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In Analysis
there are no theorems

only proofs
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These lecture notes are substantially based on the book [Leb], also several exercises are
taken from there. Some exercises are also substantially inspired from [BS92].

For more exercises see also the standard reference [Rud76], which often is lovingly referred
to as “Baby Rudin”.

Pictures are taken from wikipedia or otherwise available sources. Self-made pictures are
often made with geogebra.

If you find typos (most likely there are many) please email me: armin@pitt.edu.
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1. Review

1.1. Numbers.

• N denotes the natural numbers {1, 2, . . .}1

• Z denotes the integers numbers {. . . ,−2,−1, 0, 1, 2, . . .}
• Q denotes the rational numbers {p

q
: p ∈ Z, q ∈ Z\{0}}

• We are going to discuss our main number field, the real numbers R, below.
• We are not really going to work with complex numbers C.

Recall the notion of an upper bound and lower bound:

Definition 1.1. Let X be a totally ordered set (i.e. there exist the operation < with the
usual reasonable properties and for any two x, y ∈ X we have either x = y or x < y or
x > y)2

• A set A ⊂ X has an upper bound c ∈ X if for any a ∈ A we have a ≤ c (i.e. either
a < c or a = c).
• A set A ⊂ X has a lower bound c ∈ X if for any a ∈ A we have a ≥ c (i.e. either

a < c or a = c).

A set A ⊂ X with an upper bound is called bounded from above. A set A ⊂ X with a lower
bound is called bounded from below. A set A which is bounded from above and below is
called bounded.

The supremum of a set is the smallest upper bound, the infimum is the largest lower bound
– if that exists (because e.g. in Q it often doesn’t).

Definition 1.2 (Supremum and infimum). Let X be a totally ordered set and let A ⊂ X.

• A number c ∈ X is called the supremum of A,
sup A = c

if
(1) c is an upper bound of A and
(2) for any other upper bound b of A we have c ≤ b.

We call c the maximum of A, c = max A, if c = sup A and additonally c ∈ A.
• A number c ∈ X is called the infimum of A,

inf A = c

if c is a lower bound of A and for any other lower bound b of A we have c ≥ b.
We call c the minimum of A, if c = inf A and c ∈ A.

1we do not consider 0 to be a natural number (this is not always the case in the literature)
2so N, Q, R are clearly totally ordered sets – but e.g. for R2 = R× R it is a bit unclear how to define

≤ – or the set of powersets (2X ,⊆) is often not a totally ordered set.
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If X = R (as will be the case most of the time), then for notational convenience we often
write

sup A = +∞ if A has no upper bound,

inf A = −∞ if A has no lower bound.

In the pathological case A = ∅ we write
sup A = −∞ if A = ∅
inf A = +∞ if A = ∅.

Example 1.3. • In Q, the set
{q ∈ Q,−∞ < q < 2} ≡ Q ∩ (−∞, 2)

is bounded from above, not bounded from below
• In Q, the set

{q ∈ Q,−∞ < q < 2} ≡ Q ∩ (−∞, 2)
has no infimum (i.e. inf = −∞), the supremum is 2. 2 is not a maximum, though.
• In Q, the set

{q ∈ Q,−∞ < q≤2} ≡ Q ∩ (−∞, 2]
has no infimum, but the maximum is 2.
• In Q, the set
{q ∈ Q,−1 < q <

√
2} ≡ Q ∩ (−∞,

√
2) ≡ {q ∈ Q,−1 < q <∞ and q2 ≤ 2}

is bounded from above and below. The infimum is −1. There is no supremum (it
would be

√
2, but

√
2 does not belong to Q).

• If a set A ⊂ X has a supremum, it is necessarily bounded from above (similar
statement for infimum)
• Any bounded set A ⊂ Z has a supremum and an infimum in Z

Bounded sets in Q have always “almost” a supremum and an infimum – the only problem
is this number may not belong to Q. In other words, Q has infinitesiumal holes, it is not
complete. This is why we defined R, the real numbers, which are the completion of Q.

• R denotes the real numbers. There are many different ways to define them:
– Element of R correspond to the supremum of bounded sets A ⊂ Q:

Define
R := {A ⊂ Q : A bounded} / ∼

where ∼ is an equivalence relation defined as
A ∼ B :⇔ every upper bound a ∈ Q of A is an upper bound of B and vice versa.

Then R can be ordered just as Q, and any element in q ∈ Q corresponds to
the set

{q} ∼ {r ∈ Q, r ≤ q} ∼ {r ∈ Q, 1− q ≤ r ≤ q} ∼ {r ∈ Q, 1− q ≤ r < q}.
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Figure 1.1. While some artefacts suggests that Babylonians simply used
π = 3, like this one, there are also indications that people at the same time
(not only in Babylon) knew that there was a more precise approximation.
Source: Yale Babylonian Collection, 7302

Figure 1.2. Georg Cantor, 1845-1918. German, one of the founders of
modern set theory and the notion of cardinality.

This definition of the real numbers is related to the so-called Dedekind cuts
(which had been considered already by Bertrand)

– From Analysis aspects, this is not such a great definition, since it requires an
ordering <. Many generalized spaces (vector spaces, metric spaces, manifolds,
function spaces) have no reasonable order. So instead, we will define (metric)
“complete” and “completion” as plugging holes of limits (see Cauchy sequences,
Section 4). From this point of view R consist of all finite limits of sequences
in Q.

The history of “rational numbers are not everything” is very long – people around the
world understood that e.g.

√
2 or π were not rational numbers thousands of years ago.3

The modern understanding of R is due to Cantor who axiomatized set theory.

For now (until we get to Cauchy sequences, Section 4) we use the following property of R4

Proposition 1.4. For any bounded set A ⊂ R both sup A and inf A exist in R.

A useful classification of suprema and infima is the following
3Legend has it that Pythagoras, who lead some sort of number cult, had Hippasus murdered for figuring

out that there were numbers not being able to be written as a ratio of two integers, namely
√

2. Early
approximations of

√
2 are known e.g. from Shulva Sutras (India) or the Babylonian clay tablet YBC 7289

4indeed it is the definiting property of R: R is the “smallest” set containing Q with these properties
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Figure 1.3. Richard Dedekind, 1831–1916. German, best known for his
contributions to the definition of R via the notion of Dedekind cuts (which
Bertrand actually defined before him).

Figure 1.4. Joseph Louis Francois Bertrand, 1822 – 1900 . French, did
Dedekind cuts before Dedekind.

Lemma 1.5. Let S ⊂ R, S ̸= ∅, and x ∈ R.

(1) The following are equivalent
(a) x = sup S
(b) x is an upper bound of S and for any ε > 0 there exists s ∈ S with s > x− ε.

(2) The following are equivalent
(a) x = inf S
(b) x is a lower bound of S and for any ε > 0 there exists s ∈ S with s < x + ε.

(3) The following are equivalent
(a) sup S =∞
(b) For any M > 0 there exists s ∈ S with s > M .

(4) The following are equivalent
(a) inf S = −∞
(b) For any M > 0 there exists s ∈ S with s<−M .

Proof. We only prove the first statement: Let S ⊂ R and x ∈ R. The following are
equivalent

(a) x = sup S
(b) x is an upper bound of S and for any ε > 0 there exists s ∈ S with s > x− ε.
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(a)⇒ (b). Assume that x = sup S, but assume that (b) is false. By definition of sup, x is
an upper bound of S. If (b) is false, there thus must be ε > 0 such that for all s ∈ S we
have s ≤ x− ε. This implies that x− ε is an upper bound for S. Since x− ε < x, x cannot
be the least upper bound of S. Contradiction. So (b) must have been true.

(b)⇒ (a). x is an upper bound of S, we only need to show that x is the least upper bound.
So let y ∈ R be another upper bound of S, i.e. assume that s ≤ y for all s ∈ S. We need
to show that y ≥ x. Assume to the contrary that y < x. For ε := |x−y|

2 we then have
y < x− ε. Since we assume that (b) holds, there exists an s ∈ S with s > x− ε. But then
s > x− ε > y which means that y is not an upper bound of S. contradiction, so (a) must
have been true.

□

Exercise. Prove Proposition 1.4 (3) and (4).

Exercise 1.6. [Leb, Exercise 1.2.10] Let A and B be two nonempty bounded sets of non-
negative real numbers. Define the set

C := {ab : a ∈ A, b ∈ B}.

Show that C is a bounded set and that

sup C = (sup A) (sup B)

and
inf C = (inf A) (inf B)

1.2. The Euclidean metric – absolute value. For x ∈ R we define the absolute value
|x| as

|x| =

x if x > 0
−x if x ≤ 0.

The absolute value is incredibly important for the Analysis in R, because it gives R a
metric: we can use it to measure the (a reasonable) distance between to points x, y ∈ R.
Indeed, d(x, y) := |x− y| is the so-called Euclidean metric.

Definition 1.7 (metric). A map d : X ×X → R is called a metric for a set X if

• d(x, y) = d(y, x) for all x, y ∈ X (symmetry)
• d(x, y) ≥ 0 for all x, y ∈ X (positivity)
• d(x, y) = 0 if and only if x = y (non-degeneracy)
• d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z ∈ X (triangular inequality).

A set X with a metric d is called a metric space.
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Almost everything5 we do with respect to convergence, continuity has a metric space gen-
eralization. The proofs are the same, the theorem changes from R to a general metric space
(X, d). Differentiability, however, becomes more tricky, then more structural assumptions
on d are helpful (e.g. a “norm” structure).

Exercise 1.8. Show the following

(1) d(x, y) = 2|x− y| is a metric in R.
(2) d(x, y) =

√
|x− y| a metric in R

(3) d(x, y) = |x− y|2 is no metric in R

(4) d(x, y) =

1 x ̸= y

0 x = y
is a metric in R

Exercise 1.9. [Leb, Exercise 1.3.1] Let ε > 0. Show that |x − y| < ε if and only if
x− ε < y < x + ε.

Exercise 1.10. [Leb, Exercise 1.3.2.]

(1) Show that

max{x, y} = x + y + |x− y|
2

(2) Show that

min{x, y} = x + y − |x− y|
2

1.3. functions: boundedness, infimum, supremum. We will mostly consider func-
tions f : D ⊂ R → R. But of course one can also consider more general sets D (like
D ⊂ R2 etc.)

Definition 1.11. A function f : D → R is

• bounded from above if there exists M ∈ R with f(x) ≤M for all x ∈ D.
• bounded from below if there exists M ∈ R with f(x) ≥M for all x ∈ D.
• bounded if it is bounded from above and below. In other terms: if there exists

M ∈ R with |f(x)| ≤M for all x ∈ D.

For a function f : D → R we define (if existent)

• the supremum supD f := sup f(D). If there exists x ∈ D such that f(x) = supD f
then maxD f := supD f is called the maximum (value).
• the infimum infD f := inf f(D). If there exists x ∈ D such that f(x) = infD f then

minD f := infD f is called the minimum (value).
5very importantly, not the Bolzano-Weierstrass theorem, Theorem 3.8, though
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For notational convenience we write
sup

D
f = +∞ if D ̸= ∅ and f is not bounded from above

inf
D

f = −∞ if D ̸= ∅ and f is not bounded from below
and the pathological cases

sup
D

f = −∞ if D = ∅

inf
D

f = +∞ if D = ∅

Exercise 1.12. Let f : R→ R be a function. Let
g(x) := −f(x).

Show that for any D ⊂ R (including D = ∅)
sup

D
g = − inf

D
f

and
inf
D

g = − sup
D

f

2. Sequences review

(it is a fun exercise to try to translate the statements here into notions on metric spaces,
cf. Definition 1.7)

A sequence, usually denoted by (xn)∞
n=1 ⊂ X, is a map x : N 7→ X. But instead of writing

x(n) we prefer to write xn. Every sequence induces a set x(N) := {xn, n ∈ N} (but not the
other way around, since we do not know which element of the set to take first). Thus we
can use set operations on sequences, e.g.,

sup(xn)n∈N = sup{x1, x2, . . .}.

Definition 2.1. A sequence (xn)∞
n=1

• is bounded if the set {x1, . . . , xn, . . .} ⊂ R is bounded.
• is unbounded if the set {x1, . . . , xn, . . .} ⊂ R is not bounded.
• converges to a number x ∈ R if

∀ε > 0 : ∃N ∈ N s.t. |xn − x| < ε ∀n ≥ N.

In words: all sequence elements xn with sufficiently large index n ≥ N are very
close to the limit point x.

In this case we say that xn is convergent (to x).
lim

n→∞
xn = x.

For a picture see Figure 2.1.
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Figure 2.1. A sequence (an)n∈N ⊂ R which seems to converge to a,
limn→∞ an = a

Figure 2.2. For a given ε, several sequence elements (red) are not close
to a at the scale ε: |an − a| ≥ ε for the red an. But most of the sequence
elements (blue) are close to a at the scale ε: |an − a| < ε. Indeed, we see
that after some large enough number N , all sequence elements are blue, i.e.
close to a, i.e.e |an − a| < ε for all n > N .

Figure 2.3. In order to show the convergence limn an = a we have to show
this for ε > 0 we can find such an N from which on |an − a| < ε. The N is
allowed to change with ε: for ε0 > 0 we find some N0, for ε1 we find another
N1. In general, as ε > 0 is smaller N needs to be chosen larger.

all pictures: Ceranilo, wikipedia.

If the limit exists, then it is unique that is

Exercise 2.2. Assume that (xn)n∈N ⊂ Q is a sequence and for x, y ∈ Q we have
lim

n→∞
xn = x, lim

n→∞
xn = y

Show that x = y.

https://en.m.wikipedia.org/wiki/File:Epsilonschlauch.svg
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Exercise 2.3. Show the following

• If xn = 1 + 1
n
: limn→∞ xn = 1.

• If xn = (−1)n does not converge.

Example 2.4. If xn = n2

2n2+n
then limn→∞ xn = 1

2

Indeed: Let ε > 0 be given. We need to find N ∈ N such that∣∣∣∣xn −
1
2

∣∣∣∣ < ε ∀n ≥ N.

Now observe that

xn −
1
2 = n2

2n2 + n
− 1

2

=2n2 − (2n2 + n)
4n2 + 2n

= −n

4n2 + 2n

= −1
4n + 2

Thus, ∣∣∣∣xn −
1
2

∣∣∣∣ = 1
4n + 2

≤ 1
4n

.

So if we choose N ∈ N such that N > 1
4ε

then for any n ≥ N∣∣∣∣xn −
1
2

∣∣∣∣ ≤ 1
4n
≤ 1

4N
< ε.

Lemma 2.5. Every convergent sequence (xn)n∈N is bounded, i.e. there exists M ∈ R such
that |xn| ≤M for all n ∈ N.

Proof. • Since xn is convergent, there exists x ∈ R and and N ∈ N such that
|xn − x| ≤ 1 ∀n > N.

• Set M̃ := max{|x1|, . . . , |xN |} – this maximum exists, because there are only finitely
many points considered.
• Set M := |x|+ M̃ + 1. Then we have

|xn| ≤ M̃ ≤M ∀n ≤ N

and
|xn| ≤ |xn − x|+ |x| ≤ 1 + |x| ≤M ∀n > N

That is |xn| ≤M for all n ∈ N, and thus the sequence xn is bounded.
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□

Corollary 2.6. Any unbounded sequence is not convergent.

Proof. This is just the logical equivalent of Lemma 2.5. Namely A ⇒ B is equivalent to
¬B ⇒ ¬A, so

((xn)n∈N convergent) ⇒ ((xn)n∈N bounded)
⇔ ¬ ((xn)n∈N convergent) ⇐ ¬ ((xn)n∈N bounded)
⇔ ((xn)n∈N not convergent) ⇐ ((xn)n∈N not bounded)
⇔ ((xn)n∈N not bounded) ⇒ ((xn)n∈N not convergent)

□

Remark. In a very common abuse of notation we shall write

• “xn converges to +∞”, in formulas
lim

n→∞
xn = +∞,

if
∀M > 0 ∃N ∈ N such that xn > M ∀n > N,

that is all sequence elements are eventually very large.
• “xn converges to −∞”, in formulas

lim
n→∞

xn = −∞,

if
∀M > 0 ∃N ∈ N such that xn< −M ∀n > N.

that is all sequence elements are eventually very negative.

Definition 2.7. A sequence (xn)n∈N is6

• monotone increasing if xn ≤ xm holds for any n, m ∈ N with n ≤ m
• strictly monotone increasing if xn < xm holds for any n, m ∈ N with n < m
• monotone decreasing if xn ≥ xm holds for any n, m ∈ N with n ≤ m
• strictly monotone decreasing if xn > xm holds for any n, m ∈ N with n < m
• monotone if it is either monotone increasing or monotonce decreasing.

Theorem 2.8 (Bounded monotone sequences are convergent). Let (xn)n∈N ⊂ R be a
bounded monotone sequence. Then x = limn→∞ xn exists, and

• x = supn xn (if (xn)n∈N is increasing), or
• x = infn xn (if (xn)n∈N is decreasing).

6of course, this doesnt make any sense in general metric spaces
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Proof. Assume w.l.o.g. that xn is monotone increasing (the other case goes exactly the
same way).

Since {xn, n ∈ N} ⊂ R is bounded by assumption, and R is a complete space, Proposi-
tion 1.4, the supremum exists. We denote it by

x := sup
n∈N

xn.

We need to show that limn→∞ xn = x. For this let ε > 0 be arbitrary. We need to find
N = N(ε) ∈ N such that

|xn − x| < ε ∀n > N.

Equivalently we need to show that

(2.1) xn − x < ε ∀n > N,

and

(2.2) x− xn < ε ∀n > N.

Observe that (2.1) is true for any n ∈ N because x is the supremum of the xn, and as such
x ≥ xn for all n ∈ N.

So we only need to show (2.2). Assume to the contrary that for any N there exists an
M > N such that

x− xM ≥ ε⇔ xM ≤ x− ε

But by monotonicity this implies

xm ≤ xM ≤ x− ε ∀m ≤M.

That is we would have

∀N ∈ N ∃M > N : xm ≤ xM ≤ x− ε ∀m ≤M.

In particular we have
∀N ∈ N : xN ≤ x− ε

Just relabelling this, we have
xm ≤ x− ε ∀m ∈ N

But this contradicts that x is the supn xn, indeed x− ε is a smaller upper bound. Contra-
diction, so (2.2) must be true for some N ∈ N. □

Exercise 2.9. Show that the statement of Theorem 2.8 is false if R is replaced by Q.

For this give an example of a bounded monotone sequence in Q, (xn)n∈N ⊂ Q, which does
not converge in Q. That is, show that there is no x ∈ Q with limn→∞ xn = x.

We can also reformulate the supremum and infimum definition of Definition 2.1:
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Figure 2.4. Lord Sandwich, 1715-1797. Inventor of the Sandwich lemma,
Lemma 2.11. Image: Dall-E.

Exercise 2.10. [Leb, Exercise 2.1.12] Show the following:

Let S ⊂ R be a nonempty bounded set. Then there exist monotone sequences (xn)n∈N,
(yn)n∈N such that xn, yn ∈ S for all n and

sup S = lim
n→∞

xn

and
inf S = lim

n→∞
yn

Hint: Use the definition of supremum from Lemma 1.5 to find the sequence and Theorem 2.8
to ensure it converges.

The following lemma is also known as the sandwich theorem, cf. Figure 2.4.

Lemma 2.11 (Squeeze theorem). Assume that we have three real sequences

(an)n∈N, (xn)n∈N, (bn)n∈N

such that

(2.3) an ≤ xn ≤ bn ∀n ∈ N.

If there exists x ∈ R with
x = lim

n→∞
an = lim

n→∞
bn

then
lim

n→∞
xn = x.

Proof. Since by (2.3)
an − x ≥ xn − x ≤ bn − x,

we have

|xn − x| ≤ max{|an − x|, |bn − x|}.(2.4)
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Let now ε > 0. Since an → x and bn → x there must be an N(ε)7 such that
max{|an − x|, |bn − x|} < ε ∀n ≥ N.

Thus, by (2.4),
|xn − x| ≤ max{|an − x|, |bn − x|} < ε.

□

Proposition 2.12. If (xn)n∈N is convergent, so is (|xn|)n∈N, and we have
lim

n→∞
|xn| = | lim

n→∞
xn|.

Proof. This is what we will later call the continuity of the absolute value f(·) := | · |.

Set
x := lim

n→∞
xn.

The claim follows from the definition of a limit and the inverse triangle inequality which
implies

||xn| − |x|| ≤ |xn − x|.(2.5)

Since xn → x, for any ε > 0 there must be N ∈ N such that
|xn − x| < ε ∀n ≥ N

From (2.5) we conclude that then
||xn| − |x|| < ε ∀n ≥ N

which implies by definition that limn→∞ |xn| = |x| □

Definition 2.13. We say that a property (A) holds for all but finitely many elements of a
set S ⊂ X if there exists a finite number K and elements s1, . . . , sK ∈ S such that property
(A) holds for any s ∈ S\{s1, . . . , sK}.

It is an easy exercise to show that property (A) holds for all but finitely many elements of
a sequence (xn)n∈N if and only if there exists a large number N ∈ N such that property
(A) holds for all xn, n ≥ N . When talking about limits of sequences, we usually only care
about all but finitely many elements of said sequence. For example:
Lemma 2.14. Let (xn)n∈N and (yn)n∈N be two sequences and assume that

xn ≤ yn for all but finitely many n ∈ N
If limn→∞ xn and limn→∞ yn exist, then

lim
n→∞

xn ≤ lim
n→∞

yn.

Exercise 2.15. Prove Lemma 2.14
7we take the maximum of the N(ε) = max{N1(ε), N2(ε)} where N1(ε) is such that the sequence (an)

satisfies |an − x| < ε for all n ≥ N1(ε) and N2(ε) is such that the sequence (bn) satisfies |bn − x| < ε for
all n ≥ N2(ε)
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We will also discuss a strengthened version of Lemma 2.14 in Exercise 3.3.

Exercise 2.16. [Leb, Ex. 2.1.3] Is the sequence
(

(−1)n

2n

)
n∈N

convergent? If so, what is the
limit?

2.1. Subsequences.

Definition 2.17. Suppose (xn)n∈N is a sequence. Let (ni)i∈N be a strictly increasing
sequence of natural numbers (i.e., ni < ni+1 for all i). The sequence

(xni
)i∈N

is then called a subsequence of (xn)n∈N.

As sequence (xn)n∈N has a convergent subsequence if there exists a subsequence (xni
)i∈N

which is convergent.

Example 2.18. • Let
(xn)n∈N = (1, 5, 7, 8, 9, 10, 20, 33, . . .)

then
(yn)n = (1, 7, 33, . . .)

is a subsequence, whereas
(zn)n = (1, 7, 5, 33, . . .)

is (most likely) not a subsequence.
• Let

xn := (−1)n+1

Then
x2n = −1

and
x2n+1 = 1.

Both subsequences are clearly convergent, but (xn)n∈N is clearly not convergent.

Exercise. Let x1 = 8 and xn+1 := 1
2xn + 2 for n ∈ N. Show that (xn)n∈N is convergent

and compute the limit.

Hint: Use Theorem 2.8.

Lemma 2.19. If (xn)n∈N is a convergent sequence, then every subsequence of (xn)n∈N is
also convergent. Moreover if

x := lim
n→∞

xn

then for any subsequence (xni
)i∈N,

x = lim
i→∞

xni

Exercise 2.20. Prove Lemma 2.19.
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Exercise 2.21. Let (xn)n∈N be a sequence and assume one of the following property:

(1) there is some x such that any subsequence (xni
)i∈N contains another subsequence(

xnij

)
j∈N

which is convergent to x.

(2) any subsequence (xni
)i∈N contains another subsequence

(
xnij

)
j∈N

which is conver-
gent (a priori not necessarily to the same x)

Show that in one of the cases the sequence xn is convergent. Give a counterexample for the
other case.

Exercise 2.22. [Leb, Exercise 2.1.15] Let (xn)n∈N be a sequence defined by

xn :=

n if n is odd,
1/n if n is even.

a) Is the sequence bounded? (prove or disprove)

b) Is there a convergent subsequence? If so, find it.

Exercise 2.23. [Leb, Exercise 2.2.7] True or false, prove or find a counterexample. If
(xn)n∈N is a sequence such that (x2

n)n∈N converges, then (xn) converges as well.

Exercise 2.24. Let (xn)n∈N be a sequence and assume one of the following properties:

(1) there is some x such that any subsequence (xni
)i contains another subsequence

(xnij
)j which is convergent to x.

(2) any subsequence (xni
)i contains another subsequence (xnij

)j which is convergent (a
priori not necessarily to the same x)

Show in which cases (xn)n is convergent. Give a counterexample for the other case.

Exercise 2.25. Find the following limit. Show all work.

lim
n→∞

(
1√

n2 + 1
+ 1√

n2 + 2
+ . . . + 1√

n2 + 2n

)

2.2. Further exercises for limits. Sequences are very important, so here we collect some
(option) ε-N -type exercises

Exercise. Use the precise ε, N definition of limit to prove the following statements.

(1) limn→∞
3n2+2
2n2−5 = 3

2 .
(2) limn→∞

∣∣∣ −n+5√
n+28

∣∣∣ = +∞
(3) limn→∞

n
n2+1 = 0

(4) limn→∞
2n

n+1 = 1
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Figure 3.1. Karl Weierstrass, 1815-1897. German, “father of modern analysis”.

(5) limn→∞
n2+3
n+5 = +∞.

(6) limn→∞
1√

n+7 = 0
(7) limn→∞

(−1)nn
n2+1 = 0

(8) More abstractly show that whenever a, b ̸= 0 we have limn→∞
an2+2n+7
bn2+5n−5 = a

b
.

Exercise. Assume that (xn)n∈N is a sequence and limn→∞ xn = 5. Show that there exists
some N ∈ N such that xn ≥ 4 for all n ≥ N .

Exercise. Show that
lim(2n

n! ) = 0.

Hint: You can use without proof that for n ≥ 3 we have 2n

n! ≤ 2
(

2
3

)n−2

Exercise. Give an example of an unbounded sequence that has a convergent subsequence.

Exercise. Prove that the following sequences are divergent:

(1) xn := 1 + (−1)n + 1/n

(2) yn := sin
(

nπ
4

)
Hint: subsequences, Lemma 2.19

Exercise 2.26. Assume that (xn)n∈N satisfies xn ≥ 0 for all n ∈ N and assume limn→∞(−1)nxn

exists. Show that (xn)n∈N is convergent.

3. Limit superior, limit inferior, Bolzano-Weierstrass

Sequences can be subdivided into subsequences as discussed above, Section 2.1. The limit
superior, lim sup is the largest possible limit (or +∞) of any subsequence, the limit inferior.
lim inf is the smallest possible limit (or −∞) of any subsequence. More precisely,

Definition 3.1. Let (xn)n∈N ⊂ R be any sequence.

Then lim supn→∞ xn, lim infn→∞ xn ∈ R∪{−∞, +∞} are defined as follows (cf. Figure 3.3)
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Figure 3.2. Bernard Bolzano, 1781 - 1848. Italian-German-Czech; Bo-
hemian mathematician, philosopher, Catholic priest, antimilitarist.

• If (xn)n∈N is bounded from above we set8

lim sup
n→∞

xn := inf
n∈N

sup
k≥n

xk ∈ R ∪ {−∞}

Observe that since n 7→ supk≥n xk is monotonce decreasing we have equivalently
lim sup

n→∞
xn := lim

n→∞
sup
k≥n

xk ∈ R ∪ {−∞}

so the lim supn→∞ xn computes the largest sequence element “at infinity”.
• If (xn)n∈N is not bounded from above we set lim supn→∞ xn := +∞
• If (xn)n∈N is bounded from below we set

lim inf
n→∞

xn := sup
n∈N

inf
k≥n

xk ≡ lim
n→∞

inf
k≥n

xk.

so the lim supn→∞ xn computes the smallest sequence element “at infinity”.
• If (xn)n∈N is not bounded from below we set lim infn→∞ xn := −∞

Exercise 3.2. Let

xn :=


1
n

n even
−n n odd

Show that
lim sup

n→∞
xn = 0

and
lim inf

n→∞
xn = −∞.

Exercise 3.3. Show the following version of Lemma 2.14:

Let (xn)n∈N and (yn)n∈N be two sequences such that
xn ≤ yn for all but finitely many n ∈ N

Then we have
lim inf

n→∞
xn ≤ lim inf

n→∞
yn

8observe that this number exists: (xn)n∈N is bounded from above, so an := supk≥n xk is finite number
for each n. So the infimum infn an is defined by the properties of R, Proposition 1.4.



INTRODUCTION TO ANALYSIS (MATH 420) VERSION: December 4, 2023 24

Figure 3.3. An illustration of limit superior and limit inferior. The se-
quence xn is shown in blue. The two red curves approach the limit superior
and limit inferior of xn, shown as dashed black lines. In this case, the se-
quence accumulates around the two limits. The superior limit is the larger
of the two, and the inferior limit is the smaller of the two. The inferior and
superior limits agree if and only if the sequence is convergent (i.e., when
there is a single limit). (text and image: Eigenjohnson, Wikipedia)

and
lim sup

n→∞
xn ≤ lim sup

n→∞
yn

Exercise 3.4. [Leb, Ex. 2.3.7] Let (xn)n∈N and (yn)n∈N be bounded sequences.

(1) Show that (xn + yn)n∈N is bounded.
(2) Show that9

(lim inf
n→∞

xn) + (lim inf
n→∞

yn)≤ lim inf
n→∞

(xn + yn).
(3) Find explicit (xn)n∈N and (yn)n∈N such that

(lim inf
n→∞

xn) + (lim inf
n→∞

yn) < lim inf
n→∞

(xn + yn).

To match lim sup and lim inf with our intuition as computing “smallest subsequence” and
“largest subsequence”, we observe

Lemma 3.5. Let (xn)n∈N be a sequence.
9this stays true if (xn) and (yn) are not assumed to be unbounded, as long as we avoid ∞−∞ on the

left-hand side.

https://commons.wikimedia.org/wiki/File:Lim_sup_example_5.png
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(1) Set an := supk≥n xk, then

lim sup
n→∞

x = lim
n→∞

an

in the sense that either both sides are finite or both sides are ±∞.
(2) Set bn := infk≥n xk, then

lim inf
n→∞

xn = lim
n→∞

bn

in the sense that either both sides are finite or both sides are ±∞.
(3) Let (xni

)i∈N be any convergent subsequence. Then

lim inf
n→∞

xn ≤ lim
i→∞

xni
≤ lim sup

n→∞
xn.

