

And now we use yet again ellipticity: Ann = ⟨en, Aen⟩ ≥ λ, so we have finally shown
λ∥∂nnu∥L2(Rn

+) ≲ ∥Ann∂nnu∥L2(Rn
+) ≲ ∥f∥L2(Rn

+) + ∥u∥W 1,2(Rn
+).

Now the above argument only delivers an a priori argument, since we needed assumed that
∂xi
u ∈ W 1,2

0 (Rn
+). The precise argument goes as follows: Let h ∈ Rn−1 × {0} and consider

δhu ∈ W 1,2
0 (Rn

+). Then
−div (A∇δhu) = gh in Rn

+,

where we can estimate
∥gh∥(W 1,2

0 (Rn+))∗ ≲ |h|
(
∥u∥W 1,2(Rn

+) + ∥f∥L2(Rn
+)
)

Testing the equation with δhu we then obtain
sup

h∈Rn−1×{0}
|h|−1∥δhu∥W 1,2(Rn

+) ≲ ∥u∥W 1,2(Rn
+) + ∥f∥L2(Rn

+).

Suitably adapting the argument of Proposition 5.15 we find as desired that
∥∂xi

u∥W 1,2(Rn
+) ≲ ∥u∥W 1,2(Rn

+) + ∥f∥L2(Rn
+) ∀i = 1, . . . , n− 1.

Now let φ ∈ C∞
c (Rn

+) then we have∫
Rn

+

Ann ∂nu∂nφ =
∫
fφ−

∫
Rn

+

∑
(α,β)̸=(n,n)

∂β (Aαβ ∂αu)︸ ︷︷ ︸
∈L2

φ

From the previous estimates we conclude that

|
∫
Rn

+

Ann ∂nu∂nφ| ≲ ∥φ∥L2(Rn
+)
(
∥u∥W 1,2(Ω) + ∥f∥L2

)
.
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In particular we have

|
∫
Rn

+

∂nu∂n (Annφ) | ≲ ∥φ∥L2(Rn
+)
(
∥u∥W 1,2(Ω) + ∥f∥L2

)
.

Take now ψ ∈ C∞
c (Rn

+) then φ := (Ann)−1ψ ∈ C∞
c (Rn

+) (using ellipticity), so we have∣∣∣∣∫
Rn
∂nu ∂nψ

∣∣∣∣ =
∣∣∣∣∣
∫
Rn

+

∂nu∂nψ

∣∣∣∣∣ ≲ ∥ψ∥L2(Rn
+)
(
∥u∥W 1,2(Ω) + ∥f∥L2

)
.

But this implies by the definition of distributional derivative (and Riesz representation
theorem) that ∂nnu ∈ L2(Rn

+) awith the estimate
∥∂nnu∥L2(Rn

+) ≲ ∥u∥W 1,2(Ω) + ∥f∥L2 .

Thus we have shown
∥u∥W 2,2(Rn

+) ≲ max
i=1,...,n−1

∥∂xi
u∥W 1,2(Rn

+) + ∥∂nnu∥L2(Rn
+) ≲ ∥u∥W 1,2(Ω) + ∥f∥L2 .

□

It is now not difficult (but very cumbersome) to prove the following generalization

Theorem 6.13 (Global W k,2-regularity). Assume Ω is a bounded open set with smooth
boundary ∂Ω ∈ C∞. Let f ∈ W k,2(Ω) and assume u ∈ W 1,2

0 (Ω) solves−div (A∇u) = f in Ω
u = 0 on ∂Ω,

in the above sense.

Then u ∈ W k+2,2(Ω), and we have

∥Dk+2u∥L2(Ω) ≤ C(Ω)
(
∥u∥W 1,2(Ω) + ∥f∥L2(Ω)

)
.

Exercise 6.14. Think about how (formally) you could prove now Theorem 6.13

We can also treat more generic boundary data:

Theorem 6.15 (Global W k,2-regularity). Assume Ω is a bounded open set with smooth
boundary ∂Ω ∈ C∞. Let f ∈ W k,2(Ω) and g ∈ W k+2,2(Ω) and assume u ∈ W 1,2(Ω) solves−div (A∇u) = f in Ω

u = g on ∂Ω,

in the weak sense (where u = g on ∂Ω simply means u− g ∈ W 1,2
0 (Ω)).

Then u ∈ W k+2,2(Ω), and we have

∥Dk+2u∥L2(Ω) ≤ C(Ω)
(
∥u∥W 1,2(Ω) + ∥f∥L2(Ω) + ∥g∥W k+2,2(Ω)

)
.
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Exercise 6.16. Think about how (formally) you could prove now Theorem 6.15.

Hint: consider v := u− g.

6.5. An alterative approach to boundary regularity theory: reflection. There is
another (in general quite delicate) argument for boundary regularity that we want to very
briefly discuss.

Assume that we have the equation∆u = f in Rn
+

u = 0 in Rn−1 × {0}.

If we want to find regularity at the boundary, we could use the following reflection argu-
ment.

For x = (x′, xn) ∈ Rn
+ set

ũ(x′, xn) := u(x′, |xn|).
Now observe that this is a Lipschitz operation and for continuous functions u we have that
ũ is also continuous (thanks to the boundary data being zero). So if u ∈ W 1,2

0 then it seems
believable (a proof is needed however) that ũ ∈ W 1,2(Rn

+). The formal computation goes
like this: Clearly

∂nũ(x′, xn) =
∂nu(x′, xn) xn > 0

−∂nu(x′,−xn) xn < 0
Observe (think about the Heaviside function) that this does not imply that ∂nu exists in
distributional sense)! But (formally) we now can show for any φ ∈ C∞

c (Rn)∫
Rn
ũ∂nφ =

∫
Rn

+

u(x′, xn)∂nφ(x) −
∫
Rn

−

u(x′,−xn)∂nφ(x)

substitution=
∫
Rn

+

u(x′, xn)∂nφ−
∫
Rn

+

u(x′,+xn) (∂nφ) (x′,−xn)

=
∫
Rn

+

u(x′, xn)∂nφ+
∫
Rn

+

u(x′, xn)∂n (φ(x′,−xn))

P.I.= −
∫
Rn

+

∂nu(x′, xn)φ(x′, xn) −
∫
Rn

+

∂nu(x′, xn)φ(x′,−xn)

−
∫
Rn−1×{0}

u(x′, 0)︸ ︷︷ ︸
=0

φ(x′, 0)dx′ −
∫
Rn−1×{0}

u(x′, 0)︸ ︷︷ ︸
=0

φ(x′, 0)dx′

substitution= −
∫
Rn

+

∂nu(x′, xn)φ−
∫
Rn

−

(∂nu) (x′,−xn)φ(x′,+xn)

def= −
∫
Rn

+

∂nũφ−
∫
Rn

−

∂nũφ

= −
∫
Rn
∂nũ φ
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This shows that ũ ∈ W 1,2(Rn) (some details need to be ironed out, but thats the idea).

Now we compute in a similar way the PDE:
∂xixi

ũ(x) = (∂xixi
u)(x′, |xn|) i = 1, . . . , n− 1

and

∂xnxnũ(x) =
(∂xnxnu)(x′, xn) xn > 0

− − (∂xnxnu)(x′,−xn) xn < 0
= (∂nnu)(x′, |xn|)

Thus we have
∆ũ = f(x′, |xn|) in Rn.

Now we can obtain boundary regularity by interior regularity theory.

This arguments is beautiful, but its downsides are that the reflection needs to be adapted
to the PDE at hand – which can be extremely difficult (or impossible).

6.6. Extension to more general elliptic equations. With the above arguments one
can also treat more general linear PDE (and indeed the arguments for nonlinear elliptic pde
are mostly based on “using linear theory for nonlinear pde”, and thus follow the general
spirit of the above argument).

−div (A∇u) + b · ∇u+ cu = f in Ω
u = 0 on ∂Ω

Part 2. PDE 2

7. The Role of Harmonic Analysis in PDE – Lp-theory

7.1. Short introduction to Calderón-Zygmund Theory. Calderón-Zygmund theory
is the Lp-regularity theory for elliptic equations. For example assume that u solves

−∆u = ∂βf in Rn

and that f ∈ Lp(Rn), p ∈ (1,∞). We would like to conclude that ∇u ∈ Lp(Rn) with the
estimates
(7.1) ∥∇u∥Lp ≲ ∥f∥Lp .

or, if
−∆u = f in Rn

then we would like to conclude
(7.2) ∥∇2u∥Lp ≲ ∥f∥Lp .

Both statements are called Calderón-Zygmund theory. Observe that for p = 2 we have
treated this in Section 6.
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Example 7.1 (An idea for an application). Assume that u ∈ W 1,2 solves

∆u = ∂αu

then we would like to conclude that u is smooth and a classical solution.

First we would get from Section 6 that since ∂αu ∈ L2 we have ∇2u ∈ L2, i.e. u ∈ W 2,2

which by Sobolev embedding implies ∂αu ∈ L2∗ by Sobolev embedding (Recall that 2∗ =
2n

n−2 is the Sobolev exponent). To continue our bootstrapping we would now need (7.2) but
for p = 2∗ ̸= 2.

Another way would be an approach via (7.1). By Sobolev embedding u ∈ L2∗ , and again
we need (7.1) to conclude that ∇u ∈ L2∗ and then we could try to bootstrap our way to
smoothness of u.

This theory that leads to both (7.1) and (7.2) is closely connected with harmonic analysis
and Calderón-Zygmund operators. Denote by I2 = (−∆)−1 the Riesz potential (we called
this Newton potential before) (we assume for simplicity that n ≥ 3), we have the formula
(2.4)

I2g(x) = c
∫
Rn

|x− y|2−n g(y) dy.

Then, if
∆u = f in Rn

we can (formally) write
∂αu = ∂α∆−1∆u = ∂α∆−1∂βf.

Computing the derivative we find that

(7.3) ∂α∆−1∂βf(x) = c̃
∫
Rn

(x−y)α

|x−y|
(x−y)β

|x−y|

|x− y|n
f(y) dy.

We will see below that (for n ≥ 2) the operator

Tα,βf (x) := c̃
∫
Rn

(x−y)α

|x−y|
(x−y)β

|x−y|

|x − y|n
f (y) dy

is a Calderón-Zygmund operator which as such is a bounded linear operator from Lp to Lp,
namely

∥Tα,βf∥Lp(Rn) ≲ ∥f∥Lp(Rn) ∀f ∈ Lp(Rn), p ∈ (1,∞).
From this we obtain immmediately that

∥∇u∥Lp(Rn) ≲ max
α,β∈{1,...,n}

∥∂α∆−1∂βf∥Lp(Rn) = max
α,β∈{1,...,n}

∥Tα,βf∥Lp(Rn) ≲ ∥f∥Lp(Rn).

In the following we illustrate how to make the above statements precise.
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7.2. Calderón-Zygmund operators. The typical Calderón-Zygmund operator is the
Riesz transform

(7.4) Rαf(x) := c
∫
Rn

(x−y)α

|x−y|

|x− y|n
f(y)dy.

One can compute that the Fourier symbol of Rα is i ξα

|ξ| , α = 1, . . . , n, i.e.

(Rαf)∧(ξ) = i
ξα

|ξ|
f∧(ξ).

In particular we have that ∂α∂βf = cRαRβ∆f , which is what we used in (7.3).

Observe that the symbol of Rα belongs to L∞(Rn),∥∥∥∥∥i ξα

|ξ|

∥∥∥∥∥
L∞

≤ 1.

It is easy to show that such an operator is bounded on L2:

Lemma 7.2. Let m ∈ L∞(Rn) and define
Tf := (m(ξ)f∧(ξ))∨

.

Then T is a linear bounded operator on L2(Rn) with
∥Tf∥L2(Rn) ≲ ∥m∥L∞∥f∥L2(Rn).

Such a T is usually called a multiplier operator, and m is the symbol.

Proof. By Plancherel identity, ∥g∥L2(Rn) = ∥g∧∥L2(Rn). Thus,
∥Tf∥L2(Rn) = ∥(Tf)∧∥L2(Rn) = ∥mf∧∥L2(Rn) ≤ ∥m∥L∞ ∥f∧∥L2 = ∥m∥L∞ ∥f∥L2 .

□

Observe that we cannot simply replace L2 with Lp in Lemma 7.2, since there is no
Plancherel identity on Lp for p ̸= 2.

Theorem 7.3 (Boundedness of Calderón-Zygmund-Operators). Let T : L2(Rn) → L2(Rn)
be a bounded linear operator, which for f ∈ C∞

c (Rn) can be written as

Tf(x) =
∫
Rn

Ω(x− y)
|x− y|n

f(y) dy

in a principal value sense:

Tf(x) = lim
ε→0+

∫
ε≤|x−y|≤ 1

ε

Ω(x− y)
|x− y|n

f(y) dy

If the kernel Ω satisfies
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(1) Ω : Rn\{0} → R is bounded, ∥Ω∥L∞ < ∞

(2) Ω is homogeneous of order 0, i.e. Ω(rz) = Ω(z) for all r > 0, z ∈ Rn\{0}.
(3) Ω : Rn\{0} is locally Lipschitz with the bound supz∈Rn\{0} |z||∇Ω(z)| < ∞

then T is17 a bounded linear operator from Lp(Rn) → Lp(Rn).

Exercise 7.4. Show that each of the Ω defined below satisfy the conditions (1),(2),(3) of
Theorem 7.3

(1) for some α ∈ {1, . . . , n},

Ω(z) := zα

|z|
.

(2) for some α, β ∈ {1, . . . , n},

Ω(z) := zαzβ

|z|2
.

(3) Ω(z) = 1

Bonus question: Show that the results of Theorem 7.3 are nevertheless false for Ω(z) = 1.
Why does the theorem not apply to the last case?

We are not proving Theorem 7.3 in its full generality, but only illustrate one argument for
the case we need (a relatively easy adaptation of the following does the job).

The idea is to get an extremal theorem: One at the level of BMO (which is a replacement
for L∞) or at the level of L1 (this leads to the so-called Calderón-Zygmund decomposition),
then we use interpolation. The L2-boundedness follows from Lemma 7.2.

Proposition 7.5 (Boundedness from L∞ to BMO). For a monomial p of degree k assume
that T is a linear bounded operator from L2(Rn) to L2(Rn) which for f ∈ C∞

c (Rn) can be
represented as

Tf(x) := P.V.
∫
Rn

p(x− y)
|x− y|n+k

f(y) dy

Then, for f ∈ L∞(Rn) ∩ L2(Rn),

[Tf ]BMO ≲ ∥f∥L∞(Rn).

17more precisely: extends to
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Here18

[g]BMO = sup
B(x,ρ)

(∫
B(x,ρ)

|g − (g)B(x,ρ)|2
) 1

2

.

Lemma 7.6. Let f ∈ L2(B(r)) then for all c ∈ R,
∥f − (f)B(r)∥L2(B(r)) ≤ ∥f − c∥L2(B(r)).

Exercise 7.7. Prove Lemma 7.6.

Proof of Proposition 7.5. For x0 ∈ Rn and r > 0 let fr,x0(x) := f(x0 + rx). Observe that
by the structure of T ,

T (fr,x0)(x) = (Tf)(x0 + rx).
This implies that ∫

B(0,1)
T (fr,x0) =

∫
B(x0,r)

Tf,

and ∫
B(0,1)

∣∣∣T (fr,x0) − (T (fr,x0))B(0,1)

∣∣∣2 =
∫

B(x0,r)

∣∣∣T (f) − (T (f)B(x0,r)

∣∣∣2 ,
and

∥fr,x0∥L∞(Rn) = ∥f∥L∞(Rn).

Thus, if we can show that for any f ∈ L2 ∩ L∞(Rn)∫
B(0,1)

|Tf − (Tf)B(0,1)|2 ≲ ∥f∥2
L∞(Rn),

then the full claim follows via scaling and translation.

Now let
f := f1 + f2,

with f1 = χB(0,2)f and f2 = χRn\B(0,2)f . Then,∫
B(0,1)

|Tf − (Tf)B(0,1)|2 ≲
∫

B(0,1)
|Tf1 − (Tf1)B(0,1)|2 +

∫
B(0,1)

|Tf2 − (Tf2)B(0,1)|2

≲2
∫

B(0,1)
|Tf1|2 +

∫
B(0,1)

|Tf2 − (Tf2)B(0,1)|2.

Observe that by the L2-boundedness, Lemma 7.2,∫
B(0,1)

|Tf1|2 ≲ ∥Tf1∥2
L2(Rn) ≲ ∥f1∥2

L2(B(0,2)) = ∥f∥2
L2(B(0,2)) ≲ ∥f∥2

L∞(Rn).

18It is a major theorem, the John-Nirenberg theorem, that the power inside the integral of the BMO-
seminorm does not matter: That is, if [g]BMO < ∞ then

[g]BMO ≈ sup
B(x,ρ)

(∫
B(x,ρ)

|g − (g)B(x,ρ)|p
) 1

p

.
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Now in view of Lemma 7.6,

(7.5)
∫

B(0,1)
|Tf2 − (Tf2)B(0,1)|2 ≲

∫
B(0,1)

|Tf2 − Tf2(0)|2

Now,

Tf2(x)−Tf2(0) =
∫
Rn

(
p(x− y)

|x− y|n+k
− p(−y)

|y|n+k

)
f2(y) dy =

∫
Rn\B(0,2)

(
p(x− y)

|x− y|n+k
− p(−y)

|y|n+k

)
f(y) dy

If x ∈ B(0, 1) and y ̸∈ B(0, 2) then |x − y| ≈ |y| ≳ 1. In this case we obtain from the
fundamental theorem of calculus that(

p(x− y)
|x− y|n+k

− p(−y)
|y|n+k

)
≲

|x|
|x− y|n+1 .

Consequently,

|Tf2(x) − Tf2(0)| ≲ |x|
∫
Rn\B(0,2)

|x− y|−n−1 |f(y)| dy ≲ ∥f∥L∞(Rn)

∫
|x−y|≳1

|x− y|−n−1 dy.

Observe that
sup

x

∫
|x−y|≳1

|x− y|−n−1 dy < ∞.

So we have shown that
sup

x∈B(0,1)
|Tf2(x) − Tf2(0)| ≲ ∥f∥L∞(Rn).

which together with (7.5) implies∫
B(0,1)

|Tf2 − (Tf2)B(0,1)|2 ≲ ∥f∥L∞(Rn).

Thus we have shown ∫
B(0,1)

|Tf − (Tf)B(0,1)|2 ≲ ∥f∥L∞(Rn),

which by the scaling argument leads to the claim. □

Why are we happy about Proposition 7.5? Because BMO represents “almost L∞”, and
we have

Theorem 7.8. Let 1 ≤ p < ∞ and T be a linear operator of “strong (p,p)-type”, meaning
that

∥Tf∥Lp(Rn) ≲ ∥f∥Lp(Rn) ∀f ∈ Lp(Rn),
and bounded from L∞ to BMO, i.e

[Tf ]BMO ≲ ∥f∥L∞(Rn) ∀f ∈ L∞(Rn),
Then for any q ∈ [p,∞), T maps Lq(Rn) into Lq(Rn) with

∥Tf∥Lq(Rn) ≲ ∥f∥Lq(Rn) ∀f ∈ Lq(Rn).
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Proof. This can be proven using the Marcinkiewicz interpolation theorem, but it also needs
the John-Nirenberg theorem for BMO-functions – which we are not treating here. We refer
to [Giaquinta and Martinazzi, 2012, Theorem 6.29]. □

Proof of Theorem 7.3. Observe that T is bounded from L2 to L2, Lemma 7.2, and from
L∞ to BMO, Proposition 7.5, and thus by Theorem 7.8 for any p ∈ [2,∞) we have

∥Tf∥Lp(Rn) ≤ Cp ∥f∥Lp(Rn).

For p < 2 we argue by duality. Observe that by Riesz Representation Theorem

∥Tf∥Lp(Rn) = sup
g∈C∞

c (Rn),∥g∥
Lp′ (Rn)≤1

∫
Rn
Tf g = sup

∥g∥
Lp′ (Rn)

∫
Rn
f T ∗g ≲ ∥f∥Lp(Rn) ∥T ∗g∥Lp′ (Rn).

Now observe that T ∗ is of the same type of operator, so we have for any q ∈ [2,∞) we have
∥T ∗g∥Lq(Rn) ≤ Cp ∥g∥Lq(Rn).

Since for p < 2 we have that q := p′ > 2 this concludes the proof. □

Remark 7.9. There is another, older, way, using the Calderón-Zygmund decomposition
and an L1-L1-weak type estimate to obtain Theorem 7.3. This is what is usually done in
harmonic analysis.

7.3. W 1,p-theory for the Laplace equation.

Theorem 7.10. Let Ω1 ⊂⊂ Ω ⊂⊂ Rn be two smoothly bounded domains, and let p ≥ 2.

Assume that for some f ∈ Lp(Ω) there is u ∈ W 1,2(Ω) that satisfies in distributional sense
∆u = ∂αf in Ω

Then
∥∇u∥Lp(Ω1) ≤ C(Ω1,Ω, p)

(
∥f∥Lp(Ω) + ∥u∥L2(Ω)

)
.

Remark 7.11. • The L2-norm for u on the right-hand side is necessary, since other-
wise f = 0 would imply that u is constant (which is false without the assumption
of appropriate boundary values).

• This statement holds for more general equations, e.g. ∂i(Aij∂ju) = ∂αf , if A is
smooth enough (the sharp assumption being VMO, [Iwaniec and Sbordone, 1998])

• This is an interior statement, but it holds up to the boundary: for example if∆u = ∂αf in Ω2

u = 0 on ∂Ω2

then ∥∇u∥Lp(Ω2) ≤ ∥f∥Lp(Ω2); Cf. [Giaquinta and Martinazzi, 2012, Chapter 7].

As for the L2-theory, the proof of Theorem 7.10 follows a sequence of cutoff arguments,
such as the following
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Lemma 7.12. For p, q ∈ [2,∞) assume that u ∈ W 1,p(Ω) satisfies for some f ∈ Lq(Ω)
∆u = ∂αf in Ω

Let η ∈ C∞
c (Ω). Then for v := ηu we have

∆v = g̃ + ∂αf̃ in Rn

with
∥f̃∥Lq(Rn) ≲ ∥f∥Lq(Ω),

and for 1 ≤ r ≤ min{p, q} we have
∥g̃∥Lr(Rn) ≲ ∥f∥Lq(Ω) + ∥u∥W 1,p(Ω)

Moreover f̃ and g̃ have compact support, so does v and we have
∥v∥W 1,p(Rn) ≲ ∥u∥W 1,p(Ω).

All the constants depend on η.

Proof.
∆v = (∆η)u︸ ︷︷ ︸

Lp(Rn)

+ 2∇η · ∇u︸ ︷︷ ︸
Lp(Rn)

− (∂αη) f︸ ︷︷ ︸
Lq(Rn)

+∂α( ηf︸︷︷︸
Lq(Rn)

)

□

Moreover we use the following global result:

Proposition 7.13. Let p, q, r ∈ (1,∞). Assume that v ∈ W 1,p(Rn),
∆v = g + ∂αf in Rn

with f ∈ Lq(Rn), g ∈ Lr(Rn) all with compact support.

Then for 1 < σ ≤ q and if r < n additionally σ < nr
n−r

∥v∥W 1,σ(Rn) ≲ ∥f∥Lq(Rn) + ∥g∥Lr(Rn).

The constant depends on the compact support.

Proof. By the compact support of v we only need to estimate ∇v (the rest follows from
Poincaré).

As since the equation under consideration is constant-coefficient linear equation, we may
assume that v, f , g ∈ C∞

c (Rn)19

19we used this argument already in Theorem 2.40: Denoting vε := ηε ∗ v, fε = f ∗ ηε, gε = g ∗ ηε the
usual convolution (i.e. η ∈ C∞

c (B(0, 1)) nonnegative,
∫

η = 1, ηε := ε−nη(·/ε) we readily see from the
compact support that vε, fε, gε ∈ C∞

c (Rn). Using ηε as a test-function () we conclude that
∆vε = gε + ∂αfε pointwise in Rn.

Now if we were able to show
∥vε∥W 1,σ(Rn) ≲ ∥fε∥Lq(Rn) + ∥gε∥Lr(Rn)
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By the representation theorem (since all quantities have compact support the integral
converge, we assume n > 3 for simplicity)

v(x) = c
∫
Rn

|x− y|2−n(g + ∂αf)(y) dy

and thus (one needs to show this converges, but it does) using integration by parts

∂βv(x) =c̃
∫
Rn

(x− y)β

|x− y|
|x− y|1−n(g + ∂αf)(y) dy

=c̃1

∫
Rn

(x− y)β

|x− y|
|x− y|1−ng(y)

+ c̃2

∫
Rn

δαβ|x− y|2 − n(x− y)α(x− y)β

|x− y|2+n
f(y) dy

=:T1g(x) + T2f(x).

Observe that (z)β

|z| |z|1−n ∈ Ls
loc(Rn) for any s < n

n−1 . So from Young’s inequality (using
the compact support and the smoothness of the kernel (z)β

|z| |z|1−n away from 0) for any
admissible σ , choosing s so that

1 + 1
σ

= 1
s

+ 1
r

(this is essentially Sobolev embedding), we have
∥T1g∥Lσ(supp u) ≲ ∥g∥Lr(Rn).

For T2 we use the Calderón-Zygmund theorem, Theorem 7.3:

Observe that

pαβ(z) := δαβ|z|2 − n(z)α(z)β =

∑

γ ̸=α (zγ)2 + (1 − n)(zα)2 if α = β

−n zβzα

always (recall that n ≥ 2!) satisfies the conditions of Proposition 7.5; or, alternatively,

Ωαβ(z) := pαβ(z)
|z|2

=

∑

γ ̸=α

(
zγ

|z|

)2
+ (1 − n)( zα

|z|)
2 if α = β

−n zβ

|z|
zα

|z|

(with a constant in ≲ not depending on ε!) then we have from the Young’s convolution estimate (using
that as usual we choose ∥η∥L1 = 1)

sup
ε>0

∥vε∥W 1,σ(Rn) ≲ sup
ε>0

(
∥fε∥Lq(Rn) + ∥gε∥Lr(Rn)

)
≤ ∥f∥Lq(Rn) + ∥g∥Lr(Rn).

By reflexivity we conclude that there exists a sequence εi → 0 such that vε weakly converges to v in
W 1,σ(Rn). By lower semicontinuity of the norm we conclude

∥v∥W 1,σ(Rn) ≤ lim inf
ε→0

∥vε∥W 1,σ(Rn) ≲ sup
ε>0

(
∥fε∥Lq(Rn) + ∥gε∥Lr(Rn)

)
≤ ∥f∥Lq(Rn) + ∥g∥Lr(Rn).
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satisfies the assumptions of Theorem 7.3. So,
∥T2f∥Lq(supp u) ≲ ∥f∥Lq(Rn).

Combining this we conclude
∥∇v∥Lσ(Rn) ≲supp ∥f∥Lq(Rn) + ∥g∥Lr(Rn)

□

Proof of Theorem 7.10. Let Ω ⊃⊃ Ω1 ⊃⊃ Ω2 ⊃⊃ . . . and take ηi ∈ C∞
c (Ωi) with η ≡ 1 in

Ωi+1.

Following Lemma 7.12 and Proposition 7.13 we obtain that
η1u ∈ W 1,σ1(Ω1)

where we take σ1 ≤ p and σ1 ≤ 2n
n−2 (if n ≥ 3). If we can take σ1 = p we are done, otherwise

we observe that σ1 = 2n
n−2 > 2. We then repeat the argument for η2η1u: from Lemma 7.12

and Proposition 7.13 we then obtain
η2η1u ∈ W 1,σ2(Rn)

for σ2 ≤ p and σ2 ≤ σ1n
n−σ1

(if σ1 < n). Again, either we can choose σ2 = p or σ2 = σ1n
n−σ1

.

In this way we obtain a sequence
vk := ηkηk−1 . . . η1u ∈ W 1,σk(Rn)

where

σk =
p if σk−1 < n or p ≤ σkn

n−σk
σk−1n

n−σk−1
else.

This sequence terminates after finitely many steps. Indeed, let

σ̃k :=


σ̃k−1n
n−σ̃k−1

if σk−1 < n

∞ otherwise.
The sequence σ̃k is increasing, σ̃k ≥ σ̃k−1 and strictly increasing unless σk = n. The only
possibility that σ̃k is not ∞ after finitely many steps k, is that σk < n for all k – then we
have a monotone, bounded sequence which has a limit σ̃ ≤ n, which has to satisfy

σ̃ = σ̃n

n− σ̃

There is no positive, finite solution to this equation. Contradiction. So σ̃k is infinite for
k ≥ K for some K, which means that σk = p for k ≥ K.

That is, we have shown that vK ∈ W 1,p(Rn), and since vK ≡ u in ΩK we have u ∈ W 1,p(Rn)
in ΩK .

The number K is independent of the equation, it just depends on the dimension and p, so
if we choose ΩK well, then we get the claim. □
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7.4. W 1,p-theory for a constant coefficient linear elliptic equation. As we have seen
above, we essentially, by cutoff arguments can reduce a equation to an equation in Rn. So
let us now consider

−div (A∇u) = ∂σg in Rn

where A ∈ Rn×n is a symmetric matrix with all eigenvalues strictly positive.

Here is a trick (this is a bit different from the L2-theory, for L2-theory we got this for free
from the variational argument!): we can rewrite this equation in to the Laplace equation.

Indeed, linear algebra tells us that A = P TDP where D = diag(λ1, . . . , λn) is the diagonal
matrix of eigenvalues (all positive) and P ∈ SO(n).

Denote by
√
D := diag(

√
λ1,

√
λ2,

√
λ3, . . . ,

√
λn).

Set now
v(x) := u(

√
DPx)

Then we have (we use Einstein’s summation here!)

∂αv(x) =
(√

DP
)

αγ
(∂γu) (

√
DPx)

and
∂β∂αv(x) =

(√
DP

)
βδ

(√
DP

)
αγ

(∂γδu) (
√
DPx)

So
∆v(x) =

(√
DP

)
αδ

(√
DP

)
αγ

(∂γδu) (
√
DPx)

=
((√

DP
)t √

DP
)

δγ
(∂γδu) (

√
DPx)

=
(
P t

√
D

t√
DP

)
δγ

(∂γδu) (
√
DPx)

=
(
P tDP

)
δγ

(∂γδu) (
√
DPx)

= (A)δγ (∂γδu) (
√
DPx)

=div (A∇u)(
√
DPx)

= (∂σg) (
√
DPx)

=(
(√

DP
)−1

)µσ

(
∂µg(

√
DPx)

)
Since

x 7→
√
DPx

is a smooth diffeomorphism on Rn, we see that if g ∈ Lp then we can apply Lp-theory to
∆v, and find from Theorem 7.10,
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Theorem 7.14. Let A ∈ Rn×n be a symmetric matrix with all eigenvalues strictly positive,
and assume that u ∈ W 1,2

loc (Ω) solves
−div (A∇u) = ∂σg in Ω.

Then if g ∈ Lp
loc(Ω) we have that ∇u ∈ Lp

loc(Ω), with the estimate for any Ω1 ⊂⊂ Ω2 ⊂⊂ Ω,

∥∇u∥Lp(Ω1) ≤ C(Ω1,Ω, p)
(
∥f∥Lp(Ω) + ∥u∥L2(Ω)

)
.

7.5. W 1,p-theory for a Hölder continuous coefficient linear elliptic equation.

7.5.1. A priori estimates. Let A ∈ C0(Ω,Rn×n) be a continuous, symmetric matrix valued
map such that

λ := inf
x∈Ω

inf
ξ∈Rn

⟨A(x)ξ, ξ⟩ > 0.

Assume we have u ∈ W 1,2(Ω) solving the equation
−div (A∇u) = ∂σg in Ω.

If g ∈ Lp(Ω) can we use the constant coefficient theory, Theorem 7.14, to conclude that
∇u ∈ Lp

loc(Ω)?

One approach is the so-called freezing-technique.

Fix x0 ∈ Ω, then we would like to compare the equation above to the equation for
−div (A(x0 )∇u). Indeed, we could write

−div (A(x0 )∇u) = −div ((A(x0 ) − A)∇u) + ∂σg in Ω.
Now observe that

∥(A(x0 ) − A)∇u∥Lp(Ω) ≤ ∥A(x0 ) − A∥L∞∥∇u∥Lp(Ω).

So if

• Ω is small enough, so that ∥A(x0 ) −A∥L∞ < ε (continuity! such a small Ω exists!)
• and we already know ∇u ∈ Lp(Ω)

then we could envision that we obtain an estimate of the form
∥∇u∥Lp ≤ C ∥A(x0 ) − A∥L∞︸ ︷︷ ︸

≤ε

∥∇u∥Lp(Ω) + C∥g∥Lp

So if ε ≪ 1 we could absorb and have
∥∇u∥Lp ≤ C̃∥g∥Lp .

There are two problems with this approach: First, the Lp-norms on the left- and right-hand
side won’t be on the same set (so no absorbtion). Second, we want to prove that ∇u ∈ Lp

– not assume it (i.e. the above argument looks like an a priori estimate)!

Let us assume that A ∈ Cα – this makes life easier.
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Fix some Ω1 ⊂⊂ Ω.

Consider η ∈ C∞
c (Ω1) and set v := ηu, then we have

div (A∇v) = G(u, η) in Rn

where

G(u, η) := η∂σg + div (A(∇η)u) + ∇η : A∇u.

We observe that for φ ∈ C∞
c (Ω) we have (using Sobolev embedding – this makes sense

if p′ < n which we assume for illustration, otherwise its easier). Slight adaptation in the
argument can be done otherwise),∣∣∣∣∫ G(u, η)φ

∣∣∣∣ ≲Ω,η,A∥g∥Lp∥∇φ∥Lp′ (Rn) + ∥u∥Lp∥∇φ∥Lp′ + ∥∇u∥
L

np
p+n

∥φ∥
L

np′
n−p′

≲
(
∥g∥Lp + ∥∇u∥

L
np

n+p

)
∥∇φ∥Lp′

Now we consider vδ := v ∗ χδ for the usual bump function χ ∈ C∞
c (B(0, 1), [0, 1]) and

χδ(x) := δ−nχ(·/δ). Since supp v ⊂⊂ Rn, for small enough δ we have vδ ∈ C∞
c (B(0, 1)).

Moreover, setting Ω−δ := {x ∈ Ω, dist (x, ∂Ω) > δ} we have

div (A∇vδ) = H(u, η, δ) in Ω−δ

where

H(u, η, δ) := G(u, η) ∗ χδ + div (A (∇v ∗ χδ) − (A∇v) ∗ χδ)

We then have for any φ ∈ C∞
c (Ω−δ),∣∣∣∣∫ (G(u, η) ∗ χδ) φ

∣∣∣∣ =
∣∣∣∣∫ G(u, η) (φ ∗ χδ)

∣∣∣∣
≲
(
∥g∥Lp + ∥∇u∥

L
np

n+p

)
∥∇ (χδ ∗ φ) ∥Lp′

≲
(

∥g∥Lp + ∥∇u∥
L

np
n+p (Ω)

)
∥∇φ∥Lp′ (Rn).

Moreover,

|A (∇v ∗ χδ) − (A∇v) ∗ χδ| (x) ≤
∫

B(0,δ)
|A(x) − A(x− z)| |∇v(x− z)|χδ(z) dz

≤[A]Cα

∫
B(0,δ)

|z |α|∇v(x− z)|χδ(z) dz

≤δα[A]Cα

∫
B(0,δ)

|∇v(x− z)|χδ(z) dz

=δα[A]Cα|∇v| ∗ χδ(x)



PARTIAL DIFFERENTIAL EQUATIONS I & II VERSION: August 1, 2023 136

Thus, with Young’s inequality for convolutions
∥A (∇v ∗ χδ) − (A∇v) ∗ χδ∥Lp(Rn) ≲Aδ

α∥|∇v| ∗ χδ∥Lp(Rn)

≲δα ∥χδ∥L
n

n−α (Rn)︸ ︷︷ ︸
≲δα

∥∇v∥
L

np
n+αp (Rn)

≲ δα ∥χδ∥L
n

n−α (Rn)︸ ︷︷ ︸
≲1

∥u∥
W

1,
np

n+αp (Ω)

The important thing to note here is that while we have Lp-control on the “left-hand side”,
we only need L

np
n+αp -control of the right-hand side. So this should be seen as some sort of

reverse Sobolev inequality!

So, we find (using Hölder’s inequality to estimate ∥u∥
L

np
n+p (Ω)

≲Ω ∥u∥
W

1,
np

n+αp (Ω)
)∣∣∣∣∫ H(u, η, δ) ∗ χδφ

∣∣∣∣ ≲ (
∥g∥Lp(Ω) + ∥u∥

W
1,

np
n+αp (Ω)

)
∥∇φ∥Lp′ (Rn).

Now we (finally!) can use the freezing argument. Fix any x0 ∈ Ω, then we have
div (A(x0)∇vδ) = H(u, η, δ) + div ((A− A(x0))∇vδ) in Ω−δ.

Since supp v ⊂ Ω1, we can find δ0 > 0 small enough so that supp vδ ⊂ Ω−δ for all δ < δ0.

Let R > 0 and B(x0, 2R) ⊂ Ω−δ. Then by Theorem 7.14 (there: Ω1 = B(x0, R) and
Ω = B(x0, 2R))

∥∇vδ∥Lp(B(x0,R)) ≤
(

∥g∥Lp(Ω) + ∥u∥
W

1,
np

n+αp (Ω)

)
+∥(A−A(x0))∥L∞(B(x0,2R))∥∇vδ∥Lp(B(x0,2R))

Observe that ∥∇vδ∥Lp(B(x0,2R)) < ∞ – for this we needed all the argument above!

Fix ε > 0. Pick R so small that two conditions are satisfied

• dist (supp vδ, ∂Ω−δ) > 2R for all δ < δ0 (this is doable since supp vδ ⊂ B(supp η, δ)),
and

• supx0∈Ω ∥A− A(x0)∥L∞(B(x0,R)) < ε (this is possible from continuity of A)

Then we have the following estimate for any x0 ∈ supp vδ

∥∇vδ∥Lp(B(x0,R)) ≤
(

∥g∥Lp(Ω) + ∥u∥
W

1,
np

n+αp (Ω)

)
+ ε∥∇vδ∥Lp(B(x0,2R))

Now we can cover supp vδ by finitely many balls (say L many) (B(xi, R))N
i=1 such that

B(xi, R) overlaps with only finitely many other balls B(xj, R) (and the number of overlaps
is a fixed number N depending on the dimension and supp η– but not on R or δ. Then
summing up we have

∥∇vδ∥Lp(
⋃

i
B(xi,R)) ≤ L

(
∥g∥Lp(Ω) + ∥u∥

W
1,

np
n+αp (Ω)

)
+ εC(N)∥∇vδ∥Lp(

⋃
i

B(xi,2R))
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Thus

∥∇vδ∥Lp(Ω) = ∥∇vδ∥Lp(supp vδ) ≤ N
(

∥g∥Lp(Ω) + ∥u∥
W

1,
np

n+αp (Ω)

)
+ εC(N)∥∇vδ∥Lp(Ω)

Finally, we can absorb, if we choose ε small enough (N does not depend on ε), and we
have shown

∥∇vδ∥Lp(Ω) = ∥∇vδ∥Lp(supp vδ) ≤ N
(

∥g∥Lp(Ω) + ∥u∥
W

1,
np

n+αp (Ω)

)
.

Of course this only holds if p is chosen, so that u ∈ W 1, np
n+αp (Ω). But now we can bootstrap:

First we only know that u ∈ W 1,2(Ω). So choose p such that np
n+αp

= 2. That is p1 = 2n
n−α

>

2. We conclude that ηu ∈ W 1,p1 , i.e. u ∈ W 1,p1(Ω1).

Now we run this argument on a smaller set Ω2 ⊂ Ω1. We already know u ∈ W 1,p1(Ω1) so
we obtain u ∈ W 1,p2(Ω2), where p2 := np1

n−α
> p1. We can iterate this argument as long as

g ∈ Lpi..

Observe that
pi+1 = pi

n

n− α
.

So pi
i→∞−−−→ ∞ – meaning that if g ∈ Lr and r < ∞ then there exists pi > r.

We have proven the following

Theorem 7.15. Let A ∈ Cα(Rn,Rn×n) be a Hölder continuous symmetric matrix function
with

λ := inf
x∈Rn

inf
ξ∈Rn

⟨A(x)ξ, ξ⟩ > 0.

Assume that u ∈ W 1,2
loc (Ω) solves

−div (A∇u) = ∂σg in Ω.
Then if g ∈ Lp

loc(Ω) we have that ∇u ∈ Lp
loc(Ω), with the estimate for any Ω1 ⊂⊂ Ω2 ⊂⊂ Ω,

∥∇u∥Lp(Ω1) ≤ C(Ω1,Ω, p, A)
(
∥f∥Lp(Ω) + ∥u∥L2(Ω)

)
.

Higher order estimates are then obtained via differentiating the equation, cf. Proposi-
tion 6.9.

7.6. W 2,p-Calderón-Zygmund theory. The same arguments as above also imply W 2,p-
estimates, i.e. the Lp-version of Theorem 6.4: We illustrate this for the Laplace case only
(I hope you’ll appreciate after seeing the mess in the previous subsection):

Theorem 7.16 (L2-regularity). Let p ∈ [2,∞), f ∈ Lp(Ω) and assume u ∈ W 1,2(Ω) solves{
−∆u = f in Ω

in the distributional sense.
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(1) If we assume nothing more on the boundary: Then u ∈ W 2,p
loc (Ω), and we have for

any Ω′ ⊂⊂ Ω

∥D2u∥Lp(Ω′) ≤ C(p,Ω′,Ω)
(
∥u∥W 1,2(Ω) + ∥f∥Lp(Ω)

)
.

