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a b s t r a c t

This paper illustrates how the use of random set theory can benefit partial identification analysis. We
revisit the origins of Manski’s work in partial identification (e.g., Manski (1989, 1990)) focusing our
discussion on identification of probability distributions and conditional expectations in the presence
of selectively observed data, statistical independence and mean independence assumptions, and shape
restrictions. We show that the use of the Choquet capacity functional and the Aumann expectation
of a properly defined random set can simplify and extend previous results in the literature. We pay
special attention to explaining how the relevant random set needs to be constructed, depending on the
econometric framework at hand.We also discuss limitations in the applicability of specific tools of random
set theory to partial identification analysis.
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1. Introduction

Overview. Partial identification predicates that econometric
analysis should include the study of the set of values for a pa-
rameter vector (or statistical functional) of interest which are
observationally equivalent, given the available data and credible
maintained assumptions.We refer to this set as the parameter vec-
tor’s sharp identification region.1 This principle is perhaps best sum-
marized in Manski’s (2003) monograph on Partial Identification of
Probability Distributions, where he states: ‘‘It has been common-
place to think of identification as a binary event – a parameter
is either identified or it is not – and to view point identification
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distribution of observables as the one in the data, for some data generating process
consistent with all the maintained assumptions, and no other values.

as a precondition for meaningful inference. Yet there is enormous
scope for fruitful inference using data and assumptions that par-
tially identify population parameters’’ (p. 3). Following this basic
principle, partial identification analysis, whether applied for pre-
diction or for decision making, aims at: (1) obtaining a tractable
characterization of the parameters’ sharp identification region;
(2) providing methods to estimate it; (3) conducting test of hy-
potheses and making confidence statements about it.

While conceptually these aims imply a fundamental shift of
focus from single valued to set valued objects, in practice they
have been implemented using ‘‘standard’’ mathematical tools,
such as probability distributions, conditional and unconditional
expectations, laws of large numbers and central limit theorems
for (single valued) random vectors. This approach has been very
productive in many contexts; see, for example, Manski (1995,
2007) and Haile and Tamer (2003) for results on identification,
and Imbens and Manski (2004), Chernozhukov et al. (2007),
Stoye (2009) and Andrews and Soares (2010) for results on
statistical inference. However, certain aspects of the study of
identification and statistical inference in partially identified
models can substantially benefit from, and be simplified by,
the use of mathematical tools borrowed from the theory of
random sets (Molchanov, 2005). This literature originated in the
seminal contributions of Choquet (1953–1954), Aumann (1965)
andDebreu (1967), and its first self-contained treatmentwas given
by Matheron (1975). It has been an area intensely researched in
mathematics and probability ever since.

The applicability of random set theory to partial identifi-
cation is due to the fact that partially identified models are
often characterized by a collection of random outcomes (or co-
variates) which are consistent with the data and the maintained
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assumptions. To fix ideas, suppose that one wants to learn a fea-
ture of the distribution of an outcome variable y conditional on
covariates w. Let w be perfectly observed and y be interval mea-
sured, with P (y ∈ [yL, yU ]) = 1. In the absence of assumptions
on how y is selected from [yL, yU ], the distribution P (y|w) is par-
tially identified. The collection of random variables ỹ such that
P


ỹ ∈ [yL, yU ]


= 1, paired withw, gives all the random elements

that are consistent with the data and themaintained assumptions;
hence, the collection of random elements which are observation-
ally equivalent. In the language of randomset theory, these random
elements constitute the family of selections of a properly specified
randomclosed set; in this example, [yL, yU ]×w.2 Depending on the
specific econometric model at hand, different features of the ob-
servationally equivalent random elementsmight be of interest; for
example, their distributions or their expectations. Random set the-
ory provides probability ‘‘distributions’’ (capacity functionals) and
conditional and unconditional (Aumann) ‘‘expectations’’ for ran-
dom sets, which can be employed to learn the corresponding fea-
tures of interest for the family of their selections, and hence for the
observationally equivalent random elements of interest. The main
task left to the researcher is to judiciously construct the relevant
random set to which these tools need to be applied. In turn, this
leads to characterizing the sharp identification region of a model’s
parameters in the space of sets, in a manner which is the exact
analog of how point-identification arguments are constructed for
point identified parameters in the space of vectors. Laws of large
numbers and central limit theorems for random sets can then be
used to conduct statistical inference, again in a manner which is
the exact analog in the space of sets of how statistical inference is
conducted for point identified parameters in the space of vectors.

The fundamental goal of this paper is to explain when and how
the theory of random sets can be useful for partial identification
analysis. In order to make our discussion as accessible as possible,
and relate it to the origins of Manski’s work on the topic (e.g.,
Manski (1989, 1990)), we focus our analysis on identification in
the presence of interval outcome data, paying special attention to
the selection problem. Statistical considerations can be addressed
using the methodologies provided by Beresteanu and Molinari
(2008), Galichon and Henry (2009b), Chernozhukov et al. (2007,
2009), Andrews and Shi (2009) and Andrews and Soares (2010),
among others, aswe discuss in Section 4 below. Some of the results
that we report have already been derived by other researchers
(specifically, the results in Proposition 2.2, part of 2.4, 3.2, C.2 and
C.3). We rederive these basic results, as this helps make plain the
connection between random set theory and standard approaches
to partial identification.We then provide a number of novel results
which are simple extensions of these basic findings, if derived
using random set theory, but would not be as easy to obtain if
using standard techniques, thereby showcasing the usefulness of
our approach (specifically, the results novel to this paper appear
in Proposition 2.3, part of 2.4, 2.5, 2.6, 3.3, C.1 and C.4). We also
pay special attention to explaining how the relevant randomclosed
set needs to be defined, depending on the econometric framework
at hand. As it turns out, this boils down to the same careful
exercise in deductive logic, based on the maintained assumptions
and the available data, which characterizes all partial identification
analysis. Finally, we discuss limitations in the applicability of
random set theory to partial identification.

Related Literature applying random sets theory in econometrics.
While sometimes applied in microeconomics, the theory of
random sets has not been introduced in econometrics until
recently. The first systematic use of tools from this literature in

2 We formally define the family of selections of a random closed set in
Appendix A.

partial identification analysis appears in Beresteanu and Molinari
(2006, 2008). They study a class of partially identified models
in which the sharp identification region of the parameter vector
of interest can be written as a transformation of the Aumann
expectation of a properly defined random set. For this class
of models, they propose to use the sample analog estimator
given by a transformation of a Minkowski average of properly
defined random sets. They use limit theorems for independent
and identically distributed sequences of random sets, to establish
consistency of this estimator with respect to the Hausdorff
metric. They propose two Wald-type test statistics, based on the
Hausdorff metric and on the lower Hausdorff hemimetric, to test
hypothesis andmake confidence statements about the entire sharp
identification region and its subsets. And they introduce the notion
of ‘‘confidence collection’’ for partially identified parameters as a
counterpart to the notion of confidence interval for point identified
parameters.