(4) If lim supn→∞ xn ∈ (−∞,∞) then there exists a convergent subsequence (xni
)i∈N

with
lim
i→∞

xni
= lim sup

n→∞
xn.

(5) If lim infn→∞ xn ∈ (−∞,∞) then there exists a convergent subsequence (xni
)i∈N

with
lim
i→∞

xni
= lim inf

n→∞
xn.

(6) If lim supn→∞ xn = ∞ then there exists a subsequence (xni
)i∈N with limi→∞ xni

=
∞. If lim supn→∞ xn = −∞ then all subsequences (xni

)i∈N satisfy limi→∞ xni
=

−∞.
(7) If lim infn→∞ xn = −∞ then there exists a subsequence (xni

)i∈N with limi→∞ xni
=

−∞. If lim infn→∞ xn = +∞ then all subsequences (xni
)i∈N satisfy limi→∞ xni

=
+∞.

Proof. (1) If (an)n∈N is not bounded from above, (xn)n∈N is not bounded from above,
and so limn→∞ an = lim supn→∞ xn =∞.

If an is bounded from above then it is a monotonce decreasing, bounded, sequence.
From Theorem 2.8 we find that an is convergent and

lim
n→∞

an = inf
n

sup
k≥n

xk = lim sup
n→∞

xn.

(2) exercise! (almost the same argument as as above)
(3) We only show

lim
i→∞

xni
≤ lim sup

n→∞
xn.(3.1)

The other inequality follows the same way.
If lim supn xn =∞ then (3.1) is trivially satisfied. So let us assume lim supn xn <
∞. Then

xni
≤ sup

k≥ni

xk =: ai ∀i ∈ N.
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We observe that (ai)i∈N is a monotone increasing sequence. Since lim supn xn <∞
we have that ai is bounded from above. So by Theorem 2.8 ai is convergent and

lim
i→∞

ai = inf
i

sup
k≥ni

xk

ni≥i

≤ inf
i

sup
k≥i

xk = lim sup
i→∞

xi.

By monotonicity of the limit, Lemma 2.14,
lim
i→∞

xni
≤ lim

i→∞
ai = lim sup

n→∞
xn.

(4) Set
an := sup

k≥n
xk.

Since lim supn→∞ xn < ∞, by the definition of supremum as lowest upper bound
(cf. Lemma 1.5), for any n ∈ N there must be a number K = K(n) ≥ n such that

an −
1
n
≤ xK ≤ an.

Now we build our subsequence as follows. n1 := K(1), n2 := K(n1 + 1), ni :=
K(ni−1 + 1). This is an strictly increasing sequence, and we have

ani
− 1

ni

≤ xni+1 ≤ ani
∀i.

Since in particular ni ≥ i we find

ani
− 1

i
≤ xni+1 ≤ ani

∀i.

By the squeeze theorem, Lemma 2.11, we have that
lim
i→∞

xni
= lim

i→∞
ani

= lim sup
n→∞

xn.

(5) same as above
(6) If lim supn→∞ xn =∞ then infn∈N an =∞ where an = supk≥n xk. That means that

for any M ∈ N and for any n ∈ N there exists k = k(n) ≥ n with xk > M . From
this we can build a subsequence. Take xn1 := xk(1), xn2 := xk(k(1)+1) etc. This
subsequence goes to infinity.

Assume now that lim supn→∞ xn = −∞ and take (xni
)i∈N any subsequence.

Then infn∈N an = −∞ where an = supk≥n xk. That is, for any M > 0 there
must be some N ∈ N such that aN < −M . But since aN = supk≥N xk, this implies
xk ≤ −M for all k ≥ N . That is, for all M > 0 we have that xn < −M for all but
finitely many n ∈ N. In particular, for all M > 0 we have that xni

< −M for all
but finitely many i ∈ N. This means that limi→∞ xni

= −∞.
(7) analogue argument to above.

□

Lemma 3.6. Let (xn)n∈N be a sequence in R

(1) lim infn→∞ xn ≤ lim supn→∞ xn
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(2) For any subsequence (xni
),

lim inf
n→∞

xn ≤ lim inf
i→∞

xni
≤ lim sup

i→∞
xni
≤ lim sup

n→∞
xn

(3) If limn→∞ xn = x then lim infn→∞ xn = lim supn→∞ xn = x.
(4) If lim infn→∞ xn = lim supn→∞ xn and the value is finite then (xn)n∈N converges and

we have limn→∞ xn = lim infn→∞ xn = lim supn→∞ xn.

We collect this in a smashy corollary for emphasis:

Corollary 3.7. Let (xn)n∈N. Then

• (xn)n∈N is a convergent sequence if and only if
• lim infn→∞ xn = lim supn→∞ xn and this number is finite.

Also

• limn→∞ xn = ±∞ if and only if
• lim infn→∞ xn = lim supn→∞ xn = ±∞

Proof of Lemma 3.6. (1) obvious from the definition
(2) Obvious from the definition of lim sup, and monotonicity of the supremum/infimum.
(3) From Lemma 3.5 we have that there exists a subsequence (xni

)i∈N such that

lim
i→∞

xni
= lim sup

n→∞
xn.

On the other hand, since xn converges, so does any of its subsequences, so

lim
i→∞

xni
= lim

n→∞
xn.

Together we find
lim sup

n→∞
xn = lim

n→∞
xn.

The same argument works for the lim inf.
(4) Let an := infk≥n xk and bn := supk≥n xk. Then

an ≤ xn ≤ bn ∀n ∈ N.

Since by assumption and Lemma 3.5,

lim inf
n→∞

xn = lim
n→∞

an = lim
n→∞

bn = lim sup
n→∞

xn

We conclude by the squeeze theorem, Lemma 2.11 that

lim
n→∞

xn = lim inf
n→∞

xn = lim
n→∞

an = lim
n→∞

bn = lim sup
n→∞

xn

□
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Figure 4.1. Augustin-Louis Cauchy, 1789 – 1857. French, mathematician,
engineer, and physicist. Almost singlehandedly founded complex analysis
(thats why almost every theorem in complex analysis is Cauchy’s theorem).

A very useful theorem (indeed a consequence of Lemma 3.5) is that in R every bounded
sequence has a convergent subsequence10

Theorem 3.8 (Bolzano-Weierstrass). Suppose that (xn)n∈N is a bounded sequence in R.
Then there exists a convergent subsequence.

Proof. Since (xn)n∈N is bounded, x := lim supn→∞ xn is a well-defined (finite!) number
x ∈ R. From Lemma 3.5 we thus know that there must be a subsequence (xni

)i∈N with
limi→∞ xni

= x. □

Exercise 3.9. Prove Corollary 3.10.

As a consequence of Theorem 3.8 and Exercise 2.21 one obtains the following statement.

Corollary 3.10. Assume that (xn)n∈N is a bounded sequence in R and that there exists
x ∈ R such that any convergent subsequence (xni

)i∈N converges to x. Then xn converges to
x.

3.1. Further (optional) exercises.

Exercise. Assume (xn)n∈N is a sequence with xn ̸= 0 for all but finitely many n ∈ N, and
such that

lim sup
n→∞

∣∣∣∣∣ xn

xn+1

∣∣∣∣∣ < 1.

Show that limn→∞ xn = 0.
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4. Cauchy sequences

A Cauchy sequence is a sequence where all sequence elements eventually lie arbitrarily
close to each other. This is almost as good as converging – unless there is a whole in our
underlying space.

Here is the formal definition.
Definition 4.1. A sequence (xn)n∈N is called a Cauchy sequence if for any ε > 0 there
exists N = N(ε) ∈ N such that

|xn − xm| < ε ∀n, m > N.

Example 4.2. (1) The sequence
xn = first n digits of π

is a Cauchy sequence. Indeed, fix ε > 0 arbitrary. Let N ∈ N such that 101−N < ε.
Let n, m ≥ N with w.l.g. n ≤ m. Then

xn − xm = 0.0 . . . 0︸ ︷︷ ︸
n digits

. . .︸︷︷︸
remaining (m − n) digits of π

.

That is
|xn − xm| ≤ 101−n ≤ 101−N < ε.

That is, xn is a Cauchy sequence.
Observe that the sequence (xn)n∈N is convergent in R (limn→∞ xn = π) but not

in Q (because π ̸∈ Q).
(2) Warning: The following is not an equivalent definition for a Cauchy sequence:

for any ε > 0 there exists N = N(ε) ∈ N such that
|xn − xn+1| < ε ∀n > N.

Indeed, take
xn :=

n∑
ℓ=1

1
ℓ
.

We have that
|xn − xn+1| =

1
n + 1

n→∞−−−→ 0.

However, we know from Calculus 2 that

lim
n→∞

n∑
ℓ=1

1
ℓ

=
∞∑

ℓ=1

1
ℓ

=∞.

So limn→∞ xn does not exist, so by Theorem 4.4 below, (xn)n∈N is not a Cauchy
sequence.

10This remains true in finite dimensional metric spaces (whatever that means), but becomes false in
infinite dimensional spaces. Since many important spaces are infinite dimensional (e.g. function spaces),
for some function spaces a replacement is known: weak convergence, and the theorem by Banach-Alaoglu.
This generalization is part of Functional Analysis and is one of the most crucial results in Analysis.

https://en.wikipedia.org/wiki/Weak_topology
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This also can be seen explicitely: Relabelling this implies that for any n ∈ N
∞∑

ℓ=n

1
ℓ

=∞.

This in turn (by a contradiction argument) implies that for any n ∈ N there must
be an m ∈ N, m > n such that

m∑
ℓ=n

1
ℓ
≥ 1.

That is, for any N ∈ N and any n ≥ N there exists m ≥ n ≥ N such that
|xn − xm| ≮ 1.

That is, (xn)n∈N is not a Cauchy sequence.

As we said before, Cauchy sequences are almost as good as converging sequences if the
underlying space is complete (i.e. has no holes).

First we observe that any converging sequence is necessarily Cauchy.

Lemma 4.3 (Converging sequences are Cauchy). Let (xn)n∈N be a converging series. Then
(xn)n∈N is a Cauchy sequence11.

Proof. Set x := limn→∞ xn (exists, because (xn)n∈N is converging). That is, for any ε > 0
there exist N = N(ε) such that

|xn − x| < ε

2 ∀n ≥ N.

But then also
|xn − xm| ≤ |xn − x|+ |xm − x| < ε

2 + ε

2 = ε ∀n, m ≥ N.

That is, (xn)n∈N is a Cauchy sequence. □

As many things of this course, the notion of a Cauchy sequences lives up to its full potential
in metric spaces (X, d). Metric spaces are complete if any Cauchy sequence has a limit (in
the same space). If the metric space is not complete it has essentially an infinitesimal hole.
Plugging these holes is called metric completion. For our purposes: Q is not complete, and
R is the metric completion of Q.

Theorem 4.4. Any Cauchy sequence in R is convergent, and any convergent sequence is
a Cauchy sequence.

Before proving Theorem 4.4 we first show the following property (which holds in general
metric spaces)

11can be in Q or R or R \ {
√

2}, it does not matter
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Lemma 4.5. Any Cauchy sequence is bounded12.

Proof. The argument is very similar to the proof of Lemma 2.5.

Let (xn)n∈N be a Cauchy sequence. Then there exists an N ∈ N such that

|xN+1 − xn| < 1 ∀n > N.(4.1)

Set
M := max{|x1|, . . . , |xN+1|}+ 1

Then we have
|xn| ≤M ∀n = 1, . . . , N + 1.

On the other hand by (4.1) we have that
|xn| ≤ |xn − xN+1|+ |xN+1| < 1 + |xN+1| ≤M ∀n > N.

That is, we have shown that |xn| ≤M for all n ∈ N. □

Now we can give

Proof of Theorem 4.4. Any converging sequence is Cauchy: This is Lemma 4.3.

Any Cauchy sequence is convergent. Let (xn)n∈N be a Cauchy sequence, we need to show
it converges in R. In view of Lemma 4.5 (xn)n∈N is bounded. By Bolzano-Weierstrass,
Theorem 3.8, there exist a convergent subsequence (xni

)i∈N with
lim
i→∞

xni
= x.(4.2)

Now we show that the Cauchy sequence property implies that limn→∞ xn = x. For this let
ε > 0 be given. By the limit property for (xni

)i∈N, (4.2), there must be N1 ∈ N such that

|xni
− x| < ε

2 ∀i > N1.

By the Cauchy property of (xn)n∈N there must be another N2 ∈ N such that

|xn − xm| <
ε

2 ∀n, m > N2.

Now choose i > N1 such that ni > N2. Then by the above estimates,

|xn − x| ≤ |xni
− x|+ |xn − xni

| < ε

2 + ε

2 = ε∀n > N2.

This proves that limn→∞ xn = x and the proof of Theorem 4.4 is finished. □

Remark 4.6. Theorem 4.4 is sometimes called the Cauchy criterion: A sequence (xn)n∈N
(in R) is convergent if and only if (xn)n∈N is a Cauchy sequence.

12again, this can be in Q or R or R \ {
√

2}, it does not matter
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Exercise 4.7. In Theorem 4.4 we have shown

any Cauchy sequence (xn)n∈N ⊂ R has a limit in R,
i.e. there exists x ∈ R with lim

n→∞
xn = x.(1)

The same statement is false in Q. Namely, the following is false:

any Cauchy sequence (xn)n∈N ⊂ Q has a limit in Q,
i.e. there exists x ∈ Q with lim

n→∞
xn = x.(2)

a) Give a counterexample to (2).
b) Which part of the proof of (1) (from Theorem 4.4) fails when we attempt to prove (2)?

Exercise 4.8. Only using the definition of Cauchy sequence, in particular without using
Theorem 4.4, show the following

Assume the (xn)n∈N is a Cauchy sequence, and there exists a subsequence (xni
)i∈N such that

(xni
)i∈N is convergent. Set

z := lim
i→∞

xni
.

Show that (xn)n∈N converges to z, i.e. show that

z = lim
n→∞

xn.

Hint: You are not allowed to use the (statement) of Theorem 4.4, but you can look at the
proof of Theorem 4.4, where we have essentially shown this.

The notion of Cauchy sequence is very useful to

• Check if a sequence converges in R (more generally complete metric spaces): Some-
times it is easier to check if a sequence is Cauchy than to guess the limit
• to “complete spaces” (this is called: metric completion). Let us illustrate this for

the metric completion of Q to R (but this works for any metric space).
We define

R = {(xn)n∈N ⊂ Q : (xn)n∈N is Cauchy sequence} / ∼

where ∼ is the equivalence relation

(xn)n∈N ∼ (yn)n :⇔ lim
n→∞

|xn − yn| = 0.

That is, we consider two sequences to be the same if their distance converges to
zero.

– Q ⊂ R in the following sense: We identify an element q ∈ Q with

[q] ∼
{

(xn)n∈N ⊂ Q : lim
n→∞

xn = q
}

.
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– R corresponds to the usual definition of R since any element r ∈ R can be
approximated by a sequence in (qn)n ⊂ Q, limn→∞ qn = r. If we have two such
sequences, (qn)n, (sn)n ⊂ Q, limn→∞ qn = r = limn→∞ sn then limn→∞ |qn −
sn| = 0, so (qn)n ∼ (sn)n.

– The fact that our new definition of R as Cauchy sequences of Q is indeed
complete follows with a diagonal argument, we will not treat it here.

– This method is general for metric spaces (X, d) (any metric space (X, d) can be
made complete by considering its Cauchy sequences). One advantage of this
method is that uniformly continuous functions on (X, d) will extend uniquely
to uniform continuous functions on the larger space, cf. Exercise 9.10.

Exercise 4.9. [Leb, Ex. 2.4.1] Prove that
(

n2−1
n2

)
is Cauchy using directly the definition

of Cauchy sequences.

The following result is very useful for contraction arguments, such as the Banach Fixed
point theorem (which we will not treat in this course, but see Theorem 6.19).

Exercise 4.10. [Leb, Ex. 2.4.2] Let (xn)n∈N be a sequence such that there exists a 0 < λ < 1
such that

|xn+1 − xn| ≤ λ|xn − xn−1|.

(1) Prove that (xn)n∈N is Cauchy.
(2) Why doesn’t this contradict Example 4.2(2)?

Hint: You can freely use the formula (for λ ̸= 1)

1 + λ + λ2 + · · ·+ λn = 1− λn+1

1− λ
.

4.1. Optional exercises.

Exercise. Give an example of a bounded sequence that is not a Cauchy sequence.

Exercise. Show that
n∑

i=1

1
n!

is a Cauchy sequence (directly from the definition of Cauchy sequence)

5. Limits of functions

Remark 5.1 (Further reading). • Interactive picture example of ε-δ limit operation
https://www.desmos.com/calculator/4efsywgvtg

https://www.desmos.com/calculator/4efsywgvtg
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We want to describe how a function f behaves near to a point c ∈ R, i.e. we would like to
give a notion for

lim
x→c

f(x).
To do this, f does not need to be defined at c, but it needs to be defined “close to c”.

Definition 5.2. Let D ⊂ R be a set.

• We define D the closure of the set D as follows

D :=
{

x ∈ R : ∃(xn)n∈N ⊂ D lim
n→∞

xn = x
}

That is D are all points (in R) that can be approximated by sequences from within
D.
• A set D ⊂ R is closed, if D = D.
• A set D ⊂ R is open, if R\D is closed13

• While not so relevant for our purposes, let us also define the boundary of a set D,
usually denoted by ∂D,

∂D = D ∩
(
Rn \ D̄

)
.

Equivalently ∂D is the set of all points x such that there exists a sequence (yn)n∈N ⊂
D and another sequence (zn)n∈N ⊂ Rn \D such that x = limn→∞ yn = limn→∞ zn.
That is ∂D are the points that can be approximated from both within D, and from
within the complement of D, Rn \D.
• A point c ∈ D is a cluster point of D, if there exists a sequence (xn)n∈N ⊂ D\{c}

with limn→∞ xn = c.
That is, a point c is a cluster point of D if it can approximated by points within

D different from c itself.

Exercise 5.3. Show that

a) the set Z = {. . . ,−1, 0, 1, . . .} has no cluster points.
b) every point in R is a cluster point of Q.

Exercise 5.4. The empty set ∅ is both open and closed. So is R = R \ ∅.

Exercise 5.5. Q = R, Q is neither open nor closed

Lemma 5.6. We always have D ⊂ D

Proof. For any x ∈ D, the sequence (xn)n∈N := (x, x, x, x, . . .) clearly converges to x,
limn→∞ xn = x, so x ∈ D. □

Exercise 5.7. Let D ⊂ R be a set. Show that D̄ is closed, i.e. that ¯̄D = D̄.
13Below we will see a equivalent but nicer/more intuitive definition of open: a set D is open if around

any point x ∈ D a whole neighborhood of that point belongs to D
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Figure 5.1. The blue circle represents the set of points (x, y) satisfying
x2 + y2 = 1. The red disk represents the set of points (x, y) satisfying
x2 + y2 < 1. The red set is an open set, the blue set is its boundary set, and
the union of the red and blue sets is a closed set, the closure of the open set.
(from: wikipedia)

Example 5.8. (1, 2) = [1, 2]

Proof. Indeed, we already know (1, 2) ⊂ (1, 2). Now 1 ∈ (1, 2) because xn := 1 + 1
n
∈ (1, 2)

for any n ∈ N and limn→∞ xn = 1. Similar argument for 2. If x ̸∈ [1, 2] then there must be
a δ > 0 such that x < 1−δ or x > 2+δ. Now for any sequence (xn)n∈N with limn→∞ xn = x
there exists N ∈ N such that

|xn − x| < δ

2 ∀n ≥ N.

But then if x < 1− δ we have

xn < xn − x + x < 1− δ + δ

2 = 1− δ

2 < 1, ∀n ≥ N

or if x > 2 + δ,

xn > xn − x + x > 2 + δ − δ

2 = 2 + δ

2 > 2, ∀n ≥ N.

That is, in either case xn ̸∈ (1, 2) for all n ≥ N . That means there is no sequence
(xn)n∈N ∈ (1, 2) such that limn→∞ xn = x if x ̸∈ [1, 2] □

Exercise 5.9. [1, 2] is closed, all points are cluster points.
Lemma 5.10. A set D ⊂ R is open, if and only if for any x0 ∈ D there exists ε > 0
such that (x0 − ε, x0 + ε) ⊂ D (in words: any point x0 ∈ D has a small neighborhood also
belonging to D).

https://en.wikipedia.org/wiki/Open_set
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Proof. Assume that D is open and x0 ∈ D, but for any ε > 0 there exists a point xε ∈
(x0 − ε, x0 + ε)\D. Choosing ε := 1

n
we then find a sequence xn ∈ (x0 − 1

n
, x0 + 1

n
)\D.

That is |xn − x0|
n→∞−−−→ 0. That is limn→∞ xn = x0. On the other hand, xn ∈ R\D which

is closed by assumption, so x0 ∈ R\D. Contradiction to x0 ∈ D.

For the other direction, assume that D is such that for any x0 ∈ D there exists ε > 0
such that (x0 − ε, x0 + ε) ⊂ D. Let (xn)n∈N ⊂ R\D be a converging sequence and set
x0 := limn→∞ xn. We need to show x0 ∈ R\D. To the contrary assume that x0 ∈ D.
By assumption there exists ε > 0 such that (x0 − ε, x0 + ε) ⊂ D, which means that
xn ̸∈ (x0 − ε, x0 + ε). But this means that |xn − x0| ≥ ε for all n ∈ N, i.e. xn does not
converge to x0. Contradiction. □

Lemma 5.11. Let D be an open set, then any point x0 ∈ D is a clusterpoint of D (and
D).

Proof. Indeed, let x0 ∈ D. If x0 ̸∈ D there is no problem: by definition there must be a
sequence (xn)n∈N ⊂ D = D\{x0} with limn→∞ xn = x0.

If x0 ∈ D, then we construct a sequence (xn)n∈N ⊂ D\{x0} as follows. Since D is open
and x0 ∈ D, there must be some ε > 0 such that (x0− ε, x0 + ε) ⊂ D. Let N be such that
1
N

< ε. Then take xn any element from (x0 − 1
N+n

, x0 + 1
N+n

)\{x0} ⊂ D\{x0}. It is easy
to show that limn→∞ xn = x0. □

Now we want to define
lim
x→c

f(x)
There are issues to deal with: x→ c is not a sequence, second f(c) may not be defined.

Definition 5.12. Let f : D ⊂ R → R be a function and c ∈ D be a cluster point of D.
We say that the limit as x ∋ D approaches c of f is a number L ∈ R,

lim
x→c

f(x) = L, or f(x) x→c−−→ L.

if 14

∀ε > 0 ∃δ = δ(ε) > 0 : s.t. |f(x)− L| < ε ∀x ∈ D\{c} : |x− c| < δ.

Cf. Figure 5.2.

Example 5.13. Let

f(x) :=

1 x < 0
0 x > 0.

Then the domain of f is (−∞, 0) ∪ (0,∞) and limx→0 f(x) does not exist.

On the other hand, if we consider f as a function f : (−∞, 0)→ R then limx→0 f(x) = 1.
14since c is a cluster point of D, the set D\{c} : |x− c| < δ is nonempty
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Figure 5.2. The limit of a function f for x to p is equal to L, limx→p f(x) =
L if and only if for any ε > 0 there exists δ > 0 such that for all x with
0 < |x− p| < δ we have |f(x)− L| < ε.

picture: Johannes Schneider , wikipedia.

First we show that if the limit exists, the limit is unique:
Lemma 5.14. Let f : D ⊂ R → R be a function and c ∈ D be a cluster point. If
L1, L2 ∈ R with limx→c f(x) = L1 and limx→c f(x) = L2 then L1 = L2.

Proof. By the definition of a limit, for any ε > 0 there must be δ = δ(ε) > 0 such that

max {|f(x)− L1|, |f(x)− L2|} <
ε

2 ∀x ∈ D\{c} : |x− c| < δ.

But then, if we pick any point x ∈ D, x ̸= c, such that |x− c| < δ (this point must exist,
since c is a cluster point)

|L1 − L2| ≤ |f(x)− L1|+ |f(x)− L2| < 2ε

2 = ε

We can do this for any ε > 0, so |L1−L2| < ε for any ε > 0. By the Archimedian principle
this means that L1 = L2. □

Recall again x→ c doesnt make too much sense, since x is not a sequence. The meaning of
x → c is: “take any possible seqeunce (xn)n∈N converging to c” (but no sequence element
equal to c). More precisely, we have
Lemma 5.15 (sequential limits). Let f : D ⊂ R→ R and c ∈ D be a cluster point of D.
Then the following are equivalent for any L ∈ R

(1) limx→c f(x) = L
(2) for any sequence (xn)n∈N ⊂ D\{c} with limn→∞ xn = c we have that the sequence

(f(xn))n∈N is convergent to L, i.e. limn→∞ f(xn) = L.

https://commons.wikimedia.org/wiki/File:Limes_Definition_Vektorgrafik.svg
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Figure 5.3. The graph of the function f(x) = sin(1/x)

Proof. (1) ⇒ (2): Assume that limx→c f(x) = L, and let (xn)n∈N ⊂ D\{c} with limn→∞ xn =
c. We need to show that limn→∞ f(xn) = L. For this let ε > 0 be arbitrary. We need to
find N = N(ε) such that

|f(xn)− L| < ε ∀n ≥ N.

Since by assumption limx→c f(x) = L there must be δ > 0 such that
|f(x)− L| < ε ∀x ∈ D\{c} : |x− c| < δ.

Moreover, since limn→∞ xn = c, for this δ there must be an N = N(δ) such that
|xn − c| < δ ∀n ≥ N.

So in particular, for any n ≥ N we have |f(xn)−L| < ε, which is what we needed to show.

(2) ⇒ (1):

Assume that limn→∞ f(xn) = L holds for any sequence (xn)n∈N ⊂ D\{c} with limn→∞ xn =
c. We need to show that limx→c f(x) = L, that is

∀ε > 0 ∃δ > 0 : |f(x)− L| < ε ∀x ∈ D\{c}, |x− c| < δ.

Assume this is not the case, then the logical negation is
∃ε > 0 ∀δ > 0 ∃x ∈ D\{c} with |x− c| < δ but such that |f(x)− L| > ε.

We can apply the above to δ := 1
n

for each n ∈ N. Then for some ε > 0 fixed, we find for
each n ∈ N some xn ∈ D\{c} with |xn − c| < 1

n
but |f(xn)− L| > ε.

The sequence (xn)n∈N ⊂ D\{c} then converges, limn→∞ xn = c. By assumption, this
implies that limn→∞ f(xn) = L, which contradicts that |f(xn) − L| > ε holds for any
n ∈ N. □

Example 5.16. • limx→0 sin(1/x) does not exist, cf. Figure 5.3. Indeed take the
sequence xn := 1

πn+π/2 . Then sin(xn) = (−1)n, limn→∞ xn = 0, but limn→∞ sin(xn)
does not exist - Lemma 5.15 implies the limit of sin(1/x) cannot exist.
• limx→0 x sin(1/x) = 0, cf. Figure 5.4: Indeed,

|x sin(1/x)| ≤ |x|.
So for any ε > 0 if we choose δ := ε we have

|x sin(1/x)− 0| ≤ |x| < ε ∀|x| < δ.
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Figure 5.4. The graph of the function f(x) = x sin(1/x)

Exercise 5.17. [Leb, Ex. 3.1.9]: Let c1 be a cluster point of A ⊂ R and c2 be a cluster
point of B ⊆ R. Suppose that f : A→ B and g : B → R are functions such that f(x)→ c2
as x→ c1 and g(y)→ L as y → c2. Let h(x) := g(f(x)) and show h(x)→ L as x→ c1.

Since we know from Lemma 5.15 that the limit of a function f can be described as the
limit of sequence f(xn) we can deduce the limit laws from the sequential limit laws.

Corollary 5.18. Let D ⊂ R and c ∈ D a cluster point of D. Let f, g, h : D → R be
functions.

(1) If
f(x) ≤ g(x) for all x ∈ D,

then if limx→c f(x) and limx→c g(x) both exist we have
lim
x→c

f(x) ≤ lim
x→c

g(x).

(2) If for some a, b ∈ R we have
a ≤ f(x) ≤ b for all x ∈ D,

then if limx→c f(x) exists we have
a ≤ lim

x→c
f(x) ≤ b

(3) If
f(x) ≤ g(x) ≤ h(x) for all x ∈ D,

then if limx→c f(x) = limx→c h(x) (i.e. they both exist and are equal) then limx→c g(x)
exists and we have

lim
x→c

f(x) = lim
x→c

g(x) = lim
x→c

h(x)

Proof. (1) In view of (5.15) for any sequence (xn)n∈N ⊂ D\{c} with limn→∞ xn = c we
have

lim
n→∞

f(xn) = lim
x→c

f(x), lim
n→∞

g(xn) = lim
x→c

g(x).
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On the other hand f(x) ≤ g(x) for all x ∈ D implies f(xn) ≤ g(xn) for all n ∈ N,
and by the limit laws for sequences (monotonicity of the limit):

lim
x→c

f(x) = lim
n→∞

f(xn) ≤ lim
n→∞

g(xn) ≤ lim
x→c

g(x).

(2) Follows from (1): E.g. taking g(x) := b, observing that limx→c g(x) = b we conclude
from f(x) ≤ b for all x ∈ D that

lim
x→c

f(x) ≤ b.

In a similar way we conclude from f(x) ≥ a for all x ∈ D that
lim
x→c

f(x) ≥ b.

(3) This is a consequence of the squeeze lemma, Lemma 2.11. Let (xn)n∈N ⊂ D\{c} be
an arbitrary sequence with limn→∞ xn = c.

If we set an := f(xn), bn := g(xn), cn := h(xn) and
Γ := lim

x→c
f(x) = lim

x→c
h(x),

then we have by assumption (and Lemma 5.15)
an ≤ bn ≤ cn for all n ∈ N,

and
Γ = lim

n→∞
an = lim

n→∞
cn.

By the squeeze lemma, Lemma 2.11,
lim

n→∞
bn = Γ.

Thus, we have shown for any sequence (xn)n∈N ⊂ D\{c} with limn→∞ xn = c that
lim

n→∞
g(xn) = Γ.

By Lemma 5.15 we conclude that
lim
x→c

g(x) = Γ = lim
x→c

f(x) = lim
x→c

h(x).