(2) if u ∈ W 1,2
0 (Ω), i.e. −∆u = f in Ω

u = 0 on ∂Ω
and Ω is a bounded set with smooth boundary ∂Ω ∈ C∞ then

∥D2u∥Lp(Ω) ≲Ω,p ∥f∥Lp(Ω) + ∥u∥W 1,2(Ω).

Let us remark that the same theorem holds also for p ∈ (1, 2) with slight modifications.

Sketch of the proof. From W 2,2-theory, we already know that u ∈ W 2,2
loc , Theorem 6.4.

Using a cutoff function η1 ∈ C∞
c (Ω), η1 ≡ 1 in Ω1 ⊂⊂ Ω we have (where 2∗ = 2n

n−2 is the
Sobolev exponent)

−∆(η1u) = η1f − (∆η1)u− 2 ∇u︸︷︷︸
∈W 1,2

loc
⊂L2∗

∇η1 in Rn.

That is
−∆(η1u) = g ∈ Lq

where q = min{p, 2∗}.

We apply the Riesz transforms Rα and Rβ (they act in Rn, hence we needed the cutoff)
to find

∂αβ(η1u) = RαRβg

and thus

∥∂αβu∥Lq(Ω1)∥ ≤ ∥∂αβ(η1u)∥Lq(Rn) ≤ ∥g∥Lq(Rn) ≲ ∥u∥W 1,2(Ω) + ∥f∥Lp .

Thus u ∈ W 2,q(Ω1), and we can repeat this argument with some cutoff function η2 ∈
C∞

c (Ω1), η2 ≡ 1 in Ω2 ⊂⊂ Ω1. Since we already know u ∈ W 2,q(Ω1) we find

−∆(η1u) = η1f − (∆η1)u− 2 ∇u︸︷︷︸
∈W 1,q

loc
⊂Lq∗

∇η1 in Rn.

and thus we find by the same argument as above that u ∈ W 2,q2(Ω2) where q2 = min{p, q∗}.
Iterating this arguments on smaller and smaller sets, we see that we get an increasing
sequence qi that eventually is constantly p, and thus we have obtained W 2,p in the smallest
set. □

Let us remark that Theorem 7.16 is false for p = 1 and p = ∞.
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Example 7.17. Let n = 2, set
u(x) := log log 2

|x|
Recall that u ∈ W 1,2(B(0, 1)), Exercise 5.7, and we have

−∆u = |∇u|2 in B(0, 1).
That is for g = |∇u|2 ∈ L1(B(0, 1)) we have

−∆u = g in B(0, 1).

However u ̸∈ W 2,1
loc (Ω). Indeed, any map u ∈ W 2,1

loc (R2) (more generally W n,1-functions are
continuous, [Adams and Fournier, 2003, Theorem 4.12, Part I, Case A]). But u is clearly
not continuous at the origin, so thats impossible.

Exercise 7.18. Prove that if u ∈ W n,1(B(0, 1)) then u ∈ C0(B(0, 1)). Read the proof of
[Adams and Fournier, 2003, Theorem 4.12, Part I, Case A], see p.89, §4.16, and write it
in your own words.

8. Schauder theory

Consider the linear elliptic operator in non-divergence form
Lu(x) := Aαβ(x)∂αβu(x) + bα∂αu(x) + c(x)u(x)

Schauder theory is the theory of Hölder regularity for solutions to the above equation.
Recall that the Hölder space Cα(Ω) is given by

[f ]Cα(Ω) := sup
x ̸=y∈Ω

|f(x) − f(y)|
|x− y|α

.

This is a seminorm (any constant f satisfies [f ]Cα = 0), the norm is defined as
∥f∥Cα(Ω) := ∥f∥L∞(Rd) + [f ]Cα(Ω).

Clearly this makes sense only if α ∈ (0, 1]

Exercise 8.1. Assume f ∈ Cα(B(0, 1)) for some α > 1. Show that f is necessarily
constant.

We (should) often write C0,α to distinguish between C0,1 (Lipschitz) and C1 (continuously
differentiable).

We say f ∈ Ck,α(Ω) if f ∈ Ck(Ω) (i.e. k times continuously differentiable) and Dkf ∈
Cα(Ω).

In the following we have the standing assumptions:
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• Coefficient regularity: a, b, c ∈ Cα(Rn), for some α ∈ (0, 1), i.e. there exists Λ > 0
such that

∥a∥Cα(Ω) + ∥b∥Cα(Ω) + ∥c∥Cα(Ω) ≤ Λ
• ellipticity: there exists λ > 0 such that

aαβ(x)ξαξβ ≥ λ|ξ|2 ∀ξ ∈ Rn, x ∈ Ω.

We expect from solutions Lu = f that u has two more derivatives than f – in the realm
of Hölder spaces, this is called Schauder theory.

Theorem 8.2 (Interior Schauder estimate). Let α ∈ (0, 1), Ω ⊂ Rn an open set, and
assume u ∈ C2,α(Ω), f ∈ Cα(Ω) satisfy the equation

Lu(x) = f(x) for all x ∈ Ω.
Here L is a linear elliptic operator in non-divergence form as above, with A, b, c ∈ L∞(Ω)∩
Cα(Ω), A(x) ∈ Rn×n uniformly elliptic, i.e. there exists λ > 0 such that

Aαβξαξβ ≥ λ|ξ|2 ∀ξ ∈ Rn.

Then for any Ω′ ⊂⊂ Ω we have

[D2u]Cα(Ω′) ≤ C
(
∥f∥L∞(Ω) + [f ]Cα(Ω) + ∥u∥L∞(Ω)

)
.

where the constant C depends only on α, n,Ω′,Ω and A, b, c.

8.1. Basic facts on Hölder spaces.

Exercise 8.3. Let Ω ⊂ Rn a set and α ∈ (0, 1]. Show that

(1) [fg]Cα(Ω) ≲ ∥f∥L∞(Ω) [g]Cα(Ω) + ∥g∥L∞(Ω) [f ]Cα(Ω)
(2) [f ]Cα(Ω) ≲ ∥f∥L∞(Ω) + ∥Df∥L∞(Ω).

Exercise 8.4. Let Ω ⊂ Rn a set and α, β ∈ (0, 1] with α < β. Show that for any ε > 0
there exists C = C(ε, β, α,Ω) such that

[f ]Cα(Ω) ≤ ε[f ]Cβ(Ω) + C ∥f∥L∞(Ω).

Hint: Look on the internet for Ehrling lemma, and use/show that Cβ compactly embedds
into Cα by Arzela-Ascoli. Observe you can first show

∥f∥L∞(Ω) + [f ]Cα(Ω) ≤ ε
(
∥f∥L∞(Ω) + [f ]Cβ(Ω)

)
+ C ∥f∥L∞(Ω).

to obtain the desired result.

Exercise 8.5. Let Ω ⊂ Rn a set. Show that for any ε > 0 there exists C = C(ε, β, α,Ω)
such that

∥Df∥L∞(Ω) ≤ ε∥D2f∥L∞(Ω) + C ∥f∥L∞(Ω).

Hint: Similar to Exercise 8.4.
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Exercise 8.6. Let Ω ⊂ Rn a bounded open set and α ∈ (0, 1]. Show that for any ε > 0
there exists C = C(ε, α,Ω) such that

∥D2f∥L∞(Ω) ≤ ε[D2f ]Cα(Ω) + C ∥f∥L∞(Ω).

Hint: Similar to Exercise 8.4.

8.2. Fundamental Schauder estimate. As is typical in PDE, we first consider the sim-
plest nontrivial case, namely L = ∆ and in Rn. While the Schauder estimate can be proven
via harmonic analysis methods (using potential theory and the Newton potential), we fol-
low an elegant approach due to Leon Simon, [Simon, 1997]. It is aptly called “Schauder
by scaling” (as we shall see in the proof).

Theorem 8.7 (Fundamental Schauder estimate). Let α ∈ (0, 1) and assume u ∈ C2,α(Rn).
Then there exists a constant C = C(α, n) such that

[D2u]Cα(Rn) ≤ C [∆u]Cα(Rn)

We will need the following

Exercise 8.8 (Liouville). Assume that u ∈ C∞(Rn,R) satisfies ∆u = 0 in Rn and assume
there exists a constant C > 0 and ε > 0 such that

sup
B(0,r)

|u| ≤ C r3−ε for all r > 0.

Then u is a quadratic polynomial.

Hint: Use Cauchy estimates, Lemma 2.41, see also Corollary 2.42 to show that D2u(x0) = 0
for any x0.

Exercise 8.9 (Taylor for Hölder functions). Assume that f ∈ C2,α(Rn) and x0 ∈ Rn, then
for a uniform constant C > 0,∣∣∣∣f(x) −

(
f(x0) − (x− x0) ·Dv(x0) − 1

2(x− x0)tD2v(x0)(x− x0)
)∣∣∣∣ ≤ C[D2f ]Cα|x−x0|2+α.

Hint: Integral formula/fundamental theorem of Taylor.

Exercise 8.10. Assume that fk ∈ C2,α(Rn,R) satisfies the following properties

fk(0) = 0, Dfk(0) = 0, D2fk(0) = 0,

[D2fk]C2,α(Rd) ≤ 1.

Then, there exists a subsequence (not relabeled) and f ∈ C2,α
loc (Rn) such that fk, Dfk and

D2fk, respectively, converge locally uniformly to f , Df , D2f , and we have

[D2f ]C2,α(Rd) ≤ 1
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Proof of Theorem 8.7. Assume the claim is false, then there exists a sequence (uk)∞
k=1 ⊂

C2,α(Rn) such that
[D2uk]Cα(Rn)>k [∆uk]Cα(Rn)

By assumption uk ∈ C2,α(Rn), so we know (this is why we are only getting an a-priori
estimate!): [D2uk]Cα(Rn) < ∞ for each k. Then ũk := uk/[D2uk]Cα(Rn) ∈ C2,α(Rn). So we
can continue to work with ũk instead of uk, or, equialently, w.l.o.g. assume that

[D2uk]Cα(Rn) = 1, [∆uk]Cα(Rn) <
1
k
.

What we’d want to do (in any blowup proof) is the following, pass somehow to the limit
u, hope that [D2u]Cα = 1 and ∆u = 0, and show that this is a contradiction. But this is
not so easy: we don’t know that we actually can pass to the limit, under the bext expected
weak convergence we cannot really hope that [D2u]Cα = 1, but only [D2u]Cα ≤ 1, and
∆u = 0 does not imply u = 0 or similar – that is it is not so clear how we would find
that contradiction. The beauty of this method here is that those issues are relatively easily
overcome:

From the condition [D2uk]Cα(Rn) = 1 we need to find a condition that survives a weak
C2,α-convergence: there must be xk ̸= yk ∈ Rn such that

|D2uk(xk) −D2uk(yk)|
|xk − yk|α

≥ 1
2 .

This is good, since by locally uniform convergence of D2uk this would survive the limit –
but xk and yk could go to any point in Rn, in particular to some point at ∞, so we rescale:
Set hk := |xk − yk|, and take a rotation Pk ∈ O(n) such that yk − xk = hkPke1. If we set

vk(z) := h−2−αuk(xk + hkPkz).
then (observe that |Pkp⃗| = |p⃗|)

(8.1) |D2vk(0) −D2vk(e1)| = |P t
k (D2uk(xk) −D2uk(yk))Pk|

|xk − yk|α
≥ 1

2 .

More generally, we observe the following
D2vk(z) −D2vk(y)

|x− z|α
=h−2−α

k

h2
k(P t

kD
2ukPk)(xk + hkPkz) − h2

k(P t
kD

2ukPk)(xk + hkPky)
|x− z|α

=P t
k

(D2uk)(xk + hkPkz) − (D2uk)(xk + hkPky)
|xk + hkPkz − (xk + hkPky)|α Pk.

so that
(8.2) [D2vk]Cα(Rn) = [D2uk]Cα(Rn) = 1,
and by taking the trace in the above inequality

(8.3) [∆vk]Cα(Rn) = [∆uk]Cα(Rn) <
1
k
,
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Otherwise replacing vk by ṽk(x) := vk(x)−v(0)−⟨x,Dv(0)⟩− 1
2x

tD2v(0)x (which does not
change any of the quantities previously considered because they are differences of second
derivatives), we may additionally assume w.l.o.g.

(8.4) vk(0) = 0, Dvk(0) = 0, D2vk(0) = 0.

By Arzela-Ascoli, Exercise 8.10, up to passing to a subsequence, we find some v ∈ C2,α
loc (Rn)

such that vk, Dvk and D2vk locally uniformly converge to v, Dv, D2v, and thus from (8.1),
(8.3), (8.4) we have

(8.5) |D2v(0) −D2v(e1)| ≥ 1
2 ,

(8.6) v(0) = 0, Dv(0) = 0, D2v(0) = 0.

[D2v]Cα ≤ 1.

and (again from locally uniform convergence) we find

[∆v]Cα ≤ lim inf
k→∞

[∆vk]Cα = 0.

That is we have
∆v(x) ≡ const,

but sine D2v(0) = 0 and ∆v(0) = trD2v(0) we have

∆v ≡ 0.

From Weyl’s lemma, Theorem 2.40, we conclude v ∈ C∞(Rn). Since [D2v]C2,α(Rn) ≤ 1 we
also have a growth estimate on v using Taylor’s theorem, Exercise 8.9,

|v(x)| =

∣∣∣∣∣∣∣∣v(x) −

v(0) − x ·Dv(0) − 1
2x

tD2v(0)x︸ ︷︷ ︸
=0


∣∣∣∣∣∣∣∣ ≲ [D2v]Cα(Rn)︸ ︷︷ ︸

≤1

|x|−2−α.

Here we use that α < 1, which implies that Lioville theorem, Exercise 8.8, is applicable.
We conclude that v is a polynomial of degree 2. But then (8.6) implies that v ≡ 0. But
this finally reaches a contradiction, since it v ≡ 0 contradicts (8.5)20. We can conclude. □

20Indeed, obtaining (8.5) is the crucial idea in this blow-up proof – it is a quantity that survives the
limit procedure, leading to a contradiction. Compare this to the blow-up proof of Poincare inequality
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8.3. Basic Schauder on a domain (interior).

Theorem 8.11 (Fundamental Schauder estimate on domain). Let α ∈ (0, 1), Ω ⊂ Rn an
open set, and assume u ∈ C2,α(Ω), f ∈ Cα(Ω) satisfy the equation

∆u(x) = f(x) for all x ∈ Ω
Then for any Ω′ ⊂⊂ Ω we have

[D2u]Cα(Ω′) ≤ C
(
[f ]Cα(Ω) + ∥u∥L∞(Ω)

)
.

where the constant C depends only on α, n,Ω′,Ω.

We first establish the following building block.

Lemma 8.12. For α ∈ (0, 1), assume that u ∈ C2,α(B(0, 2)) and
∆u(x) = f(x) for all x ∈ B(0, 2).

Then
[D2u]Cα(B(0,1)) ≤ C

(
[f ]Cα(B(0,2)) + ∥D2 u∥L∞(B(0 ,2 )) + ∥u∥L∞(B(0,2))

)
.

where C is a constand only depending on the dimension n and α.

Proof. We argue – how could it be different, by a cutoff function. Let η ∈ C∞
c (B(0, 2)),

η ≡ 1 in B(0, 1).

Then
∆(ηu)(x) = η(x)f(x) + ∆η(x)u(x) + 2∇η(x) · ∇u(x) in Rn.

On the other hand ηu ∈ C2,α(Rn), so we have from Theorem 8.7,
[D2u]Cα(B(0,1)) ≤ [D2(ηu)]Cα(Rn) ≲η [f ]Cα(Rn) + ∥D2u∥L∞(B(0,2)) + ∥u∥L∞(B(0,2)).

Here we have used several times Exercise 8.3.

□

In Lemma 8.12 we don’t like the ∥D2u∥L∞(B(0,2))-term. To remove it, we are going to use
the Ehrling Lemma, Exercise 8.4.

Observe that it is not obvious how to use Ehrling Lemma to remove the ∥D2u∥L∞ in
Lemma 8.12, since the domain on the right-hand side is larger than on the left-hand side.
Actually to do this we combine Ehrling Lemma and Lemma 8.12.

Lemma 8.13. For α ∈ (0, 1), assume that u ∈ C2,α(B(0, 2)) and
∆u(x) = f(x) for all x ∈ B(0, 2).

Then
∥D2u∥L∞(B(0,1)) ≤ C

(
∥u∥L∞(B(0,2)) + [f ]Cα(B(0,2))

)
.

where C is a constand only depending on the dimension n and α.
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Proof. Assume B(x0, 2ρ) ⊂ B(0, 2). Then
ũ(x) := u(x0 + ρx)

is a solution to
∆ũ(x) = ρ2f(x0 + ρx) in B(0, 2),

and thus from Lemma 8.12,
(8.7) [D2ũ]Cα(B(0,1)) ≤ C ρ2+α[f ]Cα(B(0,2)) + ∥D2ũ∥L∞(B(0,2)) + ∥ũ∥L∞(B(0,2)).

Now set (observe that 2 − |x| = dist (x, ∂B(0, 2))),

A := sup
x∈B(0,2)

(2 − |x|)2 |D2u(x)|.

Pick any x0 ∈ B(0, 2) and set ρ := 1
3(2 − |x0|). Then, using the notion ũ from above,

(2 − |x0|)2|D2u(x0)| ≤9ρ2∥D2u∥L∞(B(x0,ρ))

=9∥D2ũ∥L∞(B(0,1)).

Using the Ehrling-Lemma, Exercise 8.6, on B(0, 1) we have for any ε > 0 (will be chosen
below)

≤9ε[D2ũ]Cα(B(0,1)) + C(ε)∥ũ∥L∞(B(0,1)).

By the estimate (8.7)

≤9ε
(
C ρ2+α[f ]Cα(B(0,2)) + C∥D2ũ∥L∞(B(0,2)) + ∥ũ∥L∞(B(0,2))

)
+ C(ε)∥ũ∥L∞(B(0,1))

≤9εCρ2∥D2u∥L∞(B(x0,2ρ)) + C(ε)∥u∥L∞(B(0,2)) + C ε[f ]Cα(B(0,2 ))

≤9εCρ2 sup
x∈B(x0,2ρ)

|D2u(x)| + C(ε)∥u∥L∞(B(0,2)) + C ε[f ]Cα(B(0,2 ))

=9εCρ2 sup
x∈B(x0,2ρ)

1
(2 − |x|)2 A + C(ε)∥u∥L∞(B(0,2)) + C ε[f ]Cα(B(0,2 )).

By the choice of ρ we have for any x ∈ B(x0, 2ρ),

2 − |x|
triangular inequality

≥ 2 − |x| − |x− x0| ≥ 2 − |x0| − 2ρ = 3ρ− 2ρ = ρ.

Thus, we have shown
(2 − |x0|)2|D2u(x0)| ≤ 9εCA + C(ε)∥u∥L∞(B(0,2)) + C ε[f ]Cα(B(0,2))

This holds for any x0 ∈ B(0, 2), so we actually have
A ≤ 9εCA + C(ε)∥u∥L∞(B(0,2)) + C ε[f ]Cα(B(0,2)).

Now we take ε small enough so that 9εC < 1
2 , then we have shown

∥D2u∥L∞(B(0,1)) ≤ A ≤ 2C(ε)∥u∥L∞(B(0,2)) + C ε[f ]Cα(B(0,2)).

□
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Proof of Theorem 8.11. Take ρ > 0 such that dist (Ω′, ∂Ω) > 10ρ.

We then have

(8.8) [D2u]Cα(Ω′) ≤ max
x0∈Ω′

[D2u]Cα(B(x0,ρ)) + max
x0∈Ω′

2
ρα

∥D2u∥L∞(B(x0,ρ))

So fix some x0 ∈ Ω′. We rescale again
ũ(x) := u(x0 + ρx), f̃(x) := ρ2f(x0 + ρx).

Then, since B(x0, 2ρ) ⊂ Ω,
∆ũ = f̃ in B(0, 2)

We apply Lemma 8.12, and have
ρ2+α[D2u]Cα(B(x0,ρ)) =[D2ũ]Cα(B(0,1))

≲∥D2ũ∥L∞(B(0,2)) + ∥ũ∥L∞(B(0,2)) + [f̃ ]Cα(B(0,2))

=ρ2∥D2u∥L∞(B(x0,2ρ)) + ∥u∥L∞(B(0,2ρ)) + ρ2−α[f ]Cα(B(x0,2ρ))

Plugging this into (8.8) we have

(8.9) [D2u]C2,α(Ω′) ≤ C(ρ)
(

[f ]Cα(Ω) + max
x0∈Ω′

∥D2u∥L∞(B(x0,2ρ))

)

To control the second term, we rescale once more
ũ(x) := u(x0 + 2ρx), f̃(x) := (2ρ)2f(x0 + 2ρx).

Since B(x0, 4ρ) ⊂ Ω, we still have
∆ũ = f̃ in B(0, 2)

and thus we can apply Lemma 8.13. Then
(2ρ)−2∥D2u∥L∞(B(x0,2ρ)) =∥D2ũ∥L∞(B(0,1))

≲∥ũ∥L∞(B(0,2)) + [f̃ ]Cα(B(0,2))

=∥u∥L∞(B(x0,4ρ)) + (2ρ)α[f ]Cα(B(x0,4ρ))

≤C(ρ)
(
∥u∥L∞(Ω) + [f ]Cα(Ω)

)
.

Plugging this into (8.9) we can conclude. □

8.4. Constant coefficient Schauder estimate. Assume next that A ∈ Rn×n is a con-
stant elliptic matrix, i.e. for some λ > 0,
(8.10) ⟨Aξ, ξ⟩ ≥ λ|ξ|2

We want to prove (interior) Schauder-estimates for the equation (divergence form)
div (A∇u) = f in Ω
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or equivalently (non-divergence form)
(8.11) Aαβ∂αβu = f in Ω
Theorem 8.14 (Schauder estimate on domain). Let α ∈ (0, 1), Ω ⊂ Rn an open set, and
assume u ∈ C2,α(Ω), f ∈ Cα(Ω) satisfy the equation (8.11).

Then for any Ω′ ⊂⊂ Ω we have
[D2u]Cα(Ω′) ≤ C

(
[f ]Cα(Ω) + ∥u∥L∞(Ω)

)
.

where the constant C depends only on α, n,Ω′,Ω and A.

Observe that we don’t need to assume that A is symmetric, but we observe that we can
assume that w.l.o.g.
Exercise 8.15. Assume that A ∈ Rn×n satisfy (8.10). Show that

1
2
(
A+ At

)
still satisfies (8.10).
Exercise 8.16. Prove Theorem 8.14. For this first assume A is symmetric (see Exer-
cise 8.15)

(1) Decompose A = PDP t where P ∈ SO(n) and D = diag(λ1, . . . , λn) with λi ≥ λ

(the ellipticity constant). Set
√
D := diag(

√
λ1,

√
λ2, . . . ,

√
λn).

(2) Set ũ(x) := u(P
√
Dx), f̃ := f(P

√
Dx), and

Ω̃ :=
(
P

√
D
)−1

Ω ≡ {P
√
D

−1
x : x ∈ Ω}.

Show that
∆ũ = f̃ in Ω̃

Hint: for any α, γ ∈ {1, . . . , n} we have

∂αγũ(x) =
√
λα

√
λγ

∑
β,σ

PβαPσγ (∂βσu)(P
√
Dx)

and thus
∆ũ(x) =

∑
β,σ

Aαβ (∂αβu)(P
√
Dx)

(3) Use Theorem 8.11 on Ω̃.

In case of balls, we can also make the constant independent
Corollary 8.17. Let α ∈ (0, 1). Assume that Ω = B(x0, 2ρ) and assume u ∈ C2,α(Ω),
f ∈ Cα(Ω) satisfy the equation (8.11).

Then
[D2u]Cα(B(x0,ρ) ≤ C

(
[f ]Cα(B(x0,2ρ)) + ρ−2−α∥u∥L∞(Ω)

)
.
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where the constant C depends only on α, n, and A – but not on ρ or x0.

Exercise 8.18. Prove Corollary 8.17

Hint: Scaling.

8.5. Freezing the coefficient. Assume next that A ∈ Cα(Ω,Rn×n), is a non-constant
but uniformly elliptic matrix, that is for some λ > 0,
(8.12) ⟨A(x)ξ, ξ⟩ ≥ λ|ξ|2 ∀x ∈ Ω.

We consider the non-divergence form equation
Aαβ∂αβu = f in Ω

The idea is simple (cf. Section 7.5.1 where we did a similar argument for W 1,p-theory): in
a small ball B(x0, 10ρ) we can assume that ∥A − A(x0)∥L∞(B(x0,10ρ) < ε. In that tiny ball
we rewrite the equation
(8.13) Aαβ(x0 )∂αβu = (Aαβ(x0 ) − Aαβ) ∂αβu+ f in B(x0, 10ρ)
The main observation is now
[(Aαβ(x0 ) − Aαβ) ∂αβu]Cα(B(x0,ρ) ≤ ∥A(x0) − A∥L∞(B(x0,10ρ))︸ ︷︷ ︸

<ε

[D2u]Cα+[A]C2,α∥D2u∥L∞(B(x0,ρ)

Combining this with the constant coefficient Schauder, we would hope to absorb the first
term.

Lemma 8.19. Assume that A is as above, u ∈ C2,α and
Aαβ∂αβu = f in B(0, 2)

Then there exists a constant C depending on A, α and the dimension such that

[D2u]Cα(B(0,1)) ≤ C
(
∥f∥Cα(B(0,2)) + ∥u∥L∞(B(0,2)) + ∥D2 u∥L∞(B(0 ,2 ))

)
.

Proof. Fix x0 ∈ B(0, 1), ρ > 0 such that B(x0, 2ρ) ⊂ B(0, 2).

Let η ∈ C∞
c (B(x0, 2ρ)), η ≡ 1 in B(x0, ρ). We may assume that ∥∇kη∥L∞ ≤ C(k)ρ−k for

any k ∈ N ∪ {0}. For v := ηu we observe that from the product rule, Exercise 8.3,
[(Aαβ(x0) − Aαβ) ∂αβv]Cα(B(x0,4ρ))

≲∥A(x0) − A∥L∞ [D2v]Cα(B(x0,4ρ) + [A]Cα(B(0,2)) ∥D2v∥L∞(B(x0,4ρ))

≲ρα[A]Cα(B(0,2)) [D2v]Cα(B(x0,4ρ) + [A]Cα(B(0,2)) ∥D2v∥L∞(B(x0,4ρ))

Now we observe that
Aαβ(x0)∂αβv = (Aαβ(x0) − Aαβ) ∂αβv + Aαβ∂αβv in Rn
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Using the constant coefficient Schauder, Corollary 8.17, in B(x0, 4ρ) we have
[D2v]Cα(B(x0,2ρ))

≲[(Aαβ(x0) − Aαβ) ∂αβv]Cα(B(x0,4ρ)) + [Aαβ∂αβv]Cα(B(x0,4ρ)) + ρ−2−α∥v∥L∞(B(x0,2ρ))

≲ρα[A]Cα(B(0,2)) [D2v]Cα(B(x0,4ρ)) + [A]Cα(B(0,2)) ∥D2v∥L∞(B(x0,4ρ)) + [Aαβ∂αβv]Cα(B(x0,4ρ)) + ρ−2−α∥v∥L∞(B(x0,2ρ))

By the support of v, we can conclude
[D2v]Cα(B(x0,2ρ))

≤Cρα[A]Cα(B(0,2)) [D2v]Cα(B(x0 ,2ρ)) + C[A]Cα(B(0,2)) ∥D2v∥L∞(B(x0 ,2ρ)) + C[Aαβ∂αβv]Cα(B(x0 ,2ρ)) + ρ−2−αC∥v∥L∞(B(x0 ,2ρ))

Taking ρ < 1
2 small enough so that Cρα[A]Cα(B(0,2)) <

1
2 (this fixes ρ from now on), we can

absorb the first term on the right-hand side above and find that (recall η ≡ 1 in B(x0, ρ))

[D2u]Cα(B(x0,ρ)) ≤ [D2v]Cα(B(x0,2ρ))

≤2C[A]Cα(B(0,2)) ∥D2v∥L∞(B(x0 ,2ρ)) + 2C[Aαβ∂αβv]Cα(B(x0 ,2ρ)) + ρ−2−α2C∥v∥L∞(B(x0 ,2ρ))

(8.14)

We know that v = ηu, have ∥∇kη∥L∞ ≤ C(k), observe that by Exercise 8.5
∥Du∥L∞ ≲ ∥u∥L∞ + ∥D2u∥L∞ ,

as well as
∥f∥L∞ ≤ ∥Aαβ∂αβu∥L∞ ≲ ∥D2u∥L∞ .

Combining these observations with the estimate (8.14) we conclude
[D2u]Cα(B(x0,ρ)) ≤ [D2v]Cα(B(x0,2ρ))

≤C(A, ρ)
(
∥D2u∥L∞(B(x0 ,2ρ)) + [f ]Cα(B(x0 ,2ρ)) + ∥u∥L∞(B(x0 ,2ρ))

)(8.15)

Again, by a covering argument we have
[D2u]Cα(B(0,1)) ≤ max

x0∈B(0,1)
[D2u]Cα(B(x0,ρ)) + (2ρ)−α2∥D2u∥L∞(B(0,2))

Combining this with (8.15) we conclude (observe that ρ is dependends on A, but in no way
on u). □

Theorem 8.20 (Fundamental Schauder estimate on domain). Let α ∈ (0, 1), Ω ⊂ Rn an
open set, and assume u ∈ C2,α(Ω), f ∈ Cα(Ω) satisfy the equation

Aαβ∂αβu(x) = f(x) for all x ∈ Ω.
Here A ∈ L∞(Ω,Rn×n) ∩ Cα(Ω,Rn×n) is uniformly elliptic, i.e. there exists λ > 0 such
that

Aαβξαξβ ≥ λ|ξ|2 ∀ξ ∈ Rn.

Then for any Ω′ ⊂⊂ Ω we have
[D2u]Cα(Ω′) ≤ C

(
[f ]Cα(Ω) + ∥u∥L∞(Ω)

)
.

where the constant C depends only on α, n,Ω′,Ω and A.
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Exercise 8.21. Prove Theorem 8.20 using Lemma 8.19.

Hint: You can argue similar to Theorem 8.11.

8.6. Interior Schauder estimate: proof of Theorem 8.2. Again, in order to prove
Theorem 8.2 we first prove an estimate with C2-term on the right hand side.

Lemma 8.22. Assume that L is given as before by
Lu(x) := Aαβ(x)∂αβu(x) + bα∂αu(x) + c(x)u(x).

Let u ∈ C2,α and
Lu = f in B(0, 2)

Then there exists a constant C depending on A, α and the dimension so that

[D2u]Cα(B(0,1)) ≤ C
(
∥f∥Cα(B(0,2)) + ∥u∥L∞(B(0,2)) + ∥D2 u∥L∞(B(0 ,2 ))

)
.

Exercise 8.23. Prove Lemma 8.22. Use that
Lu = f in B(0, 2)

is equivalent to
Aαβ∂αβu = f − bα∂αu− cu in B(0, 2)

and estimate the right-hand side in Cα.

Exercise 8.24. Prove Theorem 8.2 using Lemma 8.22.

Hint: You can argue similar to Theorem 8.11.

8.7. Schauder estimates in divergence form. Schauder estimates also work in diver-
gence form, simply by rewriting divergence form into non-divergence form – observe that
then we need to assume more regularity on A. But this does not give optimal results

Lemma 8.25 (Schauder for divergence form – easy attempt). Let α ∈ (0, 1), Ω ⊂ Rn an
open set, and assume u ∈ C2,α(Ω), f ∈ Cα(Ω) satisfy the equation

div (A∇u)(x) = f(x) for all x ∈ Ω.
Here A ∈ L∞(Ω,Rn×n) ∩ C1 ,α(Ω,Rn×n) is uniformly elliptic, i.e. there exists λ > 0 such
that

Aαβξαξβ ≥ λ|ξ|2 ∀ξ ∈ Rn.

Then for any Ω′ ⊂⊂ Ω we have
[D2u]Cα(Ω′) ≤ C [f ]Cα(Ω) + ∥u∥L∞(Ω).

where the constant C depends only on α, n,Ω′,Ω and A.

Exercise 8.26. Prove Lemma 8.25, observe that
div (A∇u)(x) = Aαβ∂αβu+ ∂αAαβ∂βu.
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If we want to obtain C 1 ,α-estimates, one again relates the PDE to the ∆-equation (we
will not do this here) and one obtains, cf. [Fernández-Real and Ros-Oton, 2022, Theorem
2.28].

Theorem 8.27. Let Ω ⊂⊂ Rn.

Assuem u ∈ C1,α(Ω) be a weak solution to
div (A∇u) = f in Ω

where A ∈ Cα is uniformly elliptic and bounded. Then for any Ω′ ⊂⊂ Ω,
∥∇u∥Cα(Ω′) ≤ C∥u∥L∞(Ω) + ∥f∥L∞(B(0,1)).

8.8. Schauder at the boundary. As we have discussed in the W k,2-regularity theory,
the boundary regularity can be proven by considering a boundary problem in the upper
half-plane Rn

+ and flattening the boundary. We will not go throught the details here, but
we state the corresponding result (cf. [Gilbarg and Trudinger, 2001, Corollary 6.7])

Theorem 8.28 (Global Schauder a priori estimate). Let Ω ⊂ Rn be a bounded domain
with smooth boundary ∂Ω

Let α ∈ (0, 1), Ω ⊂ Rn an open set, and assume u ∈ C2,α(Ω), f ∈ Cα(Ω) and φ ∈ C2,α(Ω)
satisfy the equation Lu(x) = f(x) for all x ∈ Ω,

u = φ on ∂Ω
Here L is a linear elliptic operator in non-divergence form as above, with A, b, c ∈ L∞(Ω)∩
Cα(Ω), A(x) ∈ Rn×n uniformly elliptic, i.e. there exists λ > 0 such that

Aαβξαξβ ≥ λ|ξ|2 ∀ξ ∈ Rn.

Then
[D2u]Cα(Ω) ≤ C

(
∥f∥L∞(Ω) + [f ]Cα(Ω)

)
+ ∥u∥L∞(Ω) + ∥φ∥C2,α(Ω).

where the constant C depends only on α, n,Ω and A, b, c.

8.9. From a priori estimates to a posteriori estimates. In the above theorems, we
always a priori assumed that the solution u ∈ C2,α and only obtained an estimate for the
solution.

Here we illustrate how one can use those a priori estimates to obtain regularity estimates.

Definition 8.29. We say a set Ω ⊂⊂ Rn is admissible for C2,α Schauder, if for any f ∈ Cα,−∆u = f in Ω
u = 0 on ∂Ω

has a solution in C2,α(Ω)-solution u. (Observe this solution is unique, by the maximum
principle!).
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Any smoothly bounded set is admissible in the above sense:

Theorem 8.30. Let Ω be a bounded set with smooth boundary. Assume that u ∈ W 1,2
0 (Ω)

solves −∆u = f in Ω
u = 0 on ∂Ω

If f ∈ Cα(Ω) then u ∈ C2,α(Ω) and we have
[u]C2,α(Ω) ≲ ∥u∥L∞(Ω) + ∥f∥Cα(Ω) + ∥g∥C2,α(Ω).

Proof. Fix f ∈ Cα(Ω). We can extend f to Rn such that

[f ]Cα(Rn) ≤ C
(
∥f∥L∞(Ω) + [f ]Cα(Ω)

)
,

with C a constant only depending on Ω and α, but not on f .

E.g. we could do this by observing that for some small δ > 0 there must be a smooth map
π : Bδ(Ω) → Ω which is the identity on Ω, then set f := ηf(π(x)) where η ∈ C∞

c (Bδ(Ω))
and η ≡ 1 in Ω.

Denote by fε the usual smooth approximation of f , which satisfies
sup

ε∈(0,1)
∥fε∥L∞(Rn) + [fε]Cα(Rn) ≤ [f ]Cα(Rn) ≤ C

(
∥f∥L∞(Ω) + [f ]Cα(Ω)

)
.

(Observe that we do not have that fε → f in Cα, but that does not matter for us).

Now solve (e.g. by variational approach)∆uε = fε in Ω
uε = 0 on ∂Ω.

which we can do with the estimate
∥uε∥W 1,2(Ω) ≤ ∥fε∥L2(Ω) ≤ ∥fε∥L∞(Ω) ≤ ∥f∥L∞(Ω).

By W k,2-theory, Section 6, we have uε ∈ C∞(Ω).

Observe that from global W 1,p-theory (Calderón-Zygmund), Theorem 7.10 but with bound-
ary see the remark after the theorem, we conclude that for any p ∈ (1,∞)

∥uε∥W 2,p(Ω) ≤ ∥u∥W 1,2(Ω) + ∥f∥Lp(Ω) ≲p ∥f∥L∞(Ω).

In particular, choosing p > n
2 we find from Sobolev-Morrey embedding theorem

∥uε∥L∞(Ω) + [uε]C2− n
p
≲ ∥u∥W 2,p(Ω) ≲ ∥f∥L∞(Ω).

So we can apply global (a-priori) Schauder, Theorem 8.28, and have
[D2uε]Cα(Ω) ≲∥uε∥L∞(Ω) + ∥fε∥L∞(Ω) + [fε]Cα(Ω)

≲∥f∥L∞(Ω) + [f ]Cα(Ω)
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By Arzela-Ascoli uε converges in C2 to u which (by W 1,2-convergence) satisfies∆u = f in Ω
u = 0 on ∂Ω.

We know the solution to the above must be unique (e.g. by maximum principle or varia-
tional arguments). We have obtained the estimate

∥u∥L∞(Ω) + [D2u]Cα(Ω) ≲ lim inf
ε→0

∥uε∥L∞(Ω) + [D2uε]Cα(Ω)

≲∥f∥L∞(Ω) + [f ]Cα(Ω).

□

The above argument would also work to make a posteriori Schauder work for div (A∇u)
for quite smooth A (recall that we used W k,2-theory to conclude that uε is smooth, which
requires A to be relatively smooth.

Another way to do this, is the following argument.

Theorem 8.31. Let Ω be admissible in the sense of Definition 8.29.

Let A ∈ Cα(Ω,Rn×n) be uniformly elliptic and bounded, b, c ∈ Cα(Ω), and c ≤ 0 , then if
u ∈ C2(Ω) solves Aαβ∂αβu+ bα∂αu+ cu = f in Ω

u = g on ∂Ω
and we have f ∈ Cα(Ω) and g ∈ C2,α(Ω), then u ∈ C2,α(Ω) and

[u]C2,α(Ω) ≲ ∥u∥L∞(Ω) + ∥f∥Cα(Ω) + ∥g∥C2,α(Ω).

Proof. W.l.o.g. g ≡ 0, otherwise consider u− g, which leads to the above claim.

Also, c ≤ 0, so we have the maximum principle and uniqueness. That is, all we need to
show that for given f ∈ Cα(Ω) there exists a solution u ∈ C2,α(Ω) toLu = f in Ω

u = 0 on Ω
which then, by the Schauder estimates Theorem 8.28, implies the claim.

We argue by a method of continuity, reducing the problem to ∆ (which we already know,
by assumptions, that we have the Schauder theory for). Consider

Ltu := tL+ (1 − t)∆
Set

X := {u ∈ C2,α(Ω), u = 0 on ∂Ω}
equipped with the norm

∥u∥X := [D2u]Cα(Ω) + ∥u∥L∞(Ω).
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Also set
Y := {f ∈ Cα(Ω)}.

equipped with the norm
∥f∥Y := ∥f∥L∞(Ω) + [f ]Cα(Ω).

Then for each t ∈ R
Lt : X → Y,

is a bounded linear operator. An the question of finding ut ∈ C2,α(Ω) solvingLtut = f in Ω
u = 0 on Ω

is actually of invertability of Lt : X → Y .

Set
I := {t ∈ [0, 1] : Lt : X → Y is bijective}.

Observe that for each t ∈ [0, 1], Lt is uniformly elliptic. By the maximum principle (and
since c ≤ 0), Lt is always injective. So actually

I = {t ∈ [0, 1] : Lt : X → Y is surjective}.

We have I is nonempty, indeed 0 ∈ I, since L0 = ∆, and by our assumption on Ω.

Next we observe, I is closed: Indeed, assume that there is ti ∈ I, limi→∞ ti = t̄. Fix any
f ∈ Y , we want to show that there is ut̄ ∈ X with Lt̄ut̄ = f . Since ti ∈ I there exist
ui ∈ X with Lti

ui = f . By Schauder a priori estimates

[D2uti
]Cα(Ω) ≲ ∥uti

∥L∞(Ω) + ∥f∥L∞(Ω) + [f ]Cα(Ω).

Here we observe that the ellipticity constant and boundedness of Lti
is uniform for t ∈ [0, 1],

and thus the constant in ≲ does not depend on ti! By maximum principle (since c ≤ 0,
Corollary 2.63) we have

∥uti
∥L∞(Ω) ≲ ∥f∥L∞(Ω)

Again the constant in ≲ is independent of ti!

Using possibly the Ehrling-type Lemma, cf. Exercise 8.5 and Exercise 8.6, we find

sup
i

∥uti
∥C2,α(Ω) ≲ ∥f∥L∞(Ω) + [f ]Cα(Ω).

This is a case for Arzela-Ascoli, from which we conclude that uti
converges in C2-norm to

some ut̄ ∈ C2,α (in particular ut̄ ∈ X). Then we have

Lt̄ut̄ = lim
i→∞

Lti
uti

= f.