General results for identification analysis are given by
Beresteanu et al. (2008, 2009, in press), who provide a tractable
characterization of the sharp identification region of the parame-
ters characterizing incomplete econometric models with convex
moment predictions. Examples of such models include static,
simultaneous move finite games of complete and incomplete in-
formation in the presence of multiple equilibria; random utility
models ofmultinomial choice in the presence of interval regressors
data; and best linear predictors with interval outcome and covari-
ate data. They show that algorithms in convex programming can
be exploited to efficiently verify whether a candidate parameter
value is in the sharp identification region. Their results are based
on an array of tools from random set theory, ranging from con-
ditional Aumann expectations, to capacity functionals, to laws of
large numbers and central limit theorems for random closed sets.

Galichon and Henry (2006, 2009b) provide a specification test
for partially identified structural models. In particular, they use
a result due to Artstein (1983), discussed in Section 2 below, to
conclude that the model is correctly specified if the distribution
of the observed outcome is dominated by the Choquet capacity
functional of the random correspondence between the latent
variables and the outcome variables characterizing the model.
This allows them to extend the Kolmogorov–Smirnov test of
correct model specification to partially identified models. They
then define the notion of ‘‘core determining’’ classes of sets,
to find a manageable class of sets for which to check that the
dominance condition is satisfied. They also introduce an equivalent
formulation of the notion of a correctly specified partially
identified structural model, based on optimal transportation
theory, which provides computational advantages for certain
classes of models.3

Structure of the paper. In Section 2 we address the problem of
characterizing the sharp identification region of probability distri-
butions from selectively observed data, when the potential out-
come of interest is statistically independent from an instrument,
and when it satisfies certain shape restrictions. In doing so, we ex-
tend the existing literature by allowing the instrument to have a
continuous distribution, by allowing formore than two treatments,
and by deriving sharp identification regions for the entire response
function both under independence assumptions and shape restric-
tions. The fundamental tool from random set theory used for this
analysis is the capacity functional (probability distribution) of a
properly specified random set. In Section 3we address the problem
of characterizing the sharp identification region of conditional ex-
pectations from selectively observed data, in the presence of mean

3 For example, this occurs in finite static games of complete information where
players use only pure strategies and certain monotonicity conditions are satisfied.
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independence assumptions and shape restrictions.We also discuss
best linear prediction, and provide a number of novel results of
practical use, concerning the implications of affine transformations
of covariate data (e.g., demeaning and rescaling) for the character-
ization of the sharp identification region of parameters of interest.
The fundamental tools from random set theory used for this anal-
ysis is the Aumann expectation of a properly defined random set
and its support function.

In Section 4we outline how to estimate the sharp identification
regions and conduct statistical inference. In Section 5 we discuss
the issue of how one should choose whether to use the capacity
functional or the Aumann expectation as the main tool to address
a specific partial identification problem. Section 6 concludes.
Appendix A provides basic definitions. Appendix B provides a
few auxiliary Lemmas. Appendix C provides sharp identification
regions for the distribution and the expectation of the response
function under independence and shape restrictions.
Notation. Throughout the paper, we use capital Latin letters to
denote sets and random sets.4 We use lower case Latin letters
for random vectors. We denote parameter vectors and sets of
parameter vectors, respectively by θ and Θ . We let (Ω, F, P)
denote a nonatomic probability space on which all random
variables and random sets are defined.5 We denote the Euclidean
space by ℜ

d, and equip it with the Euclidean norm (which is
denoted by ‖·‖). The theory of randomclosed sets generally applies
to the space of closed subsets of a locally compact Hausdorff
second countable topological space F, see Molchanov (2005). For
the purposes of this paper it suffices to consider F = ℜ

d, which
simplifies the exposition. Denote by F and K , respectively, the
collection of closed subsets and compact subsets of ℜd. Given a set
A ⊂ ℜ

d, let co(A) denote its convex hull.

2. Usefulness of the capacity functional

2.1. Capacity functional and Artstein’s inequality

Consider cases in which all the information provided by
the empirical evidence and the maintained assumptions can be
expressed by saying that a random vector x belongs to a properly
specified random set X (see Definition A.1 in Appendix A) in the
sense that P (x ∈ X) = 1. This happens, for example, when we
observe interval data. In this case the researcher is interested in
a variable x which is only known to lie in an interval X = [xL, xU ],
with P (x ∈ X) = 1. In other words, the unobserved variable of
interest is a selection of the observed random set X (see
Definition A.2 in Appendix A). In order to utilize the information
embodied in the statement that P (x ∈ X) = 1, one needs to be
able to relate features of the random set to corresponding features
of its selections.6

A fundamental result in random set theory, due to Artstein
(1983) and Norberg (1992), provides a necessary and sufficient
condition for P (x ∈ X) = 1, which relates the distribution of the

4 The notations P and E are reserved to the probability measure on the sample
space and the expectation operator taken with respect to this probability measure.
5 Similar results to those reported here apply for the case of atomic probability

spaces, see Molchanov (2005). We restrict attention to the nonatomic case to
simplify the exposition, and becausewhen one considers a sequence of i.i.d. random
elements, the appropriate (product) probability space is always nonatomic.
6 In other partial identification problems, such as for example static discrete

games of complete information in the presence of multiple pure strategy Nash
equilibria, the model predicts a random closed set of equilibrium outcomes Y . The
econometrician observes an equilibrium outcome ywhich, if the model is correctly
specified, satisfies P (y ∈ Y ) = 1, see Beresteanu et al. (2008).

random vector x to the capacity functional of the random set X .7
The capacity functional is a subadditive measure which uniquely
determines the distribution of a random closed set by giving
the probability that the random set hits a given compact set,

see Definition A.3 in Appendix A. In what follows, let ‘‘x
d
∼ x′’’

(‘‘X
d
∼ X ′’’) denote that two random vectors (sets) are equivalent

in distribution.

Theorem 2.1 (Artstein’s Inequality). A random vector x and a
random set X can be realized on the same probability space as random

elements x′ and X ′, with x′
d
∼ x and X ′

d
∼ X, so that P


x′

∈ X ′


= 1,
if and only if

P (x ∈ K) ≤ P (X ∩ K ≠ ∅) ≡ TX (K) ∀K ∈ K. (2.1)

Equivalently, if and only if

P(x ∈ K) ≥ P (X ⊂ K) ≡ CX (K) ∀K ∈ K. (2.2)

When condition (2.1) is satisfied,we say that x is stochastically smaller
than X .8

Proof. The proof of this result for the capacity functional, i.e.,
for condition (2.1), can be found in Molchanov (2005, Corollary
1.4.44). Here we provide an argument for the equivalence
between condition (2.1) and condition (2.2). Consider K ∈ K . Its
complement K c can be approximated from below by a sequence of
compact sets {Kn}, i.e. Kn ↑ K c . By condition (2.1),

P(x ∈ Kn) ≤ P(X ∩ Kn ≠ ∅), n ≥ 1.