□

From Lemma 5.15 we also obtain that the usual limit laws hold for limx→c-operation:

Corollary 5.19. Let D ⊂ R and c ∈ D a cluster point of D. Let f, g : D → R be
functions. Suppose that limx→c f(x) and limx→c g(x) both exist. Then

(1) limx→c (f(x) + g(x)) = (limx→c f(x)) + (limx→c g(x)).
(2) limx→c (f(x)− g(x)) = (limx→c f(x))− (limx→c g(x)).
(3) limx→c (f(x)g(x)) = (limx→c f(x)) (limx→c g(x)).
(4) If g(x) ̸= 0 for all x ∈ D and limx→c g(x) ̸= 0 then

lim
x→c

f(x)
g(x) = limx→c f(x)

limx→c g(x) .
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Exercise 5.20. Prove Corollary 5.19.

To compute limits limn→∞ xn we only care about all but finitely many sequence elements
of (xn)n∈N. A similar statement same is true for for limx→c f(x): we only care about points
x “close” to c, that is it suffices to consider f restricted to a small (open) neighborhood of
c.

Definition 5.21. Let f : D → R be a function and let D2 ⊂ D. The function f restricted
to D2, f

∣∣∣
D2

, is the function

f
∣∣∣
D2

: D2 → R

f
∣∣∣
D2

: x ∋ D2 7→ f(x).

Lemma 5.22. Let D2 ⊂ D ⊂ R, c ∈ D∩D2 be a cluster point of D and D2. Let f : D → R
and let f

∣∣∣
D2

: D2 → R be its restriction to D2

(1) If limx→c f(x) exists then limx→c f
∣∣∣
D2

exist, and

lim
x→c

f
∣∣∣
D2

= lim
x→c

f(x).

(2) If limx→c f
∣∣∣
D2

exists, in general limx→c f may not exist.
(3) Assume that D2 contains a relative open neighborhood of c in D. That is, assume

there exists ε > 0 such that (c− ε, c + ε)∩D ⊂ D2. Then limx→c f
∣∣∣
D2

exists if and
only if also limx→c f exists. Also if one of the limits exists, we have

lim
x→c

f
∣∣∣
D2

= lim
x→c

f(x).

Proof. (1) Let (xn)n∈N ⊂ D2\{c} be any sequence with limn→∞ xn = c. Since D2 ⊂ D
we also have (xn)n∈N ⊂ D\{c}, and thus by assumption and Lemma 5.15,

lim
n→∞

f(xn) = lim
x→c

f(x).

Since for any n ∈ N we have xn ∈ D2\{c},

f(xn) = f
∣∣∣
D2

(xn)

and consequently we have

lim
n→∞

f
∣∣∣
D2

(xn) = lim
n→∞

f(xn) = lim
x→c

f(x).

This holds for any sequence (xn)n∈N ⊂ D2\{c} with limn→∞ xn = c, so again by
Lemma 5.15

lim
x→c

f
∣∣∣
D2

(x) lim
n→∞

f
∣∣∣
D2

(xn) = lim
n→∞

f(xn) = lim
x→c

f(x).
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(2) The typical example is the socalled Heaviside function,

f(x) :=

0 x ≤ 0
1 x > 0

It is easy to show (exercise) that limx→0 f(x) does not exist. However if we consider
f
∣∣∣∣
(−∞,0)

then

f

∣∣∣∣
(−∞,0)

(x) = 0,

so
lim
x→0

f
∣∣∣∣
(−∞,0)

= 0.

(3) In (1) we have shown that if limx→c f exists, then also limx→c f
∣∣∣
D2

exists and the
two numbers are the same.

For the converse, assume that limx→c f
∣∣∣
D2

exists. Let (xn)n∈N ⊂ D\{c} be a
sequence with limn→∞ xn = c. Since xn converges to c, there must be a large index
N = N(α) ∈ N such that

|xn − c| < α ∀n > N.

That is,
(5.1) xn ∈ (c− α, c + α) ∩D ⊂ D2 ∀n > N.

Set
(zn)n∈N := (xN+1, . . . , xN+1︸ ︷︷ ︸

N + 1 times

, xN+2, xN+3, . . .)

Then from (5.1) we deduce that (zn)n∈N ⊂ (D ∩D2)\{c} and we have
lim

n
zn = lim

n→∞
xn = c.

Thus
f(zn) = f

∣∣∣∣
D2

(zn) n→∞−−−→ lim
x→c

f
∣∣∣∣
D2

(zn).

In other words,
lim

n→∞
f(zn) = lim

x→c
f

∣∣∣∣
D2

(zn).

Since zn = xn (and thus f(zn) = f(xn)) for all but finitely many n ∈ N we have

lim
n→∞

f(xn) = lim
n→∞

f(zn) = lim
x→c

f
∣∣∣∣
D2

(zn).

The above holds for any sequence (xn)n∈N ⊂ D\{c} with limn→∞ xn = c. By
Lemma 5.15 we conclude that

lim
x→c

f(x) = lim
x→c

f

∣∣∣∣
D2

(zn).
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□

Exercise 5.23. Use the precise ε-δ-definition of limit to prove
lim
x→2

x2 = 4.

In particular the one-sided limits are defined exactly the same way as in calculus:

Definition 5.24. Assume that f : (a, b)→ R then for c ∈ [a, b) we set

lim
x→c+

f := lim
x→c

f

∣∣∣∣
(c,b)

and for c ∈ (a, b] we set
lim

x→c−
f := lim

x→c
f
∣∣∣∣
(a,c)

Further (optional) exercises. Computing limits of functions is also very important, so
here some practice exams

Exercise. Use the precise ε-δ-definition of limit to prove the following statements.

(1) limx→10(2x + 4) = 24
(2) limx→− 3

2
(1− 4x) = 7

(3) limx→1(x2 + 3) = 4
(4) limx→3

2
x+3 = 1

3
(5) limx→−6

x+4
2−x

= −1
4

(6) limx→9(
√

x + 2) = 5.
(7) limx→1

2+4x
3 = 2

(8) limx→−2 x2 − 1 = 3
(9) limx→2 x3 = 8

6. Continuous functions

A function f : D → R is continuous is small changes in the domain x ∈ D imply small
changes in the target f(x).

Here is the precise definition of continuous functions that we are going to use for the rest
of our (mathematical) life.

Definition 6.1 (ε-δ-definition). Let D ⊂ R be a set and let f : D → R be a function.

• f is continuous at a point x0 ∈ D, if
∀ε > 0∃δ = δ(ε) > 0 : |f(x)− f(x0)| < ε holds whenever x ∈ D and|x− x0| < δ.

• f is continuous in D if f is continuous at any point x0 ∈ D.
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Figure 6.1. ε-δ-definition of continuity at x0: For any ε > 0 we must be
able to find a δ such that the function values f(x) are ε-close to f(x0) for
any x which is δ-close to x0. In the first picture this works for any ε. In the
second one this does not work at a jump discontinuity. Pictures: Stephan
Kulla (User:Stephan Kulla), CC0, via Wikimedia Commons

Cf. Figure 6.1.
Exercise 6.2. [Leb, Ex. 3.2.1] Use the definition of continuity from Definition 6.1 to prove
that f : R→ R defined by f(x) := x2 is continuous.

Functions are automatically continuous at “discrete” points, namely we have
Exercise 6.3. Use the definition of continuity from Definition 6.1 to prove that if f : D →
R and c ∈ D is not a cluster point of D, then f is continuous at c.
Exercise 6.4. [Leb, Ex. 3.2.3] Let f : R→ R by defined by

f(x) =
{

x if x is rational
x2 if x is irrational.

https://commons.wikimedia.org/wiki/File:Illustration_for_epsilon-delta_definition_of_continuity_10.svg
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Figure 6.2. The function from Exercise 6.4

Cf. Figure 6.2. Using the definition of continuity from Definition 6.1, prove that f is
continuous at 1 and discontinuous at 2.

Definition 6.1 is not the definition we have from Calculus 1 (which, we recall, was that f
is continuous at x0 if limx→x0 f(x) = f(x0)). But it is very related.

Proposition 6.5 (Continuity via limits). Let f : D → R be a function.

(1) f is continuous at x0 ∈ D if and only if for any sequence (xn)n∈N⊂ D with limn→∞ xn =
x0 we have limn→∞ f(xn) = f(x0) (the latter is called sequential continuity).

(2) For any x0 ∈ D which is not a cluster point of D, we have that f is continuous at
x0.

(3) Let x0 ∈ D and x0 is a cluster point15 of D. Then f is continuous at x0 if and only
if limx→x0 f(x) = f(x0).

Proof. (1) Step 1: continuity implies sequential continuity:
Let f be continuous at x0 ∈ D. Take any sequence (xn)n∈N ∈ D with limn→∞ xn =

x0. We need to show that limn→∞ f(xn) = f(x0).
That is we need to show that for any ε > 0 there exists N = N(ε) > 0 such that

|f(xn)− f(x0)| < ε ∀n > N.

From the definition of continuity, since f is continuous at x0: there must be some
δ > 0 be such that

|f(x)− f(x0)| < ε whenever x ∈ D and |x− x0| < δ.

15the point of this assumption is: the notion limx→x0 f(x) = f(x0) is not defined if x0 is not a cluster
point
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On the other hand, since limn→∞ xn = x0 there must be some N = N(δ) > 0 such
that

|xn − x0| < δ ∀n > N.

Consequently,
|f(xn)− f(x0)| < ε ∀n > N.

which implies that limn→∞ f(xn) = f(x0).
Step 2: Sequential continuity implies continuity:
Assume that for any sequence (xn)n∈N ⊂ D with limn→∞ xn = x0 we have

limn→∞ f(xn) = f(x0). We need to show that f is continuous, i.e. that
(6.1) ∀ε > 0 ∃δ > 0 : |f(x)− f(x0)| < ε ∀x ∈ D : |x− x0| < δ.

Assume this is not the case, i.e. that (6.1) is false. Then (by logical negation of
(6.1)):
∃ε > 0 ∀δ > 0 : |f(x)− f(x0)| ≥ ε for some x = xδ ∈ D with |x− x0| < δ.

Apply this statement (for this ε) to δ = 1
n

then for any n ∈ N we find a point
xn ∈ D with |xn − x0| < 1

n
but |f(xn) − f(x0)| > ε. That is limn→∞ xn = x0

but limn→∞ f(xn) ̸= f(x0). This contradicts the assumption that f is sequentially
continuous at x0. Thus (6.1) could not have been false so (6.1) must have been true
all along.

(2) Let x0 ∈ D which is not a cluster point of D. That is assume there is no sequence
(xn)n∈N ∈ D\{x0} with limn→∞ xn = x0. This means16 there exists a δ > 0 we have
that (x0 − δ, x0 + δ) ⊂ {x0} ∪ R\D. In other words, there exists a δ > 0 such that
if |x− x0| < δ and x ∈ D then x = x0.

That is, for any ε > 0
∀x ∈ D |x− x0| < δ : |f(x)− f(x0)| = |f(x0)− f(x0)| = 0 < ε.

That is, f is continuous at x0 (in a very pathological way).
(3) “⇒” follows from (1) and Lemma 5.15.

“⇐”: Assume that limx→x0 f(x) = f(x0). That is,
∀ε > 0 : ∃δ > 0 : |f(x)− f(x0)| < δ x ∈ D\{x0}, |x− x0| < δ.

Clearly |f(x0)− f(x0)| = 0, so the above is equivalent to
∀ε > 0 : ∃δ > 0 : |f(x)− f(x0)| < δ x ∈ D, |x− x0| < δ.

But this is the definition of continuity at x0.

□

Example 6.6. • f(x) = 1/x is continuous in (0,∞), also (−∞, 0)∪(0,∞) but clearly
not in (−1, 1).
• Any map f : N ⊂ R→ R is continuous.
• Any continuous map f : R→ Z is constant. (Exercise 6.15)

16good exercise!
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• Polynomials are continuous (we can prove that now with the limit definition!)
• If g : D → R is continuous at x0 and g(x0) ̸= 0. Then there exists δ > 0 such that

g(x) ̸= 0 for all x ∈ D, |x− x0| > δ.
Indeed: Set Γ := g(x0) ̸= 0. For ε := 1

2 |Γ| there must be a δ > 0 such that
|g(x)− g(x0)| < ε ∀|x− x0| < δ, x ∈ D.

and thus

|g(x)| ≥ |g(0)| − |g(x)− g(0)| ≥ Γ− Γ
2 = Γ

2 ∀|x− x0| < δ, x ∈ D.

• f, g : D → R continuous at x0 and g(x0) ̸= 0 then f
g

continuous at x0 (with D a
small neighborhood of x0), cf. Corollary 5.19.
• Let f : A→ R and g : B → R be continuous functions with g(B) ⊂ A. Then f ◦ g

is continuous. (cf. Exercise 5.17)
Exercise 6.7. Assume f, g : D → R continuous at x0.

Use each of the two definitions of continuity that we had for now, namely

(a) the ε-δ-definition of continuity
(b) the sequential definition of continuity

to show that

(1) f + g is continuous continuous at x0
(2) fg is continuous at x0

Another equivalent definition of continuity (preferred in particular by topologists) is the
property that the inverse of continuous functions maps open sets into open sets.
Exercise 6.8. Recall the notion of open sets A ⊂ R (cf. Lemma 5.6)

A ⊂ R is open ⇔ ∀x0 ∈ A : ∃ϵ > 0 : (x0 − ϵ, x0 + ϵ) ⊂ A.

Show the following. Let f : R→ R be a function. Then the following are equivalent

(1) f : R→ R is continuous.
(2) the inverse f−1 maps open sets into open sets. That is: whenever A ⊂ R is an open

set, then the f−1(A) defined as
f−1(A) ≡ {x ∈ R : f(x) ∈ A}

is an open set.
Exercise 6.9. Let D be open17, f : D → R be a map let (xn)n∈N ⊂ D be a sequence
converging to x0 ∈ D. Show the following two statements

• If limn→∞ f(xn) ̸= f(x0) then f is discontinuous at x0.
17so in view of Lemma 5.11 no worries about clusterpoints!
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Figure 6.3. Graph of the “Popcorn function” . (wikipedia, public domain),
cf. Example 6.10

• Assume that limn→∞ f(xn) does not exist. Show there is no continuous replacement
at x0. That is, there is no continuous g : D → R with g(x) = f(x) for all x ∈
D\{x0}.

Hint: Proposition 6.5.

Example 6.10. • Let D : R→ R be the Dirichlet function

D(x) :=

1 x ∈ Q
0 x ̸∈ Q

Then D is everywhere discontinuous.
Indeed, for any x0 ∈ R we can easily construct a sequence xn ∈ R with limn→∞ xn =

x0 such that
xn ∈ Q, if and only if n even.

Then

D(xn) =

1 n even
0 n odd

so limn→∞ D(xn) does not exist.
• f(x) := xD(x) (where D(x) is the Dirichlet function from above). Then f is

continuous at x = 0 (squeeze lemma: |f(x)| ≤ |x| x→0−−→ 0), and discontinuous for
x ̸= 0 (D(x) = 1

x
xD(x). If xD(x) was continuous in x0 ̸= 0 then so was D(x) by

the limit laws).
• Thomae’s function (also “Popcorn function”). f : (0, 1)→ R defined as

f(x) :=


1
q

if x = p
q
, p, q ∈ N with no common divisors

0 if x is irrational.

Then f is discontinuous at all rational numbers x0 ∈ (0, 1) ∩ Q18 and continuous
at all irrational x0 ∈ (0, 1) ∩ \Q (this is a bit more work). (for a precise proof see
[Leb, Example 3.2.12], picture see Figure 6.3).
• So it is possible for the irrationals to be the set of continuity points of a function.

However, a fun fact is that it is impossible to construct a function that is continuous
only on the rational numbers. See Gδ sets on wikipedia

18this is easy to see, for any rational x we have f(x) ̸= 0, but there exists an irrational sequence
R\Q ∋ xn

n→∞−−−−→ x, so f(xn) = 0 and so limn→∞ f(xn) = 0 ̸= f(x)

https://en.wikipedia.org/wiki/G%CE%B4_set#Properties
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Exercise 6.11. [Leb, Ex 3.2.4] Let f : R→ R be defined by

f(x) =
{

sin (1/x) if x ̸= 0
0 if x = 0.

Is f continuous (and if not: where is it continuous, and where not)? Prove your assertion.
Cf. Figure 5.3.

Exercise 6.12. [Leb, Ex. 3.2.5] Let f : R→ R be defined by

f(x) =
{

x sin (1/x) if x ̸= 0
0 if x = 0.

Is f continuous? Prove your assertion.

Cf. Figure 5.4.

Exercise 6.13. [Leb, Ex. 3.2.9] Give an example of functions f : R → R and g : R → R
such that the function h defined by h(x) := f(x) + g(x) is continuous, but f and g are
not continuous. Can you find f and g that are nowhere continuous, but h is a continuous
function?

Exercise 6.14. [Leb, 3.2.11] Let f : R → R be continuous. Suppose that f(c) > 0. Show
that there exists an α > 0 such that for all x ∈ (c− α, c + α) we have f(x) > 0.

Exercise 6.15. Show that any continuous map f : R → Z is constant. Do not use the
Intermediate Value theorem, Theorem 8.2, but the definition(s) of continuous functions
from above.

Exercise 6.16. [Leb, ex. 3.2.10] Let f : R → R and g : R → R be continuous functions.
Suppose that for all rational numbers r ∈ Q, f(r) = g(r). Show that f(x) = g(x) for all
x ∈ R.

Exercise 6.17. Let f : R → R be a function. Assume that for some α ∈ (0, 1] and some
Λ > 0 the function f satisfies

|f(x)− f(y)| ≤ Λ|x− y|α ∀x, y ∈ R
Show that f is continuous.

Remark 6.18. (1) If |f(x)− f(y)| ≤ Λ|x− y| ∀x, y ∈ R for some Λ > 0 we say that
f is (uniformly) Lipschitz continuous, and Λ is called the Lipschitz constant of f .

(2) If f is Lipschitz constant with Λ ≤ 1 then f is called a contraction (and if Λ < 1
then f is a strict contraction).

(3) If |f(x)− f(y)| ≤ Λ|x− y|α ∀x, y ∈ R for some Λ > 0 and α > 0 we say that f is
(uniformly) Hölder continuous, and Λ is called the Hölder constant of f .

(4) Once we have derivatives it is easy to show that if
|f(x)− f(y)| ≤ Λ|x− y|α ∀x, y ∈ R

holds for some α > 1 and Λ > 0 then f is constant. See Exercise 12.5.
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(5) more generally (and not relevant in this course): a modulus of continuity is a func-
tion ω : [0,∞]→ [0,∞] which is increasing which continuously vanishes at 0, i.e.

lim
t→0

ω(t) = ω(0) = 0

A function f : D → R has the modulus of continuity ω at a point x if
|f(x)− f(y)| ≤ ω(|x− y|) ∀y ∈ D.

So Hölder continuous functions have the modulus of continutiy ω(t) = Λtα for some
Λ > 0.

Here is a cool result about contractive maps and Cauchy sequences (this is a special case
of the Banach Fixed Point theorem

Theorem 6.19. Assume f : R → R is a strict contraction, i.e. f is continuous and
moreover there exists some λ ∈ (0, 1) such that

|f(x)− f(y)| ≤ λ|x− y| ∀x, y ∈ R
Then f has a fixed point, namely there exists exactly one x ∈ R with

f(x) = x.

We indeed need λ < 1 in Theorem 6.19. Take f(x) = x + 1 then |f(x)− f(y)| ≤ 1|x− y|,
but f has no fixed point.

Proof. • Uniqueness: assume we have
f(x) = x, and f(y) = y.

Then
|x− y| = |f(x)− f(y)| ≤ λ|x− y|.

Since λ < 1 we find that |x− y| = 0.
• Existence: The idea is to use an iteration argument to produce a Cauchy sequence

xk (which thus converges).
Let x0 ∈ R be any arbitary point. Set

xn := f(xn−1).
We then have

|xn+1 − xn+2| = |f(xn)− f(xn+1)| ≤ λ|xn − xn+1|.
Since λ < 1 from Exercise 4.10 we know that (xn)n∈N is a Cauchy sequence. By
Theorem 4.4 we conclude (since we work in R, which is a complete space) that
(xn)n∈N is actually converging.

Set x := limn→∞ xn.
Since f is continuous we have limn→∞ f(xn) = f(x). Thus

x
n→∞←−−− xn+1 = f(xn) n→∞−−−→ f(x)
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Thus x = f(x), and we have found our fixed point.

□

It is fun to observe that we use very few things in the above proof, namely we only need
that Cauchy sequences converge.

For example the following is quite immediate

Exercise (Banach Fixed Point theorem in Rn). This is an optional exercise

Let f : Rn → Rn be strict contraction: For some λ ∈ (0, 1) we have
|f(x)− f(y)|Rn ≤ λ|x− y|Rn .

Here we use the usual norm for Rn-vectors:

|(p1, . . . , pn)|Rn :=
(

n∑
i=1
|pi|2

) 1
2

.

Then there exists exactly one x ∈ Rn with T (x) = x.

Hint: Either you define the notion of Cauchy sequences in Rn or you just argue component-
wise...

One important application of the Rn (this is a bit easier in R1, so we do it in Rn) is the
following (which is a simple version of the inverse function theorem, which says that any
C1-function f : Rn → Rn is locally invertable around a point x0 ∈ Rn if the matrix Df(x0)
is invertible)

Corollary 6.20 (Small distorions of invertible maps are invertible). Let f : Rn → Rn be
Lipschitz, i.e. assume there exist Λ > 0 such that

|f(x)− f(y)| ≤ Λ|x− y| ∀x ∈ Rn.

Let A ∈ Rn×n be invertible matrix.

We consider the map
Tε := A ·+εf(·) : Rn → Rn

defined as
Tε(x) := Ax + εf(x).

There exists an ε0 = ε0(Λ, A) > 0 such that Tε : Rn → Rn is bijective from Rn → Rn

whenever ε ∈ R, |ε| < ε0.

Proof. This is relatively easy linear algebra if f = Bx for a matrix B ∈ Rn×n, i.e. if f is
linear. Since then det(A− εB) is nonzero if and only if |ε| ≪ 1.

But f might be very nonlinear, indeed it is not even differentiable!
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We want to show that that Tε is bijective (for suitably small ε). That is we want to show
(6.2) ∀p ∈ Rn : ∃!x ∈ Rn : Tε(x) = p.

So fix some p ∈ Rn. By the definition of Tε we want to find x such that
Ax + εf(x) = p.

Denoting A−1 ∈ Rn×n the inverse matrix of A (exists by assumption), the above is equiv-
alent to

x + εA−1f(x) = A−1p.

or, more usefully, the fixed point equation
x = A−1p−εA−1f(x).

So if we call
Sε(x) := A−1p−εA−1f(x)

then Sε : Rn → Rn. Moreover we have
Sε(x)− Sε(y) = εA−1 (f(y)− f(x))

Using the matrix operator norm we then have
|Sε(x)− Sε(y)| ≤ ε|A−1||f(y)− f(x)| ≤ εΛ|A−1||x− y|

So if we set λ := εΛ|A−1| we see that for ε0 := 1
|A−1|Λ| we have that Sε : Rn → Rn is a strict

contraction!

The above Banach Fixed Point theorem tells us that indeed, there exists exactly one x ∈ Rn

such that Sε(x) = x. That is we have established (6.2). □

Ineed it is easy to extend the Banach Fixed Point theorem to any metric space which is
complete:

Exercise (Banach Fixed Point theorem). This is an optional exercise

Let (X, d) be a metric space, cf. Definition 1.7. Assume the metric space is complete, i.e.
assume that any Cauchy sequence converges.

Let T : X → X be a continuous map (in the sense that whenever (xn)n∈N ⊂ X converges
to some x, that is if limn→∞ d(xn, x) = 0 then limn→∞ f(xn) = x). Assume T additionally
is a (strict) contraction:

d(T (x), T (y)) ≤ λd(x, y) ∀x, y ∈ X.

Then there exists exactly one x ∈ X with T (x) = x.

Let us two standard applications of Banach Fixed Point theorem (which are typically
treated in Advanced Calculus II):

• Picard-Lindelöf theorem (also Cauchy-Lipschitz theorem): exisence and uniqueness
for (ordinary) differential equations, Section 20.
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• Implicit and inverse function theorem (IFT): a function f : Rn → Rm, when it is
(in what sense) invertible?

For more, see https://en.wikipedia.org/wiki/Banach_fixed-point_theorem

Further (optional) exercises. Computing limits of functions is also very important, so
here some practice exams

Exercise. Determine if the function is continuous. Prove your claim!

(1)

f(x) =


x + 1 x ≤ 1
1
x

1 < x < 3√
x− 4 x ≥ 3

(2)

g(x) =


x + 2 x ≤ 1
ex 0 ≤ x ≤ 3
2− x x > 1

(you can assume that ex is continuous in R, we will later obtain this from the
Weierstrass M-test, Example 17.3.)

(3)

h(x) =


√

x x ≤ 1
1 x > 1

Exercise. (1) Let f : R→ R be a function with f(0) = 0 and f is continuous around
0. Assume moreover that f(x + y) = f(x) + f(y) for all x, y ∈ R. Show that f is
continuous in all of R.

(2) Let f, g : [a, b]→ R be continuous functions and set
m(x) := max{f(x), g(x)} x ∈ [a, b].

Show that m(x) is continuous.

7. Min-Max Theorem

From Calculus we remember the beautiful result that continuous function on a bounded
closed interval attain their maximum and minimum. Now we are going to prove it.

Definition 7.1. Assume f : D → R is a function.

• supD f := sup f(D). If supD f <∞ then f is bounded from above.
• infD f := inf f(D).If infD f > −∞ then f is bounded from below.

https://en.wikipedia.org/wiki/Banach_fixed-point_theorem
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• f is called a bounded function if supD f < ∞ and infD f > 0. Equivalently, a
function is bounded if and only if there exists M > 0 such that

|f(x)| ≤M ∀x ∈ D

• If there exists x ∈ D such that f(x) = supD f then we say that x is a maximum point
of f on D, and f(x) is the maximum value. We might also say “the maximum of f is
attained/achieved on D (in x)”. We then write f(x) = maxDf , and x = argmaxDf .
• If there exists x ∈ D such that f(x) = infD f then we say that x is a minimum point

of f on D, and f(x) is the minimum value. We might also say “the minimum of f is
attained/achieved on D (in x)”. We then write f(x) = minDf , and x = argminDf .

Theorem 7.2. Let f : [a, b] → R be a continuous function −∞ < a < b < ∞. Then f
achieves its maximum and minimum on [a, b], that is there exists xmax, xmin ∈ [a, b] with

f(xmax) ≥ f(y) ≥ f(xmin) ∀y ∈ [a, b].

Example 7.3. • If f is discontinuous on [a, b] the statement in Theorem 7.2 can be
false. Take, e.g.

f(x) =


1
x

x ∈ [−1, 1]\{0}
0 x = 0

• If f is continuous on (a, b) the statement of Theorem 7.2 can be false: Again take
f from above, but on D = (0, 1]. It’s continuous, but the “maximum” is +∞.

Proof of Theorem 7.2. Let S := sup[a,b] f = sup f([a, b]). Observe that S ∈ (−∞,∞], i.e.
as of now we cannot rule out S =∞.

We consider two cases:

If S <∞: By the definition of the supremum, Lemma 1.5, there must be a sequence
(xn)n∈N ⊂ [a, b] with

S − 1
n
≤ f(xn) ≤ S,

i.e.
lim

n→∞
f(xn) = S.

If S =∞: Again by Lemma 1.5 there must be a sequence (xn)n∈N ⊂ [a, b] with

n ≤ f(xn),

i.e.
lim

n→∞
f(xn) =∞.

Observe that [a, b] is a bounded interval, so the sequence (xn)n∈N is bounded. By Bolzano-
Weierstrass, Theorem 3.8, there exists a convergent subsequence (xni

)i∈N ⊂ [a, b] and x ∈ R
with limi→∞ xni

= x. Since [a, b] is a closed set, x ∈ [a, b].
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In both cases: by the sequential characterization of continuity, Proposition 6.5, we have
f(x) = lim

i→∞
f(xni

) = S = sup
[a,b]

f ≥ f(y) ∀y ∈ [a, b].

In particular we infer that S < ∞ (because f(x) is a real number, and thus f(x) < ∞).
That is if we set xmax := x then we have found our maximum.

We argue similarly for the existence of xmin, setting I := inf [a,b] g = inf f([a, b]), observing
that I ∈ [−∞,∞). □

As a consequence of Theorem 7.2 we get the following corollary.

Corollary 7.4. Let f : [a, b]→ R be a continuous function −∞ < a < b <∞. Then f is
bounded.

Exercise 7.5. Prove Corollary 7.4 and show its sharp. More precisley show the following:

(1) Let f be continuous on [a, b]. Then f is bounded.
(2) Give an example of a continuous function f : (a, b]→ R such that f is not bounded.

Example 7.6. • If f is discontinuous on [a, b] the statement of Corollary 7.4 is false.
Take, e.g.

f(x) =


1
x

x ∈ [−1, 1]\{0}
0 x = 0

• Just because a function f : R→ R attains its maximum and infimum on any closed
interval [a, b], does not mean it is continuous: f(x) = sin(1/x).
• The function f(x) = x is continuous, but on unbounded intervals R or [0,∞) it does

not attain necessarily maximum and minimum.

If one inspects the proof of Theorem 7.2 then we see that we did not use full continuity for
the existence of the maximum or minimum. This is important in applications in Analysis
where functions (or functionals) are indeed only lower semicontinuous. This happens a lot
in Partial Differential Equations (cf. Viscosity solutions, Direct Method of Calculus etc.)

Definition 7.7 (liminf and limsup). Let D ⊂ R and c ∈ D a cluster point. Assume that
f : D → R is a function.

We then define

• the lim sup as
lim sup
D∋y→c

f(y) = lim
δ→0

sup
D∩(c−δ,c+δ)\{c}

f ≡ inf
δ>0

sup
D∩(c−δ,c+δ)\{c}

f ∈ R ∪ {+∞}.

Here we observe that g(δ) := supD∩(c−δ,c+δ)\{c} f is a monotone function (taking
values possibly +∞, since c is a clusterpoint g(δ) > −∞): For δ < δ̃ we have
g(δ) < g(δ̃). Thus the limit exists and equals the infimum.



INTRODUCTION TO ANALYSIS (MATH 420) VERSION: December 4, 2023 56

• the sequential definition of lim sup is a bit more complicated than for the limit, and
we will not prove it. However we note (without proof):

lim sup
D∋y→c

f(y) = L ∈ R ∪ {+∞}

is equivalent to the fact that
(1) for all (yn)n∈N ⊂ D \ {c} with limn→∞ yn = c we have

lim sup
n→∞

f(yn)≤L

and
(2) there exists at least one sequence (yn)n∈N ⊂ D \ {c} such that

lim
n→∞

f(yn)=L.