Thus Lt̄ is still surjective, i.e. I is closed.
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Lastly, I is open. Indeed let t̄ ∈ I. X and Y are Banach spaces, so by the open mapping
theorem (or the inverse map theorem), Lt̄ : X → Y is not only invertible, the inverse
L−1

t̄ : Y → X is a bounded linear function. We observe that

(8.16) Lt = Lt̄ + Lt − Lt̄ = Lt̄

(
IdX + L−1

t̄ (Lt − Lt̄)
)

Now
∥L−1

t̄ (Lt − Lt̄) ∥L(X,X) ≤∥L−1
t̄ ∥L(Y,X) ∥Lt − Lt̄∥L(X,Y )

≤|t− t̄| ∥L−1
t̄ ∥L(Y,X)

(
∥L∥L(X,Y ) + ∥∆∥L(X,Y )

)
.

In particular we can find δ > 0 such that for any t ∈ (t̄− δ, t̄+ δ),

∥L−1
t̄ (Lt − Lt̄) ∥L(X,X) ≤ 1

2 .

But then by the von Neumann sum argument,(
IdX + L−1

t̄ (Lt − Lt̄)
)−1

=
∞∑

k=0

(
L−1

t̄ (Lt − Lt̄)
)k

∈ L(X,X),

where again we use that X is a Banach space, so the right-hand side operator converges
in operator norm. But then (8.16) implies that Lt that for any t ∈ (t̄ − δ, t̄ + δ) is a
combination of two bijective operators, and thus bijective. And thus

(t̄− δ, t̄+ δ) ∈ I.

That is, I is open.

We conclude that I is an nonempty, open and closed subset of [0, 1], and that is equivalent
to saying I = [0, 1].

In particular 1 ∈ I, and thus L1 = L : X → Y is invertible. We can conclude. □

From the previous theorem we readily obtain Corollary 8.32.

Corollary 8.32. Assume u ∈ C2(Ω)21 and
Aαβ∂αβu = f in Ω,

where A ∈ Cα(Ω,Rn×n) is uniformly elliptic and bounded.

Then u ∈ C2,α
loc (Ω) and for any Ω′ ⊂⊂ Ω we have

[D2u]C2,α(Ω′) ≤ C(Ω′,Ω, α, n, A)
(
∥f∥L∞(Ω) + [f ]Cα(Ω) + ∥u∥L∞(Ω)

)
.

We also record the divergence-form version

21this assumption is only needed to have a reasonable notion for a solution with a maximum principle
– if u ∈ C0, the notion of Viscosity solutions could be used
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Corollary 8.33. Let Ω ⊂⊂ Rn.

Assume u ∈ W 1,2(Ω) be a weak solution to
div (A∇u) = f in Ω

where A ∈ Cα is uniformly elliptic and bounded. Then for any Ω′ ⊂⊂ Ω,
∥∇u∥Cα(Ω′) ≤ C(Ω′,Ω, α, n, A)

(
∥u∥L∞(Ω) + ∥f∥Cα(Ω)

)
.

Exercise 8.34. Prove Corollary 8.32. For this fix any Ω′ ⊂⊂ Ω. Pick a smoothly bounded
set Ω0 ⊂⊂ Ω, ∂Ω0 ∈ C∞ and Ω0 ⊃ Ω′.

Take η ∈ C∞
c (Ω0), η ≡ 1 in Ω. Consider the equation for ηu and use Theorem 8.31.

Lastly, we mention that the term ∥u∥L∞(Ω) in the Schauder estimate can be replaced by
the L1-norm of u, due to the following observation

Exercise 8.35. Let B ⊂ Rn be a ball. Show that for any ε > 0 there exists C = C(ε, B)
such that

∥u∥L∞(B) ≤ ε∥D2u∥L∞(B) + C∥u∥L1(B).

Hint: Prove first ∥f∥L∞(B) ≲ ∥f∥L1(B) + ∥Df∥L∞(B). Conclude that
∥Df∥L∞(B) ≤ ∥D2f∥L∞(B) + ∥Df∥L1(B).

Use e.g. the Ehrling-Lemma for W 2,1 to conclude
∥f∥L∞(B) ≲ ∥f∥L1(B) + ∥D2f∥L∞(B)

Then prove an Ehrling lemma, cf. Exercise 8.6.

9. Segway: Higher order Schauder estimates, nonlinear version,
bootstrapping, Hilbert’s 19th problem

Example 9.1 (Higher order bootstrapping, nonlinear version). Assume thatA ∈ C∞(Rn,Rn×n)
is uniformly bounded and uniformly elliptic and we have u ∈ C2 (actually u ∈ C1,α is
enough, only the notion of solution needs to be made precise22) soving the equation

Aαβ(Du)∂αβu = 0 in Ω.
If u ∈ C1,α then Aαβ(Du) ∈ Cα, by Schauder theory u ∈ C2,α, thus we can differentiate
the equation have

Aαβ(Du)∂αβ∂γu = 0 + ∂γ (Aαβ(Du)) ∂αβu ∈ Cα

thus again by Schauder, ∂γu ∈ C2,α, so u ∈ C3,α and we can continue this bootstrapping
argument to conclude u ∈ C∞.

But we need to initially assume u ∈ C1,α to conclude Aαβ(Du) ∈ Cα.
22Viscosity solutions, [Koike, 2004]
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This actually points to a serious issue that is one of the most famous regularity results,
the resulution of Hilbert’s 19th problem.

Problem 9.2 (Hilbert 19th problem (1900)). Consider any minimizer u of the energy
functional

E(u) :=
∫

Ω
I(∇u)dx.

That is assume
E(u) ≤ E(v) for all v with the same boundary data, u− v = 0 on ∂Ω.

Here I : Rn → R is smooth23, and uniformly convex, i.e. there exist λ,Λ ∈ (0,∞) such
that

λ|ξ|2 ≤ ⟨D2I(p)ξ, ξ⟩ ≤ Λ|ξ|2

and Ω ⊂ Rn is a smoothly bounded set.

Is it true that u ∈ C∞?

Observe that above we did not specify the class of functions permissible. But by the direct
method of calculus of variations it is easy to find a minimizer in the Sobolev space, so what
we shall mean is:

Problem 9.3 (Hilbert 19th problem (1900)). Consider any minimizer u∈ W 1 ,2 (Ω) of the
energy functional

E(u) :=
∫

Ω
I(∇u)dx.

That is assume
E(u) ≤ E(v) for all v ∈ W 1,2(Ω) with the same boundary data, u− v ∈ W 1,2

0 (Ω).
Here I : Rn → R is smooth, and uniformly convex, i.e. there exist λ,Λ ∈ (0,∞) such that

λ|ξ|2 ≤ ⟨D2I(p)ξ, ξ⟩ ≤ Λ|ξ|2

and Ω ⊂ Rn is a smoothly bounded set.

Is it true that u ∈ C∞?

Remark 9.4. Observe that uniformly convex is a quite strong assumption – f(t) = tp is
not uniformly convex for p > 2!

Proposition 9.5. Fix u0 ∈ W 1,2(Ω). There exists a unique minimizer to the above problem
in

X := {u ∈ W 1,2(Ω), u− u0 ∈ W 1,2
0 (Ω)}.

u ∈ X is a minimizer if and only if (in distributional sense)

∂β

(
(∂pβ

I)(∇u)
)

= 0 in Ω
23this is a simplified version, in general I could depend on x and u, to obtain a regular variational

problem
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Proof. I is in particular strictly convex, so uniqueness of a minimizer follows as in Sec-
tion 6.2.

For the Euler-Lagrange equation we observe
d

dt

∣∣∣∣
t=0
I(∇u+ t∇φ) =

n∑
β=1

(∂pβ
I)(∇u)∂βφ.

For existence we argue by the direct method of calculus of variations, but we need to
establish coercivity and lower semicontinuity.

Coercivity: We need to show

(Coercivity) if (uk)k∈N ∈ W 1,2
0 (Ω) and sup

k
E(uk) < ∞ then sup

k
∥u∥W 1,2(Ω) < ∞

Since I is uniformly convex, we have (by Tailor’s theorem and since λ|p−q|2 ≤ ⟨D2I(p)p−
q, p− q⟩)

I(p) ≥ I(q) +DI(q)(p− q) + λ

2 |p− q|2,

and similarly
I(p) ≤ I(q) +DI(q)(p− q) + Λ

2 |p− q|2,

and in particular lim|p|→∞ I(p) = +∞. So I must have a global minimum. Since I is
in particular convex, I has a unique minimum γ̄ – where we have that DI(γ̄) = 0. By
a simple shift in the function (shifting the energy does not change information about its
infimum) we may assume γ̄ = 0 and I(γ̄) = 0.

We conclude that we must have
λ

2 |p|2 ≤ I(p) ≤ Λ
2 |p|2

This readily leads to coercivity.

That is, whenever we have a minimizing sequence

E(uk) k→∞−−−→ inf
X

E ,

then we can assume w.l.o.g. uk converges weakly to some u ∈ X in W 1,2(Ω) (observe that
X is a convex subset of W 1,2(Ω), so weakly closed).

As for lower semicontinuity, we need to show
E(u) ≤ lim inf

k→∞
E(uk).

But we observe that by Poincaré lemma,
√

E(uk) is a norm on X which is equivalent to
the W 1,2(Ω) – in particular weak convergence does not change when considering

√
E(u) as
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a the norm. By lower semicontinuity of norms w.r.t their weak convergence we have lower
semicontinuity and can conclude that u is the desired minimizer. □

So minimiziation of E is not a problem, and we may see why one would hope Hilbert’s
problem has a positive answer. Everything is smooth and nice and quadratic, the simplest
case is I(∇u) = |∇u|2 – What could possibly go wrong?

As a sidenote, if I is non-convex it could be that I as two minimum values, e.g. in
dimension 1, I(1) = I(−1) = minR I. Then we can construct zig-zag minimizer without
any reasonable regularity, e.g. u(x) = |x|, then u′(x) ∈ {−1, 1} but u is not smooth at 0.
So some sort of convexity of I is important.

We observe that at least formally (using the chain rule) the equation we have to consider
is the one in Example 9.1. We can make the argument of Example 9.1 more precise to
conclude from Schauder estimates

Proposition 9.6. Assume that u ∈ W 1,2(Ω) is a weak solution of

∂β

(
(∂pβ

L)(∇u)
)

= 0 in Ω

where L is smooth and uniformly convex. If we a priori assume u ∈ C1,α(Ω) for some
α > 0, then u ∈ C∞(Ω).

Proof. Pick Ω′ ⊂⊂ Ω and let φ ∈ C∞
c (Ω) and |h| < dist (Ω′, ∂Ω). Then∫

Ω

(
∂pβ

L(∇u(x+h)) − ∂pβ
L(∇u(x))

)
∂βφ(x) = 0.

By the fundamental theorem of calculus,(
∂pβ

L(∇u(x+h)) − ∂pβ
L(∇u(x))

)
=
∫ 1

0
∂pβpγL (t∇u(x+ h) + (1 − t)∇u(x)) dt ∂γ (u(x+ h) − u(x)) .

Set
Ah(x) :=

∫ 1

0
∂βγL (t∇u(x+ h) + (1 − t)∇u(x)) dt,

then we see that A is uniformly elliptic, and we have (with the notation δhu(x) = u(x +
h) − u(x)),

div (A∇δhu) = 0
Our initial assumption u ∈ C1,α implies A ∈ Cα, so by divergence-form Schauder, Corol-
lary 8.33, we obtain δhu

|h| ∈ C1,α
loc (Ω). This holds uniform for small |h|, so actually u ∈ C2,α.

We now differentiate the equation to bootstrap to C∞. □

The above argument can be relaxed to the assumption u ∈ C1: In that case we have A ∈ C0,
so either we can extend Schauder-type theory to this regularity [Fernández-Real and Ros-Oton, 2022,
Proposition 2.32.], or extend Calderón-Zygmund theory, Theorem 7.15, to obtain to |h|−1δhu ∈
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C1−ε uniformly in h, that is u ∈ C2−ε, so we can run the previous arguments to conclude
u ∈ C∞.

Observe, however, that for u ∈ W 1,2 the above argument falls apart. Our A(∇u) from
above is merely bounded and measurable, and it needed two geniuses De Giorgi and Nash
(independently, but at the same time) to solve this long-standing issue.

10. De Giorgi - Nash - Moser iteration and De Giorgi’s theorem

A good reference for this section is [Han and Lin, 2011], also the recent [Fernández-Real and Ros-Oton, 2022]
is recommended. The theory below is commonly known as De Giorgi–Nash–Moser theory.

For simplicity we will always assume n ≥ 2 in the following. (If n = 1, Hölder continuity
is always true for W 1,2-functions!).

Theorem 10.1 (De Giorgi - Nash - Moser). Let u ∈ W 1,2(B(0, 4)) a weak solution to the
equation

div (A∇u) = 0.
where A = (aij(x))n

i,j=1 is a symmetric matrix, uniformly elliptic and uniformly bounded

λ|ξ|2 ≤
n∑

i,j=1
aijξiξj ∀ξ ∈ Rn, and |aij| ≤ Λ

Assume that the dependency x 7→ a(x) is only measurable (rendering all arguments from
Section 7.5 useless).

Then there exists α > 0 such that u ∈ Cα, and we have

sup
x∈B(0,2)

|u(x)| + sup
x ̸=y

|u(x) − u(y)|
|x− y|α

≤ C(n,Λ/λ)∥u∥L2(B(0,4)).

It is quite interesting, that the analogous result does not hold for too many systems, i.e.
when u : Rn → Rm, m ≥ 2 – [Giusti, 2003, Example 6.3]. That is, the techniques we
discuss here are mostly scalar. The reason is, that a lot of arguments we discuss below are
about superlevel sets {u > λ}.

Corollary 10.2 (Resolution of Hilbert’s 19th problem). Assume that u ∈ W 1,2(Ω) is a
weak solution of

∂β

(
(∂pβ

L)(∇u)
)

= 0 in Ω
where L is smooth and uniformly convex. Then u ∈ C∞(Ω).

Proof. We argue as in Proposition 9.6. Before we used Schauder theory there (which we
can’t use here, because we don’t know yet that u ∈ C1,α), we wrote the equation as

div (Ah∇δhu) = 0
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for Ah was only boudned measurable. From Theorem 10.1 we obtain that actually δhu/|h| ∈
Cα, thus u ∈ C1,α, and we can conclude by the arguments in Proposition 9.6. □

It is worthwile to observe that the following arguments (one by Nash-Moser, one by De
Giorgi) are fundamentally different from previous arguments in Calderon-Zygmund or
Schauder theory. For those we always tried to “reduce” the equation at hand to the
laplace equation (by blowup, freezing etc.). These are called perturbative methods. The
new approaches don’t do this. They instead try to obtain a continuous improvement in
regularity that eventually leads to the desired results, working directly with the equation.

There are two steps to showing Theorem 10.1, boundedness and Hölder continuity.

We begin by stating the boundedness theorem (this can be substantially generalized, as
always, the method is more important than the specific theorem)

Theorem 10.3 (Local Boundedness). Fix A(x) = (aij(x))n
i,j=1 bounded and measurable,

uniformly elliptic and bounded with ellipticity constants λ,Λ > 0, i.e.

λ|ξ|2 ≤ aijξiξj ∀ξ ∈ Rn, |aij| ≤ Λ

Assume u ∈ W 1,2(B(0, 1)) is a solution to

−div (A∇u) = 0 in B(0, 1),

in distributional sense, i.e. ∫
B(0,1)

aij∂iu ∂jφ = 0

for all φ ∈ C∞
c (B(0, 1)) in B(0, 1).

Then
sup

B(0,1/2 )
|u| ≤ C ∥u∥L2(B(0,1))

The constant C depends on λ,Λ, p, n but not on u, f or otherwise on A.

One important generalization we want to mention here, is that it the above result applies
to

−div (A∇u) = f
where f ∈ Lp for some p > n

2 , in which case we find that

sup
B(0,1/2 )

|u| ≤ C
(
∥u∥L2(B(0,1)) + ∥f ∥Lq(B(0 ,1 ))

)
The assumption f ∈ Lp for p > n

2 is justified by Laplace theory. If ∆u ∈ Lp then we can
hope that u ∈ W 2,p

loc . By Sobolev embedding W 2,p
loc ↪→ L∞ if p > n

2 (but not if p < n
2 .)
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10.1. Boundedness by Moser-Itaration: First proof of Theorem 10.3. We begin
by a few observations, that we sucessively sharpen to actually obtain a theorem that implies
Theorem 10.3.

The first observation is that a PDE such as the one under consideration implies an some-
what unnatural phenomenon: a specific Hölder inequality for u is true “in the wrong di-
rection”. This is called a reverse Hölder inequality. A function satisfying a reverse Hölder
inequality must have some special properties (one result that we mention in passing is
Gehring’s Lemma).

Example 10.4 (A first reverse inequality). Let n ≥ 3.

Assume u ∈ W 1,2(B(0, 1)) is a solution to

−div (A∇u) = 0 in B(0, 1),

in distributional sense, i.e. ∫
B(0,1)

aij∂iu ∂jφ = 0

for all φ ∈ C∞
c (B(0, 1)) in B(0, 1).

Then for any 0 < r < R ≤ 1

∥u∥
L

2n
n−2 (B(0 ,r))

≤ C(Λ, λ) 1
R − r

∥u∥L2(B(0,R)).

Proof. Let η ∈ C∞
c (B(0, R)) be as from Exercise 10.5, η ≡ 1 in B(0, r) and |Dη| ≤ C

R−r
.

Consider24

η2u ∈ W 1,2
0 (B(0, 1)).

By density we then have ∫
B(0,1)

aij∂iu ∂j(η2u) = 0

Testing with η2u (or the resulting inequality) is often called Cacciopoli inequality; also
sometimes it is referred to simply as the energy inequality. Using the product rule∫

B(0,1)
η2aij∂iu ∂ju = −2

∫
B(0,1)

ηaij∂iu ∂jη u.

By ellipticity on the left and Hölder’s inequality on the right we have

λ
∫

B(0,1)
η2|∇u|2 ≤ C(Λ)∥∇η∥L∞

(∫
B(0,1)

η2|∇u|2
) 1

2

∥u∥L2(B(0,R))

24η2 instead for η is mainly for stylistic reasons to not need to deal with roots, η2 has essentially the
same qualities as η
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By Young’s inequality, 2ab ≤ δa2 + 1
δ
b2, we then have (recall that constants C change from

line to line), we obtain for any ε > 0,

λ
∫

B(0,1)
η2|∇u|2 ≤ ε

∫
B(0,1)

η2|∇u|2 + C(Λ)∥∇η∥2
L∞

ε

∫
B(0,R)

|u|2

For ε = λ
2 we then find∫

B(0,1)
η2|∇u|2 ≤ C(Λ, λ)

(
1

(R − r)2

∫
B(0,R)

|u|2
)

We now apply Sobolev inequality for the left-hand side (here we use, mainly for simplicity,
n ≥ 3)

∥ηu∥
L

2n
n−2 (Rn)

≤ C(n) ∥∇(ηu)∥L2(Rn) ≤ C(n)∥η|∇u|∥L2(B(0 ,1 )) + ∥∇η∥L∞ ∥u∥L2(B(0 ,R)).

Then we have shown

∥ηu∥2
L

2n
n−2

≤ C(Λ, λ)
(

1
(R − r)2

∫
B(0,R)

|u|2
)

and thus
∥u∥

L
2n

n−2 (B(0 ,r))
≤ C(Λ, λ) 1

R − r
∥u∥L2(B(0,R)).

□

Exercise 10.5. Show that for any 0 < r < R < ∞ there exists nonnegative η ∈
C∞

c (B(0, R)), η ≡ 1 in B(0, r) and

|Dkη(x)| ≤ C(k)
(R − r)k

∀k = 1, 2, . . .

where C(k) is a constant which depends on k and possibly the dimension n, but not on r
and R.

Example 10.4 is a reverse Hoelder inequality, but it is not clear what it really tells us with
respect to boundedness. However we may hope that if we get a control of ∥u∥Lp for some
very large p (or maybe as p → ∞), then we almost control the L∞-norm of u, thanks to
the following

Exercise 10.6. Let Ω ⊂ Rn be any open bounded set and f : Ω → R be measurable. Then

∥f∥L∞(Ω) = lim
p→∞

(∫
Ω

|f |p
) 1

p

In particular show that

∥f∥L∞(Ω) ≤ lim inf
p→∞

(∫
Ω

|f |p
) 1

p
.

(I.e. when the right-hand side is finite, then the left-hand side is finite and the inequality
holds).
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The main point of what we call the Moser iteration is to use the same method as in
Example 10.4 but testing with “powers of u”, i.e. with η2uβ+1 instead of η2u. Here we use
the notation uβ+1 := u|u|β for some β ≥ 0. This then could lead to an inequality chain on
successively smaller balls

∥u∥LpK (B(0,rK)) ≲ . . . . . . ≲ ∥u∥Lp2 (B(0,r2)) ≲ ∥u∥
L

2n
n−2 (B(0,r1))

≲ ∥u∥L2(B(0,1))

This is the Moser iteration

The basic building block of this idea is the following observation: It is important to observe
that in the following we need to assume u to be a priori bounded (which is not a good
assumption if that is what we want to show). A further refinement then will lead to the
real argument.

Example 10.7 (The (a priori) reverse inequality). Let n ≥ 3.

Assume u ∈ W 1,2(B(0, 1)) is a solution to
−div (A∇u) = 0 in B(0, 1),

in distributional sense, i.e. ∫
B(0,1)

aij∂iu ∂jφ = 0

for all φ ∈ C∞
c (B(0, 1)) in B(0, 1).

Then for any γ ≥ 2, if we additionally assume u ∈ L∞(B(0, 1)), we have the estimate for
any 0 < r < R ≤ 1.

∥u∥
L

γn
n−2 (B(0 ,r))

≤ (C(λ,Λ) γ)
1
γ

1
(R − r)2 ∥u∥Lγ(B(0,R)).

Proof. Let η ∈ C∞
c (B(0, R)) be as above, i.e. from Exercise 10.5, η ≡ 1 in B(0, r) and

|Dη| ≤ C
R−r

.

As discussed we consider as testfunction φ

η2u|u|β.
Observe that

∂j(u|u|β) = (β + 1)|u|β∂ju

Now the important observation is: since we assume already that u ∈ L∞ we know that
η2|u|βu ∈ W 1,2

0 (B(0, 1)).

By density we then have ∫
B(0,1)

aij∂iu ∂j(η2u|u|β) = 0.

Using the product rule

(β + 1)
∫

B(0,1)
η2aij|u|β∂iu ∂ju = −2

∫
B(0,1)

ηaij∂iu ∂jη u|u|β.
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By ellipticity on the left and Hölder’s inequality25 on the right we have

λ(β + 1)
∫

B(0,1)
η2|∇u|2|u|β ≤ C(Λ)∥∇η∥L∞

(∫
B(0,1)

η2|u|β|∇u|2
) 1

2

∥|u|
β
2 u∥L2(B(0,R))

By Young’s inequality, we again absorb, and find (the constant is independent of β since
β ≥ 0))

(β + 1)
∫

B(0,1)
η2|∇u|2|u|β ≤ C(λ,Λ) 1

(R − r)2 ∥|u|
β
2 u∥2

L2(B(0,R))

We simplify this

(β + 1)
∫

B(0,1)
η2|∇u|2|u|β ≤ C(λ,Λ) 1

(R − r)2 ∥u∥2+β
L2+β(B(0,R))

Next, as above we plan to apply Sobolev inequality. Observe that

|∇|u|
β+2

2 |2 =
(
β + 2

2

)2

|u|β|∇u|2

So actually we have (observe β + 1 ≈ β + 2 since β ≥ 0)∫
B(0,1)

η2|∇|u|
β+2

2 |2 ≤ (β + 2 )C(λ,Λ) 1
(R − r)2 ∥u∥2+β

L2+β(B(0,R))

By Sobolev inequality (observe we use the L2-Sobolev inequality, so the additional con-
stants are independent of β!)

(10.1) ∥η|u|
β+2

2 ∥2
L

2n
n−2 (Rn)

≤ C(n)∥η|∇|u|
β+2

2 |∥2
L2(B(0 ,1 )) + ∥∇η∥2

L∞ ∥|u|
β+2

2 ∥2
L2(B(0 ,R)).

Together, (again, observe that β + 1 ≈ β + 2 for β ≥ 0) we have shown

∥η|u|
β+2

2 ∥2
L

2n
n−2 (Rn)

≤(β + 2 )C(λ,Λ) 1
(R − r)2 ∥u∥2+β

L2+β(B(0,R)).

That is

∥u∥2+β

L
(β+2)n

n−2 (B(0 ,r))
≤(β + 2 )C(λ,Λ) 1

(R − r)2 ∥u∥2+β
L2+β(B(0,R)).

That is

∥u∥
L

(β+2)n
n−2 (B(0 ,r))

≤
(

(β + 2)C(λ,Λ)
(R − r)2

) 1
2+β

∥u∥L2+β(B(0,R)).

Setting γ := β + 2,

∥u∥
L

γn
n−2 (B(0 ,r))

≤
(

(β + 2)C(λ,Λ)
(R − r)2

) 1
2+β

∥u∥Lγ(B(0,R)).

□

25∫
B(0,1) ηaij∂iu ∂jη u|u|β =

∫
B(0,1) ηaij |u|

β
2 ∂iu ∂jη u|u|

β
2
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Example 10.7 looks very promising, but it has the very serious a priori assumption u ∈ L∞.
But, as we have seen now a few times, a priori estimates (which are easier being obtained,
and should be seen as the best way to gather some intuition about the PDE at hand) can
sometimes be transformed into a posteriori estimates. This is our next goal, it will follow
all the above arguments, but in order to make the test functions bounded it will cut off the
testfunction at a certain height. We observe (this idea will also appear in the De Giorgi
method):

Exercise 10.8. Let Ω be an open bounded set. Let u ∈ W 1,p(Ω) and k, ℓ ∈ R. Show that
min{max{u,−k}, ℓ} ∈ W 1,2 ∩ L∞(Ω)

You can (and should) use one of the following: If f ∈ W 1,p and g is Lipschitz, then g ◦ f
belongs to W 1,p. Or, if f ∈ W 1,p then |f | ∈ W 1,p.

Moroever, the above min-max cutoff does not change the derivative

Exercise 10.9. Let f, g ∈ W 1,p(Ω), p ≥ 1, where Ω is any open set. Assume there is a
measurable set A ⊂ Ω such that f = g. Show that

Df = Dg a.e. in A.

Hint: Use Lemma 5.18.

Exercise 10.10. Let f(x) = x and g(x) = −x. Show

• f, g ∈ W 1,p((−1, 1)).
• f ′(0) ̸= g′(0)
• Why doesn’t that contradict the claim in Exercise 10.9?

Exercise 10.11. Let Ω be an open bounded set. Let u ∈ W 1,p(Ω) and k, ℓ ∈ R. By
Exercise 10.8,

min{max{u, k}, ℓ} ∈ W 1,2 ∩ L∞(Ω)
Show that for the distributional derivative a.e. in Ω we have

∂j min{max{u,−k}, ℓ} =
∂ju in {x ∈ Ω : ℓ < u(x) < k}

0 otherwise
Hint: Use Exercise 10.9

We are ready to prove the Moser iteration approach to boundedness. To illustrate the
power of this method, we will consider a differential inequality. So we will get that for
a subsolution we gain control on u+ – this has some similarities to the structure of a
maximum principle).

Proposition 10.12 (Moser iteration step). Let n ≥ 2. Fix A(x) = (aij(x))n
i,j=1 bounded

and measurable, uniformly elliptic and bounded with ellipticity constants λ > 0, i.e.
λ|ξ|2 ≤ aijξiξj ∀ξ ∈ Rn, |aij| ≤ Λ



PARTIAL DIFFERENTIAL EQUATIONS I & II VERSION: August 1, 2023 167

Assume u ∈ W 1,2(B(0, 1)) is a solution to
−div (A∇u)≤0 in B(0, 1),

in distributional sense, i.e. ∫
B(0,1)

aij∂iu ∂jφ ≤ 0

for all nonnegative φ ∈ C∞
c (B(0, 1)) in B(0, 1).

Pick any p > 1 if n = 2 or any p ∈ (1, n
n−2 ] if n ≥ 3, then we have for any γ ≥ 2,

∥u+∥Lγp(B(0,r)) ≤
(
C(λ,Λ, p) γ

(R − r)2

) 1
γ

∥u+∥Lγ(B(0,R)).

In particular whenever the right-hand side is finite, the left-hand side is finite.

As a corollary,

Corollary 10.13 (Moser iteration step). Let n ≥ 2. Fix A(x) = (aij(x))n
i,j=1 bounded and

measurable, uniformly elliptic and bounded with ellipticity constants λ > 0, i.e.
λ|ξ|2 ≤ aijξiξj ∀ξ ∈ Rn, |aij| ≤ Λ

Assume u ∈ W 1,2(B(0, 1)) is a solution to
−div (A∇u)=0 in B(0, 1),

in distributional sense, i.e. ∫
B(0,1)

aij∂iu ∂jφ=0

for all φ ∈ C∞
c (B(0, 1)) in B(0, 1).

Pick any p > 1 if n = 2 or any p ∈ (1, n
n−2 ] if n ≥ 3, then we have for any γ ≥ 2 and any

0 < r < R ≤ 1

∥u∥Lγp(B(0,r)) ≤
(
C(λ,Λ, p) γ

(R − r)2

) 1
γ

∥u∥Lγ(B(0,R)).

In particular whenever the right-hand side is finite, the left-hand side is finite.

Exercise 10.14. Prove that Corollary 10.13 is a consequence of Proposition 10.12.

Proof of Proposition 10.12. For m > 0 we set
ūm := min{u+,m}

By Exercise 10.8 ūm ∈ L∞ ∩ W 1,2(B(0, 1)). Thus, taking η as in Example 10.4 and 10.7,
we test the equation with

η2ūβ
mu+ ∈ W 1,2

0 (B(0, 1)).
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Indeed observe26 that since β ≥ 0,
∇
(
ūβ

mu+
)

= β ∇ūm︸ ︷︷ ︸
=0 if u > m

u+ū
β−1
m︸ ︷︷ ︸

∈[0,u+)

+ ūβ
m︸︷︷︸

∈L∞

∇u+︸ ︷︷ ︸
∈L2

∈ L2(B(0, 1)).

By density, from the PDE we have∫
B(0,1)

aij∂iu ∂j

(
η2uβ

mu+
)

≤ 0

That is ∫
B(0,1)

η2 ūβ
m aij∂iu ∂ju+ + β

∫
B(0,1)

η2 ūβ−1
m u+ aij∂iu ∂jum

≤ −
∫

B(0,1)
aij∂iu 2 η ∂jη u

β
mu+

Now we would like to use ellipticity on the left-hand side, but we are worried because
there are two different vectors multiplied to aij. But, they are actually not different: By
Exercise 10.11,

Dūm =
Du a.e. in {x ∈ B(0, 1) : 0 < u(x) < m}

0 a.e. anywhere else.
and similarly for u+, so we have∫

B(0,1)
η2 ūβ

m aij∂iu+ ∂ju+ + β
∫

B(0,1)
η2 ūβ−1

m u+ aij∂ium ∂jum

≤ −
∫

B(0,1)
aij∂iu 2 η ∂jη u

β
mu+

Now we use ellipticity,

λ

(∫
B(0,1)

η2 ūβ
m |Du+|2 + β

∫
B(0,1)

η2 ūβ−1
m u+ |Dum|2

)

≤ −
∫

B(0,1)
aij∂iu 2 η ∂jη u

β
mu+

Now for the right-hand side we observe that
∂iuu+ = ∂iu+ u+

So we arrive at

λ

(∫
B(0,1)

η2 ūβ
m |Du+|2 + β

∫
B(0,1)

η2 ūβ−1
m u+ |Dum|2

)

≤C(Λ)∥Dη∥L∞

∫
B(0,1)

η |Dū+| ūβ
m u+.

26if you are uncomfortable about the set {u = 0}, then use
(min{u+ + k, k + m})β(u+ + k) − kβ+1

for a tiny k > 0.
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Now, as before, by Young’s inequality we arrive at∫
B(0,1)

η2 ūβ
m |Du+|2 + β

∫
B(0,1)

η2 ūβ−1
m u+ |Dum|2

≤C(λ,Λ)∥Dη∥2
L∞

∫
B(0,R)

ūβ
m |u+|2.

Set
w := ū

β
2
mu+

Then
|Dw|2 ≤ (1 + β)

(
βūβ

m|Dūm|2 + ūβ
m|Dū|2

)
Thus, we find ∫

B(0,1)
η2 |Dw|2

≤C(λ,Λ)(1 + β)∥Dη∥2
L∞

∫
B(0,R)

|w|2.

This is the same inequality as in Example 10.4, and we have with the same argument as
there for any q ∈ (1, 2n

n−2 ] (or q < ∞ if n = 2)

∥w∥2
Lq(B(0,r)) ≤ C(λ,Λ)(1 + β) 1

(R − r)2 ∥w∥2
L2(B(0,R)).

Since w := ū
β
2
mu+ we find

∥w∥2
Lq(B(0,r)) ≤ C(λ,Λ)(1 + β) 1

(R − r)2 ∥u+∥2+β
L2+β(B(0,R)).

Letting m → ∞ (using monotone convergence theorem) we obtain

∥u+∥2+β

L
2+β

2 q(B(0,r))
≤ C(λ,Λ)(1 + β) 1

(R − r)2 ∥u+∥2+β
L2+β(B(0,R)).

That is,

∥u+∥
L

(β+2)
2 q(B(0,r))

≤
(
C(λ,Λ, q) (β + 2)

(R − r)2

) 1
2+β

∥u+∥L2+β(B(0,R)).

Again, we set γ := β + 2 ≥ 2, and then have for p := q
2 > 1 (more specifically we can pick

any p > 1 if n = 2 and any p ∈ (1, n
n−2) if n ≥ 3)

∥u+∥Lγp(B(0,r)) ≤
(
C(λ,Λ, q) γ

(R − r)2

) 1
γ

∥u+∥Lγ(B(0,R)).

We can conclude. □

By an iteration we now obtain the following local boundedness result, which readily implies
Theorem 10.3.
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Theorem 10.15 (Local Boundedness (inequality)). Fix A(x) = (aij(x))n
i,j=1 bounded and

measurable, uniformly elliptic and bounded with ellipticity constants λ,Λ > 0, i.e.
λ|ξ|2 ≤ aijξiξj ∀ξ ∈ Rn, |aij| ≤ Λ

Assume u ∈ W 1,2(B(0, 1)) is a solution to
−div (A∇u) ≤ 0 in B(0, 1),

in distributional sense, i.e. ∫
B(0,1)

aij∂iu ∂jφ ≤ 0

for all nonnegative φ ∈ C∞
c (B(0, 1)) in B(0, 1).

Then
sup

B(0,1/2)
u+ ≤ C∥u∥L2(B(0,1))

Where C depends on λ,Λ, n but not on u, or otherwise on A.
Exercise 10.16. Show that Theorem 10.15 implies Theorem 10.3

Proof of Theorem 10.15. As discussed before, we will use the reverse Hölder inequality
from Proposition 10.12 on sucessively smaller balls and larger exponents.

Fix p > 1 (either p = n
n−2 if n ≥ 3 or any p > 2).

We set
ri := 1

2 + 2−i−1.

and
γi := 2pi

From Proposition 10.12 we then have

∥u+∥Lγi (B(0,ri)) ≤
(
C(λ,Λ, p) γi−1

(ri−1 − ri)2

) 1
γi−1

∥u+∥Lγi−1 (B(0,ri−1)).

This translates into

∥u+∥L2ip(B(0,ri)) ≤e
log(8 C(λ,Λ,p))+i log 2+(i−1) log p

2pi−1 ∥u+∥Lγi−1 (B(0,ri−1)).

Iterating this estimates implies (observe that r0 = 1 and γ0 = 2)

∥u+∥L2ip(B(0,ri)) ≤e
∑i

j=1
log(8 C(λ,Λ,p))+j log 2+(j−1) log p

2pj−1 ∥u+∥L2(B(0,1)).

Now we observe that since p > 1,

Γ(λ,Λ, p) :=
∞∑

j=1

log (8C(λ,Λ, p)) + j log 2 + (j − 1) log p
2pj−1 < ∞

and then we have shown
∥u+∥L2ip(B(0, 1

2 ))) ≤ eΓ∥u+∥L2(B(0,1))
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This holds for all i ∈ N, so in particular, Exercise 10.6,
∥u+∥L∞(B(0, 1

2 )) ≤ lim sup
i→∞

∥u+∥L2ip(B(0, 1
2 ))) ≤ eΓ∥u+∥L2(B(0,1))

We can conclude. □

An adapatation of the above argument can also be used for inhomogeneous right-hand side,
even with right-hand side depending on u. For details see [Han and Lin, 2011, Chapter 4].

Theorem 10.17 (Local Boundedness (inequality)). Fix A(x) = (aij(x))n
i,j=1 bounded and

measurable, uniformly elliptic and bounded with ellipticity constants λ,Λ > 0, i.e.
λ|ξ|2 ≤ aijξiξj ∀ξ ∈ Rn, |aij| ≤ Λ

Let f ∈ Lq(B(0, 1)) for some q > n
2 .

Assume u ∈ W 1,2(B(0, 1)) is a solution to
−div (A∇u) ≤ f in B(0, 1),

in distributional sense, i.e. ∫
B(0,1)

aij∂iu ∂jφ ≤
∫
fφ

for all nonnegative φ ∈ C∞
c (B(0, 1)) in B(0, 1).

Then
sup

B(0,1/2)
u+ ≤ C(∥u∥L2(B(0,1)) + ∥f∥Lq(B(0,1)))

Where C depends on λ,Λ, p, n but not on u, f or otherwise on A.

The assumption q > n
2 is natural: Even for ∆u = f ∈ Lq we get u ∈ W 2,q. If q > n

2 then
by Sobolev-Morrey embedding, Theorem 5.27, W 2,q ↪→ C0,2− n

q , i.e. we can hope for u to
be bounded.

10.2. Boundedness by De Giorgi’s method: Second proof of Theorem 10.3. The
other method to obtain Theorem 10.3 is by De Giorgi (both methods were developed around
the same time). It is important to know both approaches, because in more complicated
situations it may be that one performs better than the other.

Similar to Moser, the underlying effect that we use is the Cacciopoli estimate. In contrast
to Moser, De Giorgi’s method does not use powers, but different superlevel sets of u.

Lemma 10.18 (Cacciopoli inequality). Fix A(x) = (aij(x))n
i,j=1 bounded and measurable,

uniformly elliptic and bounded with ellipticity constants λ,Λ > 0, i.e.
λ|ξ|2 ≤ aijξiξj ∀ξ ∈ Rn, |aij| ≤ Λ

There exists δ > 0 depending only on n, λ, and Λ such that the following holds.
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Assume u ∈ W 1,2(B(0, 1)) is a solution to
−div (A∇u) ≤ 0 in B(0, 1),

in distributional sense, i.e. ∫
B(0,1)

aij∂iu ∂jφ ≤ 0

for all nonnegative φ ∈ C∞
c (B(0, 1)) in B(0, 1).

Let k > 0 and η ∈ C∞
c (B(0, 1)). Then we have for

v := (u− k)+∫
B(0,1)

|∇(ηv)|2 ≤ C ∥∇η∥2
L∞

∫
supp η

|v|2

Proof. From Exercise 10.11 we again have that

∂jv =
∂ju in {u < k}

0 otherwise

That for a.e. x with v(x) ̸= 0 we have ∂ju = ∂jv.

In particular we will use below
(∂ju)v = (∂jv) v a.e.

As before, η2v is a permissible test-function and we have∫
B(0,1)

η2aij∂iv∂jv =
∫

B(0,1)
η2aij∂iu∂jv

=
∫

B(0,1)
aij∂iu∂j(η2v) − 2

∫
B(0,1)

ηaij∂iu∂jη v

≤ − 2
∫

B(0,1)
ηaij∂iu∂jη v

= − 2
∫

B(0,1)
ηaij∂iv∂jη v.

By the same absorption argument as in the Moser-iteration argument we then obtain∫
B(0,1)

η2|∇v|2 ≤ C ∥∇η∥L∞

∫
supp η

|v|2

with a constant C depending on Λ, λ, but not on v or η.

Using the product rule we find (the constant C changes from line to line observe that
∇η ≡ 0 in Rn \ supp η) ∫

B(0,1)
|∇(ηv)|2 ≤ C ∥∇η∥2

L∞

∫
supp η

|v|2

□
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Proposition 10.19 (De Giorgi’s method). Fix A(x) = (aij(x))n
i,j=1 bounded and measur-

able, uniformly elliptic and bounded with ellipticity constants λ,Λ > 0, i.e.

λ|ξ|2 ≤ aijξiξj ∀ξ ∈ Rn, |aij| ≤ Λ

There exists δ > 0 depending only on n, λ, and Λ such that the following holds.

Assume u ∈ W 1,2(B(0, 1)) is a solution to

−div (A∇u) ≤ 0 in B(0, 1),

in distributional sense, i.e. ∫
B(0,1)

aij∂iu ∂jφ ≤ 0

for all nonnegative φ ∈ C∞
c (B(0, 1)) in B(0, 1).

If

(10.2) ∥u+∥L2(B(0,1)) < δ

then

u ≤ 1 a.e. in B(0, 1
2)

Exercise 10.20. Show that Proposition 10.19 implies Theorem 10.15 (and thus of Theo-
rem 10.3). Hint: Apply Proposition 10.19 to ũ := δ u

2∥u∥L2(B(0,1))
.