By passing to the limit as n → ∞ and using the continuity of
probability from below, we arrive at

P(x ∈ K c) ≤ P(X ∩ K c
≠ ∅).

By the relationship between capacity functional and containment
functional (see Eq. (A.1) in Appendix A), the above can be rephrased
as

1 − P(x ∈ K) ≤ 1 − P(X ⊂ K)

yielding exactly the dominance condition for the containment
functional in (2.2). The reversed implication is similar. �

Intuition for the capacity functional dominance condition. The na-
ture of the domination condition in inequality (2.1) can be traced
to the ordering – or first order stochastic dominance – concept
for random variables. Namely, a random variable x is said to be
stochastically smaller than a random variable y if P(x ≤ t) ≥

P(y ≤ t) for all t ∈ ℜ; in other words, if the cumulative distri-
bution function of x dominates that of y. When this is the case, x
and y can be realized on the sameprobability space as randomvari-

ables x′
d
∼ x and y′

d
∼ y, such that x′

≤ y′ almost surely. This is re-
ferred to as the ordered coupling for random variables x and y. The
stochastic dominance condition can be written also as P(x ∈ A) ≤

P(y ∈ A) for A = [t,∞) and all t ∈ ℜ. Such a set A is increasing
(or upper), i.e. x ∈ A and x ≤ y implies y ∈ A. Using the probabili-
ties of upper sets, this domination condition can be extended to any
partially ordered space. In particular, this leads to the condition for
the ordered coupling for random closed sets Z and X obtained byNor-
berg (1992); see alsoMolchanov (2005, Section 1.4.8). Two random

7 Beresteanu and Molinari (2006, 2008, Proposition 4.1) use this result to
establish sharpness of the identification region of the parameters of a best
linear predictor with interval outcome data. Galichon and Henry (2006) use it
to define a correctly specified partially identified structural model, and derive a
Kolmogorov–Smirnov test for Choquet capacities.
8 In the statement of Artstein’s inequality, compact sets K ∈ K can be replaced

by closed sets F ∈ F .
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closed sets Z and X can be realized on the same probability space as

random sets Z ′
d
∼ Z and X ′

d
∼ X and so that Z ′

⊂ X ′ almost surely,
if and only if the probabilities that Z has non-empty intersection
with each set from K1, . . . , Kn, n ≥ 1, are dominated by those of X .
If Z is a singleton, say Z = {x}, this condition can be substantially
simplified and reduces to the one in inequality (2.1). �

In all that follows, to simplify the exposition, we refer to
Artstein’s inequality as a necessary and sufficient condition for
P (x ∈ X) = 1, with the understanding that such statement
is meant up to an ordered coupling. We denote by Sel (X) the
set of random elements x such that x(ω) ∈ X (ω) P-a.s., see
Definition A.2 in Appendix A. Let PX denote the family of all
probability measuresµx that are dominated by TX , or equivalently
that dominate CX :

PX = {µx : µx (K) ≤ TX (K) ∀K ∈ K}

= {µx : µx (K) ≥ CX (K) ∀ K ∈ K} . (2.3)

Then the capacity functional equals the upper envelope of all
probability measures that it dominates, and the containment
functional equals the lower envelope of all probability measures
that dominate it, see Molchanov (2005, Theorem 1.5.13):

TX (K) = sup {µx (K) : µx ∈ PX } , K ∈ K,

CX (K) = inf {µx (K) : µx ∈ PX } , K ∈ K.

2.2. Conditional distributions and the selection problem

In this Section we illustrate how the use of the capacity
functional, and in particular the application of Theorem 2.1, can
simplify the task of finding the sharp identification region for
probability distributions of interest, in the presence of selectively
observed data, statistical independence assumptions, and shape
restrictions. This problem is discussed, for example, in Manski
(2003, Chapters 7 and 8), where several findings are reported.
It is especially suited to explain the usefulness of the capacity
functional in partial identification, because: (1) the relevant
random sets to which Artstein’s inequality needs to be applied
have been derived by Manski, see for example Manski (1989,
Eq. (3)) and Manski (2003, Proposition 8.1), and are of familiar
use in partial identification9; and (2) statistical independence
assumptions directly constrain the probability distributions of
selections of these random sets, and are therefore easy to couple
with Artstein’s inequality.10

2.2.1. Basic setup and worst-case analysis
Using standard notation (e.g., Neyman (1923)), let T = {0, . . . ,

T } denote a set of mutually exclusive and exhaustive treatments,
let w ∈ W denote some covariates, and let y (·) : T → Y de-
note a response functionmapping treatments t ∈ T into outcomes
y (t) ∈ Y, withY a compact set inℜ.Without loss of generality as-
sume minY = 0, and maxY = 1. Let z ∈ T denote the received
treatment. The object of interest is to learn the probability distribu-
tion of the potential outcomes given covariates w, P(y(t)|w), t ∈

T , and the probability distribution of the response function given
covariatesw, P(y(·)|w). The identification problem arises because
while for t = z the outcome y (t) ≡ y (z) ≡ y is realized and

9 Manski did not use the language of random sets. However, his analysis in
Manski (1989, 1997) effectively gives the random sets which collect all the
information provided by the data and the maintained assumptions, as we show
below.
10 Our formal results are written using the containment functional, as this allows
us to easily characterize the class of sets for which Artstein’s inequality has to be
satisfied. In view of Eq. (A.1), this is equivalent to using the capacity functional.

observable, for t ≠ z the outcome y (t) is counterfactual and un-
observable. Let the tuple (y (·) , z, w) be defined on (Ω, F, P), and
let the researcher observe (y, z, w). To simplify the exposition, we
henceforth leave implicit the conditioning onw.