(This sequence is called the recovery sequence.)

Similarly we can define the lim inf

Exercise 7.8. A function f : D ⊂ R→ R is called (sequentially) lower semicontinuous at
a cluster point x ∈ D if we have

f(x) ≤ lim inf
D∋y→x

f(y),

in the following sense: for any sequence (yn)n∈N ⊂ D with limn→∞ yn = x we have
f(x) ≤ lim inf

n→∞
f(yn).

In a similar spirit, a function is called (sequentially) upper semicontinuous if
f(x) ≥ lim sup

D∋y→x
f(y).

Cf. Figure 7.1.

(1) Give an example of lower semicontinuous functions which is not continuous
(2) Give an example of upper semicontinuous functions which are not continuous
(3) Show that f is continuous at x ∈ D if and only if f is lower and upper semicontin-

uous at x.
(4) Show that if f : [a, b]→ R is lower semicontinuos in every x ∈ [a, b], then f attains

its minimum value in [a, b]
(5) Show that if f : [a, b]→ R is upper semicontinuos in every x ∈ [a, b], then f attains

its maximum value in [a, b].

Definition 7.9 (Limits at ±∞). For a function f : R→ R we say

• For some L ∈ R we say limx→∞ f(x) = L if
∀ε > 0 ∃N > 0 |f(x)− L| ≤ ε ∀x > N.

• For some L ∈ R we say limx→−∞ f(x) = L if
∀ε > 0 ∃N > 0 |f(x)− L| ≤ ε ∀x< −N.
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Figure 7.1. the graph of a lower semicontinuous function (left) and upper
semicontinuous function (right). Image: Wikipedia:Mktyscn (public do-
main)

• We say limx→∞ f(x) = +∞ if
∀M > 0 ∃N > 0 f(x) > M ∀x > N.

• We say limx→∞ f(x) = −∞ if
∀M > 0 ∃N > 0 f(x)< −M ∀x > N.

• We can also define the lim supx→∞:
lim sup

x→∞
f(x) := lim

c→∞
sup
x>c

f(x) ≡ inf
c

sup
x>c

f(x) ∈ R ∪ {+∞}

and
lim sup
x→−∞

f(x) := lim
c→−∞

sup
x<c

f(x) ≡ inf
c

sup
x<c

f(x) ∈ R ∪ {+∞}

(observe that the limit above exists for the same it exists for the usual lim sup and
lim inf – by monotonicity!)
• Similarly we define lim infx→∞

lim inf
x→∞

f(x) := lim
c→∞

infx>cf(x) ≡ supcinfx>cf(x) ∈ R ∪ {+∞}

and
lim inf
x→−∞

f(x) := lim
c→−∞

inf
x<c

f(x) ≡ supcinfx<cf(x) ∈ R ∪ {+∞}

(observe that the limit above exists for the same it exists for the usual lim sup and
lim inf – by monotonicity!)

Exercise 7.10. Assume that f : R→ R is continuous and
lim sup
x→−∞

f(x) ≤ 0, lim sup
x→∞

f(x) ≤ 0

and
f(0) = 0.

Show

(1) f attains its maximum in R
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Figure 8.1. If we draw without lifting the pen any line connecting (a, f(a))
and (b, f(b)) that represents the graph of a function, then the y-values of
this line pass through any value between f(a) and f(b). So for any y ∈
(f(a), f(b)) there exists c ∈ (a, b) with f(c) = y. image source: wikipedia.

(2) Give an example of a function with the above properties where f does not attains it
minimum.

8. Intermediate Value Theorem

Again, this is a statement we know (and love?) from Calculus 1. If a continuous function
satisfies f(a) = A and f(b) = B then f has to attain any value between A and B in the
interval (a, b) – cf. Figure 8.1.

We proof first a slightly simplified version of this statement (from which it will be easy to
deduce the full statement).

Lemma 8.1. Let f : [a, b]→ R be a continuous function.

Suppose that f(a) < 0 and f(b) > 0. Then there exists a number c ∈ (a, b) with f(c) = 0.

Proof. The idea is to play catch with the the point c via a sequence 19, cf. Figure 8.2.
19The following might remind you of a binary search algorithm (since it essentially is that. The main

difference is that we have a non-discrete set where we are looking, hence we need to talk about convergence
to eventually find the point x
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Figure 8.2. we find the point x as the limit of a sequence xn which is
constructed out of the midpoints of shrinking intervals (ai, bi) chosen such
that the f(ai) < 0 and f(bi) > 0

We have f(a) < f(b).

So let us assume f(a) < f(b). We define the sequences (an)∞
n=0, (bn)∞

n=0 ∈ [a, b] with the
following properties:

• an, bn ∈ [a, b]
• an ≤ an+1 and bn+1 ≤ bn (for n ≥ 1)
• f(an) ≤ 0 ≤ f(bn)
• |an − bn| ≤ 2−n|a− b|.

We do so by induction:

• Set a0 = a and b0 = b. Then f(a0) ≤ f(b0) and |a0 − b0| = 2−0|a− b|.
• Assume as induction hypothesis that we have constructed an, bn ∈ [a, b] with the

desired properties. We now construct an+1 and bn+1:
Compute f(an+bn

2 ). There are two possibilities:
– If f(an+bn

2 ) ≤ 0 then we set an+1 := an+bn

2 , bn+1 = bn.
– Otherwise f(an+bn

2 ) > 0. In this case we set an+1 := an and bn+1 = an+bn

2 .
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In both cases we check that
– an+1, bn+1 ∈ [a, b] (since we take midpoints)
– f(an+1) ≤ 0 ≤ f(bn+1) (by construction)
– |an+1 − bn+1| ≤ 2−n−1|a − b| since |an − an+bn

2 | = |an+bn

2 − bn| = 1
2 |an − bn| ≤

2−n 1
2 |a− b| by induction hypothesis.

So, we have found the sequence an, bn ∈ [a, b] with the claimed properties.

Observe that (an)∞
n=1 is bounded and monotone, and thus convergent. The same holds for

(bn)∞
n=1.

Set
ā := lim

n→∞
an

b̄ := lim
n→∞

bn

• then ā, b̄ ∈ [a, b]
• f(ā) ≤ 0 ≤ f(b̄) – indeed by continuity 0 ≥ limn→∞ f(an) = f(ā) and similarly for

b̄.
• Moreover

|ā− b̄| = lim
n→∞

|an − bn| ≤ lim
n→∞

2−n|ā− b̄| = 0.

Set c : ā = b̄. Then
0 ≤ f(c) = f(b̄) = f(ā) ≤ 0

That is f(c) = 0, and we can conclude. □

As a corollary, we obtain the intermediate value theorem, originally due to Bolzano.

Theorem 8.2 (Intermediate Value Theorem). Let f : [a, b]→ R be continuous. For any
min{f(a), f(b)} ≤M ≤ max{f(a), f(b)}

there exists x ∈ [a, b] with f(x) = M .

If
min{f(a), f(b)}<M< max{f(a), f(b)}

(in particular f(a) ̸= f(b)) then we can find such an x in (a, b)

Proof. If f(a) = f(b) there is nothing to show, simply take x = a. More generally, if
M = f(a) or M = f(b) there is noting to show.

So we may assume w.l.o.g.
f(a) < M < f(b)

Set g(x) := f(x)−M .
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Then g(a) < 0 and g(b) > 0, so we can apply Lemma 8.1 and find some x ∈ [a, b] with
g(x) = 0, that is f(x) = M . □

From Calculus 1 we recall exercises like the following:

Exercise 8.3. Show that there exists at least one solution to x− cos(x) = 0.

Exercise 8.4. Let f : R→ R be a continuous function such that limx→∞ f(x) = M+ and
limx→−∞ = M− for some M−, M+ ∈ R ∪ {∞,−∞}. Then for any L ∈ (M−, M+) there
exists x ∈ R with f(x) = L.

Exercise 8.5. Prove Exercise 8.5 using the Intermediate Value theorem, Theorem 8.2:
show that any continuous map f : R→ Z is constant.

Exercise 8.6. Show that any continuous map f : R→ Q is constant.

Observe, there are discontinuous functions that still satisfy the conclusion of the Interme-
diate Value theorem, Theorem 8.2:

Exercise 8.7. [Leb, Ex. 3.3.4] Let

f(x) :=

sin(1/x) if x ̸= 0,
0 if x = 0.

Show that f has the intermediate value property. That is, for any a < b, if there exists
a y such that f(a) < y < f(b) or f(b) < y < f(a), then there exists c ∈ (a, b) such that
f(c) = y.

Exercise 8.8. [Leb, ex. 3.3.7] Suppose that f : [a, b]→ R is a continuous function. Prove
that the image f([a, b]) is a closed and bounded interval or a single number.

Hint: Combine the min-max theorem, Theorem 7.2, with the intermediate value theorem,
Theorem 8.2.

9. Uniform continuity

We learned the notion of continuity above, f is continuous at x if
∀ε > 0 ∃δ > 0 : |f(x)− f(y)| < ε ∀|x− y| < δ.

If we consider f(x) := 1/x or f(x) = sin(1/x) on (0, 1) then we learned that these are
continuous function on (0, 1) (as composition of continuous function). However, they are
not uniformly continuous functions. Lets check that again for 1/x. Let ε ∈ (0, 1) and
x ∈ (0, 1) be given. We can choose e.g. δ := 1

2εx2 then∣∣∣∣∣1x − 1
y

∣∣∣∣∣ = |x− y|
xy

≤ δ

xy
≤ ε

1
2

x

y
=≤ ε

1
2

x− y

y
+ 1

2ε ≤ 1
4ε + 1

2ε < ε.
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Figure 9.1. Uniform continuity: The function on the left is not uniformly
continuous, since for some fixed ε > 0 δ has to be chosen differently as x
changes. The function on the right is uniformly continuous, since for fixed
ε > 0 we can choose a fixed δ independent of the point x. Picture source:
Mathcs.org

So we choose δ in dependence on x, that means as x goes to zero, δ needs to be smaller
and smaller. This is not only our incompetence, indeed, the function 1/x becomes crazy
around x ≈ 0, in that it blows up to infinity.

Uniform continuity is a property that rules out this sort of behaviour: it assumes that δ
can be chosen independent of x, only dependent on ε.

Definition 9.1 (Uniform continuity). A function f : D → R is

(1) (pointwise) continuous in D if

∀x ∈ D : ∀ε > 0 ∃δ > 0 : |f(x)− f(y)| < ε ∀y ∈ D, |x− y| < δ.

(2) uniformly continuous in D, if

∀ε > 0 ∃δ > 0 : |f(x)− f(y)| < ε ∀x , y ∈ D, |x− y| < δ.

Cf. Figure 9.1

Example 9.2. • As we have seen above, 1
x
, sin(1/x) are continuous, but not uni-

formly continuous in (0, 1),
• Assume that f : D → R is Lipschitz continuous, that is there exists K > 0 such

that
|f(x)− f(y)| ≤ K|x− y| ∀x, y ∈ D.

then f is uniformly continuous. Example for Lipschitz continuous function is for
example f(x) = |x|.

https://mathcs.org/analysis/reals/cont/answers/contunif.html
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• More generally, if f : D → R is Hölder continuous, that is there exists K > 0 and
α > 0 such that

|f(x)− f(y)| ≤ K|x− y|α ∀x, y ∈ D.

then f is uniformly continuous. For example
√
|x| is 1

2 -Hölder continuous, but not
Lipschitz continuous.

Exercise 9.3. Show

(1) If f : D → R is uniformly continuous, then f is continuous.
(2) The converse is false (give a counterexample)

The important observation is that functions that are pointwise continuous in a closed,
bounded interval, then they are uniformly continuous. Example 9.2 shows this is not true
for open intervals

Theorem 9.4. Let f : [a, b]→ R be a continuous function.20 Then f is uniformly contin-
uous.

Proof of Theorem 9.4. Assume to the contrary that f : [a, b]→ R is a continuous function
but f is not uniformly continuous. Then

∃ε > 0 ∀δ > 0 : ∃x, y ∈ [a, b], |x− y| < δ : |f(x)− f(y)| ≥ ε

Fix this ε > 0. Taking δ = 1
n

we find sequences (xn)n∈N, (yn)n∈N ⊂ [a, b] such that

(9.1) |xn − yn| <
1
n

and
(9.2) |f(xn)− f(yn)| ≥ ε.

Since [a, b] is bounded, (xn)n∈N is bounded. By Bolzano Weierstrass, Theorem 3.8 there
must be a subsequence such that (xni

)i∈N is convergent to some x ∈ [a, b] (because [a, b] is
closed), limi→∞ xni

= x.

Now we have
|yni
− x|

(9.1)
≤ |xni

− x|+ 1
ni

i→∞−−−→ 0,

so we also have limi→∞ yni
= x.

Since f is continuous at x, using the sequential characterization of continuity from Propo-
sition 6.5, there must be some N2 = N2(ε) ∈ N such that

|f(x)− f(yni
)| < ε

4 , |f(x)− f(xni
)| < ε

4 ∀i ≥ N2.

20observe: closed interval, and in particular we assume −∞ < a < b <∞
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But then
|f(xni

)− f(yni
)| ≤ |f(x)− f(xni

)|+ |f(x)− f(yni
)| < ε

4 + ε

4 = ε

2 < ε.

This contradicts (9.2), so the initial assumption that f is not uniformly continuous must
have been false. □

Exercise 9.5. Repeating the proof of Theorem 9.4, show that any continuous map f : D →
R is actually uniformly continuous, if D is a compact set.

A set A ⊂ R is (sequentially) compact if any sequence (xn)n∈N ⊂ A has a converging
subsequence (xni

)i∈N with limi→∞ xni
= x ∈ A.

Why do we care about uniform ellipticity? It rules out “degeneracy” at the boundary.

Theorem 9.6. Let f : (a, b)→ R be uniformly continuous. Then there exists a continuous
extension f̃ on [a, b]. That is: there is f̃ : [a, b]→ R continuous (by Theorem 9.4: uniformly
continuous) such that f̃(x) = f(x) for all x ∈ (a, b).

Also, f̃ is unique. That is any g̃ : [a, b] → R which is continuous and satisfies g̃(x) =
f(x) = f̃(x) for all x ∈ (a, b) satisfies f̃ = g̃ in all of [a, b].

Example 9.7. The statement of the theorem is false in general if f is not uniformly
continuous, but merely continuous: Let f(x) = 1

x
for D = (0, 1). There is no continuous

extension to [0, 1] because then f̃(0) =∞. Similar argument shows that sin(1/x) on (0, 1)
cannot continuously be extended to [0, 1].

Exercise 9.8. Show the last statement of Theorem 9.6:

Assume f̃, g̃ : [a, b] → R are both continuous and satisfy g̃(x) = f̃(x) for all x ∈ (a, b).
Then f̃(a) = g̃(a) and f̃(b) = g̃(b).

The main ingredient for the proof of Theorem 9.6 is the following Lemma

Lemma 9.9. Let f : D → R be uniformly continuous and let (xn)n∈N ⊂ D be a Cauchy
sequence. Then (f(xn))n∈N is a Cauchy sequence.

Proof. Let ε > 0 we need to show that there exists N ∈ N such that
(9.3) |f(xn)− f(xm)| < ε ∀n, m > N.

Since f is uniformly continuous, there must be some δ = δ(ε) > 0 such that
(9.4) |f(x)− f(y)| < ε ∀x, y ∈ D : |x− y| < δ.

On the other hand, since (xn)n∈N is a Cauchy sequence, there exists an N = N(δ) such
that
(9.5) |xn − xm| < δ ∀n, m > N.

Note that (9.5) together with (9.4) implies (9.3). □
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Proof of Theorem 9.6. So let f : (a, b)→ R be uniformly continuous. Set for x ∈ [a, b] set
f̃(x) := lim

(a,b)∋y→x̄
f(y).

We first need to show that this makes sense.

Fix now x̄ ∈ [a, b] is a cluster point, Lemma 5.6, so the above notion of limit is defined
(but we have to ensure that the limit exists as a real number).

Let now (xn)n∈N ⊂ (a, b) be any sequence converging to a. Then (xn)n∈N is a Cauchy se-
quence, Theorem 4.4. By uniform continuity, (f(xn))n∈N is a Cauchy sequence, Lemma 9.9.
Cauchy sequences converge in R, Theorem 4.4, so there exists Γx̄ ∈ R with
(9.6) lim

n→∞
f(xn) = Γx̄ ∈ R.

We claim21 that
lim

(a,b)∋y→x̄
f(y) = Γx̄.

In order to prove this we have to show (by definition of the limit)
(9.7) ∀ε > 0 ∃δ > 0 : |f(y)− Γx̄| < ε ∀y ∈ (a, b), y ̸= x̄, |y − x̄| < δ.

Let us gather what we know

• From uniform continuity we have

∀ε > 0 ∃δ > 0 : |f(y)− f(x)| < ε

2 ∀x, y ∈ (a, b), |y − x| < 2δ.

• Since limn→∞ xn = x̄ we have
∀δ > 0 ∃N1 > 0 : |xn − x̄| < δ ∀n ≥ N1.

• From the definition of Γx̄ in (9.6) we know

∀ε > 0 ∃N2 = N2(ε) : |f(xn)− Γx̄| <
ε

2 ∀n ≥ N2

So for ε > 0 we take δ from the first bullet point, N := max{N1, N2} where N1, N2 are
from second and third bullet point, respectively.

If y ∈ (a, b) such that |y − x̄| < δ then we have
|y − xn| < 2δ ∀n ≥ N

so from the first bullet point above we find

|f(y)− f(xn)| < ε

2 ∀n ≥ N.

Thus, with the third bullet point we find

|f(y)− Γx̄| ≤ |f(y)− f(xn)|+ |f(xn)− Γx̄| <
ε

2 + ε

2 = ε.

21this is not obvious, from what we have so far
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That is we have established (9.7). Consequently, we may define
f̃(x̄) := lim

(a,b)∋y→x̄
f(y) = Γx̄.

For now f̃ : [a, b] → R is only a function. We need to establish it is continuous and
coincides with f on (a, b).

The latter is easy. Since f is continuous,

f(x̄) continuity= lim
y→x̄

f(y) def= f̃(x̄) ∀x̄ ∈ (a, b).

But then we also have
f̃(a) def= lim

y→a
f(y) y ̸=a= lim

y→a
f̃(y),

that is f̃ is continuous at a. By the same argument f̃ is continuous at b. We can conclude.
□

Exercise 9.10. Let f : Q→ R be a uniformly continuous function.

Show that there exist a unique extension f̃ : R→ R which is continuous. Namely,

(1) for any x ∈ R the function f̃(x) := limy∋Q→x f(y) is well defined
(2) show that f̃ is uniformly continuous and that f̃(y) = f(y) for any y ∈ Q
(3) show that any other continuous function g : R→ R with g(y) = f(y) for all y ∈ Q

is equal to f̃ : f̃(x) = g(x) for all x ∈ R.

Hint: for (1) Cauchy sequences
Exercise 9.11. [Leb, ex. 3.4.3] Show that f : (c,∞) → R for some c > 0 and defined by
f(x) := 1/x is Lipschitz continuous (for the definition, see Example 9.2)

Exercise 9.12. [Leb, ex. 3.4.4] Show that f : (0,∞) → R defined by f(x) := 1/x is not
Lipschitz continuous (for the definition, see Example 9.2).
Exercise 9.13. A function f : D ⊂ R → R is called (sequentially) lower semicontinuous
at a point x ∈ D if we have

f(x) ≤ lim inf
D∋y→x

f(y),

in the sense that for any sequence (yn)n∈N ⊂ D with limn→∞ yn = x we have
f(x) ≤ lim inf

n→∞
f(yn).

In a similar spirit, a function is called (sequentially) upper semicontinuous if
f(x) ≥ lim sup

D∋y→x
f(y).

(a) Give an example of a lower semicontinuous function which is not continuous.
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Figure 10.1. The derivative of the function f (in red) is the slope of the
tangent line (blue), which is the limit of the slopes of the secant lines.

(b) Give an example of an upper semicontinuous function which is not continuous.
(c) Show that f is continuous at x ∈ D if and only if f is lower and upper semicontinuous

at x.
(d) Show that if f : [a, b] → R is lower semicontinuous in every x ∈ [a, b], then f attains

its minimum value in [a, b].
(e) Show that if f : [a, b] → R is upper semicontinuous in every x ∈ [a, b], then f attains

its maximum value in [a, b].

10. Derivatives

We remember from Calculus the definition of the derivative, as the limit of the slopes of
secant lines (cf. Figure 10.1). Recall that the slope of the secant line of between (x, f(x))
and (x + h, f(x + h)) is

f(x + h)− f(x)
h

.

Definition 10.1. Let f : D → R be a function and x ∈ D a cluster point of D. We say
that f is differentiable at x, if

L = lim
y→x

f(y)− f(x)
y − x
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exists22. In that case we write f ′(x) = L.

In general we mostly are interested in the situation where D = I is an interval (open or
closed). In that case we have some equivalent conditions:
Lemma 10.2. Let f : I → R be a function defined on any open interval I = (a, b). Then
the following are equivalent for x ∈ I and L ∈ R.

(1) f is differentiable at x and L := f ′(x)
(2) limh→0

f(x+h)−f(x)
h

= L
(3) L ∈ R is such that such that

lim
y→x

|f(y)− f(x)− L(y − x)|
|y − x|

= 0.

The formulation of (3) has the advantage that it is easily generalizable to (higher di-
mensional) vector spaces (cf. Frechet derivative). E.g. if f : Rn → Rm then this defi-
nition makes complete sense if L is a Rm×n-matrix and L(y − x) is the matrix product
Rm×n Rn ⊂ Rm. Observe that f(x+h)−f(x)

h
does not make any sense if h is a vector!

All formulations are also equivalent in closed intervals [a, b]; for x = a, condition (2)
changes to

lim
h→0+

f(a + h)− f(a)
h

= L

for x = b, condition (2) changes to

lim
h→0−

f(b + h)− f(b)
h

= L

Proof. Observe that any x ∈ I is a cluster point of I.

(1) ⇔ (2):

Setting g(h) := f(x+h)−f(x)
h

we observe that h = 0 is a cluster point of the domain of g
which is Dg = {h ∈ R : x + h ∈ I}. Also observe that if y ∈ I, then h := y − x ∈ Dg, and
we have

g(y − x) = f(y)− f(x)
y − x

.

Moreover, for h ∈ Dg we have that y = x + h ∈ I, and

g(h) = f(x + h)− f(x)
x + h− x

.

22Observe: Since x is a cluster point of D, then

g(y) := f(y)− f(x)
y − x

is defined in D\{x} and x is still a cluster point of D\{x}.

https://en.wikipedia.org/wiki/Fr%C3%A9chet_derivative
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By the limit laws we then find

lim
h→0

g(h) = L ⇔ lim
y→x

g(y − x) = L ⇔ lim
y→x

f(y)− f(x)
y − x

= L

This implies (2).

(1) ⇔ (3): By the limit laws, we have

lim
y→x

f(y)− f(x)
y − x

= L

⇔ lim
y→x

∣∣∣∣∣f(y)− f(x)
y − x

− L

∣∣∣∣∣ = 0

⇔ lim
y→x

|f(y)− f(x)− L(y − x)|
|y − x|

= 0.

□

Example 10.3. • Set f(x) := ln x then f ′(x) = 1
x

for any x > 0. Indeed,

f(x + h)− f(x)
h

=ln(x + h)− ln(x)
h

= 1
h

ln
(

x + h

x

)

= ln
(

x + h

x

) 1
h

=1
x

ln
(1 + h

x

) x
h


Now we observe

lim
h→0

ln
(1 + h

x

) x
h


= ln lim

h→0

(1 + h

x

) x
h


= ln lim

z→∞

((
1 + 1

z

)z)
= ln e = 1

Exercise 10.4. Use the limit definition above to show that for
f(x) = x2

we have f ′(x) = 2x.

From Calculus we know that in order to be differentiable a function needs to be at least
continuous. Now we can prove it:
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Lemma 10.5 (Differentiability implies continuity). Assume that f : (a, b) → R is differ-
entiable at x ∈ (a, b). Then f is continuous at x.

Proof. Assume that f is differentiable at x, then for some L ∈ R,

lim
(a,b)∋y→x

|f(y)− f(x)− L(y − x)|
|y − x|

= 0.

That is, for any ε > 0 there exists δ > 0 such that
|f(y)− f(x)− L(y − x)|

|y − x|
< ε ∀y ∈ (a, b)\{x} : |x− y| < δ.

In order show that f is continuous, let ε > 0 be given. Let δ be from the differentiability
condition and set δ1 := min{δ, 1}. Then

|f(y)− f(x)| < (ε + |L|) |x− y| ∀y ∈ (a, b)\{x} : |x− y| < δ1,

Set γ := min{δ1,
ε

|L|}. Since γ ≤ δ1 we still have

|f(y)− f(x)| < (ε + |L|) |x− y| ∀y ∈ (a, b)\{x} : |x− y| < γ,

Observe that |L|γ ≤ ε and εγ ≤ εδ1 ≤ ε, then we have
|f(y)− f(x)| < 2ε ∀|x− y| < γ.

that is, we have shown
∀ε > 0, ∃γ = γ(ε) > 0 : |f(y)− f(x)| < ε ∀y : |x− y| < γ.

This is exactly the definition of f being continuous at x. □

Even more that Lemma 10.5 is true: differentiable functions are locally Lipschitz continu-
ous, see Exercise 10.6. A famous theorem, Rademacher’s theorem, provides the opposite
direction. Lipschitz functions are differentiable at almost all points.

Exercise 10.6. Assume that f : (a, b)→ R is differentiable at x ∈ (a, b). Then f is locally
Lipschitz continuous around x, i.e. there exists L > 0 and δ > 0 such that

|f(x)− f(y)| ≤ L|x− y| for all y ∈ (a, b), |x− y| < δ.

Proposition 10.7. Let f, g : I → R be differentiable at c ∈ I, I = (a, b). Then

(1) λf is differentiable at c and (λf)′(c) = λf ′(c).
(2) f + g is differentiable at c and (f + g)′(c) = f ′(c) + g′(c).
(3) fg is differentiable at c and (fg)′(c) = f ′(c)g(c) + f(c)g′(c).
(4) f

g
is differentiable if g(c) ̸= 0 at c and

(
f
g

)′
(x) = f ′(c)g(c)−f(c)g′(c)

(g(c))2 .
(5) If f : J → R and g : I → R with g(I) ⊂ J then if g is differentiable at c ∈ I and f

is differentiable at g(c) then f(g(·)) : I → R is differentiable at x = c and we have
(f(g(·)))′ (c) = f ′(g(c)) g′(c).

Proof. (1) exercise

https://en.wikipedia.org/wiki/Rademacher%27s_theorem
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(2) exercise
(3) fg is differentiable at c and (fg)′(x) = f ′(x)g(x) + f(x)g′(x):

We have

f(c + h)g(c + h)− f(c)g(c) = (f(c + h)− f(c))g(x + h) + f(c)(g(c + h)− g(c)).

Since f, g is differentiable at c we have

lim
h→0

f(c + h)− f(c)
h

= f ′(c)

lim
h→0

g(c + h)− g(c)
h

= g′(c)

Moreover, by Lemma 10.5, g is continuous at c, so

lim
h→0

g(c + h) = g(c).

From the limit laws we then find

(fg)′(c) = lim
h→0

f(c + h)g(c + h)− f(c)g(c)
h

= lim
h→0

(f(c + h)− f(c))g(c + h) + f(c)(g(c + h)− g(c))
h

= lim
h→0

f(c + h)− f(c)
h

lim
h→0

g(c + h) + f(c) lim
h→0

g(c + h)− g(c)
h

=f ′(c) g(c) + f(c)g′(c)

Which is what was claimed.
(4) exercise
(5) exercise

□

Exercise 10.8. Prove Proposition 10.7(1), (2), (4), (5).

10.1. further exercises.

Exercise. Use the limit definition of derivative to show

• f(x) = x+1
x+4 then f ′(x) = 3

(t+4)2

• f(x) = 5 then f ′(x) = 0
• f(x) = 1

x
then f ′(x) = − 1

x2

• f(x) =
√

x then f ′(x) = 1
2
√

x
.
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Figure 11.1. Pierre de Fermat, 1608-1665. French, lawyer, amateur mathematician.

Figure 11.2. Fermats theorem: the derivative of a differentiable function
is zero at its local maximum and minimum points. However, the derivative
can be zero at points which are not the maximum and minimum, these are
called stationary (or critical) points.

11. Fermat’s theorem

This is another theorem we know from Calculus: If f : (a, b) → R is differentiable at
c ∈ (a, b) and if f has a local maximum or minimum, then f ′(c) = 0.

To make this statement precise, let us begin with

Definition 11.1 (Local maximum/minimum). Let f : D → R be a function.

• We say that f has a local maximum at c ∈ D if there exists δ > 0 such that

f(x) ≥ f(c) ∀x ∈ D : |x− c| < δ.

• We say that f has a local minimum at c ∈ D if there exists δ > 0 such that

f(x) ≤ f(c) ∀x ∈ D : |x− c| < δ.

• if f has either a local maximum or a local minimum at c ∈ D then we say f has a
local extremum at c ∈ D.
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See Figure 11.2.

Theorem 11.2 (Fermat). Let f : (a, b)→ R, f differentiable at c ∈ (a, b) which is a local
extremum. Then f ′(c) = 0.

Proof. Assume that c is a local minimum (the maximum argument follows the same strat-
egy).

Observe that since (a, b) is an open set and c ∈ (a, b) we have that 0 < δ0 := min{c−a, b−c},
and c + h ∈ (a, b) for any |h| < δ0.

Moreover, since c is a local minimum of f , there exists δ1 > 0 such that
f(y)− f(c) ≤ 0 ∀y ∈ (a, b), |c− y| < δ1.

set δ := 1
2 min{δ0, δ1}. For h > 0, |h| < δ we then have

f(c + h)− f(c)
h

≤ 0.

Since we know that f is differentiable at c, we conclude that

f ′(c) = lim
h→0+

f(c + h)− f(c)
h

≤ 0.

On the other hand, for h < 0 and |h| < δ we have
f(c + h)− f(c)

h
≥ 0.

and from the differentiability of f at c we find

f ′(c) = lim
h→0−

f(c + h)− f(c)
h

≥ 0.