Proof of Proposition 10.19. We again consider the balls between B(0, 1/2) and B(0, 1):

Set

ri := 1
2 + 2−i−1,

and
µi := 1 − 2−i

and take ηi ∈ C∞
c (B(0, ri−1)), ηi ≡ 1 in B(0, ri) nonnegative bump functions with |∇ηi| ≲n

2i.

We apply Cacciopoli inequality, Lemma 10.18, and have

(10.3)
∫

B(0,1)
|∇(ηi(u− µi)+)|2 ≤ C 2 2i

∫
supp ηi

|(u− µi)+|2

Fix some p ∈ (2, 2n
n−2 ] (if n > 3, any p > 2 if n = 2). From Sobolev embedding (with

a constant depending on p, but not on i; recall constants change from line to line!), and
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using that ηi−1 ≡ 1 in supp ηi,(∫
B(0,1)

|ηi(u− µi)+|p
) 2

p (10.3), Sob.
≤ C 22i

∫
supp ηi

|(u− µi)+|2

=C 22i
∫

supp ηi

ηi−1
2︸ ︷︷ ︸

≡1

|(u− µi)+|2

≤C22i
∫

B(0 ,1 )
(ηi−1)2 |(u− µi)+|2.

(10.4)

Now observe that µi > µi−1, so u(x)−µi < u(x)−µi−1 – and thus |(u−µi)+|2 ≤ |(u−µi−1)+|2

Then we have obtained(∫
B(0,1)

|ηi(u− µi)+|p
) 1

p

≤C2i

(∫
B(0 ,1 )

|ηi−1(u− µi−1)+|2
) 1

2

.(10.5)

Observe, on the left-hand side p > 2! So again this is an inverse Hölder inequality! We
have from (normal) Hölder inequality.

(∫
B(0,1)

|ηi(u− µi)+|2
) 1

2

=
(∫

{ηi(u−µi)+>0}
|ηi(u− µi)+|2

) 1
2

≤|{ηi(u− µi)+ > 0}|
1
2 − 1

p

(∫
B(0,1)

|ηi(u− µi)+|p
) 1

p

(10.5)
≤ C2i |{ηi(u− µi)+ > 0}|

1
2 − 1

p

(∫
B(0,1)

|ηi−1(u− µi−1)+|2
) 1

2

.

(10.6)

Now if x ∈ B(0, 1) such that ηi(x)(u − µi)+(x) > 0 then ηi(x) > 0, so in particular
ηi−1(x) = 1. Moroever, we must have u(x) > µi, so

u(x) − µi−1 > µi − µi−1 = 2−i.

That is we have

{ηi(u− µi)+ > 0} ⊂{ηi−1(u− µi−1)+ > 2−i}

and thus (by Chebychev’s inequality)

(10.7) |{ηi(u− µi)+ > 0}| ≤ 22i
∫

B(0,1)
(ηi−1(u− µi−1)+)2 .

Combining this with (10.6),(∫
B(0,1)

|ηi(u− µi)+|2
) 1

2

≤C2i
(
22i
) 1

2 − 1
p

(∫
B(0,1)

|ηi−1(u− µi−1)+|2
) 1

2 + 1
2 − 1

p

.
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That is(∫
B(0,1)

|ηi(u− µi)+|2
) 1

2

≤C2i
(
22i
) 1

2 − 1
p

(∫
B(0,1)

|ηi−1(u− µi−1)+|2
) 1

2(2− 2
p)
.

That is, for some Γ > 0 (depending only on irrevant data) and setting γ := 1 − 2
p

we have
shown that for any i ∈ N.

∥ηi(u− µi)+∥L2(B(0,1)) ≤ Γi∥ηi−1(u− µi−1)+∥1+γ
L2(B(0,1))

By Exercise 10.21 if δ is small enough, our assumption (10.2) implies that
lim
i→∞

∥ηi(u− µi)+∥L2(B(0,1)) = 0.

We are ready to conclude: If there was some σ > 1 and a measurable set A ⊂ B(0, 1/2 )
such that u ≥ σ in A, then we have

|σ − 1|︸ ︷︷ ︸
>0

√
Ln(A) ≤ ∥(u− µi)+∥L2(A) ≤ ∥ηi(u− µi)+∥L2(B(0,1))

i→∞−−−→ 0.

so Ln(A) = 0. Since

{u > 1} ∩B(0, 1/2) =
∞⋃

ℓ=1
{u > 1 + 1

ℓ
} ∩B(0, 1/2),

and the countable union of zero-sets is still a zero set, we conclude that Ln({u > 1} ∩
B(0, 1/2)) = 0 and thus u ≤ 1 a.e. in B(0, 1/2).

□

Exercise 10.21. Show that for any Γ > 0, γ > 0 there exists δ > 0 such that the following
holds.

Assume (ai)∞
i=0 is a nonnegative sequence in [0,∞) with the following growth law

ai ≤ Γi (ai−1)1+γ ∀i = 1, . . . .
Assume moreover that a0 < δ.

Then limi→∞ ai = 0.

10.3. Hölder continuity (Moser’s method). Moser’s technique to obtain Hölder con-
tinuity essentially is to test with negative powers u−β, [Han and Lin, 2011, Chapter 4,
Theorem 4.17], to obtain Harnack’s inequality.
Lemma 10.22 (Composition and sub/supersolutions). Let Ω ⊂ Rn be an open set, A =
(aij) : Ω → Rn×n be a bounded measurable (possible degenerate) elliptic matrix function,
with constants 0≤λ < Λ < ∞ and

aijξiξj ≥ λ|ξ|2, ∀ξ ∈ Rn, x ∈ Ω
and

|aij| ≤ Λ ∀x ∈ Ω.
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Figure 10.1. Φ from Corollary 10.23

Assume that u ∈ W 1,2(Ω) and
−div (A∇u)≥0 in Ω.

Let Φ ∈ C∞(R) be a convex function, which is moreover nonincreasing (Φ′ ≤ 0), with
globally bounded first and second derivatives, supR |Φ′| + |Φ′′| < ∞. Then Φ(u) ∈ W 1,2(Ω)
and we have

−div (A∇Φ(u))≤ 0 in Ω

Proof. Let φ ∈ C∞
c (Ω), φ ≥ 0, then we have∫

aij∂iΦ(u) ∂jφ =
∫
aijΦ′(u)∂iu ∂jφ

=
∫
aij∂iu ∂j (Φ′(u)φ) −

∫
aij∂iuΦ′′(u)∂juφ

=−
∫
aij∂iu ∂j (−Φ′(u)φ) −

∫
aij∂iuΦ′′(u)∂juφ

Since −Φ′(u)φ ≥ 0 (and Φ′(u)φ ∈ W 1,2 because Φ′′ is bounded) we have from the PDE

−
∫
aij∂iu ∂j (−Φ′(u)φ) ≤ 0.

Also, by ellipticity (Φ′′ ≥ 0 by convexity)

−
∫
aij∂iuΦ′′(u)∂juφ ≤ −λ

∫
|∇u|2Φ′′(u)φ ≤ 0

So we have ∫
aij∂iΦ(u) ∂jφ ≤ 0

□
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By approximation, we also obtain

Corollary 10.23. Let A be as in Lemma 10.22. Consider for any fixed δ > 0 Φ(t) =
− min{0, log(t+ δ)}. Cf. Figure 10.1. Assume that u ∈ W 1,2(Ω), u ≥ 0 and

−div (A∇u)≥0 in Ω.
Then Φ(u) ∈ W 1,2(Ω) and

−div (A∇Φ(u))≤ 0 .

Proof. Set
v := (log(u+ δ))−

Observe since u ≥ 0 we know that 0 ≤ v ≤ log 1/δ, and thus
v = (log(u+ δ))− ≡ − min{log u, 0} ∈ W 1,2(B(0, 1)).

Also, as we see from the picture, Figure 10.1, we can approximate Φ by smooth nondecreas-
ing Φε, with bounded first and second derivatives (just mollify the kink). More precisely,
we may assume

• Φε → Φ uniformly in (− δ
2 ,∞).

• supε sup[0,∞) |Φ′
ε| < ∞

• sup[0,∞) |Φ′′
ε | ≤ C(ε)

We then see that
Φε(u) ε→0−−→ Φ(u) a.e. in Ω

On the other hand we have
sup

ε
∥Φε(u)∥W 1,2(Ω) ≲ ∥u∥W 1,2(Ω) < ∞,

so (up to subsequence) we can assume Φε(u) weakly converges to Φ(u) w.r.t W 1,2(Ω)-
topology.

But then for any nonnegative φ ∈ C∞
c (Ω) from Lemma 10.22 we obtain that∫

Ω
aij∂iΦ(u) ∂jφ = lim

ε→0

∫
Ω
aij∂iΦε(u) ∂jφ ≤ 0.

We can conclude. □

Both, De Giorgi’s method and Moser’s method rely on the following density theorem. It
should be interpreted as a control on oscillation.

Lemma 10.24 (Density theorem). Let u ∈ W 1,2(B(0, 2)) with
inf

B(0,2)
u ≥ 0

and
−div (A∇u)≥0 in B(0, 2)
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such that
Ln(B(0, 1) ∩ {u ≥ 1}) ≥ µLn(B(0, 1))

for some µ > 0. Then there exists a constant γ = γ(µ, n,Λ, λ) ∈ (0, 1) such that
inf

B(0,1/2)
u ≥ γ.

Proof. Fix δ ∈ (0, 1) and set
v := (log(u+ δ))− ≡ − min{log u, 0} ∈ W 1,2(B(0, 1)).

Observe since u ≥ 0 we know that 0 ≤ v ≤ log 1/δ.

By Corollary 10.23, v is a subsolution, i.e.
−div (A∇v)≤0 in B(0, 2).

By the boundedness result, Theorem 10.15, we have (recall v ≥ 0)
sup

B(0,1/2)
v ≲ ∥v∥L2(B(0,1)).

Now observe that
{v = 0} = {u+ δ ≥ 1} ⊂ {u ≥ 1},

and thus we have from the assumptions
Ln ({v = 0} ∩B(0, 1)) ≥ µLn(B(0, 1)).

Thus we work in a Poincaré-Lemma type cone, i.e. we have Poincaré lemma, see Exer-
cise 10.25, i.e.

∥v∥L2(B(0,1)) ≤ C(µ, n) ∥∇v∥L2(B(0,1)).

So we have
(10.8) sup

B(0,1/2)
v ≤ C(µ, n)∥∇v∥L2(B(0,1)).

We need to show the right-hand side is bounded. Fix η ∈ C∞
c (B(0, 2)), η ≥ 0 and η ≡ 1

in B(0, 1) the typical bump function. Then η
u+δ

∈ W 1,2
0 (B(0, 2)), and thus27

0 ≤
∫
aij∂iu ∂j

(
η2

u+ δ

)

= −
∫
aij ∂iu

η2

(u+ δ)2 ∂ju+ 2
∫
aij

∂iu

u+ δ
η∂jη

= −
∫
aij ∂i (u+δ) η2

(u+ δ)2 ∂j (u+δ) + 2
∫
aij
∂i (u+δ)
u+ δ

η∂jη

= −
∫
aij ∂iv η2 ∂jv + 2

∫
aij ∂iv η∂jη

27Observe, similar to the boundedness in Moser’s method follows from testing with uβ for β > 0, now
we de factotest with u−1
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That is, by ellipticity, and Young’s inequality for any ε > 0

λ
∫
η2|∇v|2 ≤ C(Λ)

∫
η|∇v| |Dη| ≤ ε

∫
η2|∇v|2 + C(Λ, ε)

∫
|Dη|2.

Taking ε < λ we can absorb and obtain∫
η2|∇v|2 ≤ C(Λ, λ)|Dη|2.

Plugging this into (10.8), using that η ≡ 1 in B(0, 1) (and that η is fixed), we have found
sup

B(0,1/2)
v ≤ C(µ, nλ,Λ)

Observe that nothing depends on δ > 0 here!

By definition of v, we conclude that in B(0, 1/2)
− min{log(u+ δ), 0} ≤ C(µ, n, λ,Λ)

thus
log(u+ δ) ≥ −C(µ, n, λ,Λ)

and thus
u+ δ ≥ e−C(µ,n,λ,Λ) =: γ.

This holds for any δ > 0, and thus letting δ → 0+ we conclude. □

Exercise 10.25. Prove the following version of Poincaré inequality:

For any µ > 0, p ∈ (1,∞) and Ω ⊂ Rn open and bounded with smooth boundary there
exists a constant C = C(µ, p,Ω) such that whenever f ∈ W 1,p(Ω) and

Ln ({x ∈ Ω : f(x) = 0}) ≥ µLn(Ω).
then

∥f∥Lp(Ω) ≤ C ∥∇f∥Lp(Ω)

Hint: Use Theorem 5.20.

Replacing u by 1 − u we see that an equivalent formulation of Lemma 10.24 is

Lemma 10.26 (Density Theorem (Revisited)). Let A be as above and let µ > 0. There
exists γ > 0 depending only on λ,Λ, n and µ such that the following holds.

Assume u ∈ W 1,2(B(0, 2 )) satisfies
sup

B(0,2)
u ≤ 1, −div (A∇u)≤0 in B(0, 2).

If
|{u ≤ 0} ∩B(0, 1 )| ≥ µ

then
sup

B(0,1/2 )
u ≤ 1 − γ.
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As we have discussed before, Example 2.26, while boundedness is about the size of u,
Hölder continuity is about the oszillation of u. And if we had a decay estimate before for
the boundedness, we will prove now a decay estimate for the oscillation. Recall that

osc
A
u := sup

A
u− inf

A
u.

(Both notions are essential sups and infs) The oscillation is always finite in our situation,
by boundedness, Theorem 10.3.

Observe, that for (one-sided) boundedness we only needed an PDE inequality. For Hölder
continuity we need a real solution.

The following is all we need to conclude the proof of Theorem 10.1, and it is a consequence
of Lemma 10.26.

Proposition 10.27. Fix A(x) = (aij(x))n
i,j=1 bounded and measurable, uniformly elliptic

and bounded with ellipticity constants λ,Λ > 0, i.e.
λ|ξ|2 ≤ aijξiξj ∀ξ ∈ Rn, |aij| ≤ Λ

There exists a small θ ∈ (0, 1) depending only on n, λ,Λ such that the following holds.

Assume u ∈ W 1,2(B(0, 2)) is a solution to
−div (A∇u)=0 in B(0, 2),

in distributional sense, i.e. ∫
B(0,1)

aij∂iu ∂jφ = 0

for all φ ∈ C∞
c (B(0, 2)) in B(0, 2).

Then
osc

B(0,1/2)
u ≤ (1 − θ) osc

B(0,2)
v

Exercise 10.28. Show that Theorem 10.3 combined with Proposition 10.27 implies Theo-
rem 10.1.

Hint: Cf. Example 2.26.

Proof of Proposition 10.27. Set

w(x) := 2
osc B(0,2) u

(
u(x) −

supB(0,2) u+ infB(0,2) u

2

)
.

Then
−1 ≤ w ≤ 1 in B(0, 2),

and
div (A∇w) = 0.
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One of the following must be true

|{w ≤ 0} ∩B(0, 1)| ≥ 1
2 |B(0, 1)|, or |{−w ≤ 0} ∩B(0, 1)| ≥ 1

2 |B(0, 1)|.

By Lemma 10.26 we then obtain one of the following
sup

B(0,1/2)
w ≤ 1 − γ or sup

B(0,1/2)
−w ≤ 1 − γ.

that is
sup

B(0,1/2)
w ≤ 1 − γ or − inf

B(0,1/2)
w ≤ 1 − γ.

In either case we then have (recall that we still have −1 ≤ w ≤ 1)
osc

B(0,1/2)
w = sup

B(0,1/2)
w − inf

B(0,1/2)
w ≤ 2 − γ.

By the definition of w this implies

osc
B(0,1/2)

(
u

2
osc B(0,2) u

)
≤ 2 − γ.

and thus
osc

B(0,1/2)
u ≤ 2 − γ

2 osc
B(0,2)

u.

This is the claim and we can conclude. □

10.4. Hölder continuity (De Giorgi’s method). For DeGiorgi’s version of the proof
of Lemma 10.26, we begin by what is sometimes referred to as De Giorgi’s isoperimetric
inequality. We already know that W 1,2-functions cannot jump, this lemma quantifies this.

Lemma 10.29 (De Giorgi’s insoperimetric inequality). Let f ∈ W 1,2(B(0, 1)). Then

(Ln({f ≤ 0})) (Ln({f ≥ 1})) ≤ C(n) (Ln({0 < f < 1}))
1
2 ∥∇f∥L2(B(0,1)).

Proof. Set
g := min{max{f, 0}, 1} ∈ W 1,2(B(0, 1)).

Then
Ln({f ≤ 0}) (Ln({f ≥ 1})) =

∫
{f≤0}

∫
{f≥1}

|g(x) − g(y)| dx dy

≤
∫

B(0,1)

∫
B(0,1)

|g(x) − g(y)| dx dy

Denote by (g)B(0,1) := |B(0, 1)|−1 ∫
B(0,1) g. Then from triangular inequality and Poincaré

inequality,

Ln({f ≤ 0}) (Ln({f ≥ 1})) ≤2
∫

B(0,1)
|g(z) − (g)B(0,1)| dz

≤C(n)
∫

B(0,1)
|∇g|
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Now observe, Exercise 10.11, ∇g = ∇f a.e. in {0 < f < 1} and ∇g = 0 a.e. anywhere
else. So we have∫

B(0,1)
|∇g| =

∫
{0<f <1}

|∇f | ≤ Ln ({0 < f < 1})
1
2 ∥∇f ∥L2(B(0,1)).

We can conclude. □

Proof of the density theorem, Lemma 10.26. For k ∈ N set
wk := 2k(u− (1 − 2−k))+.

We first collect some properties of wk

• we still have wk ≤ 1 in B(0, 2) (since u ≤ 1 in B(0, 2))
• we also have

{wk ≤ 0} ∩B(0, 1) = {u ≤ (1 − 2−k)} ∩B(0, 1) ⊃ {u ≤ 0} ∩B(0, 1)
so that

(10.9) |{wk ≤ 0} ∩B(0, 1)| ≥ µ.

• We can write wk = (2ku− 2k + 1)+, and conclude that

wk ≥ 1
2

⇔2wk − 1 ≥ 0
⇔wk+1 ≥ 0,

i.e.

(10.10) {wk ≥ 1
2} = {wk+1 ≥ 0}

• We have wk+1 = (2wk − 1)+. Hence,

wk(x) < 1
2 ⇒ wk+1(x) = 0.

This implies that

(10.11) {0 < wk(x) < 1
2} ∩ {0 < wj(x) < 1

2} = ∅ k ̸= j

• For any µ ≥ 0, taking a cutoff-function η ∈ C∞
c (B(0, 2)), η ≡ 1, and applying

Lemma 10.18 to η(u− µ)+ we obtain∫
B(0,1 )

|∇(u− µ)+|2 ≤ C(n)
∫

B(0,2 )
|(u− µ)+|2.

In particular,

(10.12)
∫

B(0,1)
|∇wk|2 ≤ C(n)

∫
B(0,2 )

|wk|2 ≤ C(n)|B(0, 2)|.
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• From De Giorgi’s isoperimetric inequality, Lemma 10.29, we obtain

(Ln({wk ≤ 0}))2
(

Ln({wk ≥ 1
2 })

)2
≤ C(n) Ln({0 < wk <

1
2 }) ∥∇wk∥2

L2(B(0,1)).

In view of (10.12), (10.10), (10.9) we conclude

C(n) Ln({0 < wk <
1
2} ∩B(0, 1)) ≥ (Ln({wk ≤ 0}))2

(
Ln({wk ≥ 1

2}) ∩B(0, 1)
)2

≥µ (Ln({wk+1 ≥ 0}) ∩B(0, 1))2

Since 0 ≤ wk+1 ≤ 1 we have

Ln({wk+1 ≥ 0} ∩B(0, 1)) ≥
∫

B(0,1)
(wk+1)2.

so that we have

(10.13)
∫

B(0,1)
(wk+1)2 ≤ C(n)

µ
Ln({0 < wk <

1
2} ∩B(0, 1)).

Fix now some δ > 0 (to be specified later). We claim that there exists a number k0
(depending on δ, n,Λ, λ, but otherwise independent) so that for some k̄ ∈ {1, . . . , k0} we
have ∫

B(0,1)
(wk̄)2 < δ2.

Indeed if we have ∫
B(0,1)

(wk)2 ≥ δ2 for all k = 1, . . . , k0

we conclude from (10.13) that
µ

C(n) δ
2 ≤ Ln({0 < wk <

1
2} ∩B(0, 1)) for all k = 1, . . . , k0

But by (10.11) we have disjointness, so

k0
µ

C(n) δ
2 ≤

k0∑
k=1

Ln({0 < wk <
1
2} ∩B(0, 1))

(10.11)
≤ Ln(B(0, 1)).

This leads to a contradiction if

k0 := Ln(B(0, 1))C(n)
µ δ2

So there must be some k̄ ∈ {1, . . . , k0} such that∫
B(0,1)

(wk̄)2 < δ2.

Since wk̄ = (2k̄u − 2k̄ + 1)+ and (2k̄u − 2k̄ + 1) is a subsolution, we have boundedness,
Theorem 10.15. That is we have

∥wk̄∥L∞(B(0,1/2)) ≤ C(n,Λ, λ) ∥wk̄∥L2(B(0,1/2)) < C(n,Λ, λ)δ.
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So if we choose δ small enough, we can ensure that there exists some k̄ ∈ {1, . . . , k0} (where
k0 is a constant depending only on permissible data), such that

∥wk̄∥L∞(B(0,1/2)) ≤ 1
2

But then for x ∈ B(0, 1/2)(
u(x) − 1 + 2−k̄

)
+

= 2−k̄wk̄ < 2−1−k̄.

and thus
u+(x) ≤ 2−1−k̄ + 1 − 2−k̄ = 1 −

(
2−k̄ − 2−1−k̄

)
.

Setting
γ := min

k=1,...,k0

(
2−k − 2−1−k

)
> 0

(and observe once more that k0 only depends on the data) we conclude. □

As a remark in passing (see [Fernández-Real and Ros-Oton, 2022]) a version Harnack’s in-
equality, called Moser’s Harnack inequality (see [Moser, 1961], [Han and Lin, 2011, Chapter
4.4]) can be proven in a similar fashion, cf. [Li and Zhang, 2017].

11. A semilinear equation, mountain pass theorem, and nonexistence

Let Ω ⊂ Rn be a nicely bounded set and p ∈ (1,∞). We consider the semilinear equation28

(11.1)
−∆u = |u|p−1u in Ω
u = 0 on ∂Ω.

Clearly u ≡ 0 is a solution to (11.1), but we might want to find a nontrivial solution, i.e.
u ̸≡ 0.

First we observe that the sign on the right-hand side of the equation is extremely important
to make the above question meaningful.

Exercise 11.1. Let u ∈ W 1,2
0 (Ω) ∩ Lp+1(Ω), p ∈ (1,∞). Show that if u solves

(11.2)
−∆u = −|u|p−1u in Ω
u = 0 on ∂Ω,

then u ≡ 0.

Hint: Multiply (11.2) by u and integrate by parts.

28This equation, also called Lane-Emden equation, is related to the asymptotic behavior of the
porous medium equation. This is still an actively investigated PDE with many open questions, see e.g.
[Brasco et al., 2022]
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We will discuss the following results29

• If 1 < p < n+2
n−2 there exists a nontrivial solution u to (11.1)

• (Under geometric assumptions on Ω), if p > n+2
n−2 there is no nontrivial solution to

(11.1).

What changes for p < n+2
n−2 to p > n+2

n−2?

For formal considerations, we observe, that by testing (11.1) with u, we have∫
Ω

|∇u|2 =
∫

Ω
|u|p+1.

By Sobolev embedding,

W 1,2
0 (Ω) ↪→ L

2n
n−2 (Ω) = L

n+2
n−2 +1(Ω)

So if p < n+2
n−2 then W 1,2

0 (Ω) ↪→ Lp+1 is compact, and if p > n+2
n−2 then W 1,2

0 (Ω) ̸↪→ Lp+1.

We call the case p < n+2
n−2 subcritical for (11.1) (the left-hand side of (11.1) dominates the

right-hand side). If p > n+2
n−2 we call supercritical for (11.1) (the right-hand side dominates),

and the case p = n+2
n−2 we call critical (neither sides dominates).

We begin by the observation that solutions to (11.1) are critical points of an energy E (in
the variational sense).

Exercise 11.2. Set
E(u) := 1

2

∫
Ω

|∇u|2 − 1
p+ 1

∫
Ω

|u|p+1.

Set X := {v ∈ W 1,2
0 (Ω) ∩ Lp+1(Ω)}. Show that if u is a minimizer of E in X, i.e. u ∈ X

and E(u) ≤ E(v) for all v ∈ X, then u solves (11.1) (in the distributional sense).

So we could just try to run the direct method of the Calculus of Variations to solve (11.1),
find minimizers (hope they are nonzero) and then we are done?

Here is the problem: there exists no minimizer of E :

Lemma 11.3. Let p > 1 and set

E(u) := 1
2

∫
Ω

|∇u|2 − 1
p+ 1

∫
Ω

|u|p+1.

For any u ∈ W 1,2
0 (Ω) ∩ Lp+1(Ω) with u ̸≡ 0, if we set

vλ := λu

we have
lim

λ→∞
E(vλ) = −∞.

29We are vague here with the assumptions of what regularity u is – on purpose!
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In particular
inf

u∈W 1,2
0 (Ω)

E(u) = −∞.

Exercise 11.4. Prove Lemma 11.3.

Instead the idea is to look not for minimizers, but for critical points of E . Just like for a
function f : R → R we say that x0 is a critical point of f if f ′(x0) = 0 (then x0 might be
a min or a max, but it could also be a saddle point). The method we shall use is called
the mountain pass theorem (which – as usual is a very interesting technique on its own,
applicable in many other situations – see in particular [Struwe, 2008]).

11.1. Mountain Pass theorem: Finite dimensional case. To illustrate the basic prin-
ciple of the Mountain Pass theorem (or min-max method) we first restrict to finite dimen-
sional cases. The following is taken from [Struwe, 2008], who credits [Courant, 1950]. It is
a good idea to think of E(u) ∈ R as the elevation of a landscape at the point u ∈ Rd.

Theorem 11.5 (Mountain Pass Theorem). Let E ∈ C1(Rd,R) be coercive: that is for any
Λ > 0 assume that

{u ∈ Rd : E(u) < Λ} is a bounded set in Rd.

Assume that there are u1 ̸= u2 ∈ Rd at which E has strict local minima, i.e.

E(ui) < E(v) ∀v ≈ ui, v ̸= ui.

Then there exists u3 ∈ R3 \ {u1, u2} a critical point of E, i.e. DE(u3) = 0, but u3 is not a
local minimum.

Indeed we have

(11.3) E(u3) = inf
γ∈P

max
v∈γ

E(v)

where we call P the class of paths connecting u1 and u2. More precisely,

P = {γ ⊂ Rd : u1, u2 ∈ γ, γ is compact and connected}.

Cf. Figure 11.1.

Exercise 11.6. Draw a picture and prove (without using the argument below) Theorem 11.5
in one-dimension.

That is, let E ∈ C1(R) and assume u1, u2 ∈ R are strict minima. Show that there exist
either maxima (in higher dimensions it could be a saddle-point) u3 ∈ (u1, u2), i.e.

DE(u3) = 0

and draw a typical graph of E. What is the meaning of (11.3) in this situation?
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Figure 11.1. A rough illustration of the situation in Theorem 11.5

Proof of Theorem 11.5. Clearly P is nonempty. So we can find (γk)∞
k=1 ⊂ P be a sequence

of paths such that
β := inf

γ∈P
max
v∈γ

E(v) = lim
k→∞

max
v∈γk

E(v).

We may assume that
β ≤ max

v∈γk
E(v) ≤ β + 1 ∀k ∈ N.

In particular,
sup

v∈
⋃

k
γk

E(v) < ∞,

and thus by coercivity we have that
∞⋃

k=1
γk is bounded.

Set now
(11.4) γ̄ :=

⋂
m∈N

⋃
ℓ≥m

pℓ.

It is clear that u1, u2 ∈ γ̄, and γ̄ is still compact. It is an exercise, Exercise 11.8, to show
that γ̄ is also connected. That is, γ̄ ∈ P .

Thus,
β = inf

γ∈P
max
v∈γ

E(v) ≤ max
v∈γ̄

E(v).

On the other hand, by continuity and the construction of γ̄
max
v∈γ̄

E(v) ≤ lim sup
m→∞

max
v∈γm

E(v) = β.
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That is, we have shown
max
v∈γ̄

E(v) = β ≡ inf
γ∈P

max
v∈γ

E(v).

Let u3 ∈ γ̄ (exists by compactness and continuity) such that

E(u3) = max
v∈γ̄

E(v) = inf
γ∈P

max
v∈γ

E(v).

Since E(u1), E(u2) are strict local minima and γ̄ is connected, we conclude that

β = max
v∈γ̄

E(v) > max{E(u1), E(u2)},

and thus the set
K := {u ∈ γ̄ : E(u) = β}

does not contain u1 and u2. Since γ̄ is compact and E is continuous the set K is compact.

We claim that there exists u3 ∈ K which is a critical point, i.e. DE(u3) = 0.

Assume this is not the case, then (since Du(·) is continuous and K is compact)

δ := 1
2 inf

K
|DE| > 0.

By continuity of E, there is some small ε > 0 for which

Bε(K) := {u ∈ Rd : dist (u,K) < ε}

is an open set, not containing u1 and u2, and taking ε even smaller we can ensure that

|DE| > δ in Bε(K).

The idea is now that we shift the path γ̄ (including its surrounding Bε(K)) to attain a
strictly smaller value (which is a contradiction to the construction of γ̄).

Let η ∈ C∞
c (Bε(K)), η ≡ 1 in a small neighborhood of K, be the usual nonnegative bump

function.

We define the deformation

(11.5) Φ(v, t) := v − tη(v)DE(v)

If we apply Φ to points in Rd then it moves only the points in supp η, and those move into
the direction of the negative gradient (by Taylor that should decrease the energy).

Indeed, we have
d

dt
E(Φ(v, t)) = − η(v)⟨DE(v − tη(v)DE(v)), DE(v)⟩

= − η(v)|DE(v)|2 + η(v)⟨DE(v) −DE(v − tη(v)DE(v)), DE(v)⟩



PARTIAL DIFFERENTIAL EQUATIONS I & II VERSION: August 1, 2023 189

Now observe that if η(v) ̸= 0 then v ∈ Uε and thus |DE(v)| ≥ δ. Thus,
d

dt
E(Φ(v, t)) = − η(v)⟨DE(v − tη(v)DE(v)), DE(v)⟩

≤ − η(v)|DE(v)|2 + η(v) |DE(v) −DE(v − tη(v)DE(v))| |DE(v)|

≤ − η(v)|DE(v)|2 + η(v) |DE(v) −DE(v − tη(v)DE(v))|
δ

|DE(v)|2

= − η(v)|DE(v)|2
(

1 − |DE(v) −DE(v − tη(v)DE(v))|
δ

)
Since DE is continuous (and the support of η is compact) we conclude that there exists
some τ > 0 such that

d

dt
E(Φ(v, t)) ≤ −1

2 η(v)|DE(v)|2, ∀t ∈ [−τ, τ ].

In particular we have from the fundamental theorem,

E(Φ(v, τ)) ≤E(v) +
∫ τ

0

(
−1

2η(v)|DE(v)|2
)
dt

=E(v) − τ

2η(v)|DE(v)|2

We conclude that
max
v∈γ̄

E(Φ(v, τ)) ≤ max
v∈γ̄

E(v) = β,

thus
max
v∈γ̄

E(Φ(v, τ)) ≤ β,

And actually, equality is impossible. Because if v ∈ K (where we know that η(v) = 1)

E(Φ(v, τ)) ≤ E(v)︸ ︷︷ ︸
=β

−τ

2δ
2 < β

and if v ∈ γ̄ \K then
E(Φ(v, τ)) ≤ E(v)

v∈γ̄\K
< β.

Thus,
(11.6) max

v∈γ̄
E(Φ(v, τ)) < β.

But observe that since u1, u2 ̸∈ Bε(K) we have that Φ(u1, τ) = u1 and Φ(u2, τ) = u2,
moreover Φ(·, τ) is continuous so γ̄2 is a permissible path,

γ̄2 := Φ(γ̄, τ) ∈ P .
Moreover,

max
v∈γ̄2

E(v)
(11.6)
< β

def= inf
γ∈P

max
v∈γ

E(v)

This is a contradiction, so K must have at least one critical point u with DE(u) = 0 (which
cannot be u1, u2 because they don’t belong to K).
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Denote the set of critical points in K by K̃,

K̃ := {u ∈ K : DE(u) = 0} ≠ ∅.

To conclude, we need to find a point in K̃ which is not a local minimum (observe no
strictness is assumed, so this is not obvious by the maxγ̄-definition!).

Yet again we assume to the contrary that all u in K̃ (which is nonempty) only consists of
local minima.

If that was the case, for any u ∈ K̃ by the minimum property there exists a small ball
B(u, r) such that

β = E(u) ≤ E(w) ∀w ∈ B(u, r).
But then for any v ∈ B(u, r) ∩ γ̄ we have

β = E(u) ≤ E(v)
def

≤ β,

and thus E(v) = E(u), which implies that v is also a local min:

E(v) = E(u) ≤ E(w) ∀w ∈ B(u, r).

Thus DE(v) = 0, which implies v ∈ K̃ – and thus B(u, r)∩ γ̄ ⊂ K̃. In particular, K̃ would
be relatively open in γ̄. On the other hand, let uk ∈ K̃ converge to u ∈ p. Then we have

β = E(uk) k→∞−−−→ E(u)

0 = DE(uk) k→∞−−−→ DE(u),
that is K̃ also relatively closed in γ̄. That is K̃ ⊂ γ̄ is a relatively closed and open set.
Since γ̄ is connected, this implies that K̃ = γ̄. But observe that u1, u2 ∈ γ̄ \K ⊂ γ̄ \ K̃ so
this is impossible.

Hence there must be at least on point u3 ∈ K̃ which is not a local minimum.

We can conclude. □

Remark 11.7. Struwe gives the following nice geometric interpretation (taken verbatim
from [Struwe, 2008, p.76])

It is useful to think of E(u) as measuring the elevation at a point u in a landscape. Our
two minima u1, u2 then correspond to two villages at the deepest points of two valleys,
separated from each other by a mountain ridge. If now we walk along a path p from u1 to
u2 with the property that the maximal elevation E(u) at points u on p is minimal among
all such paths we will cross the ridge at a mountain pass u3 which is a saddle point of
E. Because of this geometric interpretation Theorem 11.5 is sometimes called the finite
dimensional “mountain pass theorem”.

Exercise 11.8. Show that γ̄ from (11.4) is indeed compact and connected.
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Our finite dimensional example above uses strongly that closed, bounded sets are compact
– and thus obtains compactness from coercivity (and continuity). As we know this is an
issue in infinite dimensions, and making assumptions of compactness would be to rigid.
The assumption to mitigate this issue (introduced below after the definitions) will be the
Palais-Smale condition.

11.2. Mountain Pass theorem: Infinite dimensional case. Recall that we would like
to find a nontrivial solution of

(11.1)
−∆u = |u|p−1u in Ω
u = 0 on ∂Ω.

In Exercise 11.2 we have observed that solutions to (11.1) are indeed critical points of an
energy E (in the variational sense), given by

E(u) := 1
2

∫
Ω

|∇u|2 − 1
p+ 1

∫
Ω

|u|p+1.

We want to use the mountain pass theorem for this energy – but we first need to extend
the relevant notions and ideas to infinite dimensions.

That is, instead of working in Rd as in the previous section, we will now work in W 1,2(Ω),
where Ω ⊂ Rn.

Throughout this section we will assume that the dimension n ≥ 2 (this is not a serious
restriction, it is easy to adapt what we do here to n = 1 but thats not the most interesting
case).

For simplicity we restrict to a Hilbert space since we care about W 1,2
0 (Ω) – we refer to

[Struwe, 2008] for the Banach space version, which is not much more difficult (but the
notation becomes less pleasant).

Definition 11.9. Let H be a Hilbert space, and assume E : H → R is a (nonlinear)
functional on H.

We say that E is differentiable at a point u ∈ H if there exists a vector DE(u) ∈ H such
that for all w ∈ H, we have a first order Taylor approximation,

E(w) = E(u) + ⟨DE(u), w − u⟩ + o(∥w − u∥).
This is the same as Fréchet differentiable.

Observe that if we wanted to define differentiability of a functional E on a Banach space
X then DE(u) would belong to the dual space X∗, which complicates notation, so we
don’t want to do that. Since H is a Hilbert space, H∗ can be identified with H via Riesz
representation theorem and the scalar product, which is what we do above.

Exercise 11.10. Show that if such a map DE(u) exists, then it is unique.
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Exercise 11.11. Show that for any differentiable E as in Definition 11.9, if u is a local
minimizer and if E is differentiable at u then DE(u) = 0.

Exercise 11.12. Assume E : Rd → R is a C1 function. Show that DE(u) = ∇E(u) (where
∇ denotes the usual gradient).

Example 11.13. Let p ∈ (1, n+2
n−2 ] (p < ∞ if n = 2). Then

E(u) := 1
2

∫
Ω

|∇u|2 − 1
p+ 1

∫
Ω

|u|p+1

is differentiable in the sense of (11.9) for H = W 1,2
0 (Ω), where

(11.7) ⟨DE(u), v⟩ =
(
−∆u− |u|p−1u

)
[v] =

∫
Ω

∇u · ∇v − |u|p−1uv ∀v ∈ H

Proof. Since p ≤ n+2
n−2 we observe that W 1,2

0 (Ω) ⊂ Lp+1(Ω) by Sobolev embedding.

We first observe that there is exactly one DE(u) ∈ W 1,2
0 (Ω) such that (11.7) holds. Clearly,

W 1,2
0 (Ω) ∋ v 7→

∫
Ω

∇u · ∇v − |u|p−1uv

is a bounded linear functional on W 1,2
0 (Ω). Since W 1,2

0 (Ω) is a Hilbert space, by Riesz
representation theorem for Hilbert spaces there exists a unique f ∈ W 1,2

0 (Ω) such that

⟨f, v⟩W 1,2
0 (Ω) =

∫
Ω

∇u · ∇v − |u|puv ∀v ∈ W 1,2
0 (Ω).

We simply set DE(u) := f .

So, all we need to show is

(11.8) E(w) − E(u) −
∫

Ω
∇u · ∇(w − u) − |u|p−1u(w − u) = o(∥w − u∥)

We have
E(w) − E(u) −

∫
Ω

∇u · ∇(w − u) − |u|p−1u(w − u)

=1
2

∫
Ω

|∇w|2 − 1
2

∫
Ω

|∇u|2 −
∫

Ω
∇u · ∇(w − u)

− 1
p+ 1

∫
Ω

|w|p+1 + 1
p+ 1

∫
Ω

|u|p+1 +
∫

Ω
|u|p−1u(w − u)

=1
2

∫
Ω

|∇(w − u)|2

−
∫

Ω

(
1

p+ 1 |w|p+1 − 1
p+ 1 |u|p+1 − |u|p−1u(w − u)

)
For the last term consider

φ(t) := 1
p+ 1 |t|p+1
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Since p > 1, φ ∈ C2(R), and thus

|φ(w) − φ(u) − φ′(u)(w − u)| ≤ max{|w|, |u|}p−1|w − u|2

So, we have shown (using Hölder’s inequality)∣∣∣∣E(w) − E(u) −
∫

Ω
∇u · ∇(w − u) − |u|p−1u(w − u)

∣∣∣∣
≲∥∇(w − u)∥2

L2(Ω) +
(
∥w∥p−1

Lp+1(Ω) + ∥u∥p−1
Lp+1(Ω)

)
∥w − u∥2

Lp+1(Ω)

≲∥∇(w − u)∥2
L2(Ω) +

(
∥∇w∥p−1

L2(Ω) + ∥∇u∥p−1
L2(Ω)

)
∥∇(w − u)∥2

L2(Ω)

≲
(
1 + ∥∇w∥p−1

L2(Ω) + ∥∇u∥p−1
L2(Ω)

)
∥∇(w − u)∥2

L2(Ω)

In the second to last line we used again Sobolev embedding and that p ≤ n+2
n−2 . This

establishes (11.8) and we can conclude. □

Definition 11.14. We say that E ∈ C1(H) (i.e. E is continuously differentiable) if for
each u ∈ H, DE(u) ∈ H exists (in the sense of Definition 11.9), and moreover the map

H ∋ u 7→ DE(u) ∈ H

is continuous.

We say that DE is Lipschitz continuous on bounded subsets of H if for any Λ > 0 there
exists C(Λ) > 0 such that

∥DE(u1) −DE(u2)∥H ≤ C(Λ)∥u1 − u2∥H ∀u1, u2 ∈ H s.t. ∥u1∥H , ∥u2∥H ≤ Λ.

Continuous differentiability (i.e. E ∈ C1(H)) is enough for the mountain pass theory to
work, but we will focus on DE is Lipschitz on bounded sets, because it fits our application
and makes life simpler.

Example 11.15. Take the energy from Example 11.13, i.e. for p ∈ (1, n+2
n−2 ] (p < ∞ if

n = 2) set

E(u) := 1
2

∫
Ω

|∇u|2 − 1
p+ 1

∫
Ω

|u|p+1

For H = W 1,2
0 (Ω) we have E ∈ C1(H) and DE is Lipschitz continuous on bounded subsets.