Manski (2003, Eq. (7.2)) characterizes the sharp identification
region for P(y(t)) as follows:

H [P(y(t))] =

P (y|z = t) P (z = t)+ γP (z ≠ t) , γ ∈ ΓY


(2.4)

with ΓY denoting the collection of all probability measures on Y.
Here we provide an equivalent characterization, using Artstein’s
inequality.
Construction of the relevant random set for y (t)

The data alone reveal that y (t) = y if t = z and y (t) ∈ Y for
t ≠ z, t ∈ T . Hence, for each t ∈ T , all the information embodied
in the data can be expressed by stating that y (t) ∈ Sel (Y (t)), with

Y (t) =


{y} if z = t,
Y if z ≠ t. (2.5)

This is the simplest example of how a random closed set can be
constructed, which collects all the information given by the data
and the maintained assumptions.
Characterization of the sharp identification region of P(y(t))

Let K (Y) denote the family of compact subsets of Y. The sharp
identification region of P(y(t)) can be obtained applying Artstein’s
inequality:

Proposition 2.2. The sharp identification region for P(y(t)) is given
by

H [P(y(t))] = {µ ∈ ΓY : µ(K)

≥ P (y ∈ K |z = t) P (z = t) ∀K ∈ K(Y)}. (2.6)

If Y is finite,

H [P(y(t))] = {µ ∈ ΓY : µ(k)
≥ P (y = k|z = t) P(z = t) ∀k ∈ Y}.

If Y = [0, 1] ,

H [P(y(t))] = {µ ∈ ΓY : µ ([k1, k2])
≥ P (y ∈ [k1, k2] |z = t)P (z = t) ∀k1, k2 ∈ Y : k1 ≤ k2}.

Proof. By Theorem 2.1, y (t) ∈ Sel (Y (t)) if and only if P(y(t)
∈ K) ≥ CY (t) (K)∀K ∈ K (Y). Simple algebra gives CY (t) (Y) = 1
and

CY (t) (K) = P (y ∈ K |z = t) P (z = t)
∀K ∈ K (Y) such that K ≠ Y.

If Y is a finite set, then Lemma B.1 guarantees that it suffices
to check the containment functional dominance condition for all
singleton sets K = {k} ⊂ Y. If Y = [0, 1] , Y (t) is a random closed
convex set, and Lemma B.2 in the Appendix guarantees that it
suffices to check the containment functional dominance condition
for sets K ∈ K (Y)which are intervals.

To see that this characterization is equivalent to the one in
Eq. (2.4), let

PY (t) = {µ ∈ ΓY : µ(K) ≥ P(y ∈ K |z = t)P(z = t) ∀K ∈ K(Y)}.

Take a probability measure µ ∈ H [P(y(t))] as defined in Eq. (2.4).
Then µ = P (y|z = t) P (z = t) + γP (z ≠ t), for some γ ∈ ΓY .
Hence, for any K ∈ K (Y), K ≠ Y (the inequality is trivially
satisfied for K = Y),

µ (K) = P (y ∈ K |z = t) P (z = t)+ γ (K) P (z ≠ t)
≥ P (y ∈ K |z = t) P (z = t) = CY (t) (K) ,
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and therefore µ ∈ PY (t). Conversely, take a probability measure
µ ∈ PY (t). Let

γ (K) =
µ (K)− P (y ∈ K |z = t) P (z = t)

P (z ≠ t)
.

Then γ is a probability measure on Y and therefore µ ∈ H[P
(y(t))]. �

Remark 1. When Y is a finite set, Proposition 2.2 shows that it
suffices to check the containment functional dominance condition
only for singletons k ∈ Y. This is because the realizations of Y (t)
are either singletons, or the entire spaceY. Beresteanu et al. (2009,
Appendix B) discuss general cases where a random set X defined
on a finite space X takes on realizations which are proper subsets
of X but not singletons. In these cases, one needs to check the
containment functional dominance condition also for subsets of X
which are not singletons.

Construction of the relevant random set for y (·)
The data alone reveals that the vector [y(0), y(1), . . . , y(T )]

(i.e., the response function y (·)) has its t-th component, t ∈ T ,
equal to y if z = t , and a member of Y otherwise. Hence, all the
information embodied in the data can be expressed by stating that
y (·) ∈ Sel


Y T


, with

Y T
= ×

T
t=0 Y (t) . (2.7)

Characterization of the sharp identification region of P(y(·))
Let YT denote the Cartesian product Y × Y × · · · × Y. Let

K

YT


denote the family of compact subsets of YT . Let ΓYT

denote the space of all probability measures on YT . Then we have
the following result:

Proposition 2.3. The sharp identification region for P(y(·)) is given
by

H [P(y(·))] =

µ ∈ ΓYT : µ (K) ≥ CYT (K) ∀K ∈ K


YT


.

If Y = [0, 1], it suffices to check the above condition for sets K̃ =

co(K̃(0) ∪ K̃(1) ∪ · · · ∪ K̃(T )), where for t ∈ T either K̃(t) =

∅ or K̃ (t) = Y × · · · × Y ×

kt1, k

t
2


× Y · · · × Y, kt1 ≤ kt2, k

t
1, k

t
2

∈ Y, t ∈ T . For these sets, CYT


K̃


=
∑

t∈T :K̃(t)≠∅
P(y ∈ [kt1, k

t
2]|

z = t)P (z = t) .

Proof. By Theorem 2.1, y (·) ∈ Sel

Y T


if and only if

P (y (·) ∈ K) ≥ P

Y T

⊂ K


∀K ∈ K

YT


. (2.8)

IfY = [0, 1], by LemmaB.2 it suffices to check the above inequality
for convex sets K ⊂ YT . Observe that if more than one of the
projections of K on the axes is a proper subset of Y, then
P


Y T

⊂ K


= 0 and inequality (2.8) is trivially satisfied. For sets
K ⊂ YT such that their projection on all but atmost one of the axis
is equal to Y, the convexity of K implies that the set of all k such
that Y × · · · Y × {k} × Y × · · · Y ⊂ K (with {k} occupying the
t-th place) is an interval denoted by [kt1, k

t
2] as per the definition of

K̃(t). The convexity of K also implies that the corresponding set K̃
introduced in the statement of the theorem is such that K̃ ⊂ K .
Finally note that Y T

⊂ K if and only if Y T is a subset of K̃(t)
for some t ∈ T . This is because the realizations of Y T are the
Cartesian product of copies ofY and a point in one specific position.
Moreover, P (y (·) ∈ K) ≥ P


y (·) ∈ K̃


, hence if inequality (2.8) is

satisfied for K̃ , it is satisfied also for K . For such sets K̃ ,

P(Y T
⊂ K̃) =

−
t∈T :K̃(t)≠∅

P

y ∈


kt1, k

t
2


|z = t


P (z = t) . �

Remark 2 (Binary Outcomes and Fréchet Bounds). Consider the
special case in which Y = {0, 1}. In this case the compact subsets
of Y are ∅, {0} , {1} and {0, 1}. Hence we can use directly Artstein’s
inequality applied to the capacity functional, obtaining:

µ ({j, k}) ≤ P (y = j|z = 0) P (z = 0)
+ P (y = k|z = 1) P (z = 1) , for j, k = 0, 1. (2.9)

Notice that this upper bound on µ ({j, k}) coincides with the
familiar Fréchet bound on the joint probability that (y(0) = j, y(1)
= k). This can be shown by observing that

P (y (0) = j, y (1) = k)

=

1−
t=0

P (y (0) = j, y (1) = k|z = t) P (z = t)

and applying the Fréchet upper bound on each of P(y(0) =

j, y(1) = k|z = t), t = 0, 1. Similarly, one can show that the
lower bound on µ ({j, k}) also coincides with the Fréchet bound.