Thus f ′(c) = 0. □

Example 11.3. • The typical example to show this is false if f is not differentiable
is f(x) = |x| which has a local minimum at x = 0 but there is no sort of derivative
equal to zero at x = 023.
• If f(x) = x3 then f ′(0) = 0, but the point c = 0 is neither a local minimum or

a local maximum. We call points c where f ′(c) = 0 critical points (because they
might be min or max, or might not be either).
• Take f(x) = x on the interval [0, 1]. f attains its minimum at x = 0 and maximum

at x = 1, however f ′(0) = f ′(1) = 1 ̸= 0. This is a not a contradiction to
Theorem 11.2 which is stated on open intervals. So we see: It is important that
the interval is open, otherwise Theorem 11.2 is false. However see Exercise 11.4.
• From the picture, Figure 11.2 we see that f ′(x) = 0 corresponds to horizontal

tangent planes (we learned this from calculus).
23well, there is: the notion of subdifferential can be used here
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Exercise 11.4. Let f : [a, b]→ R be continuous, and assume that f has a local maximum
at c ∈ [a, b]. Assume that f is differentiable at c. Show that

(1) If c ∈ (a, b) then f ′(c) = 0
(2) If c = a then f ′(c) ≤ 0
(3) If c = b then f ′(c) ≥ 0
(4) What can we say about the derivatives if f has a local minimum at c?

Exercise 11.5. Let E : Rn → R be a function (this is often called the energy) and assume
that for some x̄ ∈ Rn we have

E(x̄) ≤ E(x) ∀x ∈ Rn.

Assume that for any v ∈ Rn the directional derivative exists, i.e.
d

dt

∣∣∣∣
t=0
E(x̄ + tv) := lim

t→0

E(x̄ + tv)− E(x̄)
t

∈ R.

Show that then

(11.1) d

dt

∣∣∣∣
t=0
E(x̄ + tv) = 0.

Equation (11.1) is essentially what is called the Euler-Lagrange equation

The above arguments works also if Rn is replaced with any other linear space, and (11.1)
is a useful equation to derive properties of potential minimizers.

Exercise 11.6 (Euler-Lagrange equations). (be generous about the definitions of integrals
below, we haven’t defined it yet)

Consider differentiable functions f : [a, b] → R whose derivative is integrable (whatever
that means), and consider the energy

E(f) = 1
2

∫
(a,b)
|f ′|2dx.

Assume that f̄ : [a, b]→ R is a minimizer

E(f̄) ≤ E(f) ∀f : [a, b]→ R such that f(a) = f̄(a) and f(b) = f̄(b).

Then we have (assuming the second derivative makes sense and is continuous)

f̄ ′′(x) = 0 for all x ∈ (a, b)

Hints:

• Show that for any φ : [a, b]→ R, φ(a) = φ(b) = 0 we have
d

dt

∣∣∣∣
t=0
E(f̄ + tφ) = 0.
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Figure 12.1. For any function that is continuous on [a, b] and differentiable
on (a, b) there exists some c in the interval (a, b) such that the secant joining
the endpoints of the interval [a, b] is parallel to the tangent at c. Source:
Wikipedia, robert alexander ortiz, GFDL

• Show that this implies (assuming derivative and integral converge)∫
(a,b)

f̄ ′φ′dx = 0

• By an integration by parts show that this implies∫
(a,b)

f̄ ′′φdx = 0

• The above implies (try to prove it for fun) that f̄ ′′ = 0 – we will discuss this later
Exercise 14.34.

12. Mean Value Theorem

Fermat’s theorem is incredibly important in Analysis (in particular, many “equilibria of
systems” are often stationary points which may or may not be minimizers e.g. of sort of
physical energies, cf. Exercise 11.5). There is a theoretical consequence which is the Mean
Value Theorem, cf. Figure 12.1 – from calculus we know that the mean value theorem for
suitable f says: for any a, b there exists ξ such that

f ′(ξ) = f(b)− f(a)
b− a

.

As it happens often, mathematically the mean value theorem is a consequence of a much
simplified situation. In this case its Rolle’s theorem.
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Figure 12.2. Michel Rolle, 1652-1719. French, “early critic of infinitesimal
calculus, arguing that it was inaccurate, based upon unsound reasoning, and
was a collection of ingenious fallacies, but later changed his opinion”
(wikipedia).

Theorem 12.1 (Rolle). Let f : [a, b] → R be continuous on [a, b] and differentiable on
(a, b). If f(a) = f(b) = 0 then there exists c ∈ (a, b) with f ′(c) = 0.

Proof. Since f is continuous on [a, b] we know by the max-min theorem, Theorem 7.2, that
there exists cmax, cmin ∈ [a, b] where f attains its maximum and minimum respectively.
Now we proceed by a case study.

• If cmax in (a, b) then by Fermat, Theorem 11.2, f ′(cmax) = 0 and c := cmax is (one
of) the point we are looking for.
• If cmin in (a, b) then by Fermat, Theorem 11.2, f ′(cmin) = 0 and c := cmin is (one

of) the point we are looking for.
• If neither cmin nor cmax are in (a, b) then cmin, cmax ∈ {a, b}. But then because of

f(a) = f(b) = 0 we have

0 = f(cmin) ≤ f(x) ≤ f(cmax) = 0 ∀x ∈ [a, b].

That is f(x) = 0 for all x ∈ [a, b]. In particular f ′(x) = 0 for all [a, b] (constant
functions have zero derivative!). So c := a+b

2 ∈ (a, b) is the point we are looking for.

□

The mean value theorem is a consequence of Theorem 12.1.

Theorem 12.2. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b).
There exists c ∈ (a, b) with

f ′(c) = f(b)− f(a)
b− a

.

Proof. The idea is to linearly change f into a g with g(a) = 0 and g(b) = 0. Namely,

g(x) = f(x) + Ax + B,
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where we choose A and B such that g(a) = 0 and g(b) = 0, i.e. we need to solve for A and
B the linear system 0 = f(a) + Aa + B

0 = f(b) + Ab + B

Subtracting the second line from the first we find that f(a)− f(b) = −A(a− b), i.e.

A = −f(b)− f(a)
b− a

.

Having A we find that
B = −f(a) + a

f(b)− f(a)
b− a

.

With this choice of A and B the function g satisfies the assumptions of Theorem 12.1, so
there exists c ∈ (a, b) with

0 = g′(c) = f ′(c) + A.

That is,
f ′(c) = −A = f(b)− f(a)

b− a
.

□

The mean value theorem has many applications. The most important part is that it allows
us to relate properties of a function f by the properties of f ′.

Proposition 12.3. Let f : (a, b)→ R be a differentiable function.

(1) If f ′(x) ≥ 0 for all x ∈ I then f is monotonically increasing
(2) If f ′(x) ≤ 0 for all x ∈ I then f is monotonically decreasing
(3) If f ′(x) > 0 for all x ∈ I then f is strictly monotonically increasing
(4) If f ′(x) < 0 for all x ∈ I then f is strictly monotonically decreasing
(5) If f ′(x) = 0 for all x ∈ I then f is constant.

Proof. (1) If f ′(x) ≥ 0 for all x ∈ I then f is monotonically increasing
Let a < x < y < b. Then f : [x, y] → R is continuous and differentiable, so by

the mean value theorem, Theorem 12.2, there exists c ∈ (x, y) with

(12.1) f(y)− f(x)
y − x

= f ′(c) ≥ 0.

Multiplying with (y − x) > 0 we find
f(y) ≥ f(x) ∀a < x < y < b.

This is the definition of monotonically increasing.
(2) If f ′(x) ≤ 0 for all x ∈ I then f is monotonically decreasing:

Consider g(x) := −f(x), then g′(x) ≥ 0 so g is monotonically increasing by the
above argument. That is f is montonically decreasing.
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(3) If f ′(x) > 0 for all x ∈ I then f is strictly monotonically increasing
We argue as above, instead of (12.1) we obtain

f(y)− f(x)
y − x

= f ′(c) > 0,

that is
f(y) > f(x) ∀x, y : a < x < y < b.

This is the definition of f being monotonically increasing.
(4) If f ′(x) < 0 for all x ∈ I then f is strictly monotonically decreasing

Same as above. Set g(x) := −f(x).
(5) If f ′(x) = 0 for all x ∈ I then f is constant.

Since f ′(x) ≥ 0 we have from the above that f is montonically increasing, i.e.

f(y) ≥ f(x) ∀x ≥ y.

Since on the other hand f ′(x) ≤ 0 we have

f(y) ≤ f(x) ∀x ≥ y.

Together we obtain f(y) = f(x) for all x ≥ y, x, y ∈ (a, b) which is the claim.

□

Exercise 12.4. Show that

arctan
(1 + x

1− x

)
= arctan(x) + π

4 ∀x ∈ (−∞, 1)

Hint:, set

f(x) := arctan
(1 + x

1− x

)
− arctan(x),

show that f is constant.

Exercise 12.5. Assume that f : (a, b) → R is Hölder continuous with α > 1, cf. Re-
mark 6.18. I.e. assume there exists Λ > 0 such that

|f(x)− f(y)| ≤ Λ|x− y|α.

Show that f is constant.

Hint: Recall that α > 1 – what is f ′(x)?

From Calculus we know the following first derivative test.

Proposition 12.6 (First derivative test). Let f ∈ (a, b) be continuous and differentiable.
Assume that for some c ∈ (a, b) we have f ′(x) ≤ 0 if x ≤ c and f ′(x) ≥ 0 if x ≥ c. Then
f has a minimum at at x = c, that is

f(c) ≤ f(x) ∀x ∈ (a, b).
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Figure 12.3. Cauchy’s mean value theorem, Theorem 12.7, geometrically
means the following: there is some tangent to the graph of the curve γ :
[a, b]→ R2 given as γ(t) := (f(t), g(t)) which is parallel to the line defined by
the points (f(a), g(a)) and (f(b), g(b)) – unless the curve becomes stationary
at some point c ∈ (a, b), i.e. f ′(c) = g′(c) = 0. Source: wikipedia.

Proof. Let x ∈ (c, b). Then by the mean value theorem, Theorem 12.2, for some y ∈ (c, x),

f(c)− f(x)
c− x

= f ′(y) ≥ 0.

Observe that c < x so this implies

f(c)− f(x) ≤ 0 ⇔ f(c) ≤ f(x) ∀x ∈ (c, b).

Let now x ∈ (a, c), then there exists y ∈ (a, c) such that

f(c)− f(x)
c− x

= f ′(y) ≤ 0.

Now c− x ≥ 0 so this implies

f(c)− f(x) ≤ 0 ⇔ f(c) ≤ f(x) ∀x ∈ (a, c).

Since clearly f(c) ≤ f(x) for x = c we have shown that

f(c) ≤ f(x) ∀x ∈ (a, b).

□

We also have the following “generalization” of the Mean Value Theorem (for g(x) = x it
is just the statement of the Mean Value Theorem).

https://en.wikipedia.org/wiki/Mean_value_theorem
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Theorem 12.7 (Cauchy’s mean value theorem). Let f, g : [a, b] → R continuous in [a, b]
and differentiable in (a, b). Assume that g(b) ̸= g(a). Then there exists c ∈ (a, b) such that

f ′(c) = f(b)− f(a)
g(b)− g(a) g′(c)

If g′(x) ̸= 0 for all x ∈ (a, b) then this is equivalent to
f(b)− f(a)
g(b)− g(a) = f ′(c)

g′(c) .

Cf. Figure 12.3.

Proof. Like the mean value theorem, this statement follows from Rolle’s theorem Theo-
rem 12.1.

Let
h(x) := f(x)− f(b)− f(a)

g(b)− g(a) g(x).

Observe that h(a) = h(b), indeed
h(a) = h(b)

⇔f(a)− f(b)− f(a)
g(b)− g(a) g(a) = f(b)− f(b)− f(a)

g(b)− g(a) g(b)

⇔f(a)− f(b)− f(b)− f(a)
g(b)− g(a) (g(a)− g(b)) = 0

By the mean value theorem, Theorem 12.2, (or rather Rolle’s theorem, Theorem 12.1)
there must be c ∈ (a, b) such that

h′(c) = 0.

That is
0 = h′(c) = f ′(c)− f(b)− f(a)

g(b)− g(a) g′(c).

This is the claimed equation. □

Cauchy’s version of the mean value theorem also implies the 0
0 -type for L’Hopital.

Proposition 12.8 (L’Hopital). Let f, g : (a, b)→ R differentiable and g(x), g′(x) ̸= 0 for
all (a, b). Assume that limx→a+ f(x) = limx→a+ g(x) = 0. If

L := lim
x→a+

f ′(x)
g′(x) exists and L ∈ R

then
L := lim

x→a+

f(x)
g(x) .
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Figure 12.4. Guillaume de l’Hôpital. 1661 - 1704. Fench Mathematician

Proof. Since limx→a+ f(x) = limx→a+ g(x) = 0 we can assume that f, g : [a, b) → R is
continuous with f(0) = g(0) = 0 (we extend f and g into a). By Cauchy’s mean value
theorem, Theorem 12.7, for any x ∈ (a, b) there exists c ∈ (a, x) such that

f(x)
g(x) = f(x)− f(a)

f(x)− f(c) = f ′(c)
g′(c) .

Observe that as x → a we necessarily have c → a (since c ∈ (a, x), using the squeeze
theorem). That is,

lim
x→a+

f(x)
g(x) = lim

c→a+

f ′(c)
g′(c) = L,

since the right-hand side exists. □

As we learned in Calculus, we derive the other types of L’Hopital’s rule from the 0
0 -case,

e.g.
Theorem 12.9 (L’Hopital ∞

∞). Show the following: for any 0 < a < b ≤ ∞:

Let f, g : (a, b)→ R differentiable and g(x), g′(x) ̸= 0 for all (a, b). Assume that limx→b− f(x) =
limx→b− g(x) =∞. If

L := lim
x→b−

f ′(x)
g′(x) exists and L ∈ R

then
L := lim

x→b−

f(x)
g(x) .

Proof. This is actually more complicated than the 0
0 -case, so here is the solution inspired

by [ht]:

Fix ε > 0. Since
L := lim

x→b−

f ′(x)
g′(x)

there exists δ > 0 such that ∣∣∣∣∣f ′(z)
g′(z) − L

∣∣∣∣∣ < ε ∀z ∈ (b− δ, b).
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Fix now, x, y ∈ (b− δ, b). Then we have by Cauchy’s mean value theorem, Theorem 12.7,
for some z = z(x, y) ∈ (b− δ, b),∣∣∣∣∣f(x)− f(y)

g(x)− g(y) − L

∣∣∣∣∣ =
∣∣∣∣∣f ′(z)
g′(z) − L

∣∣∣∣∣ < ε

Let us write this again, ∣∣∣∣∣f(x)− f(y)
g(x)− g(y) − L

∣∣∣∣∣ < ε ∀x, y ∈ (b− δ, b).

Now we have
f(x)− f(y)
g(x)− g(y) =

f(x)
g(x) −

f(y)
g(x)

1− g(y)
g(x)

And we have
f(x)
g(x) =

f(x)
g(x) −

f(y)
g(x)

1− g(y)
g(x)

(
1− g(y)

g(x)

)
+ f(y)

g(x)
and thus

f(x)
g(x) − L =

 f(x)
g(x) −

f(y)
g(x)

1− g(y)
g(x)

− L

(1− g(y)
g(x)

)
+ f(y)

g(x) − L + L

(
1− g(y)

g(x)

)

=
 f(x)

g(x) −
f(y)
g(x)

1− g(y)
g(x)

− L

(1− g(y)
g(x)

)
+ f(y)

g(x) − L

(
g(y)
g(x)

)

That is, for any x, y ∈ (b− δ, b), (keep in mind that g(x) x→b−
−−−→∞ )∣∣∣∣∣f(x)

g(x) − L

∣∣∣∣∣ ≤
∣∣∣∣∣∣

f(x)
g(x) −

f(y)
g(x)

1− g(y)
g(x)

− L

∣∣∣∣∣∣︸ ︷︷ ︸
≤ε

∣∣∣∣∣1− g(y)
g(x)

∣∣∣∣∣︸ ︷︷ ︸
x→b−−−−→1

+
∣∣∣∣∣f(y)
g(x)

∣∣∣∣∣︸ ︷︷ ︸
x→b−−−−→0

+L

∣∣∣∣∣g(y)
g(x)

∣∣∣∣∣︸ ︷︷ ︸
x→b−−−−→0

Keeping y ∈ (b− δ, b) fixed we now take the lim supx→b− in the above inequality. Then

lim sup
x→b−

∣∣∣∣∣f(x)
g(x) − L

∣∣∣∣∣ ≤ ε1 + 0 + L0 = ε.

That is we have
∀ε > 0 : lim sup

x→b−

∣∣∣∣∣f(x)
g(x) − L

∣∣∣∣∣ ≤ ε

Clearly this implies

lim sup
x→b−

∣∣∣∣∣f(x)
g(x) − L

∣∣∣∣∣ = 0

and thus
lim

x→b−

f(x)
g(x) = L.
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□

Exercise 12.10 (Otto Stolz counterexample). Let

f(x) := 1
x

+ cos
(1

x

)
sin

(1
x

)
g(x) := esin( 1

x)
(1

x
+ cos

(1
x

)
sin

(1
x

))
(1) Show that

lim
x→0+

f ′(x)
g′(x) = 0

(2) however show that

lim
x→0+

f(x)
g(x) does not exist

(3) Why is this no contradiction to Proposition 12.8?
Theorem 12.11. Let f : [a, b]→ R be continuous and differentiable in [a, b]. Assume that
L is a value strictly between f ′(a) and f ′(b),

min{f ′(a), f ′(b)} < L < max{f ′(a), f ′(b)}.
Then there exists c ∈ (a, b) with f ′(c) = L.

This looks a lot like the intermediate value theorem for f ′, Theorem 8.2. But observe that
f ′ may not be continuous so Theorem 8.2 is not applicable! Observe that this statement
is false e.g. for f(x) = |x|.

Proof. Fix L strictly between f ′(a) and f ′(b). Assume w.l.o.g.
(12.2) f ′(a) < L < f ′(b).
We set

g(x) := Lx− f(x).
Why do we do this? Because then

L = f ′(x) ⇔ g′(x) = 0.

So we need to find critical points of g, and for this we can use min-max theorem and
Fermat’s theorem:

The function g : [a, b] → R is continuous and differentiable in [a, b]. By the min-max
theorem, Theorem 7.2, there exists xmax ∈ [a, b] with where g attains its global maximum.
If we can ensure that xmax ∈ (a, b) then Fermat’s theorem, Theorem 11.2, implies that
g′(xmax) = 0, that is L = f ′(xmax).

So it only remains to show that xmax ̸∈ {a, b}. Indeed, observe that

0
(12.2)
< L− f ′(a) = g′(a) = lim

x→a+

g(x)− g(a)
x− a

.
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In particular there must be some x1 ∈ (a, b) such that

0 <
g(x1)− g(a)

x1 − a
or, equivalently, g(x1) > g(a).

Similarly,

0
(12.2)
> L− f ′(b) = g′(b) = lim

x→b−

g(x)− g(b)
x− b

.

which implies that there must be some x2 ∈ (a, b) such that (using that x2 − b < 0)

0 >
g(x2)− g(b)

x2 − b
⇔ g(x2) > g(b).

That is a and b are no maxima for g, that is xmax ̸∈ {a, b}. □

13. Continuous and differentiable function spaces

We have defined what it means for f : I → R to be differentiable. If f ′ : I → R is
again differentiable, we say that f is twice differentiable, etc. By f (n) we denote the n-th
derivative, f (0) = f , f (1) = f ′, f (2) = f ′′ etc.

Definition 13.1. Let k ∈ N∪{0}. We say that f ∈ Ck(D), in words, f is k times contin-
uously differentiable, if f is k times differentiable in D, and f, f ′, . . . , f (k) are continuous
in D.

If f is k-times differentiable for any k ∈ N we say that f is infinitely many times differen-
tiable, and write f ∈ C∞(I).

Example 13.2. • f ∈ C0(D) means that f is continuous. If D is a closed interval
D = [a, b] then this implies that f is uniformly continuous,Theorem 9.4. If D =
(a, b) is open, then f ∈ C0(I) might not be uniformly continuous.
• if f ∈ Ck(D) then f ∈ Ck−1(D).
• if f ∈ Ck([a, b]) then f , f 1,. . .,fk are uniformly continuous and bounded, assuming

as always that −∞ < a < b <∞.
• A non-polynomial function which is infinitely many times differentiable is

f(x) =

0 |x| ≥ 1
e

1
x2−1 |x| < 1.

This is called a bump function (also used as mollifier function). Observe that
f(0) = 1. See Figure 13.1. These kind of functions are used often in analysis to
localize differential equations or mollify (smoothen) functions.
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Figure 13.1. A bump function: a C∞-smooth function f with f(0) = 1
and f(x) = 0 for |x| > 1.

Figure 14.1. Bernhard Riemann, 1826 - 1866. He is considered by many
to be one of the greatest mathematicians of all time.

Figure 14.2. Jean Gaston Darboux, 1842 - 1917. French, mathematician

14. The Riemann integral

We are going to introduce (a version of) the Riemann integral, which is the area below a
curve. Before we come to the fundamental theorem of calculus, this has nothing to do with
antiderivatives. The area below a curve is approximated by area boxes, cf. Figure 14.3;
the lower and upper Darboux sum.

Definition 14.1 (Partition). A partition of size n of the interval [a, b] is a set of numbers
{x0, x1, . . . , xn} such that

a = x0 < x1 < x2 . . . < xn−1 < xn = b.

We write
∆xi := xi − xi−1, i ≥ 1.
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Figure 14.3. We approximate the sum below the (red) curve by boxes.
The area of the green boxes is the lower Darboux sum, the area of the grey
boxes plus the green boxes is the upper Darboux sum, cf Definition 14.2

We plan approximate the area below a curve from above and below, cf. Figure 14.3. For
this, we define

Definition 14.2 (Darboux sums). Let f : [a, b] → R be a bounded function. Let P be a
partition of [a, b]. Define

mi := inf
[xi−1,xi]

f, Mi := sup
[xi−1,xi]

f.

Then the lower Darboux sum is defined

L(P, f) :=
n∑

i=1
mi ∆xi.

and the upper Darboux sum is defined by

U(P, f) :=
n∑

i=1
Mi ∆xi

See Figure 14.3.

From pictures, e.g. Figure 14.3, it seems obvious that any lower Darboux sum delivers a
smaller area than the actual area below the curve. and any upper darboux sum delivers a
larger area than the area below the curve. The idea of the Riemann integral is that if we
just take a fine enough partition, then upper and lower Darboux sum should approximate
the actual area below the curve. We will later see this is true for continuous functions.

Definition 14.3. Let f : [a, b]→ R be bounded.

We define the upper Riemann integral,∫
[a,b]

f(x) dx := inf
P partition

U(P, f).

and the lower Riemann integral∫
[a,b]

f(x) dx := sup
P partition

L(P, f).
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We say that f : [a, b]→ R is Riemann integrable (notation: f ∈ R([a, b]) if∫
[a,b]

f(x) dx =
∫

[a,b]
f(x) dx ∈ (−∞,∞).

In this case we write ∫
[a,b]

f(x) dx =
∫

[a,b]
f(x) dx =

∫
[a,b]

f(x) dx

To make sense of the above notation, first we observe some basic properties of L and U
and the upper and lower Riemann integral.

First we observe that the supremums/infimum condition for the upper/lower Riemann
integral implies that the partition chosen can be assumed to be arbitrarily fine (meaning
that the ∆xi can be assumed to be arbitrarily small).

Lemma 14.4 (Refinement property). Let f : [a, b]→ R be a function and P be a partition
of [a, b]. Let Q be a refinement of P , i.e. Q is another partition of [a, b] with Q ⊃ P . Then

L(P, f) ≤ L(Q, f)

and
U(P, f) ≥ U(Q, f)

Proof. By an induction argument we can assume that Q only has one more element than
P , i.e. P = {x0, . . . , xN} and Q = P ∪ {y} with xn < y < xn+1 for some n = 0, . . . , N − 1.
Recall that we have infA f ≤ infB f for A ⊃ B. Thus,(

inf
[xn,xn+1]

f

)
(xn+1 − xn)

=
(

inf
[xn,xn+1]

f

)
(xn+1 − y) +

(
inf

[xn,xn+1]
f

)
(y − xn)

≤
(

inf
[y,xn+1]

f

)
(xn+1 − y) +

(
inf

[xn,y]
f

)
(y − xn)

Now by the definition of L(P, f) and L(Q, f) we see that L(P, f) ≤ L(Q, f).

A similar argument shows that U(P, f) ≤ U(Q, f). □

Lemma 14.5. Let f : [a, b]→ R bounded.

(1) If f(x) = c (i.e. f is contant) then∫
[a,b]

f(x) dx = c(b− a).
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(2) If f(x) ≤ g(x) for all x ∈ [a, b] then∫
[a,b]

f(x) dx ≤
∫

[a,b]
g(x) dx

and ∫
[a,b]

f(x) dx ≤
∫

[a,b]
g(x) dx

In particular if f and g are Riemann integrable then∫
[a,b]

f(x) dx ≤
∫

[a,b]
g(x) dx

(3) We have

(b− a) inf
[a,b]

f ≤
∫

[a,b]
f(x) dx ≤

∫
[a,b]

f(x) dx ≤ (b− a) sup
[a,b]

f

In particular if f is Riemann integrable

(b− a) inf
[a,b]

f ≤
∫

[a,b]
f(x) dx ≤ (b− a) sup

[a,b]
f

Proof. (1) If f(x) = c then for any partition P = {x0, . . . , xn} we have mi = Mi = c,
so that

L(P, f) = U(P, f) =
n∑

i=1
c ∆xi = c (b− a).

In particular, ∫
[a,b]

c dx = c(b− a) =
∫

[a,b]
c dx.

Thus, by definition, ∫
[a,b]

c dx = c(b− a).

(2) Let f(x) ≤ g(x) for all x ∈ [a, b] then for any partition P = {x0, . . . , xn} we have
mi(f) ≤ mi(g) and Mi(f) ≤Mi(g). This readily implies

L(P, f) ≤ L(P, g), and U(P, f) ≤ U(P, g).
Since

∫
[a,b]dx is the supremum over all partitions P , we conclude

L(P, f) ≤
∫

[a,b]
g(x) dx ∀partitions P .

Taking the supremum over all P of this inequality, we have∫
[a,b]

f(x) dx ≤
∫

[a,b]
g(x) dx.

We argue similarly to obtain∫
[a,b]

f(x) dx ≤
∫

[a,b]
g(x) dx.
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(3) follows from (1) and (2).

□

Exercise 14.6. [Leb, 5.1.3] Let f : [a, b] → R be a bounded function. Suppose that there
exists a sequence of partitions {Pk} of [a, b] such that

lim
k→∞

(U(Pk, f)− L(Pk, f)) = 0.

Show that f is Riemann integrable and that∫ b

a
f = lim

k→∞
U(Pk, f) = lim

k→∞
L(Pk, f).

The above criterion is sometimes called the Cauchy criterion
Exercise 14.7. [Leb, ex. 5.1.6] Let c ∈ (a, b) and let d ∈ R. Define f : [a, b]→ R as

f(x) :=

d if x = c,

0 if x ̸= c.

Prove that f is Riemann integrable and compute
∫

[a,b] f using the definition of the integral
and, if you want, Exercise 14.6.
Exercise 14.8. [Leb, Ex. 5.2.1] Let f be Riemann integrable on [a, b]. Prove that −f is
Riemann integrable on [a, b] and that∫

[a,b]
−f(x) dx = −

∫
[a,b]

f(x) dx.

Example 14.9. Lemma 14.5 implies that for any bounded function f : [a, b] → R the
upper and lower Riemann integral exists. However, the Riemann integral may not exist
for discontinuous functions.

Take the Dirichlet function, D : [0, 1]→ R

D(x) =

1 x ∈ Q
0 x ∈ R\Q.

Observe that for any partition P = {x1, . . . , xn} we have Mi = 1 and mi = 0, by density
of Q and R\Q in [0, 1]. So we have∫

[a,b]
f(x) dx = 0 <

∫
[a,b]

f(x) dx = 1.

With our current definition, f needs to be bounded for the Riemann integral to exist.
In particular 1√

x
is not integrable in [0, 1] – even though we know from calculus that∫ 1

0
1√
x
dx = 2

√
x
∣∣∣∣1
0

= 1. To make sense of this one would need to introduce the notion of
improper integral. We will not do that now, but assume that f is always bounded, justified
by the following
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Lemma 14.10. Let f : [a, b]→ R be Riemann-integrable. Then f is bounded24.

More precisely, if f : [a, b]→ R is unbounded then at least one of the following is true:
inf

P partition of [a, b]
U(P, f) = +∞,

or
sup

P partition of [a, b]
L(P, f) = −∞,

Proof. Assume that f is unbounded. Then there exist (zn)n∈N ⊂ [a, b] such that f(zn) n→∞−−−→
±∞. For simplicity assume that f(zn) n→∞−−−→ +∞ (the −∞ case goes similar).

By Bolzano-Weierstrass, Theorem 3.8, we may assume that (up to taking a subsequence)
zn

n→∞−−−→ z ∈ [a, b].

Let P = {x0, . . . , xN} be any partition of [a, b]. Since z ∈ [a, b] there must be some
m ∈ {1, . . . , N} such that zn ∈ [xm−1, xm] for infinitely many n ∈ N. Taking a subsequence
we can assume w.l.og. that zn ∈ [xm−1, xm]. But this implies that

max
[xm−1,xm]

f =∞.

So U(P, f) = ∞. This holds for any partition P , so infP U(P, f) = ∞ (and in particular
f is not Riemann integrable).

□

So unbounded functions are never integrable.

For a positive result: continuous functions on closed bounded sets [a, b] are always inte-
grable.

Proposition 14.11. Let f : [a, b]→ R be continuous. Then f is Riemann-integrable.

Proof. Since f : [a, b]→ R is continuous it is bounded, by Theorem 7.2 (or Corollary 7.4).
So we already have from Lemma 14.5

−∞ <
∫

[a,b]
f(x) dx ≤

∫
[a,b]

f(x) dx <∞

We are now going to show that for any ε > 0

(14.1)
∫

[a,b]
f(x) dx ≤

∫
[a,b]

f(x) dx + ε(b− a).

If we can do so, we can let ε go to zero, and conclude that
∫

[a,b]f(x) dx =
∫

[a,b]f(x) dx.

24this is kind of non-suprising, since in the definition of Riemann-integrability we assume boundedness
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Let ε > 0. Since f : [a, b]→ R is continuous, by Theorem 9.4 we have that f is uniformly
continuous. That is, there exists δ > 0 such that

(14.2) |f(x)− f(y)| < ε ∀x, y ∈ [a, b]; |x− y| < δ.