Proof. We only discuss the case n ≥ 3. The case n = 2 is a minor adaptation, Exer-
cise 11.16.

We have by duality

∥DE(u1) −DE(u2)∥H = sup
∥v∥H≤1

⟨DE(u1) −DE(u2), v⟩
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In view of (11.7) we have (we only treat the case n ≥ 3, the case n = 2 is Exercise 11.16)

⟨DE(u1) −DE(u2), v⟩ =
∫

Ω
∇(u1 − u2) · ∇v −

(
|u1|p−1u1 − |u2|p−1u2

)
v

≤∥u1 − u2∥W 1,2(Ω) ∥v∥W 1,2(Ω) + ∥
(
|u1|p−1u1 − |u2|p−1u2

)
∥

L
2n

n+2 (Ω)
∥v∥

L
2n

n−2 (Ω)
Sobolev
≲

(
∥u1 − u2∥W 1,2(Ω) + ∥

(
|u1|p−1u1 − |u2|p−1u2

)
∥

L
2n

n+2 (Ω)

)
∥v∥W 1,2(Ω).

Now we use Exercise 11.17 and conclude that
∥
(
|u1|p−1u1 − |u2|p−1u2

)
∥

L
2n

n+2 (Ω)

≲∥
(
|u1|p−1+|u2|p−1

)
|u1 − u2| ∥

L
2n

n+2 (Ω)

≲

(
∥u1∥p−1

L
p 2n

n+2 (Ω)
+ ∥u2∥p−1

L
p 2n

n+2 (Ω)

)
∥u1 − u2∥

L
p 2n

n+2 (Ω)

p< n+2
n−2

≲Ω

(
∥u1∥p−1

L
2n

n−2 (Ω)
+ ∥u2∥p−1

L
2n

n−2 (Ω)

)
∥u1 − u2∥

L
2n

n−2 (Ω)

Sobolev
≲Ω

(
∥u1∥p−1

W 1,2(Ω) + ∥u2∥p−1
W 1,2(Ω)

)
∥u1 − u2∥W 1,2(Ω).

In conclusion, we have show that

∥DE(u1) −DE(u2)∥H ≲
(
1 + ∥u1∥p−1

W 1,2(Ω) + ∥u2∥p−1
W 1,2(Ω)

)
∥u1 − u2∥W 1,2(Ω)

This clearly implies continuity (and Local Lipschitz continuity of DE) w.r.t. H = W 1,2
0 (Ω).

□

Exercise 11.16. Prove Example 11.15 for n = 2.

Exercise 11.17. Show that for any p ≥ 1 there exists a constant C(p) such that∣∣∣|a|p−1a− |b|p−1b
∣∣∣ ≤ C(p) |a− b| max{|a|p−1, |b|p−1} ∀a, b ∈ R.

As mentioned in the finite dimensional case, we need a suitable “coercivity/compactness”
replacement. This is the so-called

Definition 11.18 (Palais-Smale condition). A functional E ∈ C1(H,R) satisfies the
Palais-Smale condition or Palais-Smale compactness condition if

any sequence (uk)k∈N ⊂ H (which we will call Palais Smale sequence) with the two condi-
tions

(1) supk |E(uk)| < ∞
(2) limk→∞ DE(uk) = 0 with respect to convergence in H.

is pre-compact in H.
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Observe that we request quite a lot: pre-compactness in H, and not weakly in H.

Example 11.19. Let Ω be an open, bounded set with smooth boundary.

Let p ∈ (1, n+2
n−2) (p < ∞ if n = 2). Then

E(u) := 1
2

∫
Ω

|∇u|2 − 1
p+ 1

∫
Ω

|u|p+1

Then E satisfies the Palais-Smale condition in W 1,2
0 (Ω)

Proof. So let (uk)k∈N be a sequence in W 1,2
0 (Ω) with

sup
k∈N

|E(uk)| < ∞,

that is

(11.9) sup
k∈N

∣∣∣∣∣12
∫

Ω
|∇uk|2 − 1

p+ 1

∫
Ω

|uk|p+1
∣∣∣∣∣ < ∞,

and
(11.10) DE(uk) k→∞−−−→ 0 in W 1,2

0 (Ω).

If infinitely many uk satisfy ∥uk∥W 1,2(Ω) = 0 then we have a subsequence converging to 0
in W 1,2

0 (Ω) and there is nothing to show.

So from now on we will assume
inf

k
∥uk∥W 1,2(Ω) > 0.

We first claim
(11.11) sup

k
∥uk∥W 1,2(Ω) < ∞

In order to see (11.11), we observe that (11.10) implies by duality

∥DE(uk)∥W 1,2(Ω) = sup
∥v∥

W
1,2
0 (Ω)

≤1

∣∣∣∣∫
Ω

∇uk · ∇v − |uk|p−1ukv
∣∣∣∣ k→∞−−−→ 0.

In particular we can choose v = uk

∥uk∥W 1,2(Ω)
and conclude

1
∥uk∥W 1,2(Ω)

∣∣∣∣∫
Ω

|∇uk|2 −
∫

Ω
|uk|p+1

∣∣∣∣ k→∞−−−→ 0.

or, more suggestively

(11.12) 1
p + 1

1
∥uk∥W 1,2(Ω)

∣∣∣∣∫
Ω

|∇uk|2 −
∫

Ω
|uk|p+1

∣∣∣∣ k→∞−−−→ 0.
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Now since infk ∥uk∥W 1,2 > 0 we have that (11.9) implies

(11.13) sup
k∈N

1
∥uk∥W 1,2(Ω)

∣∣∣∣∣12
∫

Ω
|∇uk|2 − 1

p+ 1

∫
Ω

|uk|p+1
∣∣∣∣∣ < ∞

Combining (11.12) and (11.13) we obtain
sup
k∈N

∥uk∥W 1,2(Ω)

≲ sup
k∈N

1
∥uk∥W 1,2(Ω)

(
1
2 − 1

p + 1

)∫
Ω

|∇uk|2

= sup
k∈N

1
∥uk∥W 1,2(Ω)

(
1
2

∫
Ω

|∇uk|2 − 1
p+ 1

∫
Ω

|∇uk|2
)

= sup
k∈N

1
∥uk∥W 1,2(Ω)

(
1
2

∫
Ω

|∇uk|2 − 1
p+ 1

∫
Ω

|uk|p+1
)

− 1
p+ 1

1
∥uk∥W 1,2(Ω)

(∫
Ω

|∇uk|2 −
∫

Ω
|uk|p+1

)
(11.12),(11.13)

< ∞

That is, we have established (11.11) is established, and thus uk is uniformly bounded in
W 1,2

0 (Ω) and up to taking a subsequence (not relabeled) we have that uk weakly converges
to some u ∈ W 1,2

0 (Ω).

Since p < n+2
n−2 we have p + 1 < 2n

n−2 = 2∗, thus by the compactness of Sobolev embedding
(or simply: Rellich’s theorem) we have (again up to a non-relabeled subsequence)

uk
k→∞−−−→ u in Lp+1(Ω).

Even more, we have

(11.14) |uk|p−1uk
k→∞−−−→ |u|p−1u in L

2n
n+2 (Ω).

Indeed, as above we can use use Exercise 11.17 and conclude that

∥
(
|uk|p−1uk − |u|p−1u

)
∥

L
2n

n+2 (Ω)

≲∥
(
|uk|p−1+|u|p−1

)
|uk − u| ∥

L
2n

n+2 (Ω)

≲

(
∥uk∥p−1

L
p 2n

n+2 (Ω)
+ ∥u∥q−1

L
p 2n

n+2 (Ω)

)
∥uk − u∥

L
p 2n

n+2 (Ω)

p< n+2
n−2

≲Ω

(
∥uk∥p−1

L
2n

n−2 (Ω)
+ ∥u∥q−1

L
2n

n−2 (Ω)

)
∥uk − u∥

L
p 2n

n+2 (Ω)

Sobolev
≲Ω

(
∥uk∥p−1

W 1,2(Ω) + ∥u∥p−1
W 1,2(Ω)

)
∥uk − u∥

L
p 2n

n+2 (Ω)
.

Since p < n+2
n−2 we have p 2n

n+2 <
2n

n−2 = 2∗, so from the compactness of Sobolev embedding
we have uk

k→∞−−−→ u in Lp 2n
n+2 (Ω). This shows (11.14).
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Solve now wk ∈ W 1,2
0 (Ω) −∆wk := |uk|p−1uk in Ω

wk = 0 on ∂Ω
This is possible by the the usual variational method, Theorem 6.1, or Lax-Milgram, since
(the argument here is for n ≥ 3, but easy to extend to n = 2)

∥|uk|p−1uk∥(W 1,2
0 (Ω))∗ ≤ sup

∥φ∥
W

1,2
0 (Ω)

≤1

∫
|uk|p−1ukφ

≤∥|uk|p∥
L

2n
n+2 (Ω)

sup
∥φ∥

W
1,2
0 (Ω)

≤1
∥φ∥

L
2n

n−2 (Ω)

Sobolev
≲ ∥uk∥p

L
p 2n

n+2 (Ω)
sup

∥φ∥
W

1,2
0 (Ω)

≤1
∥φ∥W 1,2(Ω)

︸ ︷︷ ︸
≤1

p< n+2
n−2

≲ ∥uk∥p

L
p 2n

n+2 (Ω)

(11.14)
< ∞

Similarly we can solve w ∈ W 1,2
0 (Ω) with−∆w := |u|p−1u in Ω
w = 0 on ∂Ω

Then we have −∆(wk − w) = |uk|p−1uk − |u|p−1u in Ω
(wk − w) = 0 on ∂Ω

and by existence and uniqueness theory, Theorem 6.1 we have as above

∥wk − w∥W 1,2(Ω) ≤ ∥|uk|p−1uk − |u|p−1u∥
L

2n
n+2 (Ω)

k→∞−−−→ 0 by (11.14).

We apply again (11.10)
∥uk − w∥W 1,2(Ω)

≤∥uk − wk∥W 1,2(Ω) + ∥wk − w∥W 1,2(Ω)

sup
∥v∥

W
1,2
0 (Ω)

≤1

∣∣∣∣∫
Ω

∇(uk − wk) · ∇v
∣∣∣∣+ ∥wk − w∥W 1,2(Ω)

= sup
∥v∥

W
1,2
0 (Ω)

≤1

∣∣∣∣∫
Ω

∇uk · ∇v − |uk|p−1ukv
∣∣∣∣+ ∥wk − w∥W 1,2(Ω)

=∥DE(uk)∥W 1,2(Ω) + ∥wk − w∥W 1,2(Ω)
k→∞−−−→ 0.

That is uk converges to w (strongly) in W 1,2(Ω), and we can conclude. □
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We now want to extend the idea of the deformation Φ in (11.5) (the “gradient flow”) that
we used in the finite dimensional mountain pass theorem to our case. While this was
almost a triviality in the finite dimensional case, this is essentially the heart of the matter
for our version of the mountain pass theorem. There we said that if at a certain energy
level E = β there are no critical points, we can deform the energy so that the energy values
decrease in a controlled way. This is still true:

Theorem 11.20 (Deformation Theorem). Let H be a Hilbert space, E ∈ C1(H,R) with DE
is Lipschitz continuous (as defined in Definition 11.14). Assume moreover that E satisfies
the Palais-Smale condition in H.

Fix β ∈ R and set
K̃β := {u ∈ H : E(u) = β, DE(u) = 0}

the collection of E-critical points u at the energy level β.

If
K̃β = ∅

then for any small ε > 0 there exists some δ ∈ (0, ε) and a map (the deformation, some-
times also referred to as pseudo-gradient flow)

Φ ∈ C0([0, 1] ×H,H)
such that

(1) Φ(0, u) = u for all u ∈ H
(2) Φ(1, u) = u whenever E(u) < β − ε or E(u) > β + ε
(3) E(Φ(t, u)) ≤ E(u) for all u ∈ H, t ∈ [0, 1]
(4) If u ∈ H and E(u) ≤ β + δ then E(Φ(u, 1)) ≤ β−δ.

We begin by proving intermediate statements (that should be reminiscent of the finite
dimensional case).

Lemma 11.21. Under the same assumptions as in Theorem 11.20, there exists σ, θ ∈ (0, 1)
such that

∥DE(u)∥ ≥ σ for all u with E(u) ∈ [β − θ, β + θ]

Proof. We argue by contradiction. Assume this is not the case, then we there must be a
sequence uk ∈ H such that

E(uk) ∈ (β − 1
k
, β + 1

k
]

and
∥DE(uk)∥ ≤ 1

k
.

Then (uk)k∈N is a Palais-Smale sequence (as in Definition 11.18), and since we assume the
Palais-Smale condition we have that (up to subsequence, not relabeled) uk converges to
some u in H.
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Since E ∈ C1 we conclude that E(u) = β and DE(u) = 0. That is u ∈ K̃β – but by
assumption K̃β = ∅. □

Lemma 11.22. Under the same assumptions as in Theorem 11.20,

Let B ⊂ H be a bounded set, let λ < µ then
inf{∥u− v∥H : u, v ∈ B, E(u) ≤ λ, E(v) ≥ µ} > 0.

Proof. Without loss of generality we can assume that B is also convex (take a huge ball),
then we have from the fundamental theorem and the assumption of Lipschitz continuity
on bounded set, Definition 11.14,

0 < µ− λ ≤ E(v) − E(u) ≤ max
t∈[0,1]

∥DE(tv + (1 − t)u)∥H∥u− v∥H ≤ C(B)∥u− v∥H ,

where for any fixed u0 ∈ B and for Bconv the convex hull of B (which is still bounded)
∥DE(tv + (1 − t)u)∥H ≤ ∥DE(tv + (1 − t)u) −DE(u0)∥H︸ ︷︷ ︸

≲Bconv ∥tv+(1−t)u−u0∥H

+∥DE(u0)∥H =: C(B).

This readily implies

inf{∥u− v∥H : u, v ∈ B, E(u) ≤ λ, E(u) ≥ µ} ≥ µ− λ

C(B) .

□

Proof of Theorem 11.20. Take σ and θ in (0, 1) from Lemma 11.21 and assume ε < θ.

Fix

(11.15) 0 < δ < min{ε, σ
2

2 }

and define two sets:
A := {u ∈ H : E(u) ≤ β − ε or E(u) ≥ β + ε}.

and
B := {u ∈ H : β − δ ≤ E(u) ≤ β + δ}.

Take any R > 0 and let u ∈ B(0, R) ⊂ H. Then
dist (u,A) > R or dist (u,B) > R

or
dist (u,A)+dist (u,B) = inf

vA∈A∩B(0,2R) vB∈B∩B(0,2R)
∥u−vA∥+∥u−vB∥ ≥ inf

vA∈A∩B(0,2R) vB∈B∩B(0,2R)
∥vA−vB∥.

In view of Lemma 11.22 we see that the latter condition implies
inf

u∈B(0,R)
dist (u,A) + dist (u,B) ≥ cR.
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So we can construct the cutoff function

g(u) := dist (u,A)
dist (u,A) + dist (u,B) ,

which satisfies
(11.16) 0 ≤ g ≤ 1, g ≡ 0 on A, and g ≡ 1 on B.

Set

h(t) :=
1 0 ≤ t ≤ 1

1
t

t ≥ 1.
We now define the (“gradient field”)

V (u) := −g(u)h(∥DE(u)∥)DE(u) ∈ H

This is well-defined for any u ∈ H, and we observe that
sup
u∈H

∥V (u)∥H < ∞

Instead of constructing Φ(t, u) explicitely (as in the finite dimensional case), we now define
it via a flow.

Consider the ODE

(11.17)


d
dt

Φ(u, t) := V (Φ(u, t)) t > 0
Φ(0, u) = u t = 0

Since V is bounded and Lipschitz continuous (since the distance is a Lipschitz continuous
map), we can solve this ODE for each fixed u – simply by repeating the proof of the
Picard-Lindeloeff/Cauchy–Lipschitz theorem.

As a fun fact, by uniqueness we also have the semigroup property
Φ(t+ s, u) = Φ(t,Φ(s, u)).

Then we have a map Φ : [0, 1] × H → H. The map Φ is differentiable in t and thus
continuous in time, continuity in H follows from continuous dependence of data.

From the conditions on Φ

(1) Φ(0, u) = u for all u ∈ H – this is obvious by definition.
(2) Whenever E(u) < β − ε we have u ∈ A and thus V (u) = 0 – and thus Φ(t, u) = u.

Similarly if E(u) > β + ε
(3) Fix now some u ∈ H and compute

d

dt
E(Φ(t, u)) =⟨DE(Φ(t, u)), d

dt
Φ(t, u)⟩H

=⟨DE(Φ(t, u)), V (Φ(u, t))⟩H

= − g(Φ(t, u))h(∥DE(Φ(t, u))∥) ∥DE(Φ(t, u))∥2
H

≤ 0
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Thus we have monotonicity, namely t 7→ E(Φ(t, u)) is decreasing, in particular:
E(Φ(t, u)) ≤ E(u) for all u ∈ H, t ∈ [0, 1]

(4) Now fix any u ∈ H such that E(u) ≤ β+δ. We need to show that E(Φ(u, 1)) ≤ β−δ.
Assume first there is any t ∈ [0, 1] such that Φ(u, t) ̸∈ B. By monotonicity we

know already that E(Φ(u, t)) ≤ E(Φ(u, 0)) ≤ β+δ, so the only way that Φ(u, t) ̸∈ B
is that E(Φ(u, t)) < β−δ. Again by monotonicity we conclude that then

E(Φ(u, 1 )) ≤ E(Φ(u, t)) < β − δ.

So we are only interested in the situation that Φ(u, t) ∈ B for all t ∈ [0, 1]. Then
g(u) = 1, so as before we compute

d

dt
E(Φ(t, u)) = − g(Φ(t, u))︸ ︷︷ ︸

=1

h(∥DE(Φ(u, t))∥) ∥DE(Φ(t, u))∥2
H

If ∥DE(Φ(u, t))∥ ≥ 1 then h(∥DE(Φ(u, t))∥) = ∥∥DE(Φ(u, t))∥−1, so that in this
case

d

dt
E(Φ(t, u)) = −∥DE(Φ(t, u))∥H .

Now from the definition of σ from Lemma 11.21 (observe that ε < θ so this is
applicable) we have

∥DE(Φ(t, u))∥H ≥ σ if Φ(t, u) ∈ B,

so that we conclude: for each t ∈ [0, 1] for which ∥DE(Φ(u, t))∥ ≥ 1 we have
d

dt
E(Φ(t, u)) ≤ −σ ≤ −σ2

If t ∈ [0, 1] and ∥DE(Φ(u, t))∥ ≤ 1 we have h(∥DE(Φ(u, t))∥) = 1, so that
d

dt
E(Φ(t, u)) = −∥DE(Φ(t, u))∥2

H

and again by the definition of σ we conclude again
d

dt
E(Φ(t, u)) = −σ2.

Integrating this up we have
E(Φ(1, u)) − E(u) ≤ −σ2

which implies

E(Φ(1, u)) ≤ E(u) − σ2 ≤ β + δ − σ2 < β − δ + 2δ − σ2 < β − δ + σ2

2 − σ2︸ ︷︷ ︸
(11.15)

≤ 0

.

Thus, also in this last case we conclude
E(Φ(1, u)) < β − δ.

□
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Figure 11.2. The setup in Theorem 11.23 (Picture by: Armin, age 39)

The deformation theorem, Theorem 11.20, is the crucial ingredient for the infinite dimen-
sional mountain pass theorem. Since the deformation Φ is obtained as a solution to an
ODE (11.17) where V is essentially (a truncated version) of DE , some people call Φ a
pseudo-gradient flow.

Theorem 11.23 (Mountain Pass theorem). Let H be a Hilbert space, E ∈ C1(H,R) with
DE is Lipschitz continuous (as defined in Definition 11.14). Assume moreover that E
satisfies the Palais-Smale condition in H.

Assume additionally

(1) E(0) = 0
(2) there exist constants r > 0 and α > 0 such that

E(u) ≥ α if ∥u∥H = r

(3) there exists an element w ∈ H with

∥w∥ > r and E(w) ≤ 0

Cf. Figure 11.2.

Define the set of paths (this time real, continuous paths)

P := {γ ∈ C([0, 1], H) γ(0) = 0, γ(1) = w}



PARTIAL DIFFERENTIAL EQUATIONS I & II VERSION: August 1, 2023 203

Then
β := inf

γ∈P
max
t∈[0,1]

E(γ(t))> 0

is a critical value of E, that is there exists u ∈ H such that
E(u) = β

and
DE(u) = 0.

The above is taken from [Evans, 2010, §8.5 b, Theorem 2]. One can generalize this state-
ment substantially, see [Struwe, 2008, Theorem 4.2].

Proof. Clearly β ≥ α, since any path γ ∈ P must traverse the sphere {u : ∥u∥H = r}. On
the other hand, we see that

γ(t) := tw ∈ P
and by continuity of E and compactness of [0, 1] we have

β ≤ max
t∈[0,1]

E(tw) < ∞.

That is β ∈ [α,∞).

If we assume that β is not a critical value of E then the set
K̃β := {u ∈ H : E(u) = β,DE(u)} = ∅.

Pick any number ε < α
2 , and apply the deformation theorem Theorem 11.20.

Then for some δ ∈ (0, ε) we find a the deformation/pseudo-gradient flow with
Φ ∈ C0([0, 1] ×H,H)

with

(1) Φ(0, u) = u for all u ∈ H
(2) Φ(1, u) = u whenever E(u) < β − ε or E(u) > β + ε
(3) E(Φ(s, u)) ≤ E(u) for all u ∈ H, s ∈ [0, 1]
(4) If u ∈ H and E(u) ≤ β + δ then E(Φ(u, 1)) ≤ β−δ.

Let now γ ∈ P such that
max
t∈[0,1]

E(γ(t)) ≤ β + δ

This exists by the definition of β as an infimum over all paths in P .

Set
γ̃(t) := Φ(1, γ(t)).

Since γ(0) = 0, E(γ(0)) = 0 < α − ε ≤ β − ε, so γ̃(0) = γ(0) = 0. Similarly, since
E(γ(1)) ≤ 0 ≤ β − ε we have also γ̃(1) = γ(1) = w.
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That is, γ̃ ∈ P and thus
(11.18) max

t∈[0,1]
E(γ̃(t)) ≥ β.

Moreover, since for any t ∈ [0, 1] we have that E(γ(t)) ≤ β + δ, we have E(γ̃(t)) ≤ β−δ.
But then

β
(11.18)

≤ max
t∈[0,1]

E(γ̃(t)) ≤ β − δ,

a contradiction. So
K̃β := {u ∈ H : E(u) = β,DE(u)}≠∅,

which is all we wanted to show. □

Now we are ready to reap the fruits of our argument to find solutions to the equation
−∆u = |u|p−1u

Theorem 11.24 (Existence for the semilinear PDE). Let p ∈ (1, n+2
n−2) and Ω ⊂⊂ Rn be a

smoothly bounded set. Then there exists u ∈ W 1,2
0 (Ω), u ̸≡ 0 , which solves

(11.1)
−∆u = |u|p−1u in Ω
u = 0 on ∂Ω.

Remark 11.25. While we are happy with one nontrivial solution, let us point out that by
slight extensions of the argument here, the mountain pass theory is extended to show there
are infinitely many solutions. See [Struwe, 2008, Theorem 5.8]. Most of these solutions are
sign-changing, so one might be interested in finding nontrivial solutions u ≥ 0.

Proof of Theorem 11.24. We set

E(u) := 1
2

∫
Ω

|∇u|2 − 1
p

∫
Ω

|u|p+1.

defined on the Hilbert space H := W 1,2
0 (Ω) which we equip with the norm

∥u∥H := ∥∇u∥L2(Ω).

Observe that this is indeed a norm since all the constants are 0 by the boundary data
assumption. Moreover, thanks to Poincaré inequality, this norm is equivalent to the usual
Sobolev norm

∥u∥H ≈ ∥u∥L2(Ω) + ∥∇u∥L2(Ω) for all u ∈ H.

Let’s discuss properties of E . We already have shown:

• E is differentiable in H, Example 11.13
• Actually E ∈ C1(H) and DE is Lipschitz continuous on bounded subsets of H,

Example 11.15.
• E satisfies the Palais-Smale condition, Example 11.19.
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We plan to use the mountain pass theorem, Theorem 11.23, so we need to establish the
assumptions:

(1) It is obvious that E(0) = 0.
(2) We need to find two constants r > 0 and α > 0 such that

(11.19) E(u) ≥ α if ∥u∥H = r

Observe that for ∥u∥H = r we have

E(u) = r2

2 − 1
p

∫
Ω

|u|p+1.

By Sobolev inequality, since p+ 1≤ 2n
n−2 ,

E(u) ≥r2

2 − C(n, p)
p

∥∇u∥p+1
L2(Ω)

=r
2

2 − C(n, p)
p

rp+1

=r2
(

1
2 − C(n, p)

p
rp−1

)
.

Observe that p > 1, so we can find some very small r > 0 such that
1
2 − C(n, p)

p
rp−1>0.

In that case, we set

α := r2
(

1
2 − C(n, p)

p
rp−1

)
> 0.

and have established (11.19).
(3) Take v1 ∈ C∞

c (Ω), v1 ̸≡ 0. Set
vλ := λv1.

For λ large enough we have in view of Lemma 11.3,
∥vλ∥ > r and E(vλ) ≤ 0.

So w := vλ satisfies the third assumption in Theorem 11.23.

According to Theorem 11.23, whose assumptions we now have completely established, there
exists some u ∈ W 1,2

0 (Ω) and some β > 0 such that
DE(u) = 0, E(u) = β.

Since E(u) = β > 0 we know that u ̸= 0. The condition DE(u) = 0 implies, according to
Example 11.13, more precisely (11.7), that u solves the PDE in question.

We can conclude. □
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Figure 11.3. A star-shaped domain (w.r.t x0)

11.3. Nonexistence: Derrick-Pohozaev identity. We will now prove that in certain
sets Ω, for p > n+2

n−2 there are only trivial (C2-)solutions to

(11.1)
−∆u = |u|p−1u in Ω
u = 0 on ∂Ω.

We have already seen that our techniques in existence, Theorem 11.24 and regularity (see
Theorem 11.32 below) relied crucially on p < n+2

n−2 (because of Sobolev embedding).

Definition 11.26. A set Ω is called star-shaped with respect to x0 if for each x1 ∈ Ω the
segment

{(1 − λ)x0 + λx1− : λ ∈ [0, 1]} ⊂ Ω.
Cf. Figure 11.3.

Exercise 11.27. Show that any convex set Ω with 0 ∈ Ω is star-shaped with respect to 0.

Exercise 11.28. Give an example of a star-shaped set that is not convex.

Lemma 11.29. Assume that Ω ⊂⊂ Rn is a bounded set which is starshaped w.r.t. 0 and
assume that ∂Ω ∈ C1.

For x ∈ ∂Ω denote with ν(x) the outwards facing normal.

Then
⟨x, ν(x)⟩ ≥ 0 ∀x ∈ ∂U.

It is easy to check this in a picture
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Figure 11.4. Let x ∈ ∂Ω and ν(x) be the exterior unit normal. Then for
any ε > 0 there exists δ > 0 such that ν(x) · y−x

|y−x| ∈ (−∞, ε) for all y ∈ Ω,
|y − x| < δ

Sketch of the formal proof of Lemma 11.29. Fix x ∈ ∂Ω and let y ≈ x. We can always
decompose

y − x

|y − x|
= τ + λν(x)

where τ ∈ T∂Ω and λ ∈ R. The observation is that since ∂Ω ∈ C1, the only way that |λ|
is large is that λ is negative, because only in that direction we move inside the set Ω. In
other terms, for any ε > 0 there exists δ > 0 such that λ < ε for all y ∈ Ω, |y − x| < δ.
See Figure 11.4. That is, we have (for any Ω with ∂Ω ∈ C1 and any x ∈ ∂Ω)

lim sup
Ω∋y→x

ν(x) · y − x

|y − x|
≤ 0

Since Ω is star-shaped, we can choose y := λx ∈ Ω, λ ∈ (0, 1), and have

−ν(x) · x

|x|
= ν(x) · λx− x

|λx− x|
.

From the above we conclude that

−ν(x) · x

|x|
= lim sup

λ→1 −
ν(x) · λx− x

|λx− x|
≤ 0.

This proves the claim. □

Theorem 11.30. Let Ω ⊂⊂ Rn be a smoothly bounded set such that Ω is star-shaped.
Assume that u ∈ C2(Ω) is a solution to

(11.1)
−∆u = |u|p−1u in Ω
u = 0 on ∂Ω.

If p > n+2
n−2 then u ≡ 0.
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Since u = 0 on ∂Ω we can test (11.1) with u itself and obtain

(11.20)
∫

Ω
|∇u|2 =

∫
Ω

|u|p+1.

The idea of the proof is also to test with ⟨x,∇u⟩. Testing with this sort of test-function
is motivated from certain domain variations in variational functionals, appears a lot in
physics as momentum – and is sometimes quite surprising because of its consequences all
over PDE and analysis.

We observe that by the regularity theory, Proposition 11.33 below, assuming u ∈ W 1,2(Ω)∩
L∞(Ω) is enough to conclude the same statement. But if u ∈ W 1,2(Ω) only, it is not so
clear how the argument below goes through if p is too large.

Proof. As discussed we multiply the PDE by ⟨x,Du⟩ = ∑n
α=1 x

α∂αu. This is where we use
that u ∈ W 2,2(Ω) ⊂ C2(Ω).

(11.21)
∫

Ω
−∆u xα∂αu =

∫
Ω

|u|p−1u xα∂αu.

We develope both terms further. Firstly, (Einstein’s summation!)∫
Ω

−∆u xα∂αu

= −
∫

Ω
∂ββu x

α∂αu

Integration by Parts= +
∫

Ω
∂βu ∂β (xα∂αu) −

∫
∂Ω
∂βu ν

βxα ∂αu

Product rule=
∫

Ω
∂βu δαβ∂αu+

∫
Ω
∂βu x

α∂αβu−
∫

∂Ω
∂βu ν

βxα ∂αu

=
∫

Ω
|∇u|2 +

∫
Ω

1
2 ∂α|∂βu|2 xα −

∫
∂Ω
∂βu ν

βxα ∂αu

Integration by Parts=
∫

Ω
|∇u|2 −

∫
Ω

1
2 |∂βu|2︸ ︷︷ ︸∑

β
=|∇u|2

∂αx
α︸ ︷︷ ︸∑

α
=n

+
∫

∂Ω

1
2 |∂βu|2︸ ︷︷ ︸∑

β
=|∇u|2

xα να︸ ︷︷ ︸∑
α

=⟨x,ν⟩

−
∫

∂Ω
∂βu ν

βxα ∂αu

=
(

1 − n
2

) ∫
Ω

|∇u|2 +
∫

∂Ω

1
2 |∇u|2 ⟨x, ν⟩ −

∫
∂Ω

⟨∇u, ν⟩ ⟨x,∇u⟩

Now we observe: Since u = 0 on ∂Ω (recall that u ∈ C2(Ω)) we have
⟨v,∇u(x)⟩ = ∂vu(x) = 0 for any x ∈ ∂Ω and v ∈ Tx∂Ω

By linear algebra, this means that ∇u(x) is a vector in (Tx∂Ω)⊥, that is ∇u(x) is parallel
to ν(x) for all x ∈ ∂Ω. This implies

∇u(x) = ⟨∇u(x), ν(x)⟩ν(x) ∀x ∈ ∂Ω,
and in particular

|∇u(x)|2 = |⟨∇u(x), ν(x)⟩|2.
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Consequently,
⟨x,∇u(x)⟩ = ⟨x, ν⟩ ⟨∇u(x), ν(x)⟩ ∀x ∈ ∂Ω.

and thus
⟨∇u(x), ν(x)⟩ ⟨x,∇u(x)⟩ = |⟨∇u(x), ν(x)⟩|2 ⟨x, ν⟩ = |∇u(x)|2 ⟨x, ν⟩.

From the computations before we then conclude∫
Ω

−∆u xα∂αu

=
(

1 − n

2

) ∫
Ω

|∇u|2 +
∫

∂Ω

1
2 |∇u|2 ⟨x, ν⟩ −

∫
∂Ω

⟨∇u, ν⟩ ⟨x,∇u⟩

=
(

1 − n

2

) ∫
Ω

|∇u|2 +
∫

∂Ω

1
2 |∇u|2 ⟨x, ν⟩ −

∫
∂Ω

|∇u(x)|2 ⟨x , ν⟩

=
(

1 − n

2

) ∫
Ω

|∇u|2−1
2

∫
∂Ω

|∇u|2 ⟨x, ν⟩

(11.22)

On the other hand we have (using again |u| = 0 on ∂Ω)∫
Ω

|u|p−1u xα∂αu

=
∫

Ω
|u|p−1u ∂αu xα

=
∫

Ω

1
p+ 1∂α

(
|u|p+1

)
xα

Integration by Parts= −
∫

Ω

1
p+ 1

(
|u|p+1

)
∂αx

α︸ ︷︷ ︸∑
α

=n

= − n

p+ 1

∫
Ω

|u|p+1.

(11.23)

Combining (11.21), (11.22), (11.23) we obtain what is known as the Derrick-Pohozaev
identity: (

1 − n

2

) ∫
Ω

|∇u|2−1
2

∫
∂Ω

|∇u|2 ⟨x, ν⟩ = − n

p+ 1

∫
Ω

|u|p+1.

Multiplying by −1 we find(
n− 2

2

) ∫
Ω

|∇u|2+1
2

∫
∂Ω

|∇u|2 ⟨x, ν⟩ = + n

p+ 1

∫
Ω

|u|p+1.

Plugging our first identity from testing with u, (11.20), we conclude(
n− 2

2

) ∫
Ω

|u|p+1 + 1
2

∫
∂Ω

|∇u|2 ⟨x, ν⟩ = n

p+ 1

∫
Ω

|u|p+1.

and thus
1
2

∫
∂Ω

|∇u|2 ⟨x, ν⟩ =
(

n

p+ 1 − n− 2
2

)∫
Ω

|u|p+1.
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Now if p > n+2
n−2 then p+ 1 > 2n

n−2 and thus
n

p+ 1 − n− 2
2 < 0.

On the other hand, since ⟨x, ν⟩ ≥ 0 we then have

0 ≤ 1
2

∫
∂Ω

|∇u|2 ⟨x, ν⟩ ≤
(

n

p+ 1 − n− 2
2

)
︸ ︷︷ ︸

<0

∫
Ω

|u|p+1.

The only way this is possible is if
∫

Ω |u|p+1 = 0, i.e. u = 0 a.e. in Ω. □

Remark 11.31. In our argument above we left out the critical case p = n+2
n−2 . This one is

quite more delicate (and very interesting). Our existence argument fails, since the Palais-
Smale condition fails. Indeed, Pohozaev, [Pohozaev, 1965] proved that for a star-shaped
Ω, there is no solution to (11.1) under the additional assumption that u ≥ 0 in Ω (observe
that if u ≥ 0 the strong maximum principle immediately kicks in and tells us that u > 0
in Ω). On the other hand it is in no way clear, why the critical case works or doesn’t work
(whatever we define as work: existence, or non-existence). A famous result by Brezis and
Nirenberg, [Brézis and Nirenberg, 1983] discusses slight variations of this problem. This
question is very important, as many geometric equations tend to be critical in nature,
so that existence questions (also regularity questions) become very challenging. Related
equations also appear e.g. for standing waves for wave equations, which is where Derrick
[Derrick, 1964] discovered a similar result to Pohozaev.

11.4. Regularity theory. The goal of this section is to prove the following theorem.

Theorem 11.32. Let p ∈ (1, n+2
n−2) (strict inequality!) and u ∈ W 1,2

0 (Ω) be a solution to

−∆u = |u|p−1u in Ω.
Then u ∈ C2(Ω) (we don’t discuss the boundary regularity).

The main step for Theorem 11.32 is to obtain boundedness for u. Then the theorem is a
consequence of Schauder and Lp-theory: Indeed we prove easily the following result.

Proposition 11.33. Let p ∈ (1,∞) and u ∈ W 1,2
0 (Ω)∩L∞

loc(Ω) be a solution to
−∆u = |u|p−1u in Ω.

Then u ∈ C2(Ω) (we don’t discuss the boundary regularity).

Proof. Since u ∈ L∞
loc we have that if we set g := |u|p−1u that g ∈ Lq for any q ∈ (1,∞)

and
−∆u = g

From Calderón-Zygmund/Lq-theory, Theorem 7.10, or Theorem 7.16, we find that u ∈
W 1,q

loc (Ω). By Sobolev-Morrey embedding (taking any q > n) we find that u ∈ Cα
loc for
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α = 1 − n
q
. Since p > 1 we have that |u|p−1 is still Hölder continuous (maybe with a

smaller Hölder constant), and thus we have that g ∈ Cβ for some β > 0. Schauder theory,
Corollary 8.32, then implies u ∈ C2,β

loc □

So, in order to obtain the proof of Theorem 11.32, we need to show u ∈ L∞. We obtain this
boundedness of u from the following adaptation of De Giorgi’s method. Observe that for
p < n+2

n−2 , and u ∈ W 1,2, we have |u|p−1 ∈ Lr for r = 2n
(n−2)(p−1) >

n
2 , by Sobolev embeddding.

Proposition 11.34. Let u ∈ W 1,2(Ω) be a distributional solution to

−∆u = fu in Ω

If f ∈ Lr(Ω) with r > n
2 then u ∈ L∞

loc(Ω).

Proof. As discussed with the De Giorgi Method, see Proposition 10.19 and Exercise 10.20,
it suffices to assume Ω = B(0, 1) and show boundedness in B(0, 1/2) – by a covering and
scaling argument. We also may assume (otherwise consider ũ := δ u

∥u∥W 1,2(Ω)
wich solves the

same equation)

(11.24) ∥u∥W 1,2(B(0,1)) < δ,

where δ is small, and will be chosen later.

We first start with the Cacciopoli type observation: Fix k ∈ R and set v := (u − k)+, let
η ∈ C∞

c (B(0, 1)). Using the argument from Lemma 10.18 we find∫
B(0,1)

|∇(ηv)|2 ≤C∥∇η∥2
L∞

∫
supp η

|v|2 + C
∫

B(0,1)
f η2uv

≤C∥∇η∥2
L∞

∫
supp η

|v|2 + C

(∫
B(0,1)

|f |r
) 1

r (∫
supp η

(|u||v|)r′
) 1

r̃′
,

Observe that if n ≥ 3 then 2r′ < 2n
n−2 since

1
2

(
1 − 1

r

)
r> n

2
>

1
2

(
1 − 2

n

)
= n− 2

2n .

So, from Sobolev inequality on the left-hand side we find for q = 2n
n−2 if n ≥ 3, or any

q ∈ (2r′,∞) if n = 2,(∫
B(0,1)

|ηv|q
) 2

q

≤ C∥∇η∥2
L∞

∫
supp η

|v|2 + C

(∫
B(0,1)

|f |r
) 1

r (∫
supp η

(|u||v|)r′
) 1

r̃′
,

and thus,(∫
B(0,1)

|ηv|q
) 1

q

≤ C∥∇η∥L∞

(∫
supp η

|v|2
) 1

2
+ C

(∫
B(0,1)

|f |r
) 1

2r (∫
supp η

(|u||v|)r′
) 1

2 r̃′
,
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As in the proof of Proposition 10.19 we apply this inequality on a layered decomposition
of B(0, 1) \B(0, 1/2). Set

ρi := 1
2 + 2−i−1,

and

µi := 1 − 2−i

and take ηi ∈ C∞
c (B(0, ρi−1)), ηi ≡ 1 in B(0, ρi) nonnegative bump functions with |∇ηi| ≲n

2i. Then for

Λ :=
(∫

B(0,1)
|f |r

) 1
2r

< ∞

we have

(∫
B(0,1)

|ηi(u− µi)+|q
) 1

q

≤ C 2i
(∫

supp ηi

|(u− µi)+|2
) 1

2
+C Λ

(∫
supp ηi

(|u||(u− µi)+|)r′
) 1

2 r̃′
,

As in (10.4), since µi > µi−1 we have

(11.25) (u− µi)+ ≤ (u− µi−1)+

and combined with the fact that ηi−1 ≡ 1 in supp ηi we find

(∫
B(0,1)

|ηi(u− µi)+|q
) 1

q

≤ C 2i

(∫
B(0 ,1 )

|ηi−1 (u− µi−1 )+|2
) 1

2

+C Λ
(∫

B(0 ,1 )

(
η2

i−1 |u| (u − µi)+
)r′
) 1

2 r̃′

,

We want to do a similar trick for the term |u||(u − µi)+ above. We claim that

(11.26) |u(x)| (u(x) − µi)+ ≤
(
2i − 1

)
((u(x) − µi−1 )+)2 .
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Indeed, if u(x) ≤ µi then (u(x) − µi)+ = 0 and there is nothing to show. Assume now
u(x) > µi. Then

u(x) > µi

⇔ µi−1

µi − µi−1
u(x) > µi

µi − µi−1
µi−1

⇔ µi−1

µi − µi−1
u(x) − µi

µi − µi−1
µi−1 > 0

⇔
(

µi−1

µi − µi−1
+1

)
u(x) − µi

µi − µi−1
µi−1 > u(x)

⇔ µi

µi − µi−1
u(x) − µi

µi − µi−1
µi−1 > u(x)

⇔ µi

µi − µi−1
(u(x) − µi−1) > u(x)

⇔ 1 − 2−i

1 − 2−i − 1 + 21−i
(u(x) − µi−1) > u(x)

⇔ 2i − 1
−1 + 2 (u(x) − µi−1) > u(x)

⇔
(
2i − 1

)
(u(x) − µi−1) > u(x)

In particular we have |u(x)| = u(x) and thus

|u(x)| ≤
(
2i − 1

)
(u(x) − µi−1)+

This combined with (11.25) establishes (11.26).