2.2.2. Adding statistical independence assumptions
Suppose now that the researcher also observes a variable v

defined on (Ω, F, P) and taking values in V ⊂ ℜ. We consider
the following assumptions, which use the nomenclature inManski
(2003, Section 7.4).

Assumption SI (Statistical Independence of Outcomes and Instru-
ments).

P(y(t)|v) = P(y(t)), t ∈ T .

Assumption SI-RF (Statistical Independence of Response Functions
and Instruments).

P (y (·) |v) = P(y(·)).

WhereasAssumption SI is treatment-specific, Assumption SI-RF
posits that the entire response function is statistically independent
from v, and therefore constrains its joint distribution rather
than each of its marginals. Clearly, Assumption SI-RF implies
Assumption SI. It is especially credible when the data come from
a randomized experiment, where treatment is randomly assigned
and the instrument v corresponds to the designated treatment. In
this case, the identification problem persists as described in this
Sectionwhen there is non-compliancewith the randomly assigned
treatment, and z is the treatment actually received andmay ormay
not coincide with v.

Manski (2003, Proposition 7.3) derives the sharp identification
region for P(y(t)) under Assumption SI. The result in Manski
(2003, Corollary 2.2.1) can easily be applied to obtain a useful
alternative characterization when V is a finite set. Balke and Pearl
(1997) derive the sharp identification region for P(y(t)) under
Assumption SI-RFwhen treatments, outcomes and instruments are
all binary. Kitagawa (2009) significantly extends their findings, by
allowing the outcome variable to have a continuous distribution.
Here we extend the treatment of Manski (2003, Corollary 2.2.1),
Balke and Pearl (1997) and Kitagawa (2009) by allowing for
continuous outcomes, more than two treatments, and continuous
instruments. Our use of random set theory allows us to establish
the sharpness result through proofs which are relatively simple
extensions of the proofs of Propositions 2.2 and 2.3. Most
importantly, the results easily extend to the case that one
additionally imposes shape restrictions on the response functions,
in the spirit of Manski (1997), as we show in Section 2.2.3.
Characterization of the sharp identification regions under Assump-
tion SI

Let Y (t) be defined as in Eq. (2.5). Consider first the case
that Assumption SI is maintained. When Y and V are finite sets,
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the following Proposition repeats the result previously given by
Manski (2003), Corollary 2.2.1, applied to the distribution of the
potential outcome y (t). When V = T = {0, 1} but Y is not
necessarily finite, it repeats the result previously given byKitagawa
(2009, Proposition 3.1). In all other cases, it extends their results.

Proposition 2.4. Let Assumption SI hold. Then the sharp identifica-
tion region for P(y(t)) is

H [P(y(t))] =


µ ∈ ΓY : µ (K) ≥ ess sup

v∈V
P (y ∈ K |z = t, v)

× P (z = t|v) ∀K ∈ K (Y)

. (2.10)

If Y is finite,

H [P(y(t))] =


µ ∈ ΓY : µ (k) ≥ ess sup

v∈V
P (y = k|, z = t, v)

× P (z = t|v) ∀k ∈ Y

.

If Y = [0, 1] ,

H [P(y(t))]

=


µ ∈ ΓY : µ ([k1, k2]) ≥ ess sup

v∈V
P(y ∈ [k1, k2] |z = t, v)

× P (z = t|v) ,∀k1, k2 ∈ Y : k1 ≤ k2

.

Proof. Using random sets, all the information in the available data
and maintained assumptions can be expressed as (y (t) , v) ∈

Sel ((Y (t) , v))∩I, where I is the set of random elements (ξ , v) ∈

Y × V such that ξ is statistically independent of v. Notice that
if the SI Assumption is correct, this intersection is non-empty. By
Theorem 2.1, (y (t) , v) ∈ Sel ((Y (t) , v)) if and only if

P ((y(t), v) ∈ M) =

∫
V

P(y(t) ∈ Mv|v)Pv(dv)

≥

∫
V

P(Y (t) ⊂ Mv|v)Pv(dv)

=

∫
V

P((Y (t), v) ⊂ Mv × {v})Pv(dv)

for allM ∈ K (Y × V), whereMv = {k : (k, v) ∈ M} is the section
ofM at level v. Since v is a singleton, the events under the integral
are disjoint and the integral equals P((Y (t), v) ⊂ M). Hence, this
inequality can be written as

P (y (t) ∈ K |v) ≥ P (Y (t) ⊂ K | v) ∀K ∈ K (Y) v-a.s.

By Assumption SI, (y (t) , v) belongs to I. Hence we obtain

P (y (t) ∈ K) ≥ ess sup
v∈V

P (Y (t) ⊂ K | v) ∀K ∈ K (Y) . (2.11)

Observe that for a given v ∈ V , and for any K ∈ K (Y) , K ≠ Y

P (Y (t) ⊂ K | v) = P (Y (t) ⊂ K |z = t, v) P (z = t|v)
+ P (Y (t) ⊂ K |z ≠ t, v) P (z ≠ t|v)

= P (y ∈ K |z = t, v) P (z = t|v) .

If Y is a finite set, Lemma B.1 guarantees that for each v ∈ V it
suffices to check the containment functional dominance condition
for all singleton sets K = {k} ∈ Y, and therefore it also suffices
for the essential supremum of the containment functional. If Y =

[0, 1] , Y (t) is a random closed convex set, and Lemma B.2 in the
Appendix guarantees that for each v ∈ V it suffices to check the
containment functional dominance condition for sets K ∈ K (Y)
which are intervals. Again, this assures that it suffices also for the
essential supremum of the containment functional.