Let P = {x1, . . . , xN} be a partition of [a, b] such that ∆xi < δ. For any i, by the min-max
theorem, Theorem 7.2, there exists yi and zi in [xi−1, xi] such that

Mi = sup
[xi−1,xi]

f = f(yi)

and
mi = inf

[xi−1,xi]
f = f(zi).

Thus, by (14.2)
|Mi −mi| = |f(yi)− f(zi)| < ε

In particular
Mi ≤ mi + ε.

But then

U(P, f) =
∑

i

Mi∆xi ≤
∑

i

mi∆xi +
∑

i

ε∆xi = L(P, f) + ε(b− a).

Since
∫

[a,b]f(x) dx is an infinmum over all partitions, and
∫

[a,b]f(x) dx is a supremum over
all partitions we have∫

[a,b]
f(x) dx ≤ U(P, f) ≤ L(P, f) + ε(b− a) ≤

∫
[a,b]

f(x) dx + ε(b− a).

This establishes (14.1) and concludes the proof. □

Lemma 14.12 (Splitting domains). Let f : [a, b]→ R be bounded.

(1) for any c ∈ (a, b) we have ∫
[a,b]

f =
∫

[a,c]
f +

∫
[c,b]

f

(2) for any c ∈ (a, b) we have ∫
[a,b]

f =
∫

[a,c]
f +

∫
[c,b]

f

(3) f : [a, b] → R is Riemann integrable if and only if for any c ∈ (a, b) we have that
f : [a, c]→ R and f : [c, b]→ R are Riemann integrable. Moreover in that case we
have ∫

[a,b]
f =

∫
[a,c]

f +
∫

[c,b]
f.
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Figure 14.4. two partitions can be joined

Proof. (1) First we show

(14.3)
∫

[a,b]
f ≥

∫
[a,c]

f +
∫

[c,b]
f

Let P1 = {x0, . . . , xn} be a partition of [a, c] and P2 = {y0, . . . , ym} a partition of
[c, b]. Observe that this implies that xn = y0 = c. Let

P := {x0, . . . , xn−1, c, y1, . . . , ym}

Cf. Figure 14.4. P is a partition of [a, b]. Since
∫

[a,b] is a supremum we have∫
[a,b]

f ≥ L(P, f) = L(P1, f) + L(P2, f).

This holds for any partition P1 of [a, c] and any partition P2 of [c, b], so we have∫
[a,b]

f ≥ sup
P1

L(P1, f) + sup
P2

L(P2, f) =
∫

[a,c]
f +

∫
[c,b]

f.

That is (14.3) is established.
For the reverse let ε > 0 and pick a a partition P = {x0, . . . , xN} of [a, b] such

that ∫
[a,b]

f ≤ L(P, f) + ε.

Let Q := P ∪ {c}. Then Q is a refinement of P , and by Lemma 14.4 L(Q, f) ≥
L(P, f). ∫

[a,b]
f ≤ L(Q, f) + ε.

However, now we may split Q = Q1 ∪ Q2 with Q1 a partition of [a, c] and Q2 a
partition of [c, d]. By the definition of L(Q, f) and

∫
we have

L(Q, f) = L(Q1, f) + L(Q2, f) ≤
∫

[a,c]
f +

∫
[c,b]

f.

So we arrive at ∫
[a,b]

f ≤
∫

[a,c]
f +

∫
[c,b]

f + ε.

This holds for any ε > 0, letting ε→ 0 we obtain∫
[a,b]

f ≤
∫

[a,c]
f +

∫
[c,b]

f.
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Since by (14.3) we have the converse inequality we conclude that∫
[a,b]

f =
∫

[a,c]
f +

∫
[c,b]

f.

(2) Analogous to the above (exercise)
(3) If f : [a, c]→ R is Riemann integrable and f : [c, b]→ R is Riemann integrable we

have by the above ∫
[a,b]

f =
∫

[a,c]
f +

∫
[c,b]

f

=
∫

[a,c]
f +

∫
[c,b]

f

=
∫

[a,c]
f +

∫
[c,b]

f

=
∫

[a,b]
f

So f : [a, b]→ R is Riemann integrable and we can split the integral as claimed.
For the converse assume that we know f : [a, b] → R is Riemann integrable.

Then with the above argument ∫
[a,c]

f +
∫

[c,b]
f

=
∫

[a,b]
f

=
∫

[a,b]
f

=
∫

[a,c]
f +

∫
[c,b]

f

This implies ∫
[a,c]

f −
∫

[a,c]
f =

∫
[c,b]

f −
∫

[c,b]
f

but from Lemma 14.5 we know then

0
Lemma 14.5
≥

∫
[a,c]

f −
∫

[a,c]
f =

∫
[c,b]

f −
∫

[c,b]
f

Lemma 14.5
≥ 0.

This implies ∫
[a,c]

f −
∫

[a,c]
f =

∫
[c,b]

f −
∫

[c,b]
f = 0,

which implies that f : [a, c]→ R and f : [c, b]→ R are both Riemann integrable.

□
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Lemma 14.13 (Linearity of the integral). Let f, g : [a, b]→ R be Riemann integrable and
λ, µ ∈ R. Then λf + µg is Riemann integrable and we have∫

[a,b]
(λf + µg) = λ

∫
[a,b]

f + µ
∫

[a,b]
g

Exercise 14.14. Prove Lemma 14.13.

Lemma 14.15. Let f : [a, b] → R be a bounded function25 such that for any c, d with
a < c < d < b we have that f : [c, d] → R is Riemann integrable. Then f : [a, b] → R is
Riemann integrable and we have for any sequence a < an < bn < b with limn→∞ an = a
and limn→∞ bn = b that ∫

[a,b]
f = lim

n→∞

∫
[an,bn]

f.

Proof. We have by Lemma 14.12 (where in the second equality we use that
∫

[an,bn]f =∫
[an,bn]f by assumption, since f is integrable on [an, bn])∫

[a,b]
f =

∫
[a,an]

f +
∫

[bn,b]
f +

∫
[an,bn]

f

=
∫

[a,an]
f +

∫
[bn,b]

f +
∫

[an,bn]
f

=
∫

[a,an]
f +

∫
[bn,b]

f −
∫

[a,an]
f −

∫
[bn,b]

f +
∫

[a,b]
f

(14.4)

Thus, ∣∣∣∣∣
∫

[a,b]
f −

∫
[a,b]

f

∣∣∣∣∣ ≤ 2 (|a− an|+ |b− bn|) sup
[a,b]
|f |.

Since an → a and bn → b, and since sup[a,b] |f | <∞, we let n→∞ to find that∣∣∣∣∣
∫

[a,b]
f −

∫
[a,b]

f

∣∣∣∣∣ = 0.

That is f is Riemann integrable.

From (14.4) we also obtain that∣∣∣∣∣
∫

[a,b]
f −

∫
[an,bn]

f

∣∣∣∣∣ < (|an − a|+ |bn − b|) sup
[a,b]
|f |

Letting n→∞ we find that
lim

n→∞

∫
[an,bn]

f =
∫

[a,b]
f.

□

25so this lemma doesn’t work for
∫ 1

0
1
x
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A very annoying property of the integral (Riemann, but also the later Lebesgue integral)
is the following. Assume that f ≤ g ≤ h, and f and h are Riemann integrable:

Exercise 14.16. Find a function g : [0, 1]→ R such that 0 ≤ g(x) ≤ 1 for every x ∈ [0, 1],
but so that g is not integrable.

Hint: take the Dirichlet function from Example 14.9.

Example 14.17. (1) So we have seen that any continuous function f : [a, b] → R is
Riemann integrable. However there are discontinuous functions that are Riemann
integrable. For example let

f(x) :=

1 x ∈ [0, 1]
2 x ∈ (1, 2]

Then f is Riemann integrable. Indeed
f is clearly bounded, and since it is constant

∫
[0,1] fdx exists, i.e. f is integrable on

[0, 1]. f is also integrable on [1, 2], using Lemma 14.15: f is constant on [1 + 1
n
, 2],

thus integrable, and thus also integrable on [1, 2]. By Lemma 14.12 f is thus
integrable on [0, 2].

(2) Crazy functions might be integrable. Let

f(x) :=

sin(1/x) x ∈ (0, 1]
0 x = 0.

Then f is Riemann integrable.
Indeed, f is continuous on [0+ 1

n
, 1] for any n ∈ N. So f is integrable on [0+ 1

n
, 1]

by Proposition 14.11. Since f : [0, 1]→ R is bounded (not continuous) we find that
f is integrable, by Lemma 14.15.

Exercise 14.18. Set

f(x) :=

arctan(1/x) x ̸= 0
25 x = 0

Show that f is Riemann-integrable on [−1, 1].

(Do not use Proposition 14.19)

We conclude: continuity is not necessary for integrability.

Indeed, from Lemma 14.15 we easily obtain

Proposition 14.19. Let f : [a, b] → R be a bounded function, such that for a finite set
Σ = {c1, . . . , cN} we have f is continuous in [a, b]\Σ. Then f is Riemann integrable.

Proof. We may assume that a ≤ c1 < c2 < . . . < cN ≤ b.

We divide [a, b] into the intervals [a, c1], [c1, c2], . . . ,[cN , b].
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We first observe that f is integrable on each of these subintervalls. Indeed, f is integrable
on

[a + 1
n

, c1 −
1
n

], [c1 + 1
n

, c2 −
1
n

], . . . , [cN + 1
n

, b− 1
n

],
because it is continuous and we have Proposition 14.11. Since f is moreover bounded
by assumption, Lemma 14.15 implies that f is integrable on each of the intervals [a, c1],
[c1, c2], . . . ,[cN , b].

By Lemma 14.12 f is continuous on [a, b]. □

Exercise 14.20. Let f : [a, b] → R be a bounded function, such that for a countable
set Σ = {c1, . . .} we have f is continuous in [a, b]\Σ. Without using Riemann-Lebesgue
theorem, Theorem 14.25 below, show that f is Riemann integrable.

Exercise 14.21. The Dirichlet function

D(x) :=

1 x ∈ [0, 1] ∩Q
0 x ∈ [0, 1] \Q

is not Riemann-integrable, see Example 14.9.

Why is this no contradiction to Exercise 14.20?

The strongest result for integrability is the Riemann-Lebesgue Theorem, Theorem 14.25
below. It states that bounded functions are Riemann integrable, if and only if they are
continuous almost everywhere. This means that f : [a, b]\Σ is continuous outside of a set
Σ which has zero measure. There is a larger theory behind this, the theory of measures.

Definition 14.22. A set Σ ⊂ R has (Lebesgue-)measure zero if for all ε > 0 there is a
countable collection of open intervals {I1, I2, . . .} such that

Σ ⊂
∞⋃

i=1
Ii

and ∑∞
i=1 µ(Ii) < ε. Here µ : A ⊂ R → R+ is the Lebesgue measure which for intervals is

simply
µ((a, b)) = µ([a, b)) = µ((a, b]) = µ([a, b]) = b− a.

That is in other words: if the intervals Ii = [ai, bi] then we need to have
∞∑

i=1
|ai − bi| < ε.

Example 14.23. • It is easy to show that if Σ = {x1, . . . , xn, . . .} (i.e. a countable
set), then Σ has Lebesgue-measure zero. Indeed, for any given ε > 0 let

ri := 2−i−2ε,

and set
Ii := (xi − ri, xi + ri).
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Figure 14.5. The Construction of the Cantor set: Take a the line C1 :=
[0, 1] (first line in the image). Now split this interval into three equal parts
and remove the middle part (second line in the image), call this C2. Take
the intervals of C2, split them into thirds, remove the middle part and obtain
C3. etc. Doing this infinitely many times, i.e. considering C := ⋂

i Ci is the
cantor set. It is uncountable, has Hausdorff dimension ln 2/ ln 3 < 1, and it
has Lebesgue measure zero (exercise!).

Then Σ ⊂ ⋃N
i=1 Ii and we have

∞∑
i=1

µ(Ii) =
∞∑

i=1
2−i−1ε = 1

2ε < ε.

• What is curious is that there are uncountable sets Σ that still have Lebesgue-
measure zero. E.g. the Cantor set, see Figure 14.5

Exercise 14.24. Let C be the Cantor set which is defined as follows:

Take C0 = [0, 1].

Then Cn is defined iteratively by taking out the open middle third from any segment, i.e.
C1 deletes the middle third line segment of C0, that gives:

C1 = [0,
1
3] ∪ [23 , 1].

C2 now deletes the middle third of the two line segments from C1, that is

C2 := [0,
1
9] ∪ [29 ,

1
3] ∪ [23 ,

7
9] ∪ [89 , 1].

And so on, See Figure 14.5.

We could also write this26

Cn := Cn−1

3 ∪
(2

3 + Cn−1

3

)
Then

C :=
∞⋂

n=0
Cn

show that

(1) the Cantor set C has Lebesgue measure zero, in the sense of Definition 14.22
26Here: for a set A ⊂ R, a point x ∈ R and λ ∈ R we write

x + λA = {z ∈ R : z can be written as z = x + λa for some a ∈ A}.



INTRODUCTION TO ANALYSIS (MATH 420) VERSION: December 4, 2023 98

Figure 14.6. Henri Lebesgue, 1875-1841. French, known for the Lebesgue Integral.

Figure 14.7. Felix Hausdorff, 1868-1942. German, one of the founders of
modern topology.

(2) (difficult) the Cantor set is uncountable (see wikipedia)

Theorem 14.25 (Riemann Lebesgue Theorem). A bounded function f : [a, b] → R is
Riemann-integrable if and only if there exists some Σ ⊂ R with Lebesgue measure zero
such that f : [a, b]→ R is continuous at every point x ∈ [a, b]\Σ.

Exercise 14.26. Let C the Cantor set.

Define f : [0, 1]→ R as

f(x) :=

0 x ̸∈ Cor x ∈ Q
1 x ∈ C \Q.

https://en.wikipedia.org/wiki/Cantor_set
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Show that f is continuous in [0, 1]\C (hint: C is closed), and thus f is Riemann integrable.
Exercise 14.27. We know that countable sets Σ have zero Lebesgue measure, cf. Exam-
ple 14.23.

• Consider the Dirichlet-function from Example 6.10. We know that it is not inte-
grable, Example 14.9. Why does this not contradict Theorem 14.25?
• Consider the Thomae-function (popcorn function) from Example 6.10. Show that

it is integrable in [0, 1].
Corollary 14.28. Let f : [a, b]→ R be Riemann-integrable function. Let g : D → R be a
continuous map on D such that f([a, b]) ⊂ D. Then if g ◦ f : [a, b] → R is bounded, then
g ◦ f : [a, b]→ R is Riemann integrable.

In particular, if f : [a, b] → R is Riemann-integrable then |f | : [a, b] → R is Riemann
integrable, and we have

|
∫

[a,b]
f | ≤

∫
[a,b]
|f |.

Proof. Observe that f is continuous at c ∈ [a, b] then g ◦ f is continuous at c ∈ [a, b]. That
is, if Σ is the set of discontinuities of f , the set of discontinuities of g ◦f is equal or smaller.
In particular since f is Riemann integrable and g ◦ f is bounded then by Theorem 14.25
g ◦ f is still Riemann integrable.

Since g(x) := |x| is uniformly continuous and takes bounded sets into bounded sets, we have
that |f | is Riemann integrable if f is27. Since moreover f(x) ≤ |f(x)| and −f(x) ≤ |f(x)|
for all x ∈ [a, b] we have ∫

[a,b]
f(x) dx ≤

∫
[a,b]
|f(x)| dx

and
−
∫

[a,b]
f(x) dx ≤

∫
[a,b]
|f(x)| dx

This implies ∣∣∣∣∣
∫

[a,b]
f(x) dx

∣∣∣∣∣ ≤
∫

[a,b]
|f(x)| dx

□

A curious property is that we can change functions in very tiny sets, without changing the
integral.
Theorem 14.29. Let f, g : [a, b]→ R be Riemann-integrable such that f(x) = g(x) for all
x ∈ [a, b]\Σ where for some Σ ⊂ R with Lebesgue measure zero28. Then∫

[a,b]
f =

∫
[a,b]

g.

27observe the converse is false, take the Dirichlet function with +1 and −1!
28We call this: f = g almost everywhere in [a, b]
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Remark 14.30. Theorem 14.29 is false, if g is not assumed to be Riemann integrable.
E.g. f(x) = 0, and g the Dirichlet function

g(x) :=

1 x ∈ Q
0 x ̸∈ Q

Then Σ := {x ∈ R, f(x) ̸= g(x)} = Q is a zero set, however f is integrable and g is not.

Exercise 14.31. Show Theorem 14.29 for Σ a finite set.

Exercise 14.32. [Leb, ex. 5.2.4] Prove the mean value theorem for integrals. That is,
prove that if f : [a, b] → R is continuous, then there exists a c ∈ [a, b] such that

∫
[a.b] f =

f(c)(b− a).

Hint: Use the min-max theorem and the intermediate value theorem.

Exercise 14.33. [Leb, ex. 5.2.6] Suppose f : [a, b] → R is a continuous function and∫
[a,b] f = 0. Prove that there exists a c ∈ [a, b] such that f(c) = 0.

Exercise 14.34. Let f : [a, b]→ R be continuous and is such that∫
[a,b]

fη = 0 for any continuous function η : [a, b]→ R.

Show that f ≡ 0.

Hint: Prove (picture proof is fine) that for any c1 < c2 < d1 < d2 there exists a bump
function, cf. Example 13.2, with the following properties:

• η is Lipschitz continuous on R
• η ≥ 0 in R
• η ≡ 0 in R \ [c1, d2]
• η ≡ 1 in [c2, d2]

Then argue by contradiction, assume that there exists x0 ∈ [a, b] with (say) f(x0) > 0 and
choose η wisely.

The above property is called the fundamental theorem of calculus of variations, not to be
confused with the fundamental theorem of calculus in the next section, Section 15.

Exercise. Let (rn)n∈N be an enumeration of Q. I.e. assume that
Q = {r1, r2, r3, . . .}.

Set for x ∈ R
f(x) :=

∑
{n∈N:rn≤x}

2−n.

(1) Show that for each x ∈ R, f(x) <∞, i.e. f is well-defined.
(2) Show that f is discontinuous for any rational x ∈ R \Q.
(3) Show that f is continuous for any irrational x ∈ R \Q.
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Figure 14.8. The area below a curve approximated via a Riemann sum,
cf. Definition 14.35, with yi = xi−1 (green), yi midpoint between xi−1 and xi

(blue), and yi = xi (purple). (image and applet: https://www.geogebra.
org/m/yGNEAgcw)

(4) Show that f
∣∣∣∣
[0,1]

is an integrable function.

14.1. Riemann sums.

Definition 14.35. let f : [a, b]→ R be any function. Let n ∈ N and set Pn = {x0, . . . , xn}
be the equidistributed partition of [a, b], namely

xi := a + i
b− a

n
.

Take furthermore a collection (yi)n
i=1 ⊂ [a, b] such that yi ∈ [xi−1, xi]. An n-th Riemann

sum of f over [a, b] with points (yi)n
i=1 is defined as

Sn :=
n∑

i=1
f(yi)∆xi.

Proposition 14.36 (Riemann Sums converge). Let f : [a, b] → R be continuous, and set
Sn the n-the Riemann sum as above. Then limn→∞ Sn =

∫
[a,b] fdx.

Proof. Since f is continuous on [a, b], f is integrable.

Fix ε > 0. And let M := sup[a,b] |f | <∞.

https://www.geogebra.org/m/yGNEAgcw
https://www.geogebra.org/m/yGNEAgcw
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Let
Pn := {xi i ∈ {0, . . . , n}},

where we recall xi := a + i b−a
n

. This is clearly a partition of [a, b].

Fix ε > 0. Since f is continuous on [a, b] it is uniformly continuous. Thus there exists for
any δ > 0 some ε > 0 such that

|f(x)− f(y)| < ε ∀|x− y| < δ.

So whenever n > 1
δ
, since yi ∈ [xi−1, xi] and |xi−1 − xi| = 1

n
< δ we have

|f(yi)− f(z)| < ε ∀z ∈ [xi−1, xi].
In particular ∣∣∣∣∣f(yi)− inf

[xi−1,xi]
f

∣∣∣∣∣ < ε and
∣∣∣∣∣f(yi)− sup

[xi−1,xi]
f

∣∣∣∣∣ < ε.

Since we can write

Sn =
n∑

i=1
f(yi)∆xi =

n∑
i=1

inf
[xi−1,xi]

f ∆xi︸ ︷︷ ︸
L(Pn,f)

+
n∑

i=1
(f(yi)− inf

[xi−1,xi]
f(z))︸ ︷︷ ︸

|·|≤ε

∆xi

and
Sn =

n∑
i=1

f(yi)∆xi =
n∑

i=1
sup

[xi−1,xi]
f ∆xi︸ ︷︷ ︸

U(Pn,f)

+
n∑

i=1
(f(yi)− sup

[xi−1,xi]
f(z))︸ ︷︷ ︸

|·|≤ε

∆xi

we then find
U(Pn, f)− ε|b− a| ≤ Sn ≤ L(Pn, f) + ε|b− a|

By the definition of upper and lower integral we thus have∫
[a,b]

f − ε|b− a| ≤ Sn ≤
∫

[a,b]
f + ε|b− a|

Since f is integrable, Proposition 14.11, we have
∫

[a,b]f =
∫

[a,b]f =
∫

[a,b] f , so the above
inequality is actually ∫

[a,b]
f − ε|b− a| ≤ Sn ≤

∫
[a,b]

f + ε|b− a|,

or ∣∣∣∣∣Sn −
∫

[a,b]
f

∣∣∣∣∣ ≤ ε|b− a|, ∀n >
1
δ

.

That is we have shown (for N := 1
δ
)

∀ε > 0∃N :
∣∣∣∣∣Sn −

∫
[a,b]

f

∣∣∣∣∣ ≤ ε|b− a| ∀n ≥ N.

This is the same as
lim

n→∞
Sn =

∫
[a,b]

f.
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□

Observe that the Riemann sum converging does not mean integrability! (that’s why we
assumed continuity in the statment of Proposition 14.36). Indeed:

Example 14.37. Let for x ∈ [0, 1],

f(x) :=

0 1
x
̸∈ N

k x = 1
k
, for some k ∈ N.

Clearly f is not bounded (and as we have seen in Lemma 14.10). But if we choose yi such
that 1

yi
̸∈ N, then the Riemann sum is zero (and thus convergent).

Example 14.38. Using Riemann sums, prove that

lim
n→∞

( 1
n

+ 1
n + 1 + . . . + 1

2n

)
= ln 2.

Proof. Denote the sequence whose limit we must find by an and let f(x) = (1+x)−1. Then
an = 1

n
+ bn, where

bn = 1
n + 1 + 1

n + 2 + · · ·+ 1
n + n

= 1
n

(
1

1 + 1
n

+ 1
1 + 2

n

+ · · ·+ 1
1 + n

n

)
= 1

n

n∑
i=1

f
(

i

n

)
.

We observe that this is of the form of a Riemann sum:

bn =
n∑

i=1
f (xi) ∆xi

where xi = i
n

and ∆xi = 1
n
.

Therefore bn is a Riemann sum approximating the integral
∫

[0,1](1 + x)−1 dx – by Proposi-
tion 14.36. So

lim
n→∞

an = lim
n→∞

1
n

+ lim
n→∞

bn = 0 +
∫

[0,1]

dx

1 + x
= ln(1 + x)

∣∣∣∣1
0

= ln 2.

□

Exercise 14.39. Find

lim
n→∞

√
1 +
√

2 +
√

3 +
√

4 + . . . +
√

n

n
√

n

Hint: Use Riemann sums
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15. Fundamental Theorem of Calculus

We recall from Calculus, the Fundamental Theorem of Calculus:

∫ b

a
f ′(x)dx = f(b)− f(a).

We have so far talked only about the integral
∫

[a,b] g, but not about
∫ b

a g. Its almost the
same, but if b < a it gets a minus sign:

Definition 15.1 (The Calculus integral). Let f : [a, b]→ R be integrable. Then∫ b

a
f(x)dx :=

∫
[a,b]

f(x) dx∫ a

b
f(x)dx := −

∫
[a,b]

f(x) dx.

For simplicity we also set ∫ a

a
f(x)dx = 0.

Here is the fundamental theorem of calculus.

Theorem 15.2. Let f : [a, b] → R be a continuous and differentiable function such that
f ′(x) is Riemann integrable on [a, b]. Then

f(y)− f(x) =
∫ y

x
f ′(z) dz.

Proof. Assume w.l.o.g. y > x.

Let P := {z0, . . . , zn} be a partition of [x, y]. In the interval [zi−1, zi] we can use the mean
value theorem, Theorem 12.2, and find ci ∈ (zi−1, zi) such that

f(zi)− f(zi−1) = f ′(ci)∆zi.

That is,
inf

[zi−1,zi]
f ′ ∆zi ≤ f(zi)− f(zi−1) ≤ sup

[zi−1,zi]
f ′ ∆zi

Summing over i = 1, . . . , n (observe the telescoping for the middle part) we find
L(f ′, P ) ≤ f(y)− f(x) ≤ U(f ′, P )

This holds for any partition P of [a, b] so we find∫
[x,y]

f ′(z)dz ≤ f(y)− f(x) ≤
∫

[x,y]
f ′(z)dz.

Since f ′ is integrable in [a, b] it is also integrable in [x, y]. This implies

f(y)− f(x) =
∫

[x,y]
f ′(z)dz =

∫
[x,y]

f ′(z)dz =
∫

[x,y]
f ′(z)dz.
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□

Another version is the following statement

Theorem 15.3 (The fundamental theorem of Calculus). Let f : [a, b] → R be Riemann
integrable. Then F : [a, b]→ R defined as

F (x) :=
∫

[a,x]
f(z) dz ≡

∫ x

a
f(z) dz

is a Lipschitz continuous function in [a, b] with
|F (x)− F (y)| ≤ sup

[a,b]
|f | |x− y|.

If f is continuous29 at c ∈ [a, b] then F is differentiable at c and F ′(c) = f(c).

Proof. As for Lipschitz continuity observe that by Lemma 14.12 (also cf. Corollary 14.28)

|F (x)− F (y)| = |
∫

[x,y]
f | ≤

∫
[x,y]
|f | ≤ sup

[a,b]
|f | |x− y|.

Next let c < y. Then
F (y)− F (c)− f(c)(y − c)

=
∫

[c,y]
f(z)dz − f(c)(y − c)

=
∫

[c,y]
(f(z)− f(c))dz.

Now assume that f is continuous at c. Then for any ε > 0 there exist δ > 0 such that
|f(c)− f(z)| < ε

2 for all z such that |c− z| < δ. So if y > c is such that |c− y| < δ we have∣∣∣∣∣
∫

[c,y]
(f(z)− f(c))dz

∣∣∣∣∣ ≤ |c− y| sup
z:|z−c|<δ

|f(z)− f(c)| ≤ ε

2 |c− y|.

That is whenever y > c such that |c− y| < δ we have
|F (y)− F (c)− f(c)(y − c)|

|c− y|
≤ε

2 < ε.

Doing the same same argument also for y < c with |c− y| < δ we conclude that for any y
with |y − c| < δ we have

|F (y)− F (c)− f(c)(y − c)|
|c− y|

< ε.

In view of Lemma 10.2, this proves differentiability of F if f is continuous and F ′(c) =
f(c). □

29This is important, think of f as the constnat 1 but in c we set f(c) = 2. The Riemann integral doesn’t
care and says F (x) =

∫ x

a
f(z)dz = (x− a). So F ′(c) = 1 ̸= 2
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One consequence

Proposition 15.4. Let f : [a, b] → R be continuous. Assume that for some c ∈ (a, b)
we have that f is differentiable in [a, b]\{c}, that f ′ is continuous in [a, b]\{c}, and that
L = limx→c f ′(x) exists. Then f is differentiable in c and f ′(c) = L.

Proof. Set

g(z) :=

f ′(z) z ̸= c

L z = c.

By assumption g is continuous and thus Riemann integrable in [a, b], Proposition 14.11.
Set

h(x) := f(a) +
∫

[a,x]
g(z)dz.

By the fundamental theorem of calculus, Theorem 15.3, h is differentiable in [a, b], and
h′(x) = g(x) for all x ∈ [a, b]. Thus (h(x)− f(x))′ = 0 in [a, c) and (c, b].

For any small ε > 0 we can apply Proposition 12.3 in [a, c − ε] and [c + ε, b] and we find
that there exists D1, D2 ∈ R such that

h(x)− f(x) =

D1 x ∈ [a, c− ε]
D2 x ∈ [c + ε, b]

Since h − f is on the other hand continuous, we can ε → 0 and find D1 = D2. Since
h(a) = f(a) we have D1 = D2 = 0. So h = f and thus f is differentiable everywhere. □

Another application of the Fundamental theorem is the change of variables formula

Proposition 15.5. Let g : [a, b] → R be continuously differentiable30 function and f :
[c, d]→ R continuous. If g([a, b]) ⊂ [c, d] then∫ b

a
f(g(x))g′(x) dx =

∫ g(b)

g(a)
f(s) ds.

Proof. Let
F (x) :=

∫ x

c
f(z) dz.

Then by the fundamental theorem, Theorem 15.3, F is continuously differentiable in [c, d].
Thus, F ◦ g is continuously differentiable in [a, b], and we have

(F ◦ g)′(x) = F ′(g(x)) g′(x) = f(g(x)) g′(x).
Again by the fundamental theorem,∫ b

a
(F ◦ g)′(x)dx = F (g(b))− F (g(a)) =

∫ g(b)

g(a)
f(z) dz.

30recall that this means: g is differentiable and g′ is continuous
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That is, we have shown ∫ b

a
f(g(x)) g′(x) dx =

∫ g(b)

g(a)
f(z) dz.

□

Exercise 15.6. Use the product rule for derivatives,
(fg)′(x) = f ′(x)g(x) + f(x)g′(x)

and the fundamental theorem of calculus to show the integration by parts formula:

Let f, g : R→ R be continuous, differentiable and with continuous derivative.

Then for any a < b we have∫ b

a
f(x) g′(x)dx = f(b)g(b)− f(a)g(a)−

∫ b

a
f ′(x) g(x)dx

Exercise 15.7. [Leb, Exercises 5.3.8] Suppose that f : [a, b] → R is continuous. Suppose
that

∫ x
a f(z)dz =

∫ b
x f(z)dz for all x ∈ [a, b]. Show that f(x) = 0 for all x ∈ [a, b].