So we arrive at(∫
B(0,1)

|ηi(u− µi)+|q
) 1

q

≤ C 2i

(∫
B(0,1)

|ηi−1 (u− µi−1 )+|2
) 1

2

+C
(
2i − 1|

) 1
2 Λ

(∫
B(0,1)

|ηi−1 (u − µi−1 )+|2r′
) 1

2 r̃′

,

With Hölder’s inequality (we have r′ ≥ 1) we then find
∥ηi(u − µi)+∥Lq(B(0,1)) ≤ C(B(0, 1), r′,Λ) 2i ∥ηi−1 (u − µi−1 )+∥L2r′ (B(0,1)).

Since q > 2r′ we can now follow again the argument in Proposition 10.19: from Hölder’s
inequality

∥ηi(u − µi)+∥L2r′ (B(0,1)) ≤ C(B(0, 1), r′,Λ) 2i |{ηi(u − µi)+ > 0}|
1

2r′ − 1
q ∥ηi−1(u−µi−1)+∥L2r′ (B(0,1)).

As in the proof of Proposition 10.19, (10.7), we have

{ηi(u− µi)+ > 0} ⊂{ηi−1(u− µi−1)+ > 2−i}

and thus by Chebychev inequality,

|{ηi(u− µi)+ > 0}| ≤22r ′i
∫

B(0,1)
(ηi−1(u− µi−1)+)2r ′
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and thus

∥ηi(u − µi)+∥L2r′ (B(0,1)) ≤ C(B(0, 1), r′,Λ) 2i(2− 2r′
q

) ∥ηi−1(u− µi−1)+∥
2− 2r′

q

L2r′ (B(0,1)).

That is, for γ := 1 − 2r′

q
> 0,

∥ηi(u− µi)+∥L2r′ (B(0,1)) ≤ Γi∥ηi−1(u− µi−1)+∥1+γ

L2r′ (B(0,1))

We observe that

∥η0 (u− µ0 )+∥L2r′ (B(0,1)) ≤ ∥u∥L2r′ (B(0,1))

Sobolev, 2r′< 2n
n−2

≲ ∥u∥W 1,2(B(0,1))
(11.24)
< δ.

By Exercise 10.21, choosing δ > 0 small enough (depending on Γ and on γ) we have
lim
i→∞

∥ηi(u− µi)+∥L2r′ (B(0,1)) = 0

and with the same argument as in Proposition 10.19 ∥(u− 1)+∥L2r′ (B(0,1/2 )) = 0 and thus
sup

B(0,1/2)
u ≤ 1.

Recall that we had the normalization chosen in (11.24), so we expect ≤ 1 for the renor-
malized u (δ depends on ∥f∥Lr(Ω) and ∥u∥W 1,2(B(0,1))), so in general we have found

sup
B(0,1/2)

u ≤ C(r, ∥f∥Lr(B(0,1)), ∥u∥W 1,2(B(0,1))).

Applying the same argument to −u instead of u (which solves again the same equation)
we find

sup
B(0,1/2)

|u| ≤ C(r, ∥f∥Lr(B(0,1)), ∥u∥W 1,2(B(0,1))).

Consequently, u ∈ L∞(B(0, 1/2)), and we can conclude. □

Theorem 11.32 is a direct consequence of applying first Proposition 11.34 and then Propo-
sition 11.33 with f := |u|p−1.

12. Navier–Stokes equation: partial regularity theory

The proof of regularity theory that we present here is due to Caffarelli–Kohn–Nirenberg,
[Caffarelli et al., 1982], and the simplification by Lin [Lin, 1998]. We follow the presenta-
tions in Seregin’s Book [Seregin, 2015], and Tsai’s lecture notes [Tsai, 2018]. For more back-
ground on Navier-Stokes equation we refer e.g. to the recent [Bedrossian and Vicol, 2022],
or to the monograph by (University of Pittsburgh’s) Galdi [Galdi, 1994a, Galdi, 1994b].

Euler- and Navier Stokes equation describe the motion of a fluid. We will discuss only the
Navier-Stokes equations. We will follow a convention often seen in mathematical physics
that bold face symbols, like f , u denote vectors, whereas usually printed letters f, u are
scalars.
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The (incompressible) Navier-Stokes equation are given for (unknown) u : Ω × (T1, T2) →
R3 (the velocity vector) and p : Ω × (T1, T2) → R (the pressure) which solve (Einstein
summation!) ∂tu − ∆u + uα∂αu = −∇p in Ω × (T1, T2)

div (u) = 0 in Ω × (T1, T2)
subject to initial condition u(x, 0) = u0(x). Another way to write (in coordinates) the first
equation is

∂tu
β − ∆uβ + uα∂αu

β = −∂βp in Ω × (T1, T2), β = 1, . . . , n
Observe that since div u = 0 we can equivalently write∂tu − ∆u + ∂α (uαu) = −∇p in Ω × (T1, T2)

div (u) = 0 in Ω × (T1, T2)

The term uα∂αu is often referred to as the nonlineratity. In the literature, this nonlinearity
can be written in various ways

uα∂αu = div (u ⊗ u) = ∇ · (u ⊗ u) = u · ∇u

Sometimes there is a ν in front of ∆u which is called the viscosity. If ν = 0 then Navier-
Stokes equation becomes the Euler-equation – otherwise mathematicians tend to normalize
ν = 1.

Sometimes one also adds a forcing term f : Ω × (T1, T2) → R3 (we won’t here).

The equation above is called the “incompressible” Navier-Stokes equation, because of the
assumption div (u) = 0.

A (slight reformulation) of the unsolved Navier-Stokes Millenium problem30 is:

Exercise 12.1. If Ω = R3 and u0 ∈ C∞(Rn) with strong decay to zero at infinity, is there
a smooth solutions (u, p) to the Navier-Stokes equation with initial data u0?

Let me know if you solve it. For R2 this is comparatively easy.

At first it may seem that the pressure p has essentially no conditions. But take the
divergence on both sides (using that div (u) = 0) we find

−∆p = div (uα∂αu) = ∂β∂α(uαuβ).
So p is very much related to “something like” u2.

We will use the notation of space-time Sobolev spaces such tas
Lp((0, T );Lq(Ω)), Lp((0, T );W 1,q(Ω))

30See https://www.claymath.org/millennium-problems/navier-stokes-equation

https://www.claymath.org/millennium-problems/navier-stokes-equation
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and similar. We don’t want to go into too much detail here, but this can be defined by
the Bochner integral, essentially a generalization of the Riemann or Lebesgue integral to
vector-valued maps.

Generally, we equip the space Lp((T1, T2), X) (that we haven’t defined) with the norm

∥f∥Lp((T1,T2);X) :=
(∫

(T1,T2)
(∥f(t)∥X) dt

) 1
p

.

What is important for us is the following characterization, which is essentially Fubini’s
theorem

Definition 12.2. A Ln+1-measurable map f : Ω × (T1, T2)

• belongs to Lp((T1, T2), Lq(Ω)) if for L1-a.e. t ∈ (T1, T2) we have f(t, ·) ∈ Lq(Ω),
and we have

∥f∥Lp((T1,T2),Lq(Ω)) :=
(∫

(T1,T2)
∥f(t, ·)∥p

Lq(Ω)

) 1
p

.

• belongs to Lp((T1, T2),W 1,q(Ω)) if for L1-a.e. t ∈ (T1, T2) we have f(t, ·) ∈ W 1,q(Ω),
and we have

∥f∥Lp((T1,T2),W 1,q(Ω)) :=
(∫

(T1,T2)
∥f(t, ·)∥p

W 1,q(Ω)

) 1
p

.

12.1. Suitable weak solutions.

Definition 12.3 (Suitable weak solution). Let Ω ⊂ Rn be an open set and T1 < T2. A
pair u : Ω × (T1, T2) → R3, p : Ω × (T1, T2) → R is called a suitable weak solution to the
Navier-Stokes equation in Ω × (T1, T2) if

• u ∈ L∞((T1, T2), L2(Ω)) ∩ L2((T1, T2),W 1,2(Ω))
• p ∈ L

3
2 (Ω × (T1, T2))

• The Navier-Stokes equation holds in the sense of distributions in Ω × (T1, T2) , that
is∫

Ω×(T1,T2)
−u∂tφ+ ∂αu∂αφ+ uα∂αuφ =

∫
Ω×(T1,T2)

p∇φ ∀φ ∈ C∞
c (Ω × (T1, T2)),

• div u = 0 holds a.e. in Ω × (T1, T2).
• We have the local energy inequality for all nonnegative η ∈ C∞

c (Ω × (T1,∞)) and
for L1-a.e. t ∈ (T1, T2),∫

Ω
η(x, t)|u(x, t)|2dx+ 2

∫
Ω×(T1,t)

η(x, t′)|∇u|2 dx dt′

≤
∫

Ω×(T1,t)
|u(x, t′)|2(∆η + ∂tη) + u(x, t′) · ∇η(x, t′)

(
|u(x, t′)|2 + 2p(x, t′)

)
dx dt′

(12.1)
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The local energy inequality comes from the following formal computation (precise if u ∈ C2)

Lemma 12.4. If u ∈ C 2 (Rn × R) is solution to incompressible Navier-Stokes, then the
local energy inequality holds as an equality, i.e. we have

∫
Ω
η(x, t)|u(x, t)|2dx+ 2

∫
Ω×(T1,t)

η(x, t′)|∇u(x, t′)|2 dx dt′

=
∫

Ω×(T1,t)
|u(x, t′)|2(∆η + ∂tη) + u(x, t′) · ∇η(x, t′)

(
|u(x, t′)|2 + 2p(x, t′)

)
dx dt′

Proof.

∫
Ω
η(x, t)|u(x, t)|2dx−

∫
Ω
η(x,T1 )︸ ︷︷ ︸

≡0

|u(x,T1 )|2dx

=
∫

Ω×(T1,t)

d

dt′

(
η(x, t′)|u(x, t′)|2

)
dxdt′

=
∫

Ω×(T1,t)
∂tη(x, t′) |u(x, t′)|2dxdt′ + 2

∫
Ω×(T1,t)

η(x, t′) ⟨u(x, t′), ∂tu(x, t′)⟩dxdt′

N.S.=
∫

Ω×(T1,t)
∂tη(x, t′) |u(x, t′)|2dxdt′ + 2

∫
Ω×(T1,t)

η(x, t′) ⟨u(x, t′),∆u⟩dxdt′

+ 2
∫

Ω×(T1,t)
η(x, t′) ⟨u(x, t′),−∂α(uαu)⟩dxdt′

+ 2
∫

Ω×(T1,t)
η(x, t′) ⟨u(x, t′),−∇p(x, t′)⟩dxdt′

Now we have

2
∫

Ω×(T1,t)
η ⟨u,∆u⟩dxdt′

=2
∫

Ω×(T1,t)
η uα ∆uαdxdt′

=2
∫

Ω×(T1,t)
uα div (η∇uα)dxdt′ − 2

∫
Ω×(T1,t)

uα ⟨∇η,∇uα⟩dxdt′

=2
∫

Ω×(T1,t)
uα div (η∇uα)dxdt′ − 1

∫
Ω×(T1,t)

⟨∇η,∇|u|2⟩dxdt′

P.I= − 2
∫

Ω×(T1,t)
η|∇u|2dxdt′ +

∫
Ω×(T1,t)

∆η |u|2dxdt′
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For the term involving the nonlinearity we have

2
∫

Ω×(T1,t)
η ⟨u,−∂α(uαu)⟩dxdt′

= − 2
∫

Ω×(T1,t)
η uβ∂α(uαuβ)dxdt′

div =0= − 2
∫

Ω×(T1,t)
η uβuα∂α (uβ) dxdt′

= − 1
∫

Ω×(T1,t)
η uα∂α|u|2dxdt′

P.I= +
∫

Ω×(T1,t)
∂α(η uα)|u|2dxdt′

div =0=
∫

Ω×(T1,t)
∂αη uα|u|2dxdt′

div =0=
∫

Ω×(T1,t)
⟨∇η,u⟩|u|2dxdt′

Lastly we consider the pressure term

2
∫

Ω×(T1,t)
η ⟨u,−∇p⟩dxdt′

= − 2
∫

Ω×(T1,t)
η uα ∂αpdxdt

′

div =0= − 2
∫

Ω×(T1,t)
η ∂α (uα p) dxdt′

P.I= + 2
∫

Ω×(T1,t)
∂αη (uα p) dxdt′

P.I=2
∫

Ω×(T1,t)
⟨∇η,u⟩ p dxdt′

We plug all this computations together and have∫
Ω
η(x, t)|u(x, t)|2dx

=
∫

Ω×(T1,t)
∂tη(x, t′) |u(x, t′)|2dxdt′ − 2

∫
Ω×(T1,t)

η|∇u|2dxdt′ +
∫

Ω×(T1,t)
∆η |u|2dxdt′

+
∫

Ω×(T1,t)
⟨∇η,u⟩|u|2dxdt′

+ 2
∫

Ω×(T1,t)
⟨∇η,u⟩ p dxdt′

□

12.2. Existence of suitable weak solutions. We are not going to cover the existence
of suitable weak solutions, but focus on the regularity. We refer to [Seregin, 2015] or
[Tsai, 2018] for the argument for existence.
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12.3. ε-regularity, and consequence for regularity. The regularity proof we present
here has yet a different conceptional flavor than the proofs we see before. Instead of freezing
coefficients, or attacking the PDE directly, we instead use a blowup argument to relate the
PDE to a linear PDE of which we know the solution’s behavior. This sort of argument
is very popular and powerful, it can also be used e.g. for reducing boundary estimates
to estimates on the half-space, to replace the freezing argument for coefficients A in the
regularity theory div (A∇u) = f and many more.

scaling is very important for the theory of the Navier-Stokes equation – and the scaling is
the reason regularity is a famous open problem.

Let us illustrate this. Denote the parabolic cylinder
Q(R) := B(0, R) × (−R2, 0).

We denote the mean value

(f)Q(R) :=
∫

Q(R)
f = 1

|Q(R)|

∫
Q(R)

f = R2−n 1
Q(1 )

∫
Q(R)

f

If
∂tu − ∆u + uα∂αu = −∇p in Q(ρ)

Then
(12.2) uλ(x, t) := λu(λx, λ2t), pλ := λ2p(λx, λ2t)
solves

∂tuλ − ∆uλ + (uλ)α∂αuλ = −∇pλ in Q(ρ
λ

)

We set the scaling-invariant energy31

Eρ(u, p) := ρ

(
|Q(ρ)|−1

∫
Q(ρ)

|u − (u)Q(ρ)|3
) 1

3

+ρ2
(

|Q(ρ)|−1
∫

Q(ρ)
|p(x, t) − (p)B(0,ρ)×{t}|

3
2

) 2
3

.

We can check,
Eρ(uλ, pλ) = Eλρ(u, p),

The regularity argument is based on the following decay estimate. We will work in Rn – the
physically relevant dimensions are n = 2 (for which the following argument is somewhat
a technical overblow) and n = 3 (for which the following argument is the current state of
the art – improving it means to solve one of the Millenium problems, if you can do it, you
win USD 1 Million).

You can find the following in [Seregin, 2015, Proposition 1.1, p.135] [Tsai, 2018, Lemma
6.5, p.99]

31The L3-norm could be replaced by an Lq-norm for any q > 2 (because we want to avoid L1), but
scaling would need to be adapted
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Proposition 12.5 (Decay Estimate). For a constant Υ we have the following: For any
θ ∈ (0, 1

2 ] there exists ε ∈ (0, 1) such that the following holds for any ρ ∈ (0, 1].

Denote
Qρ := Q(0, ρ) = B(0, ρ) × (−ρ2, 0)

Assume u : Qρ → Rn, p : Qρ → R satisfy

div u = 0 in Qρ

and u a suitable solution to the Navier-Stokes equation, as defined in Definition 12.3.
Assume also that we have the following bounds on Qρ:

(12.3) ρ

∣∣∣∣∣
∫

Qρ

u
∣∣∣∣∣ ≤ 1

and

(12.4) Eρ(u, p) < ε

where we recall

Eρ(u, p) := ρ

(
|Qρ|−1

∫
Qρ

|u − (u)Qρ|3
) 1

3

+ ρ2
(

|Qρ|−1
∫

Qρ

|p(x, t) − (p)B(0,ρ)×{t}|
3
2

) 2
3

.

Then

(12.5) (θρ)
∣∣∣∣∣
∫

Qθρ

u
∣∣∣∣∣ ≤ 1

and

(12.6) Eθρ(u, p) ≤ Υθ1+ 2
3 Eρ(u, p).

Before we begin with the (length, but conceptionally beautiful) proof of the decay estimate,
Proposition 12.5, we show that it implies partial regularity:

Namely first we have as a consequence of Proposition 12.5 the following ε-regularity theorem

Theorem 12.6 (ε-regularity theorem for Navier-Stokes). There exists ε > 0 and θ > 0,
α > 0 such that the following holds:

If u is a suitable solution to the Navier Stokes equation in QR and

R−2
(∫

Q(R)
|u|3 +

∫
Q(R)

|p(x, t)| 3
2

)
< ε1

then u is continuous in QθR, actually even Hölder continuous.
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Proof. Again, by rescaling we may assume R = 1, and we see that
E1(u, p) ≲ ε1

and ∣∣∣∣∫
Q1

u
∣∣∣∣ ≲

(∫
Q(1)

|u|3
) 1

3

< ε1 ≲ 1.

We plan to iteratively apply the decay estimate, Proposition 12.5. Fix any α < 2
3 .

Choose θ ∈ (0, 1
2) small enough so that θ2−3αΥ < 1. Take the corresponding ε from

Proposition 12.5. If we take ε1 ≪ ε then we have
E1(u, p) ≲ ε1 < ε

and ∣∣∣∣∫
Q1

u
∣∣∣∣ ≲

(∫
Q(1)

|u|3
) 1

3

< ε1 < ε,

so we can apply Proposition 12.5.

We then have
θ

∣∣∣∣∣
∫

Qθρ

u
∣∣∣∣∣ ≤ 1

and
Eθ(u, p) ≤ Υθ1+ 2

3︸ ︷︷ ︸
<1

E1(u, p)︸ ︷︷ ︸
<ε

.

In particular we have Eθ(u, p) < ε, so we can reapply Proposition 12.5, and obtain

Eθ2(u, p) ≤ Υθ1+ 2
3 Eθ(u, p) ≤

(
Υθ1+ 2

3
)2
E1(u, p).

Again, we repeat and after doing this k times we have

Eθk(u, p) ≤
(
Υθ1+ 2

3
)k
E1(u, p)︸ ︷︷ ︸

<ε≤1

We now discuss what this implies for u:

θk

(
|Qθk |−1

∫
Q

θk

|u − (u)Q
θk

|3
) 1

3

≤
(
Υθ1+ 2

3
)k
.

That is
|Qθk |−1

∫
Q

θk

|u − (u)Q
θk

|3 ≤
(
Υθ2

)k
.

Pick any ρ ∈ (0, 1), then there exists exactly one k ∈ {0, 1, . . .} such that

θk+1 ≤ ρ < θk.
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Then we have

ρ−5
∫

Qρ

|u − (u)Q
θk

|3 ≲θ |Qθk |−1
∫

Q
θk

|u − (u)Q
θk

|3 ≤
(
Υθ2

)k
.

Since Υθ2−3α < 1 we can write this as

ρ−5
∫

Qρ

|u − (u)Q
θk

|3 ≲θ |Qθk |−1
∫

Q
θk

|u − (u)Q
θk

|3 ≤
(
θ3α

)k
.

Here comes the trick, we can compare the right-hand side to ρ:
(θ3α)k = (θk)3α = θ−3α(θk+1)3α ≤ θ−3αρ3α.

That is, we have shown for all ρ ∈ (0, 1)

sup
ρ∈(0,1)

ρ−3αρ−5
∫

Qρ

|u − (u)Q
θk

|3 ≤ C(θ).

Now we observe that since θk ≈ ρ, we have∫
Qρ

|u − (u)Qρ|3

≲|Qρ|−1
∫

Qρ

∫
Qρ

|u(z1) − u(z2)|3dz1dz2

≲|Qρ|−1
∫

Qρ

∫
Qρ

|u(z1) − (u)Q
θk |3 dz1 dz2 + |Qρ|−1

∫
Qρ

∫
Qρ

|u(z2) − (u)Q
θk |3 dz1 dz2

=2
∫

Qρ

|u(z) − (u)Q
θk |3 dz

We conclude that we have shown That is, we have shown for all ρ ∈ (0, 1)

sup
ρ∈(0,1)

ρ−3αρ−5
∫

Qρ

|u − (u)Qρ|3 ≤ C(θ).

This does not yet imply Hölder continuity, since we are not varying the points of Qρ.

Thus, we observe the following:

If u is a suitable solution to the Navier Stokes equation in QR and

R−2
∫

Q(R)
|u|3 +R−2

∫
Q(R)

|p(x, t)| 3
2 < ε1

then u is a suitable solution in any B(x0,
R
2 ) × (−R2

4 , 0] for any x0 ∈ B(0, R
2 ), and we have(

R

2

)−2 ∫
B(x0, R

2 )×(− R2
4 ,0]

|u|3 +
(
R

2

)−2 ∫
B(x0, R2

4 )×(− 1
4 ,0]

|p(x, t)| 3
2

<4R−2
∫

Q(R)
|u|3 +R−2

∫
Q(R)

|p(x, t)| 3
2

<4ε1



PARTIAL DIFFERENTIAL EQUATIONS I & II VERSION: August 1, 2023 223

So, if we take ε1 in the assumptions just smaller, we can apply the above argument on all
B(x0,

R
2 ) × (−R2

4 , 0] for any x0 ∈ B(0, R
2 ).

Thus we have

sup
x0 ∈B(0 ,R/2 )

sup
ρ∈(0,R)

ρ−3αρ−5
∫

B(x0,ρ)×(−ρ2,0]
|u − (u)B(x0,ρ)×(−ρ2,0]|3 ≤ C(θ, R).

This indeed is by Campanato’s theorem (see my Analysis lecture notes) equivalent to saying
u ∈ Cα, α

2 (B(0, R/2)). □

The corollary of the ε-regularity theory, Theorem 12.6, is that solutions to Navier-Stokes
are almost everywhere relatively nice.

Corollary 12.7. Let Ω ⊂ Rn be an open set and assume that (u, p)) we a suitable weak
solution on Ω × (0, T ), as defined in Definition 12.3.

Then there exists a singular set Σ ⊂ Ω × (0, T ), namely a relatively closed32 Σ

H2 (Σ) < ∞ for any compact set K ⊂ Ω

such that for any (x0, t0) ∈ Ω × (0, T ) \ Σ we have u is Hölder continuous in a small
neighborhood around (x0, t0).

Observe that in particular Σ is a L4-zero-set, thus a (suitable) solution to the Navier-Stokes
equations is almost everywhere continuous. However there are examples of other flows of
similar spirit (e.g. harmonic map heat flow) that develop singularities in finite time. That
is, from what we have proven, there is no reason that Σ = ∅. However that is the conjecture
to prove or disprove. Observe tht the Hausdorff dimension of the singular set (in our case
we prove that Σ has at most Hausdorff dimension 2) is not optimal, and can be improved
(you will see below that we make a lazy estimate).

The proof of Corollary 12.7, besides Theorem 12.6, is the following measure theoretical
result, sometimes (incorrectly) referred to as Frostman’s lemma.

Lemma 12.8. Let p ∈ [1,∞) and α ∈ [0, d). Assume that f ∈ Lp(Rd) and define the set

E := {x : lim sup
r→0

r−α
∫

B(x,r)
|f |pdx > 0}

Then
Hα(E) = 0,

where Hα denotes the Hausdorff measure.

32Closedness is important: otherwise we could have dense singular sets, e.g. Σ = Q, then the solution
is pretty bad – but H − dim(Σ) = 0
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Remark 12.9. • Let us try to appreciate, get a feeling of this result: If f ∈ Lp(Rd)
by the Lebesgue differentiation Lemma, we know

lim
r→0

r−d
∫

B(x,r)
|f |p = |f(x)|p a.e. x ∈ Rd

and thus for α ∈ [0, d) we have

lim
r→0

r−α
∫

B(x,r)
|f |p = 0 a.e. x ∈ Rd

Now “a.e.” simply means that
Hd(E) = 0.

So Lemma 12.8 is a refinement of Lebesgue differentiation theorem.
• For the proof, see [Ziemer, 1989, Corollary 3.2.3.].

Proof of Corollary 12.7. Take ε and θ from Theorem 12.6.

Set
Σ := {(x, t) ∈ Ω × (T1, T2) : u is not Hölder continuous in a small neighborhood around (x, t)}
It is clear that Σ is relatively closed in Ω × (T1, T2) since if u is Hölder continuous around
a small neighborhood (x0, t0) that neighborhood also covers (x0, t0) ≈ (x0, t0).

Now we want to estimate the size of Σ.

Define

E1 :=
{

(x, t) ∈ Ω × (T1, T2) : lim sup
R→0

R−2
(∫

B(x0,R)×(t−R2,t)
|u|3 +

∫
B(x0,R)×(t−R2,t)

|p(x, t)| 3
2

)
> ε

}
From Theorem 12.6 we obtain that whenever (x, t) ̸∈ E1 then u is Hölder continuous
around (x, t). So we have

Ω × (T1, T2) \ E1 ⊂ Ω × (T1, T2) \ Σ,
i.e.

Σ ⊂ E1.

To apply Lemma 12.8 we do a (lazy!) trick. Set

E2 := {(x, t) ∈ Ω × (T1, T2) : lim sup
R→0

R−2
(∫

B4 ((x0 ,t0 ),2R)
|u|3 +

∫
B4 ((x0 ,t0 ),2R)

|p(x, t)| 3
2

)
> ε}

Clearly, E1 ⊂ E2.

And clearly E2 ⊂ Eu ∪ Ep where

Eu :=
{

(x, t) ∈ Ω × (T1, T2) : lim sup
R→0

R−2
∫

B4 ((x0 ,t0 ),2R)
|u|3 > 0

}
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and
Ep :=

{
(x, t) ∈ Ω × (T1, T2) : lim sup

R→0
R−2

∫
B4 ((x0 ,t0 ),2R)

|p(x, t)| 3
2 > 0

}
Since (u, p) are suitable solutions we know u ∈ L2(Ω × (T1, T2)) ⊂ L2((T1, T2),W 1,2(Ω))
and p ∈ L

3
2 (Ω × (T1, T2))

By Lemma 12.8 we know
H2(Ep) = 0, H2(Eu) = 0,

and thus we conclude H2(Σ) = 0, which is what we wanted. We can conclude. □

The way of proving or disproving the regularity question for the Navier-Stokes question is
now to further analyze Σ. Either with the goal of showing that Σ is empty, or with the
hope of constructing an example where Σ is nonempty. The basic hope is to do this (as
is done for similar problems in other equations) via a blow-up analysis around singular
points. See e.g. the recent work [Seregin, 2023].

12.4. Proof of the decay estimate: Proposition 12.5. For simplicity we recall the
statement of Proposition 12.5

Proposition (Decay Estimate (recall)). For a constant Υ we have the following: For any
θ ∈ (0, 1

2 ] there exists ε ∈ (0, 1) such that the following holds for any ρ ∈ (0, 1].

Denote
Qρ := Q(0, ρ) = B(0, ρ) × (−ρ2, 0)

Assume u : Qρ → Rn, p : Qρ → R satisfy
div u = 0 in Qρ

and u a suitable solution to the Navier-Stokes equation, as defined in Definition 12.3.
Assume also that we have the following bounds on Qρ:

(12.7) ρ

∣∣∣∣∣
∫

Qρ

u
∣∣∣∣∣ ≤ 1

and
(12.8) Eρ(u, p) < ε

where we recall

Eρ(u, p) := ρ

(
|Qρ|−1

∫
Qρ

|u − (u)Qρ|3
) 1

3

+ ρ2
(

|Qρ|−1
∫

Qρ

|p(x, t) − (p)B(0,ρ)×{t}|
3
2

) 2
3

.

Then

(12.9) (θρ)
∣∣∣∣∣
∫

Qθρ

u
∣∣∣∣∣ ≤ 1
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and
(12.10) Eθρ(u, p) ≤ Υθ1+ 2

3 Eρ(u, p).

A first observation is that (12.9) follows from (12.7) and (12.8) (this has nothing to do
with Navier-Stokes equation)
Lemma 12.10. For any θ ∈ (0, 1) there exists some ε > 0 (depending also on the dimen-
sion n) such that if (12.8) and (12.7) holds then (12.9) holds.

Proof. We have ∣∣∣∣∣
∣∣∣∣∣
∫

Qθρ

u
∣∣∣∣∣−

∣∣∣∣∣
∫

Qρ

u
∣∣∣∣∣
∣∣∣∣∣ ≤ 1

|Qθρ|

∫
Qθρ

∣∣∣∣∣u −
∫

Qρ

u
∣∣∣∣∣

≤θ−n−2 1
|Qρ|

∫
Qρ

∣∣∣∣∣u −
∫

Qρ

u
∣∣∣∣∣

Jensen
≤ θ−n−2

(
1

|Qρ|

∫
Qρ

∣∣∣u − (u)Qρ

∣∣∣3) 1
3

≤ρ−1θ−n−2Eρ(u, p)
(12.8)
≤ ρ−1θ−n−2ε.

Thus,

θρ

∣∣∣∣∣
∫

Qθρ

u
∣∣∣∣∣ ≤θρ

∣∣∣∣∣
∫

Qρ

u
∣∣∣∣∣+ θ−n−1ε

(12.7)
≤ θ + θ−n−1ε.

We can take ε small enough so that θ + θ−n−1ε < 1 and conclude. □

Proof of Proposition 12.5. As we have discussed at the beginning of the section, we know
the scaling behavior of the equation. We observe that the equation, and assumptions
(12.8)(12.7) scale, i.e. otherwise replacing u by and p as in Equation (12.2) (for λ = 1

ρ
) we

may assume ρ = 1.

Assume now the claim is false.

Then there must be a θ ∈ (0, 1
2 ], such that the claim does not hold for any ε > 0. So for each

k ∈ N there exists a sequence of suitable weak solutions (uk, pk)k∈N to the Navier-Stokes
equation

uk ∈ L∞((−1, 0), L2(B(0, 1))) ∩ L2((−1, 0),W 1,2(B(0, 1)))
pk ∈ L

3
2 (B(0, 1) × (−1, 0))

with
E1(uk, pk) < 1

k
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and ∣∣∣∣∫
Q1

uk

∣∣∣∣ ≤ 1

however (where Υ can still be chosen)

Eθ(uk, pk)>Υθ1+ 2
3 E1(uk, pk).

We set
εk := E1(uk, pk),

then we have the following properties

• εk
k→∞−−−→ 0

• εk = E1(uk, pk)
• Eθ(uk, pk)>Υθ1+ 2

3 εk.

Set
vk(x, t) := (εk)−1 (uk(x, t) − (uk)Q1)

qk(x, t) := (εk)−1
(
p(x, t) − (p)B(0,1)×{t}

)
We then have

∂tvk − ∆vk =(εk)−1(∂tuk − ∆uk)
=(εk)−1 (−uα∂αuk − ∇pk)
= − uα∂αvk − ∇qk

= − ((uk)Q1 + εkvk)α∂αvk − ∇qk

That is for
bk := (uk)Q1

we have

(12.11)
∂tvk − ∆vk + (bk + εkvk)α∂αvk = −∇qk in Q1

div vk = 0 in Q1

with the following properties k

• |bk| ≤ 1 by assumption (12.7)
•
∫

Q1
vk = 0

•
∫

B(0 ,1 )×{t} qk = 0 for all t ∈ (−1, 0).

Up to passing to a subsequence (not relabelled) we may assume that there exists some
b ∈ R3, |b| ≤ 1 such that

bk
k→∞−−−→ b.
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We also observe that

εk = E1 (uk, pk) =
(

|Q1|−1
∫

Q1
|uk − (uk)Q1|3

) 1
3

+
(

|Q1|−1
∫

Q1
|pk(x, t) − (pk)B(0,1)×{t}|

3
2

) 2
3

=
(

|Q1|−1
∫

Q1
|εkvk|3

) 1
3

+
(

|Q1|−1
∫

Q1
|εkqk|

3
2

) 2
3

so that (dividing out the εk) we find

(12.12)
(

|Q1|−1
∫

Q1
|vk|3

) 1
3

+
(

|Q1|−1
∫

Q1
|qk|

3
2

) 2
3

≤ 1 ∀k ∈ N.

Similarly,

Υθ1+ 2
3 εk < Eθ(uk, pk) =θ

(
|Qθ|−1

∫
Qθ

|uk − (uk)Qθ
|3
) 1

3
+ θ2

(
|Qθ|−1

∫
Qθ

|pk(x, t) − (pk)B(0,θ)×{t}|
3
2

) 2
3

=εkθ
(

|Qθ|−1
∫

Qθ

|vk − (vk)Qθ
|3
) 1

3
+ εkθ

2
(

|Qθ|−1
∫

Qθ

|qk(x, t) − (qk)B(0,θ)×{t}|
3
2

) 2
3

=εkEθ(vk, qk),

so that we have

(12.13) Eθ(vk, qk) > Υ θ1+ 2
3 .

(12.12) implies in particular

(12.14) sup
k

∥vk∥L3(Q1) + ∥qk∥
L

3
2 (Q1)

< Γ1,

where Γ1 is a uniform constant (depending only on the size of Q1).

Up to subsequence we then find some v ∈ L3(Q1), q ∈ L
3
2 (Q1) (here we use 3

2 > 1) such
that

vk ⇀ v weakly in L3(Q1,R3)

qk ⇀ q weakly in L
3
2 (Q1)

We now would like to pass to the limit in the PDE of vk, (12.11). However the nonlinearity
creates an obstacly if we only have weak convergence (since the product of two weakly
convergent functions may not be weakly convergent).

To overcome this we need W 1,2-control – and for this we use the local energy inequality,
(12.1). But we assumed it only for uk, we need it for vk.

Claim 12.11. vk satisfies the following local energy inequality.
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For almost all t ∈ (−1, 0] and for any η ∈ C∞
c (B(0, 1) × (−1,∞)),

∫
B(0,1)

η(x, t)|vk(x, t)|2dx+ 2
∫

B(0,1)×(−1,t)
η(x, t′)|∇vk|2 dx dt′

≤
∫

B(0,1)×(−1,t)
|vk(x, t′)|2(∆η + ∂tη)

+
∫

B(0,1)×(−1,t)
vk(x, t′) · ∇η(x, t′) 2qkdx dt

′

+ εk

∫
B(0,1)×(−1,t)

vk(x, t′) · ∇η(x, t′) |vk(x, t′)|2dx dt′

+
∫

B(0,1)×(−1,t)
(uk)Q1 · ∇η(x, t′) |vk(x, t′)|2dx dt′

Assuming Claim 12.11 for now (we prove it below) for any a.e. t ∈ (−1, 0),

∫
B(0,1)×(−1,t)

|∇vk|2dx dt′ ≲η

(
∥vk∥2

L2(Q1) + ∥qk∥
L

3
2 (Q1)

∥vk∥L3(Q1) + εk∥vk∥3
L3(Q1) + |(uk)Q1|∥vk∥2

L2(Q1)

)

We observe the right-hand side is uniformly bounded in k in view of Equation (12.14), and
thus we have (letting t → 1−)

(12.15) sup
k∈N

∥∇vk∥L2(QR) ≲R Γ1 ∀R ∈ (0, 1).

Observe this does not mean vk ∈ W 1,2(QR), since ∇ is the spatial gradient (for now).

By a similar argument, using the first term of the local energy inequality we also obtain

(12.16) sup
t∈(−R2,0)

∥vk(·, t)∥L2(B(0,R)) ≲ Γ ∀R ∈ (0, 1).

While we don’t yet have W 1,2-uniform control, we can however conclude already that, up
to taking a subsequence (not relabeled),

∇vk ⇀ ∇v weakly in L2
loc(B(0, 1) × (−1, 0],R3).

As a consequence we have for any ϕ ∈ C∞
c (Q1) control of the nonlinearity,

lim
k→∞

∫
Q1

(bk + εkvk)α∂αvkϕ =
∫

Q1
(b + 0 )α∂αvϕ
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Indeed, by trilinearity∣∣∣∣∫
Q1

(bk + εkvk)α∂αvkϕ−
∫

Q1
(b + 0 )α∂αvϕ

∣∣∣∣
≤ |bk − b|

∫
Q1

|∇vk| |ϕ| +
∣∣∣∣bα

∫
Q
∂α(vk − v)ϕ

∣∣∣∣+ εk

∫
Q1

|vk| |∇vk| |ϕ|

≲ϕ |bk − b|︸ ︷︷ ︸
k→∞−−−→0

∥∇vk∥L1(supp ϕ)︸ ︷︷ ︸
supk<∞

+|b|
∣∣∣∣∫

Q
∂α(vk − v) ϕ

∣∣∣∣︸ ︷︷ ︸
k→∞−−−→0

+ εk︸︷︷︸
k→∞−−−→0

∥vk∥L2(supp ϕ)︸ ︷︷ ︸
supk<∞

∥∇vk∥L2(supp ϕ)︸ ︷︷ ︸
supk<∞

k→∞−−−→ 0.

In view of the PDE for vk, (12.11), we can now pass to the limit and obtain

(12.17)
∂tv − ∆v + bα∂αv = −∇q in Q1

div v = 0 in Q1

Observe that b is a constant vector, so this is almost a linear constant coefficient equation
– if it wasn’t for ∇q.

But we can seperate the equation for q and v⃗: Since div v = 0 we can take div in the
equation (12.17) and find that (observe that b is constant!)

0 = −∆q in B(0, 1) × {t} for a.e. any t ∈ (−1, 0)

On the other hand, we can take the curl of the equation, where

curl f =
(
∂αf

β − ∂βf
α
)

α,β=1,...,3
,

and see that then curl ∇q = 0 and thus∂tcurl v − ∆curl v + bα∂αcurl v = 0 in Q1

div v = 0 in Q1

Since v is completely controlled by div v and curl v (this will be the so-called Helmholtz-
Hodge decomposition) we now have three very nice linear PDE that control v (and later as
well q).

For v we have the following regularity for the blow up equation:

Claim 12.12. We have for all R ∈ (0, 1)

(12.18) sup
(x,t),(y,t)∈QR

|v(x, t) − v(y, s)|
|x− y| 2

3 + |s− t| 1
3
≲R Γ1

We give the proof below, but first show how to use this.
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Recall our “counterexample radius” θ (whose existence we like to disprove). Applying
(12.18) we conclude (recall Qθ = B(0, θ) × (−θ2, 0))

|v(x, t) − v(y, s)| ≲ Γ1

(
|x− y|

2
3 + |s− t|︸ ︷︷ ︸

≲θ2

1
3

)
≲ Γ1θ

2
3 .

It is important to note that the constant in ≲ is independent of θ, since we assumed that
θ ≤ 1

2 so we can apply (12.18) for R = 1/2.

We conclude that ∫
Qθ

|v − (v)Qθ
|3 ≤ 1

2C2θ
2

Next we need to transfer this estimate to vk. For this we need the following compact-
ness result, which is a consequence of Aubin-Lions-Lemma, Theorem 12.19 – essentially a
Rellich-type theorem.

Claim 12.13. Up to taking a subsequence, vk converges strongly in L3
loc(B(0, 1) × (−1, 0])

From the strong L3-convergence we find that for all large k ≫ 1

(12.19) θ
(∫

Qθ

|vk − (vk)Qθ
|3
) 1

3
≤ (C2)

1
3 θ1+ 2

3

Observe that this is almost a contradiction to (12.13) – if we choose Υ > (C2)
1
3 large

enough – it wasn’t for the qk-term that we treat next. Recall that qk and vk are related by
the PDE, namely we have

(12.11)
∂tvk − ∆vk + (bk + εkvk)α∂αvk = −∇qk in Q1

div vk = 0 in Q1

Taking the divergence we find
div ((bk + εkvk)α∂αvk) = −∆qk in Q1

Observe that
div ((bk + εkvk)α∂αvk)

=∂β ((bk + εkvk)α∂α(vk)β)
div =0= ∂β(bk + εkvk)α ∂α(vk)β

=εk∂β(vk)α ∂α(vk)β

div =0= εk∂β ((vk)α ∂α(vk)β)
div =0= εk∂β∂α ((vk)α (vk)β)

So we have
−∆qk = εk∂β∂α ((vk)α (vk)β) in Q1.
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Observe that is an elliptic PDE without time control, i.e. we should think of it rather as
−∆qk = εk∂β∂α ((vk)α (vk)β) in B(0, 1) × {t}, t ∈ (−1, 0).

In terms of the Riesz transforms Rα from Calderon-Zygmund theory, Equation (7.4), we
can think of this as almost

qk ≈ εkRαRβ ((vk)α (vk)β) in R3 × {t}.

So the L3-estimate for vk should become a L 3
2 -estimate for qk.

To make this idea precise, let η ∈ C∞
c (B(0, 1)), η ≡ 1 in B(0, 1+R

2 ) for some R < 1. Set

q̃k := εkRαRβ (η (vk)α (vk)β) in R3 × {t}.

Then we observe two things:

Firstly, from Calderon-Zygmund theory, we have
∥q̃k(t)∥

L
3
2 (R3)

≲εk ∥η (vk)α (vk)β∥
L

3
2 (R3)

≲εk ∥(vk)α (vk)β∥
L

3
2 (B(0 ,1 ))

≲εk∥vk∥2
L3(B(0,1))

So we have in particular

(12.20) ∥q̃k(t)∥
L

3
2 (Q1 )

≲ εk∥vk∥2
L3(Q1 )

(12.14)
≤ εk (Γ1)2.