In summary, any µ satisfying the condition in Eq. (2.10) is
the probability distribution of a random variable y (t) such that

(y (t) , v) ∈ Sel ((Y (t) , v)) and y (t) is statistically independent
of v. Conversely, any random variable y (t) such that (y (t) , v) ∈

Sel ((Y (t) , v)) and y (t) is statistically independent of v has a
probability distribution satisfying the condition in Eq. (2.10). �

Characterization of the sharp identification regions under Assump-
tion SI-RF

Consider now the case that the stronger Assumption SI-RF is
maintained. Let Y T be defined as in Eq. (2.7). Then we have the
following result:

Proposition 2.5. Let Assumption SI-RF hold. Then the sharp identifi-
cation region for P (y (·)) is

H [P(y(·))] =


µ ∈ ΓYT : µ (K) ≥ ess sup

v∈V
CYT |v (K)

∀K ∈ K

YT


,

where CYT |v is the conditional containment functional of Y T given
v. If Y = [0, 1], it suffices to check the above condition for sets
K̃ = co(K̃(0) ∪ K̃(1) ∪ · · · ∪ K̃(T )), where for t ∈ T either
K̃(t) = ∅ or K̃ (t) = Y × · · · × Y ×


kt1, k

t
2


× Y · · · × Y, kt1

≤ kt2, k
t
1, k

t
2 ∈ Y, t ∈ T . For these sets, CYT |v


K̃


=
∑

t∈T :K̃(t)≠∅

P

y ∈


kt1, k

t
2


|z = t, v


P (z = t|v) .

Proof. By the same argument as in the proof of Proposition 2.4,
([y(0), . . . , y(T )] , v) ∈


Y T , v


if and only if ∀K ∈ K


YT


P ([y(0), . . . , y(T )] ∈ K |v) ≥ P


Y T

⊂ K |v

v-a.s.

By the SI-RF assumption, (y(0), . . . , y(T )) is statistically indepen-
dent of v. Hence, the above condition reduces to

P ([y(0), . . . , y(T )] ∈ K |v) ≥ ess sup
v∈V

P

Y T

⊂ K |v


∀K ∈ K

YT


.

The specific result for Y = [0, 1] follows by the same argument as
in the proof of Proposition 2.3. Its proof shows that for each v ∈ V it
suffices to check the containment functional dominance condition
for the sets in the statement of the proposition. This assures that
it suffices also for the essential supremum of the containment
functional. �

Remark 3 (Binary Outcomes and Balke–Pearl Bounds). When Y =

T = V = {0, 1}, the compact subsets of Y are ∅, {0} , {1} and
{0, 1} and we can use directly Artstein’s inequality applied to
the capacity functional to replicate the result in Balke and Pearl
(1997) concerning sharp bounds on P (y (t) = 1) , t = 0, 1. To
see why this is the case, observe that the inequalities µ (K) ≥

ess supv∈V CYT |v (K) are equivalent toµ (K) ≤ ess infv∈V TYT |v (K)
and reduce to:

P (y(1) = j, y(0) = j) ≤ min
v∈{0,1}

{P (y = j|v)} , for j = 0, 1.

P(y(1) = j, y(0) = 1 − j) ≤ min
v∈{0,1}

{P(y = j, z = 1|v)

+ P(y = 1 − j, z = 0|v)}, for j = 0, 1.
P(y(i) = j) ≤ min

v∈{0,1}
{P(y = j, z = i|v)+ P(z = 1 − i|v)},

for i, j = 0, 1.

Hence, the upper bound for P (y(1) = 1), for example, is given by

P (y(1) = 1) ≤ min


min
v∈{0,1}

{P(y = 1, z = 1|v)+ P(z = 0|v)},

min
v∈{0,1}

{P(y = 1, z = 1|v)+ P(y = 0, z = 0|v)

+ P(y = 1|1 − v)}


.
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One can similarly obtain other bounds. Notice that these bounds
can also be derived using the Artstein’s inequality/Fréchet bounds
in Eq. (2.9) conditional on v, along with the bounds on each
marginal distribution conditional on v, and then taking the
minimumover v. The connection between the bounds of Balke and
Pearl (1997) and the Fréchet bounds in Eq. (2.9) was first pointed
out by Pepper (2002).

2.2.3. Adding statistical independence and monotone treatment
response assumptions

Consider now the case that one adds to the analysis the
assumption that treatment response is monotone, as in Manski
(1997). Formally,

Assumption MTR (Monotone Treatment Response): Let the set
T be ordered in terms of degree of intensity. Assume that for all
treatment pairs s, t ∈ T

t ≥ s ⇒ P (y (t) ≥ y (s)) = 1.

Construction of the relevant random set for y (t) under Assumption
MTR

The analysis in Manski (1997) shows that all the information
embodied in the available data and Assumption MTR translates
into the fact that, for each t ∈ T , y (t) ∈ Sel


−→
Y (t)


, where

−→
Y (t) =


[0, y] ∩ Y if t < z,
{y} if z = t,
[y, 1] ∩ Y if t > z.

(2.12)

Here we provide novel results, characterizing the sharp identifi-
cation region for P(y(t)) under the joint assumption of statistical
independence and of monotone treatment response.
Characterization of the sharp identification region under Assumptions
SI and MTR

If we jointly impose Assumptions SI and MTR, we have the
following result:

Proposition 2.6. Let Assumptions SI and MTR hold. Then the sharp
identification region for P(y(t)) is

H [P(y(t))] =


µ ∈ ΓY : µ(K) ≥ ess sup

v∈V
[P(y < sup K , z > t|v)

+ P(y ∈ K , z = t|v)+ P(y > inf K , z < t|v)] ∀K ∈ K(Y)

.

If Y = [0, 1],

H [P(y(t))] =


µ ∈ ΓY : µ([k1, k2]) ≥ ess sup

v∈V
[P(y < k2, z > t|v)

+ P(y ∈ [k1, k2], z = t|v)

+ P(y > k1, z < t|v)] ∀k1, k2 ∈ Y : k1 ≤ k2

.

Proof. The assumptions are summarized by requiring that (y(t),
v) ∈ Sel((

−→
Y (t), v)) ∩ I, where I is the set of random elements

(ξ , v) ∈ Y × V such that ξ is statistically independent of v.
If Assumptions SI and MTR are correct, this intersection is non-
empty. By the same argument as in the proof of Proposition 2.4,
(y (t) , v) ∈ Sel


−→
Y (t) , v


if and only if

P (y (t) ∈ K |v) ≥ P

−→
Y (t) ⊂ K |v


∀K ∈ K (Y) v-a.s.

By Assumption SI, (y (t) , v) belongs to I. Hence we obtain

P (y (t) ∈ K) ≥ ess sup
v∈V

P

−→
Y (t) ⊂ K |v


∀K ∈ K (Y) .

Observe that for a given v ∈ V ,

P

−→
Y (t) ⊂ K |v


= P


−→
Y (t) ⊂ K |z > t, v


P (z > t|v)

+ P

−→
Y (t) ⊂ K |z = t, v


P (z = t|v)

+ P

−→
Y (t) ⊂ K |z < t, v


P (z < t|v)

= P (y < sup K |z > t, v) P (z > t|v)
+ P (y ∈ K |z = t, v) P (z = t|v)
+ P (y > inf K |z < t, v) P (z < t|v) .