Further results. Another consequence of the fundamental theorem of calculus is the
(extremely important) Sobolev-Poincaré inequality, in one dimension also called Wirtinger’s
inequality. (It is more complicated to prove in higer dimensions).

Proposition 15.8 (Sobolev-Poincaré inequality). Let I be an interval and f ∈ C1(I) with
either

(1) f(x0) = 0 for some x0 ∈ I
(2)

∫
I f(x) dx = 0

(3)
∫

J f(x)dx = 0 for some nonempty subinterval J , ∅ ≠ J ⊂ I

and let p, q ∈ [1,∞). Then there exists a constant C = C(p, q) (C depends on J in the
third case above) such that

∥f∥Lp(I) :=
(∫

I
|f(x)|p

) 1
p

≤ C diam (I)1+ 1
p

− 1
q

(∫
I
|f ′(x)|q

) 1
q

.

Here diam (I) denotes the diameter of the interval, i.e. if I = [a, b] then diam I = |b− a|.

Sobolev-Poincaré are an example of a quantitative estimate of the form “oscillation |f ′|
controls magnitude |f |”.

Proof of Proposition 15.8. Observe that since f ∈ C1(I), we have that |f | and |f ′| are
Riemann integrable, Corollary 14.28. So are |f |p and |f ′|q via the Riemann-Lebesgue
theorem, Theorem 14.25.

We prove only the case q = 1, for q > 1 we would need Hölder’s inequality.
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(1) Assume that f(x0) = 0 for some x0 ∈ I. Then, from the fundamental theorem of
calculus for any x ∈ I

f(x) = f(x)− f(x0) =
∫ x

x0
f ′(z) dz.

Consequently,
|f(x)| ≤

∫
[x0,x]
|f ′(z)| dz.

Since x0 and x belong to I, we have that [x0, x] ⊂ I, so

|f(x)| ≤
∫

I
|f ′(z)| dz.

thus
|f(x)|p ≤

(∫
I
|f ′(z)| dz

)p

=: Λ.

Observe that the right-hand side is a constant, and the left-hand site is an integrable
function. So∫

I
|f(x)|pdx ≤ diam (I)Λ = diam (I)

(∫
I
|f ′(z)| dz

)p

.

That is, (∫
I
|f(x)|p dx

) 1
p

≤ diam (I)
1
p

∫
I
|f ′(z)| dz.

(2) Only the first part changes in the other cases: If
∫

J f(x)dx = 0, for some nonempty
J ⊂ I then

f(x) = f(x)− 1
diam (J)

∫
J

f(y) dy = 1
diam (J)

∫
J

(f(x)− f(y)) dy

Arguing as above we find

|f(x)| ≤ 1
diam (J)

∫
J

∫
I
|f ′(z)| dz dy =

∫
I
|f ′(z)| dz

The remaining argument stays the same.

□

16. Sequences of functions: Pointwise and uniform convergence

Videolink
Pointwise vs. Uniform Convergence. A relatively short (23:59) video on
the topic of pointwise vs. uniform convergence of a sequence of function.
https://www.youtube.com/watch?v=McKuQEXXzH0

Videolink
An example of proving that a sequence of functions converge pointwise
(13:10) https://youtu.be/gqLqkYwyq5Q

https://www.youtube.com/watch?v=McKuQEXXzH0
https://youtu.be/gqLqkYwyq5Q
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Figure 16.1. The sequence of functions fn(x) = x
n
, more precisely f1

(green), f2 (blue), f3 (red), f100 (brown). If we evaluate the function sequence
at any point x (here x = 1) we see that the function values fn(x) tend to
zero as n→∞

Videolink
An example of showing that a sequence of functions converges uniformly
(9:13) https://youtu.be/i TtG4NqzBM

We have treated sequences (xn)n∈N and functions f : D → R. Now we want to treat
sequences of functions, i.e. (fn)n∈N where fn : D → R are functions (with the same
domain).

We would like to talk about convergence of such sequences, but what does convergence
mean? Here is a first attempt, for each x ∈ D we look at (fn(x))n∈N (which is a sequence
in R), and say that fn converges if fn(x) converges for any x ∈ D. This is pointwise
convergence, and it is a “weak convergence” (as we shall see below).

Definition 16.1 (pointwise convergence). Let (fn)n∈N, f all functions D → R. We say
that fn converges pointwise to f in D if

fn(x) n→∞−−−→ f(x) ∀x ∈ D.

Example 16.2. (1) Let fn(x) = 1 be the constant function in R. Then limn→∞ fn(x) =
1.

(2) fn(x) := x
n
. Then limn→∞ f(xn) = 0, cf. Figure 16.1.

(3) fn(x) := sinn(x) on [0, π]. Then for x = π
2 we have fn(π

2 ) = 1 n→∞−−−→ 1. Since
| sin(x)| < 1 for x ∈ [0, π]\{π/2} we have limn→∞ fn(x) = 0 for all such x. That is
for

f(x) :=

1 x = π
2

0 x ∈ [0, π]\{π
2}

we have limn→∞ fn(x) = f(x). That is: pointwise limit of a continuous function
(even smooth!) function may not be continuous, cf. Figure 16.2.

https://youtu.be/i_TtG4NqzBM
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Figure 16.2. The sequence of functions fn(x) := sinn(x) on [0, π] con-
verges pointwise to a discontinuous function which is 1 at π

2 and zero every-
where else. (image: JoKalliauer/Wikipedia)

Figure 16.3. The sequence of functions hn(x) = cos(nx), more precisely
h1 (green), h2 (blue), h3 (red), h4 (brown), h5 (purple). If we evaluate the
function sequence at any point x ̸= 0 (here x = 1) we see that the function
values hn(x) don’t converge as n→∞

(4) Let fn(x) := x2n for x ∈ [−1, 1]. Then limn→∞ fn(x) = f(x).

f(x) :=

1 x = ±1
0 x ∈ (−1, 1)

(5) Let fn(x) := sin(nx)
n

in R. Then by the squeeze theorem limn→∞ fn(x) = f(x) := 0.
Observe that f and fn are all differentiable. However,

f ′
n(x) = cos(nx).

For x ̸= 0 this sequence of function cos(nx) has no pointwise limit, cf. Figure 16.3.
In particular limn→∞ f ′

n(x) ̸= f ′(x). That is: just because the convergence is
pointwise, even if the functions converges to a differentiable function, the derivatives
may not.

(6) Let (qn)n∈N be an enumeration of Q ∩ [0, 1]. Set

(16.1) fn(x) :=

1 x = q1, . . . , qn

0 otherwise.
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Observe that fn ∈ R[a, b] by Riemann-Lebesgue theorem, Theorem 14.25. But
limn→∞ fn(x) = D(x) ̸∈ R[a, b] (The Dirichlet function from Example 14.9).

So continuity, differentiability, Riemann-integrability are not stable under pointwise con-
vergence.

Later (in Functional Analysis) each function space C0, C1, R[a, b] (bit more difficult), gets
associated with a metric in form of norm, which makes each space a so-called Banach
space, so that convergence with respect to that respective metric is stable.

Here we introduce the L∞-norm31 which makes the set of bounded functions in D (denoted
by L∞(D)) a Banach space (later: in Functional Analysis).
(16.2) ∥f∥L∞(D) := sup

x∈D
|f(x)|.

Lemma 16.3. ∥ · ∥L∞(D) defines a norm on the set L∞(D). Namely for any f, g ∈ L∞(D)
and λ ∈ R we have

• ∥f + g∥L∞(D) ≤ ∥f∥L∞(D) + ∥g∥L∞(D) (triangle inequality)
• ∥λf∥L∞(D) = |λ| ∥f∥L∞(D) (positive homogeneity)
• ∥f∥L∞(D) ≥ 0. Moreover, if ∥f∥L∞(D) = 0 then f ≡ 0.

Exercise 16.4. Prove Lemma 16.3

The metric induced by a norm ∥·∥ is d(f, g) := ∥f−g∥. Uniform convergence is convergence
in L∞-norm.

Definition 16.5. • Let (fn)n∈N be a sequence of functions, fn : D → R. We say that
fn uniformly converges to f , if fn converges to f with respect to the L∞-metric, that
is if

lim
n→∞

∥fn − f∥L∞(D) = 0.

that is
lim

n→∞
sup
x∈D
|fn(x)− f(x)| = 0.

Cf. Figure 16.4
• We say f : D → R belongs to L∞(D), in words: f is a bounded function from D

to R, in formulas f ∈ L∞(D), if ∥f∥L∞(D) ≡ supD |f | <∞

Observe: For uniform convergence we do not assume that fn ∈ L∞(D)!

31why this letters: L∞? Roughly it goes like follows: we know ℓp(N) are all sequences (xn)n∈N such that
∥(xn)n∈N∥ℓp := (

∑∞
n=1 |xn|p)

1
p < ∞. Formally, letting p → ∞, we see that ℓ∞ should be ∥(xn)n∈N∥ℓ∞ =

supn>0 |xn|. Similarly for functions f : [a, b]→ R we set ∥f∥Lp([a,b]) =
(∫

[a,b] |f |
p
) 1

p and again formally as
p→∞ we see that we should set ∥f∥L∞ := supx |f(x)|.
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Figure 16.4. The sequence of functions fn(x) := sinn(x) on [0, π] con-
verges pointwise to a discontinuous function f(x) with f(π

2 ) = 1 and f(x) = 0
for x ̸= π

2 . This convergence is not uniform, since ∥fn − f∥L∞[0,π] = 1. (im-
age: JoKalliauer/Wikipedia)

Example 16.6. Let f(x) = x. Then f ̸∈ L∞(R).

However if we set fn(x) := x + 1
n
, then

f(x)− fn(x) = 1
n

and thus
∥f − fn∥L∞(R) = 1

n
n→∞−−−→ 0.

That is also unbounded functions may converge uniformly.

Why do we call this uniform convergence?

Well, let’s rewrite pointwise convergence fn(x)→ f(x) in ε-N form.

∀x ∈ D, ∀ε > 0 ∃N = N(ε, x) ∈ N : |fn(x)− f(x)| < ε ∀n ≥ N.

As with continuity and uniform continuity, uniform convergence switches the order of x
and N , i.e. it makes N independent of x.

Proposition 16.7. Let (fn)n∈N and f be functions D → R. Then the following are
equivalent

(1) ∥fn − f∥L∞(D)
n→∞−−−→ 0

(2) ∀ε > 0 ∃N = N(ε) ∈ N : |fn(x)− f(x)| < ε ∀n ≥ N ∀x ∈ D.

In particular, uniform convergence implies pointwise convergence (but not vice versa, think
of x2n in (−1, 1)).

Proof. (1) is equivalent to saying:

for any ε > 0 there exists N ∈ N such that

sup
x∈D
|fn(x)− f(x)| ≤ ε ∀n ≥ N.
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But this is equivalent to saying: for any ε > 0 there exists N ∈ N such that
|fn(x)− f(x)| ≤ ε ∀n ≥ N ∀x ∈ D.

which is (2).

The fact that we have ≤ ε instead of < ε can be remedied by taking ≤ ε
2 < ε. □

Example 16.8. • Let fn(x) := n
nx+1 on (0, 1). Then fn(x) n→∞−−−→ 1

x
for all x ∈ (0, 1).

So we have for f(x) = 1
x

that fn(x) converges pointwise to f in (0, 1).
However,

∥fn − f∥L∞((0,1)) = sup
x∈(0,1)

∣∣∣∣ n

nx + 1 −
1
x

∣∣∣∣ ≥ lim
x→0

sup
x∈(0,1)

∣∣∣∣ n

nx + 1 −
1
x

∣∣∣∣ =∞.

That is fn does not converge to f uniformly.
• fn(x) := x2n, in (−1, 1). Then for f(x) = 0, fn(x) n→∞−−−→ f(x) pointwise in (−1, 1).

However
∥fn − f∥L∞(−1,1) = 1 ̸ n→∞−−−→ 0.

• fn(x) := sin(nx)
n

, then

∥fn − 0∥L∞(R) ≤
1
n

n→∞−−−→ 0.

Theorem 16.9. (L∞(D), ∥ · ∥L∞(D)) is a Banach space. That is, it is complete. That
means, any Cauchy sequence (fn)n∈N ⊂ L∞(D) is convergent with respect to L∞(D)-norm.

A sequence (fn)n∈N ⊂ L∞(D) is called Cauchy, if for any ε > 0 there exists N > 0 such
that

∥fn − fm∥L∞(D) < ε ∀n, m ≥ N.

Proof. Let x ∈ D. Then (fn(x))n∈N is a Cauchy sequence in R. Since R is complete,
Theorem 4.4, there exists a limit value, which we call f(x) := limn→∞ f(xn).

f : D → R is a function, and it is our candidate for uniform convergence. Let ε > 0. From
the Cauchy sequence property, take N = N(ε) such that

∥fn − fm∥L∞(D) <
ε

2 ∀n, m ≥ N.

Then for any x ∈ D we have

|fn(x)− fm(x)| < ε

2 ∀n, m ≥ N.

Taking m→∞ (using the pointwise convergence of fm(x)→ f(x)) we find

|fn(x)− f(x)| ≤ ε

2 ∀n ≥ N.

Observe, the last estimate holds for any x ∈ D. That is,

∥fn − f∥L∞(D) = sup
x∈D
|fn(x)− f(x)| ≤ ε

2 ∀n ≥ N.
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Figure 16.5. No Uniform convergence of the seqeunence fn(x) = xn (green)

to the (pointwise limit) function f(x) =

0 x < 0
1 x ≥ 1

. The yellow dotted

lines indicate the ε, and we see that the green curves fn always traverse the
yellow dotted lines

This is uniform convergence.

Lastly we need to show that f ∈ L∞(D), i.e. that f is bounded. But this is easy: From
the uniform convergence which we have proven already, take N such that

∥fn − f∥L∞(D) ≤ 1 ∀n ≥ N.

Then
∥f∥L∞ ≤ ∥fn − f∥L∞(D) + ∥fN∥L∞ ≤ 1 + ∥fN∥L∞ .

The right-hand side is finite, so f is bounded. □

Exercise 16.10. [Leb, 6.1.2]

(1) Find the pointwise limit ex/n

n
for x ∈ R.

(2) Is the limit uniform on R?
(3) Is the limit uniform on [0, 1]?
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Figure 16.6. Uniform convergence can be pretty wild. The red line is
pretty well approximated by the green (and even better by the blue) function
w.r.t to uniform convergence (the yellow dotted line is the red function ±ε)!
We observe: uniform convergence does not control the derivative.

Exercise 16.11. [Leb, 6.1.5] Suppose that (fn)n∈N and (gn)n∈N defined on some set A
converge to f and g respectively uniformly on A. Show that (fn+gn)n∈N converges uniformly
to f + g on A.

Exercise 16.12. Show that if fn : R→ R and gn : R→ R belong to L∞(R) and converge
uniformly to some f , g, then the product fngn converges uniformly to fg.

Exercise 16.13. [Leb, 6.1.6] Find an example of sequences of functions fn : R → R and
gn : R → R that converge uniformly to some f and g : R → R, but such that (fngn)n∈N
does not converge uniformly to fg on R.

Hint: Which condition from Exercise 16.12 is missing?

Exercise 16.14. Let s < t and a < b be finite numbers.

Assume that we have a sequence of functions
fk : [s, t]→ R ∀k ∈ N
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such that fk uniformly converges to some f : [s, t]→ R.

Moreover we assume a ≤ fk(r) ≤ b for all r ∈ [s, t] and for all k ∈ N.

Next, assume F : [s, t]× [a, b]→ R is uniformly continuous. That is

∀ε > 0 : ∃δ > 0 |F (r1, x1)−F (r2, x2)| < ε ∀r1, r2 ∈ [s, t], x1, x2 ∈ [a, b] : |r1−r2|+|x1−x2| < δ.

Show that
gk(s) := F (s, fk(s))

converges uniformly to
g(s) := F (s, f(s)).

Now we turn to the properties of limits under uniform convergence.

First we treat boundedness. The example fn(x) := n
nx+1

n→∞−−−→ 1
x

for x ∈ (0, 1) shows that
the pointwise limit of bounded functions may not be bounded.

Proposition 16.15. Let fn ∈ L∞(D). If ∥fn − f∥L∞(D)
n→∞−−−→ 0 then f is bounded.

Proof. We showed this already in the last part of the proof of Theorem 16.9. □

Remark 16.16. • Proposition 16.15 does not assume a uniform bound on fn (i.e.
we do not have supn supx |fn(x)| <∞ – in this case the pointwise limit would also
be bounded).
• Proposition 16.15 implies: If a sequence of bounded functions converges to an

unbounded function, then this convergence is not uniform.

Continuity is also stable under uniform convergence (recall that x2n, x ∈ [−1, 1] gave an
example of a sequence of functions continuous in [−1, 1] which pointwise converge to a
discontinuous function).

Proposition 16.17. Let fn : D → R be continuous and assume that ∥fn−f∥L∞(D)
n→∞−−−→ 0.

Then f is continuous.

Proof. Let ε > 0 and x ∈ D. Let N ∈ N such that

∥fn − f∥L∞(D) ≤
ε

4 ∀n ≥ N.

For this fixed N take δ > 0 such that

|fN(x)− fN(y)| ≤ ε

4 ∀y ∈ D, |y − x| < δ.
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Then we have for any y ∈ D, |y − x| < δ,
|f(x)− f(y)| ≤|fN(x)− fN(y)|+ |fN(x)− f(x)|+ |fN(y)− f(y)|

≤|fN(x)− fN(y)|+ ∥fN − f∥L∞(D) + ∥fN − f∥L∞(D)

≤ε

4 + ε

4 + ε

4
<ε.

□

Corollary 16.18. Assume that fn is continuous and uniformly converges to f . Then we
can interchange limits (if either side exists, then the other side exists

lim
n→∞

lim
x→c

fn(x) = lim
x→c

lim
n→∞

fn(x) = lim
x→c

f(x).

This may be false if fn converges only pointwise to f .

Proof. Obvious since f is continuous by Proposition 16.17. □

The statement of Corollary 16.18 is false in general if we only have pointwise convergence,

e.g. take fn(x) = 1
nx+1 , which pointwise converges to f(x) =

1 x = 0
0 x ̸= 0.

That is,

limn→∞ limx→0 fn(x) = limn→∞ 1 = 1 But limx→0 f(x) = 0.

We have seen above that the pointwise limit of integrable functions may not be integrable
(think of the approximation of the Dirichlet function, Example 16.2)

Proposition 16.19. Let fn ∈ R[a, b], and assume that ∥fn − f∥L∞([a,b])
n→∞−−−→ 0. Then

f ∈ R[a, b] and we have

lim
n→∞

∫
[a,b]

fn =
∫

[a,b]
lim

n→∞
fn =

∫
[a,b]

f.

Proof. Since fn are Riemann integrable each fn is bounded Lemma 14.10. By Proposi-
tion 16.15 we then have that f is bounded, so upper and lower Riemann integral exist.

Let ε > 0, then there exists N ∈ N such that

∥fn − f∥L∞([a,b]) <
ε

2(b− a) .

We then have ∫
[a,b]

f −
∫

[a,b]
f

=
∫

[a,b]
fn −

∫
[a,b]

fn︸ ︷︷ ︸
=0

+
∫

[a,b]
(f − fn)−

∫
[a,b]

f − fn



INTRODUCTION TO ANALYSIS (MATH 420) VERSION: December 4, 2023 118

So we have for any n ≥ N∣∣∣∣∣
∫

[a,b]
f −

∫
[a,b]

f

∣∣∣∣∣ ≤
∫

[a,b]
|f − fn|+

∫
[a,b]
|f − fn|

Since |f(x)− fn(x)| ≤ ∥f − fn∥L∞([a,b]) for any x ∈ [a, b] we find (cf. Lemma 14.5)∣∣∣∣∣
∫

[a,b]
f −

∫
[a,b]

f

∣∣∣∣∣ ≤ 2(b− a)∥f − fn∥L∞([a,b]) < ε.

This holds for any ε > 0, so if ε→ 0 we have shown∣∣∣∣∣
∫

[a,b]
f −

∫
[a,b]

f

∣∣∣∣∣ = 0.

That is, f is Riemann integrable.

With this, we have for any n ≥ N∣∣∣∣∣
∫

[a,b]
f −

∫
[a,b]

fn

∣∣∣∣∣ =
∣∣∣∣∣
∫

[a,b]
(f − fn)

∣∣∣∣∣ ≤ (b− a) ∥f − fn∥L∞([a,b]) < ε.

This shows the convergence of the integrals. □

Example 16.20. Compute

lim
n→∞

∫ 1

0

nx + sin(nx2)
n

dx.

In principle this is difficult, because there is no closed form of the antiderivative of sin(nx2).
However, for fn(x) := nx+sin(nx2)

n
and f(x) = x we have uniform convergence, i.e.
lim

n→∞
∥fn − f∥L∞([0,1]) = 0

Then by Proposition 16.19 we have

lim
n→∞

∫ 1

0

nx + sin(nx2)
n

dx =
∫ 1

0
lim

n→∞

nx + sin(nx2)
n

dx =
∫ 1

0
x dx.

And since we know from Calculus 1,
∫ 1

0 x dx = 1
2 we have computed

lim
n→∞

∫ 1

0

nx + sin(nx2)
n

dx = 1
2 .

Again, if we only have pointwise convergence, in general

lim
n→∞

∫
[a,b]

fn ̸=
∫

[a,b]
f.

See e,g, (16.1) for an example.

Next we treat differentiability. We have already seen in Example 16.2 that even uniform
convergence does not preserve differentiability; and even if the limit is differentiable, the
limit of the derivative may not equal the derivative of the limit.
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Example 16.21. Let for x ∈ R,

fn(x) := x

1 + nx2 .

Then
f ′

n(x) = 1− nx2

(1 + nx2)2 .

Pointwise we have limn→∞ fn(x) = 0 =: f(x).

We also have uniform convergence, indeed for any x ̸= 0, observe that 1 + nx2 ≥ 2
√

n|x|
(Cauchy-Schwarz), so that

|fn(x)− f(x)| ≤ |x|
2
√

n|x|
= 1√

n
.

This implies (for x = 0 we have fn(0) = 0 = f(0))

∥fn − f∥L∞(R) ≤
1√
n

n→∞−−−→ 0.

So fn converges to f uniformly. However, f ′(0) = 0, but f ′
n(0) = 1, so we have limn→∞ f ′

n(0) ̸=
f(0)

So we need to strengthen uniform convergence to preserve derivatives converging. The
simplest version is

Proposition 16.22. Let32 fn ∈ C1([a, b]) and fn is a Cauchy sequence with respect to the
C1-norm,

∥g∥C1([a,b]) := ∥g∥L∞([a,b]) + ∥g′∥L∞([a,b]).

That is, assume that for any ε > 0 there exists N ∈ N such that
∥fn − fm∥L∞([a,b]) + ∥f ′

n − f ′
m∥L∞([a,b]) < ε ∀n, m ≥ N.

Then there exists g ∈ C1([a, b]) such that
∥fn − g∥C1([a,b])

n→∞−−−→ 0.

That is, fn and f ′
n converge uniformly to g and g′, respectively, on [a, b].

Exercise 16.23. Prove Proposition 16.22.

Exercise 16.24. Find an example of a sequence of function fn : [0, 1]→ R such that

• fn is continuously differentiable, and f ′
n uniformly converges to 0

• fn does not converge

Hint: Actually can you find a sequence of functions fn such that f ′
n = 0 in [0, 1] for all

n ∈ N but fn does not converge?
32Recall that we say f ∈ Ck if f is continuous, the first derivative exists and f ′ is continuous, the k-th

derivative exists and f (k) is continuous
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Theorem 16.25. Let fn ∈ C1([a, b]) be a sequence such that

• f ′
n converges uniformly to some g : [a, b]→ R, i.e.

∥f ′
n − g∥L∞([a,b])

n→∞−−−→ 0
• there exists at least one single point x0 ∈ [a, b] such that f converges pointwise at

this point, i.e. there is y ∈ R such that
fn(x0) n→∞−−−→ y.

Then there exists f ∈ C1([a, b]) such that fn converges uniformly to f , i.e.
∥fn − f∥L∞([a,b])

and we have f ′(x) = g(x) for all x ∈ [a, b].

Proof. Since g is the limit of continuous functions f ′
n ∈ C0([a, b]), and thus continuous and

thus Riemann-integrable. So we can use the fundamental theorem of calculus.

Set
f(x) := y0 +

∫ x

x0
g(z) dz

Then we have from the fundamental theorem, Theorem 15.3,
f ′(x) = g(x).

So all we need to show is that fn uniformly converges to f . Again, by Theorem 15.333,

fn(x) = fn(x0) +
∫ x

x0
f ′

n(z) dz.

So we have
fn(x)− f(x) = fn(x0)− y0 +

∫ x

x0
g(z)− f ′

n(z) dz.

This implies
∥fn − f∥L∞([a,b]) ≤ |fn(x0)− y0|+ |b− a|∥g − f ′

n∥L∞([a,b])
n→∞−−−→ 0.

That is fn converges uniformly to f and we can conclude. □

Just as a remark, the continuous differentiability is not needed in the above theorem.
Indeed we have
Theorem 16.26. Let fn be differentiable on (a, b) and assume

• fn converges pointwise to f in (a, b)
33more precisely: If we set

hn(x) := fn(x0) +
∫ x

x0

f ′
n(z) dz

the Fundamental theorem tells us h′
n(x) = f ′

n(x) for all x ∈ [a, b]. Then the mean value theorem, Propo-
sition 12.3, tells us that hn(x) − fn(x) ≡ c is a constant function. But hn(x0) = fn(x0), so indeed
hn(x)− fn(x) ≡ 0, that is hn(x) = fn(x) for all x ∈ [a, b].
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• f ′
n converges uniformly to g in (a, b).

Then f is differentiable on (a, b) and we have f ′ = g.

Exercise 16.27. Set
fn(x) := n

(
(x + 1

n
)3 − x3

)
Show that (fn)n∈N converges pointwise on R to f(x) = 3x2.

Exercise 16.28. Set
fn(x) := 1 + x + x2 + . . . + xn

and define

f(x) := 1
1− x

x ∈ R \ 1.

(1) Show that (fn)n∈N converges pointwise to f on (−1, 1).
(2) Show that (fn)n∈N does not converge uniformly all on (−1, 1)
(3) Show that (fn)n∈N does not converge at all on R \ (−1, 1).
(4) Show that fn converes to f uniformly on [−r, r] for any r < 1.

Exercise 16.29. Set
fn(x) := nx

1 + nx2 , x ∈ R.

(1) Show that fn converges pointwise on R
(2) Show that fn does not converge uniformly on R (Hint: consider the proposed limit

function, and recall Proposition 16.17)

Exercise 16.30. Let fn(x) := (x− 1
n
)2 for x ∈ [0, 1]. Does fn converge uniformly?

Exercise 16.31. Assume fn : R→ R is uniformly continuous.

Assume that fn uniformly converges to f : R→ R.

Show that f is uniformly continuous.

Exercise 16.32. Set

fn(x) := xn

n + xn
x ≥ 0

Is fn pointwise or uniformly convergent?

Exercise 16.33. Set
fn(x) := e− x2

n x ∈ R

Is fn pointwise or uniformly convergent?
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17. Series of functions – The Weierstrass M-Test

In Calculus we defined for a sequence (xk)k∈N the notion of a series
∞∑

k=1
xk := lim

n→∞

n∑
k=1

xk = lim
n→∞

(x1 + x2 + . . . + xn) .

So if we have a sequence of functions fk : [a, b]→ R we can define( ∞∑
k=1

fk

)
(x) := lim

n→∞

n∑
k=1

fk(x).

We have seen above that pointwise convergence of this series is often not that useful,
uniform convergence is much stronger (e.g. it preserves continuity in the limit!)

Theorem 17.1 (Cauchy condition). Let fk : D → R be a sequence of functions.

The following are equivalent

(1) ∑∞
k=1 fk converges uniformly, that is

∥
n∑

k=1
fk −

∞∑
k=1

fk∥L∞(D)
n→∞−−−→ 0

(2) For any ε > 0 there exists N ∈ N such that for any n > N∣∣∣∣∣∣
n+L∑

k=n+1
fk(x)

∣∣∣∣∣∣ < ε ∀L ∈ N, x ∈ D.

Proof. This is really just the notion of Cauchy sequence (with respect to the L∞-norm) for
the sequence

Sn(x) :=
n∑

k=1
fk(x).

Indeed, by Theorem 16.9, Sn is converging uniformly in D if and only if for any ε > 0 there
exists N ∈ N such that for any n, m > N we have

∥Sn − Sm∥L∞(D) < ε.

Assuming that m > n we set L := m− n and then this is the same as to say
∥Sn − Sn+L∥L∞(D) < ε.

which is exactly what (2) is requesting. □

A more checkable test is called the Weierstrass M -test, it shows absolute convergence
through the dominated convergence theorem for series.

Theorem 17.2 (Weierstrass M-test). Let fk : D → R be a sequence of functions and let
(Mk)k∈N be sequence of nonnegative numbers such that
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(1) |fk(x)| ≤Mk for all x ∈ D and
(2) ∑∞

k=1 Mk <∞ is convergent (thus: absolutely convergent)

Then ∑∞
k=1 fk converges uniformly in D.

Proof. We have for any x ∈ D and n ∈ N, and L ∈ N,∣∣∣∣∣∣
n+L∑

k=n+1
fk(x)

∣∣∣∣∣∣ ≤
n+L∑

k=n+1
Mk.

Since ∑∞
k=1 Mk is convergent (and Mk ≥ 0: absolutely convergent) for any ε > 0 there

exists and N ∈ N such that
n+L∑

k=n+1
Mk < ε ∀n > N, L ∈ N.

Thus by Theorem 17.1, ∑∞
k=1 fk converges uniformly. □

Videolink
A lecture on the Weierstrass M-test,
https://www.youtube.com/watch?v=WzLTgErxep4

The real example of this approach are power series, but here we look at some examples.

Example 17.3. • ex := ∑∞
k=0

xk

k! converges uniformly in every interval [a, b] and is
C∞((a, b)), with (ex)′ = ex.

Indeed, we have
∣∣∣xk

k!

∣∣∣ ≤Mk := max{|a|,|b|}k

k! , and we know that∑∞
k=1 Mk = emax{|a|,|b|} <

∞. So ex converges uniformly.
Now let

gn(x) :=
n∑

k=0

xk

k! .

This is a C∞-function for each n, and since gn converges uniformly to ex we obtain
that ex is continuous.