Now we consider the difference of q̃k and qk: By construction with the Riesz transform we
have

∆(q̃k − qk) = εk∂α∂β ((η − 1 )(vk)α (vk)β) in B(0, 1) × {t}
In particular, since η ≡ 1 in B(1+R

2 ) we have

∆(q̃k − qk) = 0 in B(0, 1 +R

2 ) × (−1, 0).

That is, h := q̃k − qk is harmonic, and thus we have from Cauchy estimates, Exercise 2.43,∫
B(0,ρ)

|h−
∫

B(0,ρ)
h|

3
2 ≲

(
ρ

R

) 3
2 +3 ∫

B(0,R)
|h|

3
2

≲
(
ρ

R

) 3
2 +3 ∫

B(0,R)

(
|q̃k|

3
2 + |qk|

3
2
)
.

Using again the definition of h on the left-hand side, we have∫
B(0,ρ)

|qk −
∫

B(0,ρ)
qk|

3
2 ≲

(
ρ

R

) 3
2 +3 ∫

B(0,R)

(
|q̃k|

3
2 + |qk|

3
2
)

+
∫

B(0 ,1 )
|q̃k(t)| 3

2
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Integrating this in time, we have∫
Qρ

|qk −
∫

B(0,ρ)×{t}
qk|

3
2 ≲

(
ρ

R

) 3
2 +3 ∫

QR

(
|q̃k|

3
2 + |qk|

3
2
)

+
∫

Q1
|q̃k(t)| 3

2

(12.20),(12.14)
≲

(
ρ

R

) 3
2 +3 (

(εk) 3
2 Γ3

1 + Γ
3
2
1

)
+ (εk) 3

2 Γ3
1

We apply this inequality for ρ = θ and R = 99
100 . For k ≫ 1 we have that (εk) 3

2 ≪ θ
3
2 +3,∫

Qθ

|qk −
∫

B(0,θ)×{t})
qk|

3
2 ≲ (θ)

3
2 +3

(
2Γ3

1 + Γ
3
2
1

)
.

and thus

θ2
(∫

Qθ

|qk −
∫

B(0,θ)×{t})
qk|

3
2

) 2
3

≲ (θ)1+ 2
3

(
2Γ3

1 + Γ
3
2
1

) 2
3
.

So, combining this with (12.19), for all k ≫ 1 we have found

Eθ(vk, qk) =θ
(

|Qθ|−1
∫

Qθ

|vk − (vk)Qθ
|3
) 1

3
+ θ2

(
|Qθ|−1

∫
Qθ

|qk(x, t) − (qk)B(0,θ)×{t}|
3
2

) 2
3

≤θ1+ 2
3 C(Γ1,Γ2).

Thus, taking Υ > C(Γ1,Γ2) we have found a contradiction to (12.13).

We finally can conclude – up to proving all the claims we made before. □

Exercise 12.14. Prove the Cauchy estimates from Exercise 2.43

12.5. Proof of the energy inequality, Claim 12.11. Above we used the energy in-
equality for vk, the proof is a bit messy, but it follows essentially from a combination of
the locally energy inequality of u combined with the fact that we actually can test the
equation of vk with η(u)k which removes appearing cross-terms.

Proof of the energy inequality, Claim 12.11.

∫
B(0,1)

η(x, t)|uk(x, t)|2dx+ 2
∫

B(0,1)×(−1,t)
η(x, t′)|∇uk|2 dx dt′

≤
∫

B(0,1)×(−1,t)
|uk(x, t′)|2(∆η + ∂tη) + uk(x, t′) · ∇η(x, t′)

(
|uk(x, t′)|2 + 2pk(x, t′)

)
dx dt′

(12.21)
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We now stubbornly replace
uk = εkvk + (uk)Q1 , pk = εkqk + (pk)B(0,1)×{t}.

Then we find

∫
B(0,1)

η(x, t)|εkvk(x , t) + (uk)Q1 |2dx+ 2(εk)2
∫

B(0,1)×(−1,t)
η(x, t′)|∇vk |2 dx dt′

≤
∫

B(0,1)×(−1,t)
|εkvk(x , t ′) + (uk)Q1 |2(∆η + ∂tη)

+ (εkvk(x , t ′) + (uk)Q1 ) · ∇η(x, t′)
(
|εkvk(x , t ′) + (uk)Q1 |2 + 2

(
εkqk + (pk)B(0 ,1 )×{t}

))
dx dt′

(12.22)

Expanding the quadratic terms on the left-hand side (and bringing them to the right-hand
side) we have∫

B(0,1)
η(x, t)|εkvk(x, t)|2dx+ 2(εk)2

∫
B(0,1)×(−1,t)

η(x, t′)|∇vk|2 dx dt′

≤
∫

B(0,1)×(−1,t)
|εkvk(x, t′) + (uk)Q1|2(∆η + ∂tη)

−
∫

B(0,1)
η(x, t)|(uk)Q1 |2dx

− 2
∫

B(0,1)
η(x, t)⟨εkvk(x, t), (uk)Q1⟩dx

+
∫

B(0,1)×(−1,t)
(εkvk(x, t′) + (uk)Q1) · ∇η(x, t′)

(
|εkvk(x, t′) + (uk)Q1|2 + 2

(
εkqk + (pk)B(0,1)×{t}

))
dx dt′

and thus (expanding the first term on the right),∫
B(0,1)

η(x, t)|εkvk(x, t)|2dx+ 2(εk)2
∫

B(0,1)×(−1,t)
η(x, t′)|∇vk|2 dx dt′

≤
∫

B(0,1)×(−1,t)
|εkvk(x, t′)|2(∆η + ∂tη)

+
∫

B(0,1)×(−1,t)
|(uk)Q1 |2(∆η + ∂tη)

+ 2
∫

B(0,1)×(−1,t)
⟨εkvk(x, t′), (uk)Q1⟩(∆η + ∂tη)

−
∫

B(0,1)
η(x, t)|(uk)Q1|2dx

− 2
∫

B(0,1)
η(x, t)⟨εkvk(x, t), (uk)Q1⟩dx

+
∫

B(0,1)×(−1,t)
(εkvk(x, t′) + (uk)Q1) · ∇η(x, t′)

(
|εkvk(x, t′) + (uk)Q1|2 + 2

(
εkqk + (pk)B(0,1)×{t}

))
dx dt′

We observe ∫
B(0,1)×(−1,t)

|(uk)Q1|2∆η = 0
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and ∫
B(0,1)×(−1,t)

|(uk)Q1|2∂tη =
∫

B(0,1)
|(uk)Q1|2η − 0.

So ∫
B(0,1)×(−1,t)

|(uk)Q1|2(∆η + ∂tη) −
∫

B(0,1)
η(x, t)|(uk)Q1|2dx = 0

Then we arrive at

(εk)2
(∫

B(0,1)
η(x, t)|vk(x, t)|2dx+ 2

∫
B(0,1)×(−1,t)

η(x, t′)|∇vk|2 dx dt′
)

≤(εk)2
∫

B(0,1)×(−1,t)
|vk(x, t′)|2(∆η + ∂tη)

+ 2
∫

B(0,1)×(−1,t)
⟨εkvk(x, t′), (uk)Q1⟩(∆η + ∂tη) − 2

∫
B(0,1)

η(x, t)⟨εkvk(x, t), (uk)Q1⟩dx

+
∫

B(0,1)×(−1,t)
(εkvk(x, t′) + (uk)Q1) · ∇η(x, t′)

(
|εkvk(x, t′) + (uk)Q1|2 + 2

(
εkqk + (pk)B(0,1)×{t}

))
dx dt′

We now try to simplify the third term.∫
B(0,1)×(−1,t)

(εkvk(x, t′) + (uk)Q1) · ∇η(x, t′)
(
|εkvk(x, t′) + (uk)Q1|2 + 2

(
εkqk + (pk)B(0,1)×{t}

))
dx dt′

=
∫

B(0,1)×(−1,t)
(εkvk(x, t′) + (uk)Q1) · ∇η(x, t′) |εkvk(x, t′) + (uk)Q1|2dx dt′

+ 2
∫

B(0,1)×(−1,t)
(εkvk(x, t′) + (uk)Q1) · ∇η(x, t′)

(
εkqk + (pk)B(0,1)×{t}

)
dx dt′

=
∫

B(0,1)×(−1,t)
εkvk(x, t′) · ∇η(x, t′) |εkvk(x, t′) + (uk)Q1|2dx dt′

+
∫

B(0,1)×(−1,t)
(uk)Q1 · ∇η(x, t′) |εkvk(x, t′) + (uk)Q1|2dx dt′

+ 2
∫

B(0,1)×(−1,t)
εkvk(x, t′) · ∇η(x, t′)

(
εkqk + (pk)B(0,1)×{t}

)
dx dt′

+ 2
∫

B(0,1)×(−1,t)
(uk)Q1 · ∇η(x, t′)

(
εkqk + (pk)B(0,1)×{t}

)
dx dt′

We notice that the term

2
∫

B(0,1)×(−1,t)
(uk)Q1 · ∇η(x, t′) (pk)B(0,1)×{t}dx dt

′ = 0

and since div vk = 0 also

2
∫

B(0,1)×(−1,t)
εkvk(x, t′) · ∇η(x, t′) (pk)B(0,1)×{t}dx dt

′ = 0.
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So∫
B(0,1)×(−1,t)

(εkvk(x, t′) + (uk)Q1) · ∇η(x, t′)
(
|εkvk(x, t′) + (uk)Q1|2 + 2

(
εkqk + (pk)B(0,1)×{t}

))
dx dt′

=
∫

B(0,1)×(−1,t)
(εkvk(x, t′) + (uk)Q1) · ∇η(x, t′) |εkvk(x, t′) + (uk)Q1|2dx dt′

+ 2
∫

B(0,1)×(−1,t)
(εkvk(x, t′) + (uk)Q1) · ∇η(x, t′)

(
εkqk + (pk)B(0,1)×{t}

)
dx dt′

=
∫

B(0,1)×(−1,t)
εkvk(x, t′) · ∇η(x, t′) |εkvk(x, t′) + (uk)Q1|2dx dt′

+
∫

B(0,1)×(−1,t)
(uk)Q1 · ∇η(x, t′) |εkvk(x, t′) + (uk)Q1|2dx dt′

+ εk
2
∫

B(0,1)×(−1,t)
vk(x, t′) · ∇η(x, t′) 2qkdx dt

′

+ 2
∫

B(0,1)×(−1,t)
(uk)Q1 · ∇η(x, t′) εkqkdx dt

′

For the first term in this equation we observe∫
B(0,1)×(−1,t)

εkvk(x, t′) · ∇η(x, t′) |εkvk(x, t′) + (uk)Q1|2dx dt′

=
∫

B(0,1)×(−1,t)
(εk)3vk(x, t′) · ∇η(x, t′) |vk(x, t′)|2dx dt′

+
∫

B(0,1)×(−1,t)
εkvk(x, t′) · ∇η(x, t′) |(uk)Q1|2dx dt′︸ ︷︷ ︸

div vk=0
= 0

+ 2(εk)2
∫

B(0,1)×(−1,t)
vk(x, t′) · ∇η(x, t′) ⟨vk(x, t′), (uk)Q1⟩dx dt′

Thus∫
B(0,1)×(−1,t)

(εkvk(x, t′) + (uk)Q1) · ∇η(x, t′)
(
|εkvk(x, t′) + (uk)Q1|2 + 2

(
εkqk + (pk)B(0,1)×{t}

))
dx dt′

=
∫

B(0,1)×(−1,t)
(εk)3vk(x, t′) · ∇η(x, t′) |vk(x, t′)|2dx dt′

+
∫

B(0,1)×(−1,t)
(uk)Q1 · ∇η(x, t′) |εkvk(x, t′) + (uk)Q1|2dx dt′

+ 2(εk)2
∫

B(0,1)×(−1,t)
vk(x, t′) · ∇η(x, t′) ⟨vk(x, t′), (uk)Q1⟩dx dt′

+ εk
2
∫

B(0,1)×(−1,t)
vk(x, t′) · ∇η(x, t′) 2qkdx dt

′

+ 2
∫

B(0,1)×(−1,t)
(uk)Q1 · ∇η(x, t′) εkqkdx dt

′
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Treating the second term in this equation similarly

∫
B(0,1)×(−1,t)

(uk)Q1 · ∇η(x, t′) |εkvk(x, t′) + (uk)Q1 |2dx dt′

=
∫

B(0,1)×(−1,t)
(uk)Q1 · ∇η(x, t′) |εkvk(x, t′)|2dx dt′

+
∫

B(0,1)×(−1,t)
(uk)Q1 · ∇η(x, t′) |(uk)Q1|2dx dt′︸ ︷︷ ︸

=0

+ 2εk

∫
B(0,1)×(−1,t)

(uk)Q1 · ∇η(x, t′) ⟨vk(x, t′), (uk)Q1⟩dx dt′

Thus

∫
B(0,1)×(−1,t)

(εkvk(x, t′) + (uk)Q1) · ∇η(x, t′)
(
|εkvk(x, t′) + (uk)Q1|2 + 2

(
εkqk + (pk)B(0,1)×{t}

))
dx dt′

=
∫

B(0,1)×(−1,t)
(εk)3vk(x, t′) · ∇η(x, t′) |vk(x, t′)|2dx dt′

+
∫

B(0,1)×(−1,t)
(uk)Q1 · ∇η(x, t′) |εkvk(x, t′)|2dx dt′

+ 2εk

∫
B(0,1)×(−1,t)

(uk)Q1 · ∇η(x, t′) ⟨vk(x, t′), (uk)Q1⟩dx dt′

+ 2(εk)2
∫

B(0,1)×(−1,t)
vk(x, t′) · ∇η(x, t′) ⟨vk(x, t′), (uk)Q1⟩dx dt′

+ εk
2
∫

B(0,1)×(−1,t)
vk(x, t′) · ∇η(x, t′) 2qkdx dt

′

+ 2
∫

B(0,1)×(−1,t)
(uk)Q1 · ∇η(x, t′) εkqkdx dt

′
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So, for our inequality we arrive at

(εk)2
(∫

B(0,1)
η(x, t)|vk(x, t)|2dx+ 2

∫
B(0,1)×(−1,t)

η(x, t′)|∇vk|2 dx dt′
)

≤(εk)2
∫

B(0,1)×(−1,t)
|vk(x, t′)|2(∆η + ∂tη)

+ 2(εk)2
∫

B(0,1)×(−1,t)
vk(x, t′) · ∇η(x, t′) ⟨vk(x, t′), (uk)Q1⟩dx dt′

+ εk
2
∫

B(0,1)×(−1,t)
vk(x, t′) · ∇η(x, t′) 2qkdx dt

′

+ (εk)3
∫

B(0,1)×(−1,t)
vk(x, t′) · ∇η(x, t′) |vk(x, t′)|2dx dt′

+ (εk)2
∫

B(0,1)×(−1,t)
(uk)Q1 · ∇η(x, t′) |vk(x, t′)|2dx dt′

+ 2εk

∫
B(0,1)×(−1,t)

⟨vk(x, t′), (uk)Q1⟩(∆η + ∂tη)

+ 2εk

∫
B(0,1)×(−1,t)

(uk)Q1 · ∇η(x, t′) ⟨vk(x, t′), (uk)Q1⟩dx dt′

+ 2εk

∫
B(0,1)×(−1,t)

(uk)Q1 · ∇η(x, t′) qkdx dt
′

− 2εk

∫
B(0,1)

η(x, t)⟨vk(x, t), (uk)Q1⟩dx

Formally33 we have (since η ≡ 0 at −1, this holds for a.e. t)

2εk

∫
B(0,1)×(−1,t)

⟨vk(x, t′), (uk)Q1⟩(∆η + ∂tη)

= − 2εk

∫
B(0,1)×(−1,t)

⟨(∂t − ∆)vk(x, t′), (uk)Q1⟩η

+ 2εk

∫
B(0,1)×{t}

⟨vk(x, t′), (uk)Q1⟩η

− 2εk

∫
B(0,1)×{−1}

⟨vk(x, t′), (uk)Q1⟩ η︸︷︷︸
≡0

Using the equation

∂tvk − ∆vk + ((uk)Q1 + εkvk)α∂αvk = −∇qk

33This needs to be made precise, (uk)Q1η is a permissible test function but not zero on the time-boundary
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we have

2εk

∫
B(0,1)×(−1,t)

⟨vk(x, t′), (uk)Q1⟩(∆η + ∂tη)

= + 2εk

∫
B(0,1)×(−1,t)

⟨((uk)Q1 + εkvk)α∂αvk, (uk)Q1⟩η

− 2εk

∫
B(0,1)×(−1,t)

qk⟨(uk)Q1⟩∇η

+ 2εk

∫
B(0,1)×{t}

⟨vk(x, t′), (uk)Q1⟩η

div vk=0= − 2εk

∫
B(0,1)×(−1,t)

⟨((uk)Q1 + εkvk)αvk, (uk)Q1⟩∂αη

− 2εk

∫
B(0,1)×(−1,t)

qk⟨(uk)Q1⟩∇η

+ 2εk

∫
B(0,1)×{t}

⟨vk(x, t′), (uk)Q1⟩η

= − 2εk

∫
B(0,1)×(−1,t)

⟨((uk)Q1)αvk, (uk)Q1⟩∂αη

− 2(εk)2
∫

B(0,1)×(−1,t)
⟨(vk)αvk, (uk)Q1⟩∂αη

− 2εk

∫
B(0,1)×(−1,t)

qk⟨(uk)Q1⟩∇η

+ 2εk

∫
B(0,1)×{t}

⟨vk(x, t′), (uk)Q1⟩η
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That is

(εk)2
(∫

B(0,1)
η(x, t)|vk(x, t)|2dx+ 2

∫
B(0,1)×(−1,t)

η(x, t′)|∇vk|2 dx dt′
)

≤(εk)2
∫

B(0,1)×(−1,t)
|vk(x, t′)|2(∆η + ∂tη)

+ 2 (εk)2
∫

B(0 ,1 )×(−1 ,t)
vk(x , t ′) · ∇η(x , t ′) ⟨vk(x , t ′), (uk)Q1 ⟩dx dt ′

+ εk
2
∫

B(0,1)×(−1,t)
vk(x, t′) · ∇η(x, t′) 2qkdx dt

′

+ (εk)3
∫

B(0,1)×(−1,t)
vk(x, t′) · ∇η(x, t′) |vk(x, t′)|2dx dt′

+ (εk)2
∫

B(0,1)×(−1,t)
(uk)Q1 · ∇η(x, t′) |vk(x, t′)|2dx dt′

− 2 (εk)2
∫

B(0 ,1 )×(−1 ,t)
⟨(vk)αvk , (uk)Q1 ⟩∂αη

+ 2εk

∫
B(0,1)×(−1,t)

(uk)Q1 · ∇η(x, t′) ⟨vk(x, t′), (uk)Q1⟩dx dt′ − 2εk

∫
B(0,1)×(−1,t)

⟨((uk)Q1)αvk, (uk)Q1⟩∂αη

+ 2εk

∫
B(0,1)×(−1,t)

(uk)Q1 · ∇η(x, t′) qkdx dt
′ − 2εk

∫
B(0,1)×(−1,t)

qk⟨(uk)Q1⟩∇η

− 2εk

∫
B(0,1)

η(x, t)⟨vk(x, t), (uk)Q1⟩dx+ 2εk

∫
B(0,1)×{t}

⟨vk(x, t′), (uk)Q1⟩η

The last three lines are zero (and the red lines cancel).

So we have shown

(εk)2
(∫

B(0,1)
η(x, t)|vk(x, t)|2dx+ 2

∫
B(0,1)×(−1,t)

η(x, t′)|∇vk|2 dx dt′
)

≤(εk)2
∫

B(0,1)×(−1,t)
|vk(x, t′)|2(∆η + ∂tη)

+ εk
2
∫

B(0,1)×(−1,t)
vk(x, t′) · ∇η(x, t′) 2qkdx dt

′

+ (εk)3
∫

B(0,1)×(−1,t)
vk(x, t′) · ∇η(x, t′) |vk(x, t′)|2dx dt′

+ (εk)2
∫

B(0,1)×(−1,t)
(uk)Q1 · ∇η(x, t′) |vk(x, t′)|2dx dt′
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Dividing by (εk)2 we conclude(∫
B(0,1)

η(x, t)|vk(x, t)|2dx+ 2
∫

B(0,1)×(−1,t)
η(x, t′)|∇vk|2 dx dt′

)

≤
∫

B(0,1)×(−1,t)
|vk(x, t′)|2(∆η + ∂tη)

+
∫

B(0,1)×(−1,t)
vk(x, t′) · ∇η(x, t′) 2qkdx dt

′

+ εk

∫
B(0,1)×(−1,t)

vk(x, t′) · ∇η(x, t′) |vk(x, t′)|2dx dt′

+
∫

B(0,1)×(−1,t)
(uk)Q1 · ∇η(x, t′) |vk(x, t′)|2dx dt′

This concludes the proof of Claim 12.11. □

12.6. Regularity for blow-up equation: Proof of Claim 12.12.

12.6.1. Regularity theory for global linear estimates. The following are essentially parabolic
Cauchy-type estimates, cf. Theorem 3.24, see also Lemma 2.41 for the elliptic version.

Lemma 12.15. Let b ∈ Rn be a constant vector with |b| ≤ 1, and assume u ∈ L2(B(0, 1)×
(−1, 0)) solves in distributional sense

(∂t − ∆)u− bα∂αu = 0 in B(0, 1) × (−1, 0)
Then for any R ∈ (0, 1) and any ℓ = 0, 1, . . . there exists a constant C depending only on
the dimension n and R such that

∥∇ℓu∥L∞(B(0,R)×(−R2,0)) ≲R ∥u∥L2(B(0,1)×(−1,0))

Proof. Let η ∈ C∞
c (B(0, 1) × (−1, 0]) with η ≡ 1 in B(0, 1+R

2 ) × (−(
(

1+R
2

)2
, 0] a typical

bump function (whose derivative all depend on R, but are otherwise uniform).

Then set v := ηu (in particular we have v ≡ 0 for t ≈ −1)
(∂t − ∆)v − bα∂αv = g in Rn × (−1, 0)

where
g :=(∂tη)u− (∆η)u− 2∇η · ∇u− bα(∂αη)u

=(∂tη)u+ (∆η)u− 2div (∇η u) − bα(∂αη)u
Observe that 2∇η · ∇u or div (∇η u) make sense only in a distributional sense – since
u ∈ L2. But this will not be a problem. It will be useful to observe that

(12.23) g ≡ 0 in B(0, 1 +R

2 ) × (−(
(1 +R

2

)2
, 0],

which happens because all terms of g contain derivatives of η and η ≡ 1 in the above set.
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Now we have reduced our situation to an equation on Rn × (−1, 0),

(12.24) (∂t − ∆)v − bα∂αv = g.

Observe that since b is constant, b · ∇v is a sort of transport term, namely
(∂t − ∆)v(x−tb, t) = g(x− tb, t) in Rn × (−1, 0)
v(x−tb, t)

∣∣∣∣
t=−1

= 0.

From the representation formula of the heat equation, Theorem 3.4, we find

v(x−tb, t) = c6

∫
Rn

∫ t

s=−1

1
(t− s)n

2
e−c7

|x−y|2
t−s g(y − sb, s)ds dy.

Consequently, with a substitution

v(x , t) = c6

∫
Rn

∫ t

s=−1

1
(t− s)n

2
e−c7

|x−y|2
t−s g(y + (t − s)b, s)ds dy

and thus

∇ℓv(x, t) = c6

∫
Rn

∫ t

s=−1

1
(t− s)n

2
∇ℓ

xe
−c7

|x−y|2
t−s g(y + (t− s)b, s)ds dy.

We need to estimate this expression, where from now on we always assume

(x, t) ∈ B(0, R) × (−R2, 0).

We discuss two regimes. First, in view of (12.23) we see that there exist constants ε, δ
depending on R

g(y + (t− s)b, s) = 0 ∀y ∈ B(0, R + 2 δ) |s− t| < ε

We split the integral first in space and time,

∣∣∣∇ℓv(x, t)
∣∣∣ ≲ ∣∣∣∣∣

∫
Rn

∫ t

s=−1
χ|s−t|>ε

1
(t− s)n

2
∇ℓ

xe
−c7

|x−y|2
t−s g(y + (t− s)b, s)ds dy

∣∣∣∣∣
+
∣∣∣∣∣
∫
Rn

∫ t

s=−1
χ|s−t|<εχ|x−y|>2δ

1
(t− s)n

2
∇ℓ

xe
−c7

|x−y|2
t−s g(y + (t− s)b, s)ds dy

∣∣∣∣∣

(12.25)
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For the first term in (12.25) we observe by Young’s convolution inequality in x, L∞ ⊂
L∞ ∗ L1 (we do this computation for a generic g̃, for later use)

sup
x∈B(0,R)

∣∣∣∣∣
∫
Rn

∫ t

s=−1
χ|s−t|>ε

1
(t− s)n

2
∇ℓ

xe
−c7

|x−y|2
t−s g̃(y + (t− s)b, s)ds dy

∣∣∣∣∣
≲ε sup

x∈B(0,R)

∣∣∣∣∫ t

s=−1
χ|s−t|>ε

∣∣∣∣∫
Rn

∇ℓ
xe

−c7
|x−y|2

t−s g̃(y + (t− s)b, s)dy
∣∣∣∣ ds∣∣∣∣

= sup
x∈B(0,R)

∫ t

s=−1
χ|s−t|>ε

∣∣∣∣(∇ℓe−c7
|·|2
t−s ∗ g̃(· + (t− s)b, s)

)
(x)
∣∣∣∣ ds

≲
∫ t

s=−1
χ|s−t|>ε∥∇ℓe−c7

|·|2
t−s ∥L∞(Rn)∥̃g(· + (t− s)b, s)∥L1(Rn) ds

ε<|s−t|≤2
≲

∫ 0

s=−1
C(ε)∥̃g(, s)∥L1(Rn) ds

=C(ε)∥̃g(, s)∥L1(Rn×(−1,0)).

This is a good estimates for most of the terms appearing in g, namely we observe
(12.26)

∥(∂tη)u∥L1(Rd×(−1,0) + ∥(∆η)u∥L1(Rd×(−1,0) + ∥bα(∂αη)u∥L1(Rd×(−1,0) ≲ ∥u∥L2(B(0,1)×(−1,0))

The only term to deal with is div (∇η u) byt for this we observe similar to the above (recall
that x ∈ B(0, R) by assumption,

sup
x∈B(0,R)

∣∣∣∣∣
∫
Rn

∫ t

s=−1
χ|s−t|>ε

1
(t− s)n

2
∇ℓ

xe
−c7

|x−y|2
t−s div G̃(y + (t− s)b, s)ds dy

∣∣∣∣∣
≲ε sup

x∈B(0,R)

∣∣∣∣∫ t

s=−1
χ|s−t|>ε

∣∣∣∣∫
Rn

∇x∇ℓ
xe

−c7
|x−y|2

t−s · G̃(y + (t− s)b, s)dy
∣∣∣∣ ds∣∣∣∣

=
∫ t

s=−1
χ|s−t|>ε

∣∣∣∣(∇ℓ+1e−c7
|·|2
t−s ∗ G̃(· + (t− s)b, s)

)
(x)
∣∣∣∣ ds

=C(ε)∥G̃(, s)∥L1(Rn×(−1,0)) ds

In conclusion we have established control for the first term in (12.25), namely

sup
(x,t)∈B(0,R)×(0,−R2)

∣∣∣∣∣
∫
Rn

∫ t

s=−1
χ|s−t|>ε

1
(t− s)n

2
∇ℓ

xe
−c7

|x−y|2
t−s g(y + (t− s)b, s)ds dy

∣∣∣∣∣ ≲ ∥u∥L2(B(0,1)×(−1,0).
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For the second term in (12.25), we argue slightly different. We first discuss the case ℓ = 0.
Using this time Young’s inequality in R, L∞(R) ⊂ L∞(R) ∗ L1(R) we have

∣∣∣∣∣
∫
Rn

∫ t

s=−1
χ|s−t|<εχ|x−y|>2δ

1
(t− s)n

2
e−c7

|x−y|2
t−s g̃(y + (t− s)b, s)ds dy

∣∣∣∣∣
≲
∫ t

s=−1

1
(t− s)n

2
e−c7

δ2
t−s

∣∣∣∣∫
Rn
g̃(y + (t− s)b, s)dy

∣∣∣∣ ds
≤
∫

s∈R

1
|t− s|

n
2

∇ℓe−c7
δ2

t−s

∣∣∣∣χs∈(−1,0)

∫
Rn
g̃(y, s)dy

∣∣∣∣ ds
=
(

1
|·|

n
2
e−c7

δ2
· ∗R

∣∣∣∣∫
Rn
g̃(y, ·)dy

∣∣∣∣
)

(t)

≤∥ 1
|·|

n
2
e−c7

δ2
· ∥L∞(R)∥g̃∥L1(Rn×(−1,0))

Here we use that the exponential absorbs the singularity in t − s. This again suffices for
most terms contained in g, cf. (12.26).

Similarly, by an integration by parts (here we use that for our G̃ = ∇η u we know that for
|x− y| = δ we have G̃(y + (t− s)b, s) ≡ 0),

∣∣∣∣∣
∫
Rn

∫ t

s=−1
χ|s−t|<εχ|x−y|>2δ

1
(t− s)n

2
e−c7

|x−y|2
t−s div G̃(y + (t− s)b, s)ds dy

∣∣∣∣∣
=
∫ t

s=−1

1
(t− s)n

2 +1 e
−c7

δ2
t−s

∣∣∣∣∫
Rn
G̃(y + (t− s)b, s)dy

∣∣∣∣ ds
≲∥ 1

|·|
n
2 +1 e

−c7
δ2
· ∥L1(R)∥G̃∥L1(Rn×(−1,0))

This settles the case for ℓ = 0.

If ℓ is larger we use that for certain polynomials by repeated product rule,

∇ℓ
xe

−c7
|x−y|2

t−s =
ℓ∑

i=0
(t− s)−ipi,ℓ(x− y)e−c7

|x−y|2
t−s .
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Then we have∣∣∣∣∣
∫
Rn

∫ t

s=−1
χ|s−t|<εχ|x−y|>2δ

1
(t− s)n

2
∇ℓe−c7

|x−y|2
t−s g̃(y + (t− s)b, s)ds dy

∣∣∣∣∣
≲

ℓ∑
i=1

∫ t

s=−1

1
(t− s)n

2 +i e
−c7

δ2
t−s

∣∣∣∣∫
Rn

pi(x − y)g̃(y + (t− s)b, s)dy
∣∣∣∣ ds

≤
∑

i

∫
s∈R

1
|t− s|

n
2 +i

∇ℓe−c7
δ2

t−s

∣∣∣∣χs∈(−1,0)

∫
Rn

pi(x − y − (t − s)b)g̃(y, s)dy
∣∣∣∣ ds

=
(

1
|·|

n
2 +i

e−c7
δ2
· ∗R

∣∣∣∣∫
Rn

pi(x − y − (t − s)b)g̃(y, ·)dy
∣∣∣∣
)

(t)

We can now conclude as before, observing: If |s − t| < ε then for x ∈ B(0, R) and
y ∈ supp g̃(· + (t − s)b, s) we know that |x − y| ≲ R. So whether we need to do an
integration by parts for g̃ or not, the pi-term is bounded by a constant depending on R.

We can conclude. □

12.6.2. (An easy consequence of) Helmholtz-Hodge decomposition. The following can real-
tively easily be generalized to other dimensions (the simplest notion then using differential
forms), but our focus is on 3 dimensions here.

For a vector field F = (F1, F2, F3) : Ω ⊂ R3 → R3 we already are familiar with the operator
div

div F = ∂αFα

We also define

curl (F) ≡ ∇ × F =

 ∂2F3 − ∂3F2
∂3F1 − ∂1F3
∂1F2 − ∂2F1


The two operations are essentially perpendicular to each other,

div curl F = 0, and curl ∇f = 0
Helmholtz-Hodge decomposition tells us that any vector field F can be split into it divergence-
part and curl -part. Namely we can find a and b such that

F = ∇a+ curl b
and a is determined by div F and b is determined by curl F.

This can be seen e.g. from the identity
(12.27) curl (curl F) = ∆F − ∇(div F)
This identity (12.27) can be computed by hand from the 3D cross-product rule (where ×
is the cross product, and · the scalar product in R3)

a × (b × c) = (a · c)b − c(a · b)
and replacing a and b with symbols a = ∇, b = ∇, and noting that then ∇ × c = curl c.
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(Formally) Inverting the ∆ in (12.27) we have
(12.28) F = curl ∆−1 (curl F) + ∇∆−1 (div F)

This equation appears at several directions in mathematics. It seems that it tends to
be called “Helmholtz-decomposition” in Navier-Stokes equations, whereas in geometric
context (working with differential forms this is ω = dα+d∗β) it is more often called Hodge
decomposition. The details are a bit unpleasant because of boundary data needing to be
chosen (e.g. when talking about ∆−1 we need to fix what ∆-equation we solve, with what
boundary and on what domain). We don’t want to diverge in this direction too much here,
we only record what is essentially a corollary of the Helmholtz-Hodge decomposition.
Corollary 12.16. Let Ω ⊂ Rn be any open set.

Assume that v ∈ W 1,2(Ω,R3) with
div v = 0 in Ω

and assume that for some r ∈ [2,∞) we have for some ℓ ∈ {0, 1, 2, . . .}
curl v ∈ W ℓ,r(Ω,R3).

Then for any open set Ω′ ⊂⊂ Ω we have
∥∇ℓ+1v∥Lr (Ω′) ≲Ω,Ω′,r ∥curl v∥W ℓ,r (Ω) + ∥v∥L2(Ω).

Proof. Observe from (12.27) (this holds for smooth vectors, and by density also in distri-
butional sense)

∆v = curl (curl v) in Ω
Now from the interior Calderon-Zygmund/Lp-theory (applied componentwise!), Theorem 7.10,
we have for any r ∈ (1,∞)

∥∇v∥Lr(Ω′) ≲Ω′,Ω ∥curl v∥Lr(Ω) + ∥v∥L2(Ω).

This establishes the case ℓ = 0.

If ℓ = 1, let Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω we already have
∥∇v∥Lr(Ω′′) ≲Ω′′,Ω∥curl v∥Lr(Ω) + ∥v∥L2(Ω)

≤∥curl v∥W 1,r(Ω) + ∥v∥L2(Ω)
(12.29)

Now we apply the previous argument to (if we are unhappy with the distributional sense we
can use discrete differentiating, the important thing is that ∂αcurl (curl v) = curl curl (∂αv)){

∆∂αv = curl (curl ∂αv) in Ω′

Then from the Calderon-Zygmund theory we obtain
∥∇∂αv∥Lr(Ω′) ≲Ω′,Ω′′,r∥∂αcurl v∥Lr(Ω′′) + ∥∂αv∥L2(Ω′′)

(12.29)
≲ Ω′′,Ω′,r ∥∂αcurl v∥Lr(Ω′′) + ∥v∥L2(Ω′′).

For general ℓ we simply do this argument ℓ times. □
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12.6.3. Regularity for blow-up equation: Proof of Claim 12.12. Recall our situation:

We have v a solution to ∂tv − ∆v + bα∂αv = −∇q in Q1

div v = 0 in Q1

where we know (from the energy inequality, cf. (12.15))
sup
k∈N

∥∇vk∥L2(QR) ≲R Γ1 ∀R ∈ (0, 1).

We want to show for all R ∈ (0, 1)

sup
(x,t),(y,t)∈QR

|v(x, t) − v(y, s)|
|x− y| 2

3 + |s− t| 1
3
≲R Γ1

Proof of Claim 12.12. Recall that we have that ∇v ∈ L2
loc(B(0, 1) × (−1, 0]). That is

(curl v) :=

 ∂2v3 − ∂3v2
∂3v1 − ∂1v3
∂1v2 − ∂2v1

 ∈ L2
loc(B(0, 1) × (−1, 0],R3).

and more precisely we have by (12.15)
∥curl v∥L2(QR) ≲R,n Γ1 ∀R ∈ (0, 1).

It is easy to check that curl (∇q) = 0, so we can apply curl to the equation (12.17) and
find that (componentwise)

∂tcurl v − ∆curl v + bα∂αcurl v = 0 in Q1

By Lemma 12.15 we conclude regularity for curl v, namely we have for all ℓ = 0, 1, 2, . . .
∥∇ℓcurl v∥L∞(QR) ≲R,n Γ1 ∀R ∈ (0, 1).

By Fubini’s theorem and Hölder’s inequality we conclude that for any r ∈ (1,∞),
sup

t∈(−R2,0)
∥∇ℓcurl v∥Lr(B(0,R))×{t}) ≲R,n,r Γ1 ∀R ∈ (0, 1).

Now we employ Helmholtz-Hodge decomposition, since we have div and curl control for
∇v. More precisely, by Corollary 12.16 we have
(12.30) sup

t∈(−R2,0)
∥∇ℓ+1v∥Lr(B(0,R))×{t} ≲R,n,r Γ1 ∀R ∈ (0, 1), r ∈ (1,∞)

Observe, at this stage we only have spatial control but not in time-direction.

We also obtain the same sort of (spatial) control for q: By taking div of the PDE of v and
q, (12.17), observing that div commutes with all differentiable operators in that PDE, in
particular that

div (bα∂αv) = bα∂αdiv v = 0,
we find that

−∆q = 0 in Q1.
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In particular (by Fubini’s theorem) for a.e. t ∈ (−1, 0) we have q(·, t) ∈ L
3
2 (B(0, 1) × {t})

and

−∆q(·, t) = 0 in B(0, 1).

From the Cauchy estimates, Theorem 3.24, we have for each of those t ∈ (−1, 0)

∥∇ℓq(·, t)∥L∞(B(0,R)) ≲R,ℓ ∥q(·, t)∥
L

3
2 (B(0,1)×{t}

∀R ∈ (0, 1).

With (12.14) this implies

(12.31)
(∫ 0

t=−R2
∥∇ℓq(·, t)∥

3
2
L∞(B(0,R)) dt

) 2
3
≲R Γ1

It remains to obtain time-control of v and q. We look at the PDE, (12.17), again as an
ODE

∂tv = ∆v − bα∂αv − ∇q

we see that

|∂t∇ℓv(x, t)| ≲ |∇ℓ+2v(x, t)| + |∇ℓ+1v(x, t)| + |∇ℓ+1q(x, t)|

and thus by (12.30) and (12.31)

∥∂t∇ℓv∥
L

3
2 (QR)

≲ sup
t∈(−R2,0)

∥∇ℓ+2v(·, t)∥
L

3
2 (B(0,R))

+ sup
t∈(−R2,0)

∥∇ℓ+1v(·, t)∥
L

3
2 (B(0,R))

+
(∫ 0

t=−R2
∥∇ℓ+1q(·, t)∥

3
2
L∞(B(0,R)) dt

) 2
3

≲R,ℓΓ1.

By spatial Sobolev embedding W ℓ, 3
2 (B(0, R)) ⊂ L∞(B(0, R)) for a suitably large ℓ. We

conclude in particular that
(∫

∥∂tv(·, t)∥
3
2
L∞(B(0,R))dt

) 2
3

≲
(∫

∥∇ℓ∂tv(·, t)∥
3
2

L
3
2 (B(0,R))

dt
) 2

3

+
(∫

∥∂tv(·, t)∥
3
2

L
3
2 (B(0,R))

dt
) 2

3

≲Γ1.

(12.32)
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So for a.e. (x, t), (y, t) ∈ QR we have

|v(x, t) − v(y, s)| ≤
∫

[s,t]
|∂tv(x, σ)| dσ + |v(x, s) − v(y, s)|

≤|s− t|
1
3

(∫
[s,t]

∥∂tv(x, σ)∥
3
2
L∞(B(0,R))dσ

) 2
3

+ |x− y|∥∇v(·, s)∥L∞(B(0,R))

(12.32)
≲ |s− t|

1
3 Γ1 + |x− y|

(
∥v∥L2(B(0,R)) + ∥∇100v(·, s)∥L2(B(0,R))

)
(12.30)
≲

(
|s− t|

1
3 + |x− y|

)
Γ1

That is, we have a control over Hölder continuity of v in QR. This proves (12.18). □

12.7. The Aubin-Lions Lemma: Proof of Claim 12.13. We first recall the Ehrling-
Lemma

Theorem 12.17 (Ehrling lemma). Let (X, ∥ · ∥X), (Y, ∥ · ∥Y ), (Z, ∥ · ∥Z) be three Banach
spaces which are subspaces of each other X ⊂ Y ⊂ Z with the following properties.

• X is compactly embedded in Y , that is X ⊂ Y and every ∥ · ∥X-bounded sequence
(xk)k ⊂ X, supk ∥xk∥X < ∞, has a strongly ∥ · ∥Y -convergent subsequence (xki

)i∈N,
i.e. for some y ∈ Y and ∥xki

− y∥Y
i→∞−−−→ 0.

• Y is continuously embedded in Z, that is Y ⊂ Z and there exists Λ > 0 such that
∥y∥Z ≤ Λ∥y∥Y for all y ∈ Y .

Then for every ε > 0 there exists a constant C(ε) > 0 such that the following holds
∥x∥Y ≤ ε∥x∥X + C(ε)∥x∥Z ∀x ∈ X.

Exercise 12.18. Let (X, ∥ · ∥X), (Y, ∥ · ∥Y ) be Banach spaces. Show that if X ⊂ Y is
compactly embedded, then X ⊂ Y is continuously embedded.