If Y = [0, 1] , Y (t) is a random closed convex set, and Lemma B.2
in the Appendix guarantees that for each v ∈ V it suffices to
check the containment functional dominance condition for sets
K ∈ K (Y) which are intervals. This assures that it suffices also
for the essential supremum of the containment functional. �

Remark 4. Using the same approach as in this section and
in Section 2.2.2 one can extend these results to obtain sharp
identification regions for the probability distribution of the
response function under statistical independence and shape
restrictions. While conceptually straightforward if using Artstein’s
inequality, this extension is notationally cumbersome.We provide
it in Appendix C.

3. Usefulness of the Aumann expectation

3.1. Aumann expectation represented through its support function

In many partial identification problems the object of inter-
est is a conditional expectation, or taking expectations is a cru-
cial step towards characterizing a sharp identification region (see,
e.g., Beresteanu et al. (in press)). In these cases, the informa-
tion provided by the empirical evidence and the maintained as-
sumptions can often be expressed by saying that the conditional
expectation of a random vector x belongs to the conditional
Aumann expectation of a properly defined random set X , in the
sense that P (E (x|F0) ∈ E (X |F0)) = 1, where F0 ⊂ F denotes a
sub-σ -algebra, see Definitions A.4 and A.5 in Appendix A.

If X is an integrably bounded random compact set, i.e.,
sup {‖x‖ : x ∈ X}has a finite expectation, on anonatomic probabil-
ity space, then E [X] is a convex set and coincides with E [co (X)] ,
see Molchanov (2005, Theorem 2.1.15).11 Moreover, because X
takes its realizations in a subset of the finite dimensional space
ℜ

d, E [X] is closed, see Molchanov (2005, Theorem 2.1.24). By the
same argument, provided that the probability space contains no
F0-atoms (i.e., ∀A ∈ F having positive measure, there is a B ⊆

A such that 0 < P (B|F0) < P (A|F0) with positive probability),
E [X |F0] is a closed convex set almost surely, and E [X |F0] =

E [co (X) |F0].12 This result is especially useful, because it im-
plies that E [X |F0] is equal to the intersection of its supporting
half-spaces (see Rockafellar (1970, Theorem 13.1) and Molchanov
(2005, Theorem 2.1.49-(iii))), which in turn are determined by its
support function h (E [X |F0] , u), see Definition A.6 in Appendix A.
In particular,
E [X |F0] =


u∈ℜd

{η : ⟨η, u⟩ ≤ h (E [X |F0] , u)}

=


u:‖u‖=1

{η : ⟨η, u⟩ ≤ h (E [X |F0] , u)} ,

where ⟨·, ·⟩ denotes the inner product in ℜ
d, and the last

equality follows from the sublinearity of the support function, see
Molchanov (2005, Appendix F).

11 Of course the same conclusion holds if X is an integrably bounded random
compact set with almost surely convex realizations.
12 We continue the discussion focusing on E [X |F0] and assuming that the
probability space contains no F0-atoms, but of course all the results apply, with
obvious modifications, to E [X].
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The above considerations imply that a candidate η belongs to
E [X |F0] if and only if ⟨η, u⟩ ≤ h (E [X |F0] , u)∀u : ‖u‖ = 1.
This gives a necessary and sufficient condition for P(E (x|F0) ∈

E (X |F0)) = 1, which relates the conditional expectation of the
randomvector x to the conditional Aumann expectation of the ran-
dom set X . Yet, the family of all selections is very rich even for sim-
ple random sets. But a fundamental simplification is possible, by
relating the support function of E [X |F0] to E (h (X, u) |F0). This is
a fundamental result in random set theory, first given by Artstein
(1974) for the case of unconditional Aumann expectations.13

Theorem 3.1 (Aumann Expectation and Support Function). Let X ∈

F be an integrably bounded random set defined on a probability
space (Ω, F, P). Let F0 ⊂ F be a sub-σ -algebra, and assume that
the probability space contains no F0-atoms.14 Then the conditional
Aumann expectation of X is the unique convex closed set E [X |F0]
satisfying

E (h (X, u)| F0) = h (E [X |F0] , u) for all u ∈ ℜ
d.

Proof. See Dynkin and Evstigneev (1976, Theorem 1.2) and
Molchanov (2005, Theorems 2.1.22 and 2.1.47-iv). �

Hence, one can conclude that a randomvectorη belongs toE [X |F0]
if and only if ⟨η, u⟩ ≤ E (h (X, u)| F0)∀u : ‖u‖ = 1. The latter
conditional expectation is usually simple to compute.

Remark 5. A simple application of Theorem 3.1 yields immedi-
ately the sharp identification region for E(y(t)) and E(y(·)), hence
replicating results in Manski (2003, Eqs. (7.10) and (7.11)). Using
the support function/Aumann expectation approach, the analysis
easily extends to cases where mean independence assumptions
and shape restrictions are imposed. See Propositions C.2–C.4 in Ap-
pendix C. A characterization of the sharp identification region for
E(y(·)) under these various sets of assumptions is especially im-
portant if the ultimate goal of the researcher is treatment choice,
see e.g. Manski (2003, Chapter 7).15

3.2. Best linear prediction and the selection problem

We now consider the case that one is interested in best linear
prediction of y (t) given covariates w (including a constant). Let
θ denote the parameters of such linear prediction, let w be of di-
mension d × 1, and let L


y (t)|w0


= w0′θ denote the linear pre-

diction of y (t) given a specific value of w = w0. Notice that here
we are not assuming a linear model in any substantive sense, nor
arewe assuming availability of instruments.16 Our analysis revisits
results in Beresteanu and Molinari (2008, Section 4), specializing
them for specific questions of interest in empirical applications.17
Stoye (2007) provides related findings; in particular, he derives

13 The result of the following Theorem also holds if X is a random closed set
with almost surely convex realizations. It is easy to see that supu:‖u‖=1 |h (X, u)| =

sup {‖x‖ : x ∈ X} = ‖X‖H . Hence, if X is integrably bounded, then E [|h (X, u)| |F0]
is finite for all u ∈ ℜ

d.
14 Formally, assume that ∀A ∈ F having positive measure, there is a B ⊆ A such
that 0 < P (B|F0) < P (A|F0)with positive probability.
15 For example, a planner who wants to maximize population mean welfare
needs to work with the elements of H [E(y(·))] rather than with the elements of
{H [E(y(t))] , t ∈ T }.
16 Bontemps et al. (2008) study the related problem of best linear prediction with
interval outcome data, assuming a linear model and the availability of instruments.
They allow for the presence of more instruments than parameters, and extend the
familiar Sargan test for overidentifying restrictions to partially identified models.
17 Beresteanu et al. (2009, Section 5) provide a tractable characterization of
the sharp identification region of θ for the more general problem of best linear
prediction with interval data both on outcomes and covariates.

sharp identification regions for linear combinations of coefficients
of best linear predictors which coincide with those given below for
a single component of the vector θ and for L


y (t)|w0


.