But also

g′
n(x) =

n∑
k=1

kxk−1

k! =
n∑

k=1

xk−1

(k − 1)! =
n−1∑
k̃=0

xk̃

k̃!
is a continuous function, converges uniformly to ex.

By Proposition 16.22 this implies that ex is differentiable and

(ex)′ = ( lim
n→∞

gn(x))′ = lim
n→∞

g′
n(x) = ex.

By induction we conclude that ex ∈ C∞((a, b)). This holds for any −∞ < a < b <
∞, and we thus say ex ∈ C∞(R).

https://www.youtube.com/watch?v=WzLTgErxep4
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• ∑∞
n=1

sin(nx)
n2 is uniformly convergent on R since∣∣∣∣∣sin(nx)

n2

∣∣∣∣∣ ≤ 1
n2 .

So we can apply the Weierstrass M -test.
• ∑∞

n=1
2x

1+n6x2 converges uniformly in R. Indeed, observe that since 2ab ≤ a2 + b2 we
have

2n3|x| ≤ 1 + n6x2.

Consequently, ∣∣∣∣ 2x

1 + n6x2

∣∣∣∣ ≤ 2|x|
2n3|x|

= 1
n3 .

so we can apply the Weierstrass M -test.
• ∑∞

n=1
x

n2 converges uniformly in any finite interval (a, b), by Weierstrass M -test,
since ∣∣∣∣ x

n2

∣∣∣∣ ≤ max{|a|, |b|}
n2 .

However it does not converge uniformly in R. Indeed,

SL(x) :=
L∑

n=1

x

n2

is not a Cauchy sequence in L∞(R), because it is not even bounded, ∥SL∥L∞(R) =∞.
• Let f(x) := ∑∞

k=1
1

1+k2x
. The series converges uniformly on [a,∞) for any a > 0

but only pointwise on (0,∞). In particular f is continuous on (0,∞).
To show that the series converges uniformly on [a,∞) (and thus, by Proposi-

tion 16.17, f is continuous) we use the Weierstrass M -test. Observe that
1

1 + k2x
≤ 1

1 + k2a
=: Mk

and∑∞
k=1 Mk <∞ by Calculus 2 arguments: indeed, since a > 0 we have limk→∞

k2

1+k2a
=

1
a

<∞ and thus by the Limit comparison test for series, ∑∞
k=1 Mk <∞.

In particular the series converges pointwise in (0,∞), since for any x ∈ (0,∞) it
converges uniformly in [x/2,∞).

However, the series does not converge uniformly on (0,∞). Indeed, we will show
that it does not satisfy the Cauchy condition, see Theorem 17.1. Let

fn(x) :=
n∑

k=1

1
1 + k2x

.

If fn was uniformly converging in (0,∞), by Theorem 17.1

(17.1) ∀ε > 0 ∃N ∈ N : ∀n > m ≥ N : sup
x∈(0,∞)

|fn(x)− fm(x)| < ε
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Observe that
|fn(x)− fm(x)| =

n∑
k=m+1

1
1 + k2x

.

Now let x := 1
n2 ∈ (0, 1) then k2x ≤ 1 for all k ≤ n, and thus

|fn(x)− fm(x)| =
n∑

k=m+1

1
1 + k2x

≥
n∑

k=m+1

1
1 + 1 = n−m− 1

2 .

In particular,
sup

x∈(0,1)
|fn(x)− fm(x)| ≥ n−m− 1

2 .

This is a contradiction to (17.1). Indeed, for ε := 1 and any N ∈ N we can choose
m := N + 1 and n := N + 6 and have

sup
x∈(0,1)

|fn(x)− fm(x)| ≥ n−m− 1
2 = N + 6−N − 2

2 = 2 > 1 = ε.

So (17.1) is not satisfied, i.e. the series is not uniformly convergent.

Exercise 17.4. Use the Weierstrass M-test to show that each of the following series con-
verge uniformly in the given domain:

(1) ∑∞
k=1

xk

k2 for x ∈ [−1, 1]
(2) ∑∞

k=1
1

xk for x ∈ [2,∞)
(3) ∑∞

k=1
xk

xk+1 for −1
2 < x < 1

2

Exercise 17.5. Prove that the following series

f(x) :=
∞∑

n=1

n2 + x4

n4 + x2

converges to a continuous function f : R→ R.

Hint: Use Theorem 17.2 and Proposition 16.17 to show that f : [−R, R]→ R is continuous
for any R > 0.

Exercise 17.6. Show that the series

f(x) :=
∞∑

n=1

sin(nx)
np

defines a continuous function on R.

Exercise 17.7. Show that the series

f(x) :=
∞∑

n=1

cos(2nx)
3n

defines a continuous function on R. Show that it is actually continuously differentiable and
compute its derivative.
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Exercise 17.8. Consider the series

ex :=
∞∑

k=0

xk

k! .

(1) Show that for any R > 0

lim
n→∞

n∑
k=0

xk

k! = ex with uniform convergence in [−R, R]

(2) Show that the above convergence is not uniform in R.

Exercise 17.9. Consider the series

f(x) :=
∞∑

n=1

1
nx

Show that f is continuous on (1,∞). Show that the convergence of the series is not uniform
on (1,∞).

Exercise 17.10. Assume that we have a sequence (an)∞
n=1 ⊂ R so that the series

∞∑
n=1

anxn

converges uniformly on R.

Show that all but finitely many sequence elements of (an)n∈N are zero, i.e. show that there
exists N > 0 such that an = 0 for all n ≥ N .

18. Power series

A very important class of function series are so-called power series (this importance becomes
clearer below with Taylor’s theorem).

The idea that fn(x) = an(x− x0)n, that is we are interested in convergence of
∞∑

n=0
an(x− x0)n.

Here (and henceforth) in a sum we use the convention (x− x0)0 = 1 even for x = x0.

By a change of variables y := x− x0 the question of convergence is about
∞∑

n=0
anyn.

Easy case: this sum converges at y = 0.
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Definition 18.1. Let (an)n∈N0 be a sequence. The radius of convergence of the power
series

∞∑
n=0

anyn

is

sup
{

r ≥ 0 :
∞∑

n=0
|an|rn <∞

}

Example 18.2. • The radius of convergence might be 0. Take for example an := nn.
Then for any r > 0

∞∑
n=1

nnrn =∞,

since for n suitably large nr ≥ 1, so (nr)n ≥ 1.
• The radius of convergence might be ∞. The trivial case is an = 0. But also more

interestingly,

an = 1
n!

Because then ∑∞
n=1 anrn = er which is finite for any r <∞.

• Assume that there exists r0 > 0 such that Λ := supn∈N anrn
0 < ∞. Then for any

r < r0 we have
anrn = an rn

0

(
r

r0

)n

so that for θ :=
(

r
r0

)
< 1 we have

|anrn| ≤ Λθn

By dominated convergence (observe θ < 1)
∞∑

n=0
|an|rn ≤ Λ

∞∑
n=0

θn <∞.

Theorem 18.3. Let (an)n∈N be a sequence with radius of convergence R > 0. Let x0 ∈ R

(1) for any r < R the sequence
∞∑

n=0
an(x− x0)n

converges uniformly in [x0 − r, x0 + r].
(2) for any x ̸∈ [x0 −R, x0 + R] the sequence

∞∑
n=0

an(x− x0)n

does not converge.
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Proof. (1) Let r < R. Since R is the supremum over all ρ such that ∑∞
n=1 |an|ρn

converges, there must be some ρ > r such that
∞∑

n=0
|an|ρn <∞.

In particular this implies that limn→∞ |an|ρn = 0, and thus Λ := supn∈N |an|ρn <∞.
For any x ∈ [x0 − r, x0 + r] we then have

|an(x− x0)n| ≤ |an|rn = |an|ρn︸ ︷︷ ︸
≤Λ

(
r

ρ

)n

Set θ := r
ρ
∈ (0, 1). Then for Mn := Λθn we have ∑∞

n=0 Mn <∞ and

|an(x− x0)n| ≤Mn ∀x ∈ [x0 − r, x0 + r]
By the Weierstrass M -test, the sequence ∑∞

n=0 an(x− x0)n converges uniformly in
[x0 − r, x0 + r].

(2) Let now x ∈ R and assume that
∞∑

n=0
an(x− x0)n

converges. This implies that limn→∞ an(x − x0)n = 0, that is Λ := supn |an||x −
x0|n <∞. Now for any 0 < ρ < |x− x0| we then have

∞∑
n=0

anρn =
∞∑

n=0
an|x− x0|n︸ ︷︷ ︸

≤Λ

 ρ

|x− x0|︸ ︷︷ ︸
≤1


n

<∞

But this means that (by the argument in (1)) the radius of convergence R ≥ ρ.
So we have shown: for any ρ < |x−x0| that R ≥ ρ. This implies that R ≥ |x−x0|.
In other words, if |x− x0| > R then ∑∞

n=0 an(x− x0)n cannot converge.

□

Example 18.4. • In Theorem 18.3 we do not know what happens for x = x0 ±R if
R is the radius of convergence. Indeed, for an = 1 the radius of convergence is 1
and for x = x0 + 1 we have divergence, but for x := x0 − 1 we have convergence
• As we learned in Calculus, the radius of convergence can be found via the ratio

test, it is the largest number R ≥ 0 such that

lim
n→∞

|an+1|
|an|

R ≤ 1

Because then by the ratio test if |x− x0| < R,

lim
n→∞

|an+1||x− x0|n+1

|an||x− x0|n
= lim

n→∞

|an+1|
|an|

|x− x0| < 1.
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Alternatively we can use the root test,

lim
n→∞

n

√
|an|R ≤ 1.

Observe that the formal derivative of a power series is
∞∑

n=0
an(x− x0)n

is
∞∑

n=1
n an(x− x0)n−1

Good news is that the radius of convergence does not change if we take derivatives.

Proposition 18.5. Let (an)n∈N be a sequence with radius of convergence R > 0, and for
some x0 ∈ R set

f(x) :=
∞∑

n=0
an(x− x0)n x ∈ (x0 −R, x0 + R).

Then f is differentiable in (x0 −R, x0 + R) and we have

f ′(x) =
∞∑

n=1
n an(x− x0)n−1 x ∈ (x0 −R, x0 + R).

which has the same radius of convergence. In particular f ∈ C∞((x0 −R, x0 + R)).

Proof. We only need to show that the radius of convergence of (nan)n∈N is the same as
the radius of convergence (an)n∈N. Everything else (in particular the formula for f ′) then
follows from the uniform convergence, Theorem 18.3, and the interchange of limits Propo-
sition 16.22.

To obtain that the radius of convergence of (an)n and (nan)n we argue as follows.

Let R denote the radius of convergence of an, and let R′ the radius of convergence of nan.

Firstly we show R′ ≤ R. This is easy: since |an| ≤ n|an| (for n ≥ 1) we have ∑n n|an|rn <
∞ then also ∑n |an|rn <∞.

So let r < R′, then by definition of the radius of convergence for (nan)n∈N, which we called
R′, we have ∑n n|an|rn < ∞, thus ∑n |an|rn < ∞. But this implies that the radius of
convergence (an)n∈N, which we called R, must satisfy R > r.

So we have
r < R ∀r < R′.

This readily implies that R′ ≤ R (exercise: argue by contradiction!).

It remains to show that R′ ≥ R.

For this take any r, ρ > 0 such that r < ρ < R.
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Since R is the radius of convergence of an and ρ < R, we have
∞∑

n=0
|an|ρn <∞.

As before we conclude that
Λ := sup

n
|an|ρn <∞.

Set θ :=
(

r
ρ

)
< 1 (since r < ρ). Observe that θ ∈ (0, 1) implies that

lim
n→∞

nθ
n
2 = 0.

Thus
λ := sup

n
nθ

n
2 <∞.

So we have
n|an|rn = |an|ρnn

(
r

ρ

)n

= |an|ρn︸ ︷︷ ︸
≤Λ

n (θ)
n
2︸ ︷︷ ︸

≤λ

θ
n
2

That is,
n|an|rn ≤ Λ λ θ

n
2 .

Thus, since θ < 1, so θ
1
2 =
√

θ < 1
∞∑

n=0
n|an|rn ≤ Λ λ

∞∑
n=0

θ
n
2 = Λ λ

∞∑
n=0

(
√

θ)n <∞

Thus the radius of convergence R′ of n|an| satisfies R′ ≥ r.

That is, we have shown: For any r < ρ < R we have R′ ≥ r. Again this implies R′ ≥ R.

Indeed, if R < R′ then we could find and r ∈ (R, R′) such that ∑∞
n=0 |an|rn <∞ which is

impossible by the definition of R (and Theorem 18.3(2)). □

Exercise 18.6. Let (an)n be a sequence with radius of convergence R > 0 and set

f(x) :=
∞∑

n=0
an(x− x0)n x ∈ (x0 −R, x0 + R)

Assume this series has radius R > 0. Show that an = f (k)(x0)
k! .

19. Taylor’s Theorem

Recall the mean value theorem, Theorem 12.2. It stated that (under differentiability
assumptions on f), for any x and y we find c such that.

f(x)− f(y)
(x− y) = f ′(c)
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Figure 19.1. Brook Taylor, 1685 - 1731. English, Mathematician

Figure 19.2. Joseph-Louis Lagrange, 1736 - 1813. Franco-Italian, Mathe-
matician, Astronomer. Taylor’s theorem was proposed by Taylor, but really
proven by Lagrange.

Equivalently we could write
f(y) = f(x) + f ′(c)(y − x).

We can interpret this as “f(y) ≈ f(x)” up to the term f ′(c)(x− y) (which is a term which
growth like |x− y| (if f ′ is a bounded function). That is, the mean value theorem provides
an approximation of f(y) by a constant function g = g(x).

Taylor’s theorem Theorem 19.2 generalizes this to higher order polynomials; it approxi-
mates (suitably differentiable functions) with the Taylor polynomial
Definition 19.1. For a function f defined in an open neighborhood of x0 the n-th Taylor
polynomial of f at x0 is given by

Pn(x) :=
n∑

k=0

f (k)(x0)
k! (x− x0)k

=f(x0) + f ′(x0)(x− x0) + f ′′(x0)
2 (x− x0)2 + f (3)(x0)

6 (x− x0)3 + . . . + f (n)

n! (x− x0)n.

In this (and power series) we define 00 = 1, that is Pn(x0) = f(x0).

The mean value theorem, Theorem 12.2, is then the statement that for any x there exists
c such that

f(x)− P0(x) = f ′(c)(x− x0).
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Taylor’s theorem, generalizes this to arbitrary n.

Theorem 19.2 (Taylor). Let f ∈ Cn([a, b]) be a function with n continuous derivatives on
[a, b] such that f (n) is differentiable on (a, b). For any x0, x ∈ [a, b] there exists c ∈ [x0, x]
such that

f(x) = Pn(x) + Rn(x)
where the remainder term Rn is given by (observe: c depends on each choice of x)

Rn(x) := f (n+1)(c)
(n + 1)! (x− x0)n+1.

Example 19.3. Let f(x) be a polynomial of degree n, then Pn(x) = f(x) (this follows
from Taylor’s theorem, because the (n + 1)-st derivative of f vanishes.

Proof. Fix x0, x ∈ [a, b] . For x = x0 there is nothing to show, so we assume x ̸= x0. Define
M ∈ R such that.
(19.1) f(x) = Pn(x) + M(x− x0)n+1.

That is,

M := f(x)− Pn(x)
(x− x0)n+1 .

We need to show that M has the form f (n+1)(c)
(n+1)! (for some c).

For this we set
g(y) := f(y)− Pn(y)−M(y − x0)n+1.

By the choice of M we have g(x) = 0. Moreover, by the choice of Pn we have g(x0) =
g′(x0) = . . . = g(n)(x0) = 0.

So we apply the mean value theorem, Theorem 12.2/ Rolle’s theorem, Theorem 12.1. We
obtain x1 ∈ (x0, x) such that

g′(x1) = 0.

Since g′(x0) = 0 we apply the mean value theorem, Theorem 12.2/ Rolle’s theorem, The-
orem 12.1 again, and we obtain x2 ∈ (x0, x1) such that

g′(x2) = 0.

etc. and we find c := xn+1 ∈ (x0, xn) ⊂ . . . ⊂ (x0, x) such that
(19.2) g(n+1)(c) = 0.

On the other hand we have from the definition of g,
(19.3) g(n+1)(c) = f (n+1)(c)− 0− (n + 1)!M.

Together (19.2) and (19.3) imply

M = f (n+1)(c)
(n + 1)! .
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Plugging this into (19.1) we have shown that

f(x) = Pn(x) + f (n+1)(c)
(n + 1)! (x− x0)n+1.

This concludes the proof. □

The following is a typical application of Taylor’s theorem. It says how good we can ap-
proximate a Cn+1([a, b])-function by a polynomial of degree n.

Corollary 19.4. Let f ∈ Cn+1([a, b]). Then there exists a constant C = C(f) > 0 such
that for any x0 ∈ [a, b] the

|f(x)− Pn(x)| ≤ C |x− x0|n+1.

The result of Corollary 19.4 is often written in the so-called O or o-notation.

Here we write a quantity as O(t) (we usually don’t care about the precise formulation) if
said quantity satisfies such that lim supt→0+

|O(t)|
t

<∞. In this sense Corollary 19.4 can be
written as: whenever f ∈ Cn+1([a, b]) then

f(x) = Pn(x) + O(|x− x0|n+1) as x→ x0.

A quantity is noted as o(t) if lim supt→0+
|O(t)|

t
= 0. Actually one can show that whenever

f ∈ Cn+1([a, b]) then
f(x) = Pn+1(x) + o(|x− x0|n+1) as x→ x0.

Proof. We reprove Taylor’s theorem, using the fundamental theorem of calculus, Theo-
rem 15.2. If f ∈ C1 then

f(x) = f(x0) +
∫ x

x0
f ′(z1) dz1

Now we make a trick∫ x

x0
f ′(z)dz = f ′(x0)(x− x0) +

∫ x

x0
(f ′(z1)− f ′(x0)) dz1

We can use the the fundamental theorem again, for f ′(z1)− f ′(x0) (if f ∈ C2), and we get

f(x) = f(x0) + f ′(x0)(x− x0) +
∫ x

x0

∫ z1

x0
f ′′(z2)dz2 dz1

Again we do our trick (with a short calculation)∫ x

x0

∫ z1

x0
f ′′(z2)dz2 dz1 = f ′′(x0)

1
2(x− x0)2 +

∫ x

x0

∫ z1

x0
f ′′(z2)− f ′′(x0)dz2 dz1

Repeating this n + 1 times, we have

f(x)− Pn+1(x) =
∫ x

x0

∫ z1

x0
. . .
∫ zn+1

x0

(
f (n+1)(zn+1)− fn+1(x0)

)
dzn+1 dzn . . . dz1
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Next, if f ∈ Cn+1 then for any ε > 0 there exists δ > 0 such that
|
(
f (n+1)(z)− fn+1(x0)

)
| < ε ∀z : |z − x0| < δ.

Observe that if x ∈ R with |x − x0| < δ then for all zi in the integral above, zi ∈ [x, x0].
So we obtain for all x such that |x− x0| < δ,

|f(x)− Pn+1(x)| ≤ |x0 − x|n+1ε.

Which is what we wanted. □

Remark 19.5. With the argument above, one can also obtain another representation of
the remainder term in Taylor’s theorem, namely

Rn(x) =
∫ x

a

fn+1(t)
n! (x− t)n dt.

The additional technique is the interchange of integrals, called Fubini’s theorem, which we
shall not prove here.
Example 19.6. (1) For f(x) = ex we have f (k)(0) = e0 = 1. So for c = 0 we by get

Taylor’s theorem

ex =
n∑

k=0

xk

k! + o(xn).

(2) For f(x) = sin(x) we have f (k)(0) = 0 for k even and f (k) = (−1)k for k odd. So
for c = 0 we by get Taylor’s theorem

sin(x) =
n∑

k=1
(−1)k−1 x2k−1

(2k − 1)! + o(x2n−1).

Cf. Figure 19.3.

Now that we have Taylor’s theorem, if f ∈ C∞([a, b]) we can formally write

f(x) =
∞∑

k=0

f (k)(x0)
k! (x− x0)k.

However, as we have learned in Section 18 the right-hand side has no reason to converge
to anything! Functions for which the right-hand side converges (with a convergence radius
> 0) around a point x0 are called analytic. These are essentially infinite polynomials, which
have many fascinating properties (For more on analytic functions see [KP02]) They appear
again e.g. in complex analysis with holomorphic functions which are analytic everywhere.
Example 19.7. • Assume that f is analytic in some (x0 −R, x0 + R), i.e.

f(x) =
∞∑

k=0

f (k)(x0)
k! (x− x0)k.

Then for any c ∈ (x0 −R, x0 + R) we have

f(x) =
∞∑

k=0

f (k)(c)
k! (x− c)k.
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Figure 19.3. As the degree of the Taylor polynomial rises, it approaches
the correct function. This image shows sin x and its Taylor approximations,
polynomials of degree 1, 3, 5, 7, 9, 11 and 13. Source: Ikamusume-
Fan/Wikipedia

From this, in turn, we can obtain that f has at most finitely many roots in [x0 −
r, x0 + r] for any r < R or it is constant.

Indeed, assume not then there are countably many roots (ci)N
i=1 which have a

limit c, and by continuity c ∈ [x0 − r, x0 + r] and f(c) = 0 so

f(x) =
∞∑

k=0

f (k)(c)
k! (x− c)k.

Now, if f ̸≡ 0 there must be the first k0 such that f (k0)(c) ̸= 0. Then we have

f(x) =
∞∑

k=k0

f (k)(c)
k! (x− c)k = (x− c)k0

∞∑
k=k0

f (k)(c)
k! (x− c)k−k0︸ ︷︷ ︸

̸=0 in x = c

But this representation of f shows that f(x) ̸= 0 for x ̸= c and x ≈ c (since
|x− c| ≪ 1 for x ≈ c). But then c cannot be the limit of values ci with f(ci) = 0.
• The above shows that the function from Example 13.2

f(x) =

0 |x| ≥ 1
e

1
x2−1 |x| < 1.

cannot be analytic around x = ±1.
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Figure 20.1. Émile Picard, 1856-1941. French mathematician.

Figure 20.2. Émile Picard, 1870-1946. Finnish mathematician. Not re-
lated to Jean-Luc.

20. Picard-Lindelöf or Cauchy-Lipschitz Theorem for ordinary
differential equations

The Picard-Lindelöf or Cauchy-Lipschitz theorem is the fundamental theorem of ordinary
differential equations. It is a consequence of the Banach Fixed Point theorem, Section 6,
although we give a direct proof here based on what is called the Picard iteration.

Theorem 20.1. Let [t0, t1] and [p0, p1] be two intervals in R. Suppose that
F : [t0, t1]× [p0, p1]→ R

• is continuous in both variables, i.e.
∀ε > 0 ∃δ > 0 : |F (s, x)−F (t, y)| < ε ∀s, t ∈ [t0, t1], x, y ∈ [p0, p1] : |s−t|+|x−y| < δ.

• and Lipschitz continuous in the second variable, that is there exists L ∈ R such that
(20.1) |F (s, x)− F (s, y)| ≤ L|x− y| for all s ∈ [t0, t1], x, y ∈ [p0, p1].

Fix t̄ ∈ (t0, t1) and x̄ ∈ (p0, p1). There exists a small θ > 0 such that

(1) there is f : (t̄− θ, t̄ + θ)→ R differentiable that solves the Initial Value Problem

(20.2)

f ′(t) = F (t, f(t)) x ∈ (t̄− θ, t̄ + θ)
f(t̄) = x̄.
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(2) The solution is unique, i.e. if there exists a differentiable f̃ : (t̄ − θ, t̄ + θ) → R
satisfying f̃ ′(t) = F (t, f̃(t)) t ∈ (t̄− θ, t̄ + θ)

f̃(t̄) = x̄.

Then f̃(t) = f(t) for all t ∈ (t̄− h, t̄ + θ).

Our first step is the realization that the ODE (20.2) is equivalent to an integral equation

Lemma 20.2. Assume f : (t̄ − θ, t̄ + θ) → R is continuous. Then the following are
equivalent

(1) f is differentiable, and f solves (20.2)
(2) f solves

(20.3) f(t) = x̄ +
∫ t

t̄
F (s, f(s)) ds ∀t ∈ (t̄− θ, t̄ + θ).

Proof. Observe that by assumption s 7→ F (s, f(s)) is continuous and thus Riemann inte-
grable. Now the claim is a consequence of the Fundamental Theorem of Calculus Theo-
rem 15.2 and Theorem 15.3. □

For this integral equation we now prove existence and uniqueness using Picard iterates:

Proof of existence. We define the Picard iterates:
f0(t) := x̄,

and

(20.4) fk(t) := x̄ +
∫ t

t̄
F (s, fk−1(s))ds.

We do so on some closed interval [t̄ − θ, t̄ + θ], where θ will be chosen later (but it is so
small that [t̄− θ, t̄ + θ] ⊂ (t0, t1).

Exercise 20.3. Assume F is as in Theorem 20.1. Show that
sup

s∈[t0,t1],x∈[p0,p1]
|F (s, x)| <∞

When defining fk in (20.4) we have implicitely assumed that fk−1([t̄ − θ, t̄ + θ]) ⊂ [p0, p1]
(so that F (s, fk−1(s)) is defined). This is justified by the following inductive argument.
Assume fk−1([t̄− θ, t̄ + θ]) ⊂ [p0, p1]. Then fk is well-defined in (20.4) and we have

|fk(t)− x̄| ≤ |t− t̄| sup
s∈[t0,t1],x∈[p0,p1]

|F (s, x)| ≤ θ sup
s∈[t0,t1],x∈[p0,p1]

|F (s, x)|.

Recall that x̄ ∈ (p0, p1). Using Exercise 20.3 by choosing θ small enough (but independent
of k!) we ensure that fk(t) ∈ (p0, p1).



INTRODUCTION TO ANALYSIS (MATH 420) VERSION: December 4, 2023 138

Now we see that fk is continuous, and thus uniformly continuous and in particular bounded
on [t̄− θ, t̄ + θ]. We also observe

|fk(t)− fk−1(t)| ≤
∫ t

t̄
(F (s, fk−1(s))− F (s, fk−2(s))) ds

(20.1)
≤ |t− t̄|︸ ︷︷ ︸

≤θ

L sup
s∈[t̄−θ,t̄+θ]

|fk−1(s)− fk−2(s)|
(20.5)

Thus,
sup

t∈[t0−θ,t0+θ]
|fk(t)− fk−1(t)| ≤ θL sup

t∈[t0−θ,t0+θ]
|fk−1(t)− fk−2(t)|

Recall that in (16.2) we called this the L∞-norm, so we could write equivalently
∥fk − fk−1∥L∞([t̄−δ,t̄+δ]) ≤ θL∥fk−1 − fk−2∥L∞([t̄−δ,t̄+δ])

Now we choose θ > 0 possibly even smaller such that θL < 1
2 . Then we have

∥fk − fk−1∥L∞([t̄−δ,t̄+δ]) ≤
1
2∥fk−1 − fk−2∥L∞([t̄−δ,t̄+δ])

We can now argue similiar to the contraction principle, Exercise 4.10: Namely by iteration
we find from the above

∥fk − fk−1∥L∞([t̄−δ,t̄+δ]) ≤ 21−k∥f1 − f0∥L∞([t̄−δ,t̄+δ]) ∀k ≥ 1.

Then for ℓ > k we have

∥fk − fℓ∥L∞([t̄−δ,t̄+δ]) ≤
ℓ∑

i=k+1
∥fi − fi−1∥L∞([t̄−δ,t̄+δ])

≤
ℓ∑

i=k+1
21−i∥f1 − f0∥L∞([t̄−δ,t̄+δ])

≤

 ∞∑
i=k+1

21−i

 ∥f1 − f0∥L∞([t̄−δ,t̄+δ])

≤2−k2 ∥f1 − f0∥L∞([t̄−δ,t̄+δ]).

Reversing the role of ℓ and k we find that for any N ≥ 1
∥fk − fℓ∥L∞([t̄−δ,t̄+δ]) ≤ 2−N2 ∥f1 − f0∥L∞([t̄−δ,t̄+δ]) ∀k, ℓ ≥ N

This says that (fk)k∈N is a Cauchy sequence in L∞, and by Theorem 16.9 and Proposi-
tion 16.17, there exists f : [t̄−θ, t̄+θ] such that fk converges uniformly to f in [t̄−θ, t̄+θ].

But then in particular, F (s, fk−1(s)) converges uniformly to F (s, f(s)) in [t̄ − θ, t̄ + θ],
Exercise 16.14. Using also that uniform convergence implies convergence of the integral,
Proposition 16.19, we have for any t ∈ [t− θ, t + θ]

f(t) = lim
k→∞

fk(t) (20.4)= lim
k→∞

(
x̄ +

∫ t

t̄
F (s, fk−1(s))ds

)
= x̄ +

∫ t

t̄
F (s, f(s))ds
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That is
f(t) =

∫ t

t̄
F (s, f(s))ds

and by Lemma 20.2 we have found that f solves (20.2) in (t̄− θ, t̄ + θ). □

Proof of uniqueness. As for uniqueness, assume that we have f and f̃ : (t̄ − θ, t̄ + θ) are
differentiable and solve (20.2).

Let µ < θ be arbitary.

Then we have in view of (20.2),

f(t) =
∫ t

t̄
F (s, f(s))ds, f̃(t) =

∫ t

t̄
F (s, f̃(s))ds ∀t ∈ [t̄− µ, t̄ + µ]

Thus, arguing as in (20.5) for any t ∈ [t̄− µ, t̄ + µ]

|f(t)− f̃(t)| ≤
∫ t

t̄

(
F (s, f(s))− F (s, f̃(s))

)
ds

(20.1)
≤ µL sup

s∈[t̄−µ,t̄+µ]
|fk−1(s)− fk−2(s)|

Taking the supremum over all t ∈ [t̄− µ, t̄ + µ] we find
∥f − f̃∥L∞([t̄−µ,t̄+µ]) ≤ µL∥f − f̃∥L∞([t̄−µ,t̄+µ]).

But recall that we have µ < θ and we assumed θL < 1
2 , so we find

∥f − f̃∥L∞([t̄−µ,t̄+µ]) ≤
1
2∥f − f̃∥L∞([t̄−µ,t̄+µ]).

But then ∥f − f̃∥L∞([t̄−µ,t̄+µ]) = 0, and thus f = f̃ in [t̄− µ, t̄ + µ]. Since this holds for any
µ < θ we conclude that f = f̃ in (t̄− θ, t̄ + θ). □
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