Proof of Theorem 12.17. This is once again a typical blow-up proof.

Fix ε > 0. Assume the claim is false, then for any k ∈ N there exists a “counterexample”
xk ∈ X such that

∥xk∥Y>ε∥xk∥X + k∥xk∥Z ∀k
Dividing this inequality by ∥xk∥Y (cannot be zero because of the strict inequality) and
otherwise switching over to x̃k := xk

∥xk∥Y
we may assume w.l.o.g. ∥xk∥Y = 1 for all k and

thus
1 > ε∥xk∥X + k∥xk∥Z ∀k.

In particular,
sup

k
∥xk∥X ≤ 1

ε
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and
lim

k→∞
∥xk∥Z ≤ lim

k→∞

1
k

= 0.

By compactness X ⊂ Y and since (xk)k is ∥ · ∥X-bounded, up to passing to a subsequence
(xki

)i, we can assume w.l.o.g. that there exists y ∈ Y such that ∥xk − y∥Y
k→∞−−−→ 0. In

particular since ∥xk∥Y = 1 we find that ∥y∥Y = 1. By the continuous embedding Y ⊂ Z

we also have ∥xk − y∥Z
k→∞−−−→ 0 , but since ∥xk∥Z

k→∞−−−→ 0 we have y = 0, which contradicts
∥y∥Y = 1.

So there must have been some k ∈ N for which there was no counterexample xk – and thus
the claim is proven. □

Theorem 12.19 (Aubin-Lions Lemma). Let X, Y, Z be reflexive34 Banach spaces such that
X ↪→ Y embedds compactly

and
Y ↪→ Z embedds continuously.

Assume that for some p, q ∈ (1,∞), T ∈ (0,∞)
(uk)k∈N ∈ Lp([0, T ];X), (∂tuk)k∈N ∈ Lq([0, T ];Z)

is bounded, i.e.

sup
k

∫ T

0
(∥uk(t)∥X)p dt+ sup

k

∫ T

0
(∥∂tuk(t)∥Z)q dt < ∞

Then there exists a subsequence (uki
)i∈N and u ∈ Lp([0, T ];Y ) such that∫ T

0
∥uki

(t) − u(t)∥p
Y dt

k→∞−−−→ 0.

Sounds like a combination of Rellich’s theorem, Theorem 5.19, and Ehrling Lemma, The-
orem 12.17? This is, because it is pretty much that.

Proof of Theorem 12.19. Let η ∈ C∞
c ((−1, 1)) be the typical nonnegative bump function

with
∫
R η = 1. Set ηε(x) := ε−nη(x/ε).

W.l.o.g. we may assume that uk : (−T, 2T ) → X, Y, Z, and assume

(12.33) sup
k

∫ 2T

−T
(∥uk(t)∥X)p dt+ sup

k

∫ 2T

−T
(∥∂tuk(t)∥Z)q dt < ∞

Otherwise we can work with a reflection that matches zero-th and first derivative:

ũk(t) :=


−3uk(T − (t− T )) + 4uk(T − t−T

2 ) t ∈ (T, 2T )
uk(t) t ∈ [0, T ]
−3uk(−t) + 4uk(− t

2) t ∈ (−T, 0)
34one can remove this assumption, then its called the Aubin-Lions-Simons lemma
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Observe that then we’d still have

sup
k

∫ 2T

−T
(∥ũk(t)∥X)p dt+ sup

k

∫ 2T

−T
(∥∂tũk(t)∥Z)q dt < ∞

So we will assume (12.33) from now on.

For the typical bump function η ∈ C∞
c (−1, 1),

∫
(−1,1) η = 1 and ηε(x) := ε−1η(x/ε) we set

uk;ε(t) := uk ∗t ηε =
∫
R
ηε(t− s)uk(s) ds.

This makes sense for t ∈ [0, T ] if we (as we shall from now on) assume ε < T . Observe
that

∥uk;ε(t)∥X ≤
∫
R
ηε(t− s)∥uk(s)∥X ds ∀t ∈ [0, T ].

so that from (12.33) we obtain

(12.34) sup
k,ε∈(0,1)

∫ T

0
(∥uk;ε(t)∥X)p dt < ∞,

sup
t∈[0,T ]

∥uk;ε(t)∥X ≤ C(ε)

and
sup

t∈[0,T ]
∥∂tuk;ε(t)∥X ≤ C(ε),

and thus
(12.35) sup

t,s∈[0,T ]
∥uk;ε(t) − uk;ε(s)∥X ≤ C(ε) |s− t|.

So if we fix ε > 0 then
{uk;ε(t), t ∈ [0, T ]} is a bounded set in X

and thus, by the compact embedding X ↪→ Y ,
{uk;ε(t), t ∈ [0, T ]} ⊂ is contained in a compact set in Y

From (12.35) we find that the sequene
uk;ε(·) : [0, T ] → Y

is equicontinuous (as a sequence in k, ε is fixed!). Then we use Arzela-Ascoli, Exercise 12.20,
to obtain that up to taking a subsequence uki;ε converges uniformly to some u;ε : [0, T ] → Y ,

sup
t∈[0,T ]

∥uki;ε(t) − u;ε(t)∥Y
i→∞−−−→ 0.

In particular we have for any ε > 0 a subsequence uki;ε and some u;ε such that(∫
[0,T ]

∥uki;ε(t) − u;ε(t)∥p
Y

) 1
p

i→∞−−−→ 0.



PARTIAL DIFFERENTIAL EQUATIONS I & II VERSION: August 1, 2023 252

We now need to let ε → 0 (we pretend that ε is a discrete sequence with ε → 0). By a
diagonal argument we can assume that the subsequence uki;ε is the same for all ε as ε → 0).
We express this in terms of Cauchy sequences:

(12.36) ∀ε > 0,∀σ > 0 ∃L = L(ε, σ) : sup
i,j≥L

(∫
[0,T ]

∥uki;ε(t) − ukj ;ε(t)∥p
Y

) 1
p

< σ.

We now claim:

(12.37) ∀σ > 0, ∃ε > 0 s.t. sup
i

(∫
[0,T ]

∥uki;ε(t) − uki
(t)∥p

Y

) 1
p

≤ σ.

Once we have this, we conclude that also uki
is a Cauchy sequence in Lp([0, T ], Y ) (and

thus convergent by completeness), i.e. that

∀ε > 0,∀σ > 0 ∃L = L(ε, σ) : sup
i,j≥L

(∫
[0,T ]

∥uki
(t) − ukj

(t)∥p
Y

) 1
p

< σ.

By completeness of Lp([0, T ], Y ) we conclude.

So it remains to obtain (12.37).

Recall that by (12.34) and assumption

Γ := sup
k,ε∈(0,1)

(∫ T

0
(∥uk;ε(t)∥X)p dt

) 1
p

+sup
k

(∫ T

0
(∥uk(t)∥X)p dt

) 1
p

+sup
k

(∫ 2T

−T
(∥∂tuk(t)∥Z)q dt

) 1
q

< ∞

By Theorem 12.17, for any δ > 0

∥uki;ε(t) − uki
(t)∥Y ≤ δ∥uki;ε(t) − uki

(t)∥X + C(δ)∥uki;ε(t) − uki
(t)∥Z ∀x ∈ X.

So that we have(∫
[0,T ]

∥uki;ε(t) − uki
(t)∥p

Ydt

)
≤ δΓ + C(δ)

(∫
[0,T ]

∥uki;ε(t) − uki
(t)∥p

Z

) 1
p

.

Now we have for t ∈ [0, T ]

uki;ε(t) − uki
(t) =

∫ 2T

−T
(uki

(s) − uki
(t)) ηε(t− s) ds

=
∫ 2T

−T

∫ t

s
∂suki

(r)drηε(t− s) ds.
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Thus,

∥uki;ε(t) − uki
(t)∥Z ≤

∫ 2T

−T

∫ t

s
∥∂suki

(r)∥Zdrηε(t− s) ds

≤
∫ 2T

−T

(∫ t

s
∥∂suki

(r)∥q
Zdr

) 1
q

|s− t|1− 1
q ηε(t− s) ds

≤
∫ 2T

−T

(∫ 2T

−T
∥∂suki

(r)∥q
Zdr

) 1
q

|s− t|1− 1
q ηε(t− s) ds

≤Γ
∫
R

|s− t|1− 1
q ηε(t− s) ds

≲η,qΓ ε1− 1
q .

That is, we have shown(∫
[0,T ]

∥uki;ε(t) − uki
(t)∥p

Ydt

)
≤
(
C1δ + ε1− 1

qC2(δ, q, η)T
)

Γ.

We first pick δ > 0 so that δC1Γ < σ
2 . Then we pick ε > 0 so that ε1− 1

qC(δ, q, η)TΓ < σ
2 ,

then we have shown (12.37).

We can conclude. □

Exercise 12.20. Let K ⊂ (X, d) be a compact set in a metric space (X, d). Assume we
have a sequence of functions fk : [0, 1] → K which is equicontinuous, i.e.

∀ε > 0∃δ > 0 : d(fk(x), fk(y)) < ε ∀k ∈ N ∀x, y ∈ [0, 1] with |x− y| < δ.

Show that there exists f̄ ∈ C0([0, 1], K) and a subsequence (fki
)i∈N such that fki

uniformly
converges to f̄ , i.e.

lim
i→∞

sup
x∈[0,1]

d(f(x), fki
(x)) = 0.

Hint: If you only learned the proof of the Arzela-Ascoli theorem for (X, d) = Rn (with
additionally boundedness), simply inspect that proof and repeat it to get this result. As
always: we should care about proofs, not theorems.

Exercise 12.21. Set
Z :=

(
W 1,3

0 (B(0, 1))
)∗

and
X := W 1,2(B(0, 1))

and
Y := L2(B(0, 1)).

Show that X, Y , Z satisfy the embedding assumptions of Theorem 12.19.

We are now ready to prove Claim 12.13
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Proof of Claim 12.13. Recall that the goal is to show (up to subsequence):

vk converges strongly in L3
loc(B(0, 1) × (−1, 0])

From Aubin-Lion’s we have the following: Recall that from the PDE of vk,∂tvk = ∆vk − (bk + εkvk)α∂αvk − ∇qk in Q1

div vk = 0 in Q1.

From the estimates (12.14) and (12.15) we have

sup
k

∥vk∥L3(Q1) + ∥qk∥
L

3
2 (Q1)

< Γ1,

sup
k∈N

∥∇vk∥L2(QR) ≲R Γ1 ∀R ∈ (0, 1).

Observe that q ∈ L
3
2 so ∇q ∈ W−1, 3

2 = (W 1,3)∗. We conclude that

sup
k

∫
(−R2,0)

∥∂tvk∥
3
2

(W 1,3
0 (B(0,R)))∗ < ∞.

Also,

sup
k

(∫ 0

−R2

(
∥vk(·, t)∥W 1,2(B(0,R))

)2
) 1

2
dt ≲R Γ1,

Set
Z :=

(
W 1,3

0 (B(0, R))
)∗

and
X := W 1,2(B(0, R))

and
Y := L2(B(0, R)).

Then from Aubin-Lions lemma, Theorem 12.19, Exercise 12.21 we find (using a diagonal
argument in R) that for a subsequence (not relabeled) and any R ∈ (0, 1) we have that vk
converges strongly in L2 (QR).

However we want strong convergence in L3 (QR)! But we can conclude this now from what
we already know:

Recall, from (12.14) and (12.15)

(12.38) sup
k

(∫ 0

−R2

(
∥vk(·, t)∥L2(B(0,R)) + ∥∇vk(·, t)∥L2(B(0,R))

)2
) 1

2
dt ≲R Γ1,

By Sobolev embedding in space (1 − 3
2 = 0 − 3

6) we conclude

sup
k

∥vk∥L2
t L6

x(QR) ≡ sup
k

(∫ 0

−R2
∥vk(·, t)∥2

L6 (B(0,R))

) 1
2
dt ≲R Γ1,
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On the other hand, from the first term of the local energy identity, Claim 12.11, namely
(12.16) we have

sup
k

∥vk∥L∞
t L2

x(QR) ≡ sup
k

sup
t∈(−R2,0)

∥vk(·, t)∥L2(B(0,R)) ≲R Γ1.

We can combine the L2
tL

6
x and L∞

t L
2
x to an L

10
3

x,t-estimate: We apply twice Hölder’s inequal-
ity, first in space L5 · L10 ⊂ L

10
3 , then in time, we get

∥vk∥
L

10
3 (QR)

=
(∫

(−R2,0)
∥vk(·, t)∥

10
3

L
10
3 (B(0,R))

) 3
10

=
(∫

(−R2,0)
∥ |vk(·, t)|

2
5 |vk(·, t)|

3
5 ∥

10
3

L
10
3 (B(0,R))

) 3
10

≤
(∫

(−R2,0)

(
∥ |vk(·, t)|

2
5 ∥L5(B(0,R)) ∥ |vk(·, t)|

3
5 ∥L10(B(0,R))

) 10
3

) 3
10

=
(∫

(−R2,0)
∥vk(·, t)∥

4
3
L2(B(0,R)) ∥vk(·, t)∥2

L6(B(0,R))

) 3
10

≲R(Γ1)
2
5

(∫
(−R2,0)

∥vk(·, t)∥2
L6(B(0,R))

) 3
10

≲R(Γ1)
2
5 (Γ1)

3
5 .

That is, up to subsequence we know that for any R ∈ (0, 1)

vk ⇀ v weakly in L
10
3 (QR).

We also know (from Aubin-Lions Lemma)
vk → v strongly in L2 (QR).

Combining these two facts, measure theory (this a consequence of Vitali’s convergence
theorem) we conclude now that

vk → v strongly in Lr(QR).
for any r < 10

3 . In particular we can choose r = 3 < 10
3 and conclude. □

13. C1,α-regularity theory for the p-Laplacian

A standard references for the p-Laplace is the book by Lindqvist, [Lindqvist, 2006]. More
specific to regularity theory, cf. Maly-Ziemer [Malý and Ziemer, 1997], Lieberman [Lieberman, 1996],
and DiBenedetto [DiBenedetto, 2010].

The Laplacian equation can be seen as Euler-Lagrange equation of the Dirichlet energy

E2 (u) :=
∫

Ω
|∇u|2 .
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For example we have shown in what is sometimes called Dirichlet principle, see Theo-
rem 2.44, that u solves −∆u = 0 in Ω

u = g on ∂Ω

If and only if u minimizes E2 in the set X := {u ∈ W 1,2(Ω) : u− g ∈ W 1,2
0 (Ω)}.

What happens when we replace 2 by a general p? I.e. what happens if we consider

Ep(u) :=
∫

Ω
|∇u|p.

Then the Euler-Lagrange equation is

(13.1) div (|∇u|p−2∇u) = 0 in Ω

Sometimes people write ∆pu ≡ div (|∇u|p−2∇u) for the p-Laplace.

We will not discuss the role of the p-Laplace in applications (for this we refer to the above
mentioned references), but treat it as an analytical object of interest.

If p > 2, we quickly observe that the p-Laplace is degenerate elliptic: We have that
|∇u|p−2 ≥ 0, but it can actually vanish, in which case the PDE does not measure anything.
However |∇u| = 0 on any open set means that u is piecewise constant (and in particular
pretty regular).

So the behavior of a solution of a p-Laplace equation is a governed by a dichotomy of |∇u|
being small (where this is the only information we can use) and |∇u| not small (where the
equation is uniformly elliptic).

It turns out, for p > 2, solutions to (13.1) may not be C2, but they are C1,α for some
α > 0 (there are cases in which the optimal α is known, and cases where it is unknown).
Cf. Lewis and Iwaniec-Manfredi [Lewis, 1980, Iwaniec and Manfredi, 1989] and references
within.

On the other hand the proof of C1,α-regularity is de facto a clever combination of De
Giorgi-Nash-Moser theory.

In the following we plan to prove

Theorem 13.1. Assume u ∈ W 1,p(Ω)

div (|∇u|p−2∇u) = 0 in Ω

Then u ∈ C1,α
loc (Ω).

Unlike in the case of the Laplace-equation, the so-called systems, i.e. the case of u ∈
W 1,p(Ω,Rm) solving

div (|∇u|p−2∇u) = 0 in Ω
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is quite more complicated – while for the Laplacian-case p = 2 we can simply consider
∆u = 0 componentwise as the scalar case m = 1, for p ̸= 2 this does not hold, since
|∇u|p−2 mixes the different components. However the argument below can be adapted to
the systems case for C1,α-theory, and to what is referred to Uhlenbeck-type equations.

13.1. Boundedness. Solutions to
div (|∇u|p−2∇u) = 0 in Ω

are bounded, which follows from essentially the usual Moser-iteration argument, Theo-
rem 10.3.

13.2. Lipschitz continuity. Solutions to
div (|∇u|p−2∇u) = 0 in Ω

are Lipschitz continuous which follows from a type of Moser iteration testing the equation
with powers of ∂xiu, cf. [Malý and Ziemer, 1997]

From now on we will always assume that solutions are already Lipschitz.

13.3. C1,α-regularity theory. The C1,α-regularity has been proven by Ural’tseva [Ural’ceva, 1968],
Uhlenbeck [Uhlenbeck, 1977], [Lewis, 1983] (for p < 2), see also [Evans, 1982].

In the following we discuss the C1,α-regularity theory under the assumptions of Lipschitz
continuity of the solutions – as explained to me by Adimurthi, see [Adimurthi and Banerjee, 2022].

We have to consider two cases: the nondegenerate case (“|∇u| ̸= 0”) where the equation
behaves essentially linear:

Proposition 13.2 (nondegenerate case). There exists γ, α ∈ (0, 1) and C > 1 depending
only on p and n such that the following holds:

Assume u ∈ W 1,p(B(x0, R)) and λ > 0 are such that

• u is a solution to
div (|∇u|p−2∇u) = 0 in B(x0, R)

• we have
(13.2) |∇u| ≤ λ in B(x0, R)

• |∇u| is not too small too often in B(R), more precisely there exists some k ∈
{1, . . . , n} such that

|{x ∈ B(x0, R) : ∂xk
u ≤ 1

2λ}|≤γ|B(R)|
or

|{x ∈ B(x0, R) : ∂xk
u ≥ −1

2λ}|≤γ|B(R)|
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• x0 is a Lebesgue point of ∇u

Then we have
|∇u(x0) −

∫
B(ρ)

∇u| ≤ C λ
(
ρ

R

)α

∀ρ ∈ (0, R]

The second case is the degenerate case “|∇u| ≪ 1”
Proposition 13.3. For any γ ∈ (0, 1) there exist σ, θ ∈ (0, 1) depending only on p and n
such that the following holds:

Assume u ∈ W 1,p(B(R)) and λ > 0 are such that

• u is a solution to
div (|∇u|p−2∇u) = 0 in B(R)

• we have
|∇u| ≤ λ in B(R)

• |∇u| is small quite often in B(R), more precisely:

|{x ∈ B(R) : ∂xi
u ≤ 1

2λ}|≥γ|B(R)| ∀i ∈ {1, . . . , n}

and
|{x ∈ B(R) : ∂xi

u ≥ −1
2λ}|≥γ|B(R)| ∀i ∈ {1, . . . , n}

Then
sup

B(σR)
|∇u| ≤ θλ

Combining Proposition 13.2 and Proposition 13.3
Theorem 13.4. There exists α ∈ (0, 1) depending only on n and p such that the following
holds:

Assume u ∈ W 1,p(B(x0, R)) and λ > 0 are such that

• u is a solution to
div (|∇u|p−2∇u) = 0 in B(x0, R)

• we have
|∇u| ≤ λ in B(x0, R)

Then if x0 is a Lebesgue point of ∇u we have

|∇u(x0) − (∇u)B(x0,ρ)| ≤ λ
(
ρ

R

)α

∀ρ ∈ (0, R).

From Campanato’s theorem we immediately obtain from Theorem 13.4 the C1,α-regularity
theory
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Corollary 13.5. Under the assumption of the theorem, if for Ω ⊂ Rn open u ∈ W 1,p(Ω) ∩
Lip solves

div (|∇u|p−2∇u) = 0 in Ω
then u ∈ C1,α(Ω), and we have for any Ω′ ⊂⊂ Ω

[∇u]Cα(Ω′) ≲Ω′,Ω ∥∇u∥L∞(Ω).

Proof of Theorem 13.4. We take γ, α1 ∈ (0, 1) and C from Proposition 13.2 and σ, θ ∈ (0, 1)
from Proposition 13.3.

For simplicity of notation we assume that all balls below are centered at x0 and that x0 is
a Lebesgue point of ∇u.

We observe that if F = (F1, F2, . . . , Fn) : B(R) → Rn is a vectorial function then one of
the following must be true

(1) |{x ∈ B(R) : Fk(x) ≤ λ
2 }| ≤ γ|B(R)| for at least one k ∈ {1, . . . , n}, or

(2) |{x ∈ B(R) : Fk(x) ≥ −λ
2 }| ≤ γ|B(R)| for at least one k ∈ {1, . . . , n}, or

(3) |{x ∈ B(R) : Fk(x) ≤ λ
2 }| ≥ γ|B(R)| and |{x ∈ B(R) : Fk(x) ≥ λ

2 }| ≥ γ|B(R)|
for all k ∈ {1, . . . , n}.

Thus we can fix i0 ∈ {0, 1, . . . ,∞} such that

• for i < i0 we have
(13.3)

min
{

|{B(σiR) : ∂ku ≤ θiλ

2 }|, |{B(σiR) : ∂ku > −θiλ

2 }|
}
> γ|B(σiR)| ∀k ∈ {1, . . . , n}

• for i0 we have
(13.4)

min
{

|{B(σi0R) : ∂ku ≤ θi0
λ

2 }|, |{B(σi0R) : ∂ku ≥ −θi0
λ

2 }|
}

≤ γ|B(σi0R)| for at least one k ∈ {1, . . . , n}

It is important to note that i0 = 0 (i.e. only the second case happens) or i0 = ∞ (only the
first case happens) are included in our analysis. We have no information what value i0 is,
and we will use what is sometimes called a stopping time argument to show that it does
not matter.

We now apply Proposition 13.2 and Proposition 13.3, and have

• By induction we have for any i < i0 we have

sup
B(σiR)

|∇u| ≤ θiλ
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and thus from (13.3) and Proposition 13.3
sup

B(σσiR)
|∇u| ≤ θi+1λ

that is in particular
(13.5) sup

B(σi+1R)
|∇u| ≤ θi+1λ ∀i < i0.

• for i0 (assuming its finite) we have from (13.5)
(13.6) sup

B(σi0 R)
|∇u| ≤ θi0λ

and thus from (13.4) and Proposition 13.2 for some α1 > 0

|∇u(x0) −
∫

B(ρ)
∇u| ≤ C(n) θi0λ

(
ρ

σi0R

)α1

∀ρ ∈ (0, σi0R]

Now for α2 = logσ θ we have
θi0 = σi0α2

so that the above is

|∇u(x0) −
∫

B(ρ)
∇u| ≤ C(n)σi0α2λ

(
ρ

σi0R

)α1

∀ρ ∈ (0, σi0R]

Now let α3 := min{α1, α2} and observing that σ < 1 and ρ
σi0 R

< 1, we have

|∇u(x0) −
∫

B(ρ)
∇u| ≤ C(n)σi0α3λ

(
ρ

σi0R

)α3

∀ρ ∈ (0, σi0R]

That is we have

(13.7) |∇u(x0) −
∫

B(ρ)
∇u| ≤ C(n)λ

(
ρ

R

)α3

∀ρ ∈ (0, σi0R]

Yet again observe that if i0 = ∞ this is a completely trivial statement.

Since we have no information on i0 we are not done yet, we have to consider the case
ρ ∈ (σi0R,R):

So let now ρ ∈ (σi0R,R). Then take ī ≤ i0 such that σī+1R ≤ ρ ≤ σīR. Then
|∇u(x0) − (∇u)B(ρ)| ≤2 sup

σīR

|∇u|

(13.5)
≤ 2θīλ

=2σīα1λ

≤2σ−α1λ
(
ρ

R

)α1

≤2σ−α1λ
(
ρ

R

)α3
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Combining this with (13.7) we have shown

|∇u(x0) −
∫

B(ρ)
∇u| ≤ C(κ, σ, n, p)λ

(
ρ

R

)α3

∀ρ ∈ (0,R)

The proof of Theorem 13.4 is now complete. □

13.3.1. The nondegenerate case: Proof of Proposition 13.2. Taking a directional derivative
of the equation we find that

div (|∇u|p−2∇ (∂xi
u)) = 0.

We first prove the following seemingly weaker result than Proposition 13.2, cf. Proposi-
tion 10.19.

Lemma 13.6 (nondegenerate case). There exists γ ∈ (0, 1) depending only on p and n
such that the following holds:

Assume u ∈ W 1,p(B(R)) and λ > 0 and k ∈ {1, . . . , n} are such that

• u is a solution to
(13.8) −div (|∇u|p−2∇ (∂xk

u)) ≤ 0.
• we have

|∇u| ≤ λ in B(R)
•

|{x ∈ B(R) : ∂xk u ≤ 1
2λ}|≤γ|B(R)|

Then
∂xk

u >
λ

4 on B(R/2).

Proof of Lemma 13.6. As usual we test the PDE (13.8) with (∂xk
u−µ)−η

2 for some µ > 0
and η ∈ C∞

c (B(R)), η ≥ 0, to find∫
|∇u|p−2|∇(∂xk

u− µ)−|2η2 ≤ −
∫

|∇u|p−2∇(∂xk
u− µ)− (∂xk

u− µ)−2η∇η

Which by Young’s inequality and absorption readily leads to∫
|∇u|p−2|∇(∂xk

u− µ)−|2η2 ≲
∫

|∇u|p−2|(∂xk
u− µ)−|2|∇η|2

If p ≥ 2, since |∇u| ≤ λ we find∫
|∇u|p−2|∇(∂xk

u− µ)−|2η2 ≤ C λp−2
∫

|(∂xk
u− µ)−|2|∇η|2

If 0 < ν < µ we can estimate this further, setting
fν,µ := min{(f − µ)−, µ− ν},
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or, in other words,

fν,µ :=


0 if f ≥ µ,

µ− f if µ ≥ f ≥ ν,

µ− ν if f ≤ ν,

then
νp−2

∫
|∇(∂xk

u)ν,µ|2η2

=νp−2
∫

|∇(∂xk
u− µ)−|2η2χ{∂xk

u>ν}

≈λp−2
∫

|(∂xk
u− µ)−|2|∇η|2

≤λp−2
∫

|(∂xk
u− µ)−|2|∇η|2

And thus, from Sobolev embedding we have

νp−2
(∫

|η(∂xk
u)ν,µ)|

2n
n−2

)n−2
n

≲νp−2
∫

|∇(η(∂xk
u)ν,µ)|2

≲λp−2
∫

|(∂xk
u− µ)−|2|∇η|2 + νp−2

∫
|∇η|2(∂xk

u)2
ν,µ

≤
(
λp−2 + νp−2

) ∫
|(∂xk

u− µ)−|2|∇η|2

Which readily leads to

ν
p−2

2 ∥η(∂xk
u)ν,µ∥L2 ≲ |{η(∂xk

u)ν,µ > 0}|
1
n

(
λ

p−2
2 + ν

p−2
2
)

∥(∂xk
u− µ)− |∇η|∥L2(13.9)

Again, this holds only if p ≥ 2. If p ≤ 2 we have instead

λ
p−2

2 ∥η(∂xk
u)ν,µ∥L2 ≲ |{η(∂xk

u)ν,µ > 0}|
1
n

(
µ

p−2
2 + ν

p−2
2
)

∥(∂xk
u− µ)− |∇η|∥L2(13.10)

As usual we apply this to an iteration.

Set
µ̄ := sup

B
(uxk

− λ

2 )−
|∇u|≤λ

≤ 3
2λ.

If µ̄ < λ
4 we have uxk

> λ
4 in all of B, and we can conclude. Thus we may assume w.l.o.g.

(13.11) λ

4 ≤ µ̄ ≤ 3
2λ

We will also assume w.l.o.g. B = B(0, 1). We define a decreasing set of balls with
B0 = B(0, 1) and B∞ = B(0, 1/2), namely

Bm := B(0, 1
2 + 1

2m+1 ),
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and fix nonnegative cutoff-functions ηm ∈ C∞
c (Bm), ηm ≡ 1 in Bm+1, and ∥∇ηm∥L∞ ≲ 2m.

We also define a decreasing sequence of µm

µm := λ

2 − µ̄

16(1 − 1
2m

),

and we observe that with µ0 = λ
2 and µ∞ = λ

2 − µ̄
16 ≥ λ

4 , so |µm| ≈ λ. Moreover,

µm − µm+1 = µ̄

16
1

2m+1
(13.11)

≈ λ

2m
.

Then we want to use (13.9) (assume p ≥ 2 for the moment) to find an iterative estimate
for

Am := {x ∈ Bm : uxk
≤ µm},

and indeed from (13.9) we obtain

µ
p−2

2
m+1∥(∂xk

u)µm+1,µm∥L2(Bm+1) ≲ |Am|
1
n

(
λ

p−2
2 + µ

p−2
2

m+1

)
2m∥(∂xk

u− µm)− ∥L2(Bm)

and thus

µ
p−2

2
m+1 (µm − µm+1) |Am+1|

1
2 =µ

p−2
2

m+1∥(∂xk
u)µm+1,µm∥L2(Am+1)

≲ |Am|
1
n

(
λ

p−2
2 + µ

p−2
2

m+1

)
2m∥(∂xk

u− µm)− ∥L2(Am)

≲ |Am|
1
2 + 1

n

(
λ

p−2
2 + µ

p−2
2

m+1

)
2m (λ+ µm)

With the estimates for µm this becomes

λ
p−2

2
λ

2m
|Am+1|

1
2 ≲ |Am|

1
2 + 1

n λ
p−2

2 +12m

The same holds true if p ≤ 2 and we use we use (13.10) instead of (13.9).

So, for any p ∈ (1,∞), with a constant independent of λ we have
1

2m
|Am+1|

1
2 ≤C Γm |Am|

1
2 + 1

n

for some constant C > 0 and Γ > 1, both independent of λ. With the usual argument,
Exercise 10.21, we conclude that if

|A0| =
∣∣∣∣∣{x ∈ B(0, 1) : uxk

≤ λ

2 }
∣∣∣∣∣ ≪ 1

then
0 = |A∞| ≥

∣∣∣∣∣{x ∈ B(0, 1/2) : uxk
≤ λ

4 }
∣∣∣∣∣

and thus uxk
≤ λ

4 in B(0, 1/2). We can conclude.

□
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With the help of Lemma 13.6 and linear DeGiorgi-Nash-Moser theory we now obtain the
proof of Proposition 13.2. It is worth observing that argument below also works for systems,
i.e. if u is vectorial (this leads to the so-called Uhlenbeck-structure), because the system

div (|∇u|p−2∂xℓ
u) = 0

can be considered componentwise.

Proof of Proposition 13.2. Substituting u by −u we may assume

|{x ∈ B(R) : ∂xk u ≤ 1
2λ}|≤γ|B(R)|.

If γ is taken from Lemma 13.6, then we have

|∇u| ≥ |∂xk
u| ≥ λ

4 in B(R/2).

Thus, for any ℓ ∈ {1, . . . , n} we have
div (|∇u|p−2∂xℓ

u) = 0 in B(R/2)
is a uniformly elliptic equation with bounded measurable data |∇u|p−2 ∈ (λ

4 , λ).

By DeGiorgi-Nash-Moser regularity theory, Theorem 10.1 (observe that upper and lower
ellipticity constants are both comparable to λ, meaning the constant from DeGiorgi-Nash-
Moser is independent of λ) we have some α > 0 such that

sup
x,y∈B(R/4)

|∂xℓ
u(x) − |∂xℓ

u(y)|
|x− y|α

≤ C(R, n)∥∂xℓ
u∥L2(B(R/2) ≤ C̃(R, n)λ

By scaling arguments we find out the scaling of the constant C(R, n) and have

sup
x,y∈B(R/4)

|∂xℓ
u(x) − ∂xℓ

u(y)|
|x− y|α

≤ C̃(n)Rαλ.

In particular we have

|∂xℓ
u(x0) −

∫
B(x0,ρ)

∂xℓ
u| ≤ C λ

(
ρ

R

)α

∀ρ ∈ (0, R4 ]

For ρ ∈ (R
4 , R) this estimate follows from the Lipschitz bound |∇u| ≤ λ,

|∂xℓ
u(x0) −

∫
B(x0,ρ)

∂xℓ
u| ≤ 2λ ≤ 2λ

(
ρ

R

)α

4α ∀ρ ∈ (R4 , R].

In conclusion we have shown

|∂xℓ
u(x0) −

∫
B(x0,ρ)

∂xℓ
u| ≤ C λ

(
ρ

R

)α

∀ρ ∈ (0, R]

This holds for every ℓ ∈ {1, . . . , n} so we can conclude.

□
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13.3.2. The degenerate case: Proof of Proposition 13.3. Proposition 13.3 is a consequence
of the following lemma applied to u and −u.

Lemma 13.7. Given any µ > 0 there exists θ ∈ (0, 1) such that for any i ∈ {1, . . . , n},
R > 0 and λ > 0 we have the following:

If

• we have
|∇u| ≤ λ in B(0, R)

• u is a solution to the equation
div (|∇u|p−2∇∂xi

u) = 0 in B(0, R)
• we have

|{∂xi
u ≤ λ

2 } ∩B(0, R)| ≥ µ|B(0, R)|

Then
sup

B(0,R/4)
∂xi
u ≤ θλ.

Proof. We may assume that λ = 1 and R = 2.

Set
ṽ := 2

(
∂xi
u− 1

2

)
Then we have

• we have
ṽ ≤ 1 in B(0, 2)

• If ṽ ≥ µ and µ > −1 then

∂xi
u ≥ 1

2(1 + µ)

and thus

(13.12) |∇u| ≥ 1
2(1 + µ).

• u is a solution to the equation
div (|∇u|p−2∇ṽ) = 0 in B(0, 2)

• we have and
|{ṽ ≤ 0} ∩B(0, 1)| ≥ δ

For k ∈ N set
wk := 2k(ṽ − (1 − 2−k))+.

We first collect some properties of wk



PARTIAL DIFFERENTIAL EQUATIONS I & II VERSION: August 1, 2023 266

• we still have wk ≤ 1 in B(0, 2) (since ṽ ≤ 1 in B(0, 2))
• we also have

{wk ≤ 0} ∩B(0, 1) = {ṽ ≤ (1 − 2−k)} ∩B(0, 1) ⊃ {ṽ ≤ 0} ∩B(0, 1)
so that

(13.13) |{wk ≤ 0} ∩B(0, 1)| ≥ µ.

• We can write wk = (2kṽ − 2k + 1)+, and conclude that

wk ≥ 1
2

⇔2wk − 1 ≥ 0
⇔wk+1 ≥ 0,

i.e.

(13.14) {wk ≥ 1
2} = {wk+1 ≥ 0}

• We have wk+1 = (2wk − 1)+. Hence,

wk(x) < 1
2 ⇒ wk+1(x) = 0.

This implies that

(13.15) {0 < wk(x) < 1
2} ∩ {0 < wj(x) < 1

2} = ∅ k ̸= j

• For any µ ≥ 0, taking a cutoff-function η ∈ C∞
c (B(0, 2)), η ≡ 1, and testing

div (|∇u|p−2∇ṽ) = 0 in B(0, 2)
with η2(ṽ − µ)+ we obtain, if p ≥ 2,(1

2(1 + µ)
)p−2 ∫

B(0,2)
|∇(ṽ−µ)+|2η2

(13.12)
≤

∫
B(0,2)

|∇u|p−2|∇(ṽ−µ)+|2η2 ≲
∫

B(0,2)
|∇η|2 |(ṽ−µ)+|2.

and if p ≤ 2∫
B(0,2)

|∇(ṽ−µ)+|2η2
|∇u|p−2≥1

≤
∫

B(0,2)
|∇u|p−2|∇(ṽ−µ)+|2η2

(13.12)
≤

(1
2(1 + µ)

)p−2 ∫
B(0,2)

|∇η|2 |(ṽ−µ)+|2.

• Similarly, we have for w the same inequality as in Lemma 10.18: namely for any
µ > 0, k ≥ 1, and η ∈ C∞

c (B(0, 2)). Then we have for∫
B(0,2)

|∇(η(wk − µ)+)|2 ≤ C ∥∇η∥2
L∞

∫
supp η

|(wk − µ)+|2

From Proposition 10.19 (see also Exercise 10.20), which just relies on the above
Cacciopoli estimate and otherwise does not need wk to solve any PDE, we conclude
that

(13.16) ∥wk∥L∞(B(0,1/2)) = sup
B(0,1/2)

(wk)+ ≲ ∥wk∥L2(B(0,1) ∀k ≥ 1.
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So we will now work on showing that for sufficiently large k, ∥wk∥L2(B(0,1) ≪ 1.
• In particular from the above any k ≥ 0,

(13.17)
∫

B(0,1)
|∇wk|2 ≤ C(n)

∫
B(0,2 )

|wk|2 ≤ C(n)|B(0, 2)|.

• From De Giorgi’s isoperimetric inequality, Lemma 10.29, we obtain

(Ln({wk ≤ 0}))2
(

Ln({wk ≥ 1
2 })

)2
≤ C(n) Ln({0 < wk <

1
2 }) ∥∇wk∥2

L2(B(0,1)).

In view of (13.17), (13.14), (13.13) we conclude

C(n) Ln({0 < wk <
1
2} ∩B(0, 1)) ≥ (Ln({wk ≤ 0}))2

(
Ln({wk ≥ 1

2}) ∩B(0, 1)
)2

≥µ (Ln({wk+1 ≥ 0} ∩B(0, 1))2

Since 0 ≤ wk+1 ≤ 1 we have

Ln({wk+1 ≥ 0} ∩B(0, 1)) ≥
∫

B(0,1)
(wk+1)2.

so that we have

(13.18)
∫

B(0,1)
(wk+1)2 ≤ C(n)

µ
Ln({0 < wk <

1
2} ∩B(0, 1)).

Fix now some δ > 0 (to be specified later). We claim that there exists a number k0
(depending on δ, n,Λ, λ, but otherwise independent) so that for some k̄ ∈ {1, . . . , k0} we
have ∫

B(0,1)
(wk̄)2 < δ2.

Indeed if we have ∫
B(0,1)

(wk)2 ≥ δ2 for all k = 1, . . . , k0

we conclude from (13.18) that
µ

C(n) δ
2 ≤ Ln({0 < wk <

1
2} ∩B(0, 1)) for all k = 1, . . . , k0

But by (13.15) we have disjointness, so

k0
µ

C(n) δ
2 ≤

k0∑
k=1

Ln({0 < wk <
1
2} ∩B(0, 1))

(13.15)
≤ Ln(B(0, 1)).

This leads to a contradiction if

k0 := Ln(B(0, 1))C(n)
µ δ2

So there must be some k̄ ∈ {1, . . . , k0} such that∫
B(0,1)

(wk̄)2 < δ2.
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Combining this with (13.16) we have

∥wk̄∥L∞(B(0,1/2)) ≤ C(n,Λ, λ) ∥wk̄∥L2(B(0,1/2)) ≲ δ.

So if we choose δ small enough, we can ensure that there exists some k̄ ∈ {1, . . . , k0} (where
k0 is a constant depending only on permissible data), such that

∥wk̄∥L∞(B(0,1/2)) ≤ 1
2

But then for x ∈ B(0, 1/2)(
ṽ(x) − 1 + 2−k̄

)
+

= 2−k̄wk̄ < 2−1−k̄.

and thus
ṽ+(x) ≤ 2−1−k̄ + 1 − 2−k̄ = 1 −

(
2−k̄ − 2−1−k̄

)
.

Setting
γ := min

k=1,...,k0

(
2−k − 2−1−k

)
> 0

(and observe once more that k0 only depends on the data) we conclude

2
(
∂xi
u− 1

2

)
≤ ṽ+ ≤ 1 − γ

that is (
∂xi
u− 1

2

)
≤ 2 − γ

2 =: θ

We can conclude. □

13.4. Comments on extensions and miscellaneous results.

• A parabolic version of the above C1,α-argument has been worked out in [Adimurthi and Banerjee, 2022].
More precisely, the presentation above is the elliptic version of their parabolic ar-
gument, as explained to me by Adimurthi.

• For suitably nice f , one can also obtain results for the inhomogeneous version

div (|∇u|p−2∇u) = f.

For the current state of the art we refer to e.g. in [Kuusi and Mingione, 2018] and
references therein.

• If ∇u(x0) ̸= 0 then the p-Laplace equation becomes uniformly elliptic, and u is
even analytic around x0. So u ̸∈ C1,α implies that ∇u(x0) = 0. Lewis [Lewis, 1980]
showed that in 2 space dimensions if u ∈ Ck and ∇u(x0) = 0 then ∇ℓu(x0) = 0 for
all k ∈ {1, . . . , k}. In particular if u is analytic around x0 then u ≡ 0. The case
of arbitrary dimension is an interesting open problem. On the other hand, there
are examples of nonconstant Ck-solutions of the p-Laplace equation that have a
vanishing gradient at a certain point x0.
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• In Weyl’s lemma Theorem 2.40 we showed that even if u ∈ L1
loc and in distributional

sense solves ∆u = 0 then u ∈ C∞.
If p ̸= 2 then div (|∇u|p−2∇u) = 0 makes distributionally sense for u ∈ W 1,p−1.

However a p-Laplace version of Weyl’s lemma fails, as was recently shown by
Colombo-Tione [Colombo and Tione, 2022] disproving the so-called Iwaniec con-
jecture.

Email address: armin@pitt.edu
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