Let Y (t) be defined as in Eq. (2.5), and letΣ ≡ E

ww′


. Assume

thatΣ is finite and of full rank. Let G (t) = {g : g = wψ,ψ ∈ Sel
(Y (t))}. Beresteanu and Molinari (2008) show that G (t) is a
random closed set and the sharp identification region for θ is given
by

H (θ) =

θ : θ = Σ−1E (wψ) ,ψ ∈ Sel (Y (t))


=


θ : θ = Σ−1E (g) , g ∈ Sel (G (t))


= Σ−1E [G (t)] . (3.1)

They also show that the sharp identification region for each
component θk of θ is given by

H (θk) = {θk : ∃θ−k such that [θk, θ−k] ∈ H (θ)}

=


E


min {w̃ky1 (z = t) , w̃k [y1 (z = t)+ 1 (z ≠ t)]}


E


w̃2

k

 ,

E

max {w̃ky1 (z = t) , w̃k [y1 (z = t)+ 1 (z ≠ t)]}


E


w̃2

k

 
,

where, with some abuse of notation, [θk, θ−k] denotes a candidate
value for θ, w̃k is the residual obtained after projecting wk on the
other covariatesw−k, and 1 (·) is the indicator function of the event
in parenthesis.

Remark 6. Ponomareva and Tamer (2011) study the problem
of misspecification in moment inequality models. One of the
examples they use is the linear model for conditional expectations
in the presence of interval outcome data. They propose a
misspecification robust Least Squares Set. This set collects all
parameter values giving a best linear approximation to some
conditional expectation function that lies between the upper
and lower conditional expectation functions corresponding to the
upper and lower points in the interval data. Their Least Squares
Set is equal to H (θ) in Eq. (3.1). To see this, it suffices to take
Example A.1—Selections from Appendix A, and see that Sel (Y (t))
coincides with the set of variables for which Ponomareva and
Tamer run linear projections.

Suppose that one is interested in predicting y (t) for a specific
value ofw, denotedw0. This amounts to obtaining

H

L

y (t)|w0

=

r : r = w0′θ, θ ∈ H (θ)


.

Alternatively, one might be interested in contrasts among predic-
tions obtained for different values of w, denoted w0 and w1. This
amounts to obtaining

H

L

y (t)|w = w1

− L

y (t)|w = w0

=


r : r =


w1

− w0′
θ, θ ∈ H (θ)


.

These sets are intervals inℜ, hence fully described by their support
functions for u = ±1. This observation leads to an extremely
simple characterization:

Proposition 3.2. The sharp identification region for L

y (t)|w0


is

given by

H

L

y (t)|w0

= [E[min{w0′Σ−1wy1(z = t),

w0′Σ−1w(y1(z = t)+ 1(z ≠ t))}],
E[max{w0′Σ−1wy1(z = t), w0′Σ−1w(y1(z = t)
+ 1(z ≠ t))}]].

The sharp identification region for L(y(t)|w = w1)−L(y(t)|w = w0)
is given by
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H

L

y (t)|w = w1

− L

y (t)|w = w0

=


E


min


w1

− w0′
Σ−1wy1 (z = t) ,

w1
− w0′

Σ−1w (y1 (z = t)+ 1 (z ≠ t))

,

E

max


w1

− w0′
Σ−1wy1 (z = t) ,

w1
− w0′

Σ−1w (y1 (z = t)+ 1 (z ≠ t))


.

If w1
=


w0

k + 1, w0
−k


, then

H

L

y (t)|w = w1

− L

y (t)|w = w0

= H (θk) .

Proof. To obtain the sharp identification region, recall that r =

w0′θ ∈ H

L

y (t)|w0


if and only if ur ≤ h


H


L

y (t)|w0


, u


for u = ±1, so that it suffices to characterize the support function
of H


L

y (t)|w0


. This function is equal to:

h

H


L

y (t)|w0 , u = h


w0′Σ−1E (G (t)) , u


= max

g∈G(t)
uw0′Σ−1E (g)

= max
ψ∈Y (t)

uw0′Σ−1E (wψ) = max
ψ∈Y (t)

E

uw0′Σ−1wψ


.

Simple algebra gives the final result, observing that Y (t) can be
written as

Y (t) = [y1 (z = t) , y1 (z = t)+ 1 (z ≠ t)] ∩ Y.

The same reasoning and algebra gives the sharp identification
region for contrasts. The last result follows from observing that
whenw1

=

w0

k + 1, w0
−k


,

H

L

y (t)|w = w1

− L

y (t)|w = w0

=

r ∈ ℜ : r =


w0

k + 1

θk + w0′

−kθ−k

− w0′θ, θ ∈ H [θ ]


= {θk : ∃θ−k such that [θk, θ−k] ∈ H (θ)} = H [θk] . �

A nice consequence of this result is that the identification regions
for the best linear predictor, for its contrasts, and for each
component of θ can be easily calculated by running simple linear
projections on a standard statistical package such as, for example,
Stata.18

It is also common, in empirical applications, to work with affine
transformations of the covariatesw. Demeaning or standardization
are typical affine transformations used in practice. Here we apply
them to the non-constant components of w. LetΠ be a (d − 1) ×

(d − 1) matrix of full rank and let λ be a (d − 1) × 1 vector.
Let w̆−1 = Πw−1 + λ. If for example one is interested in
demeaning w, then Π is the identity matrix and λ = −E (w−1).
The following proposition shows how the sharp identification
regions of parameters of interest change, in conjunctionwith these
affine transformations.

Proposition 3.3. The sharp identification region for the coefficients θ̆
of the best linear predictor of y (t) given w̆ =


1 w̆−1


is

H

θ̆


=

[
1 −λ′Π−1′

0 Π−1′

]
H (θ) .

The sharp identification region for L

y (t)| w̆0


is

H

L

y (t)| w̆0

= H

L

y (t)|w0 .

18 Stata code implementing sample analog estimators of these identifica-
tion regions, along with confidence sets, confidence collections, and test of
hypothesis as in Beresteanu and Molinari (2008), is freely downloadable at
http://www.arts.cornell.edu/econ/fmolinari/#Stata_SetBLP. This code also allows
for estimation, confidence statements, and test of hypothesis concerning the iden-
tification regions of any two components of θ.

Proof. Consider first the parameters of the best linear predictor.
Observe thatwith the non-transformed covariates, θ ∈ H (θ) if and
only if there exists a ψ ∈ Sel (Y (t)) such that E


w


ψ − w′θ


=

0. Similarly, with the transformed covariate, θ̆ ∈ H

θ̆

if and only

if there exists a ψ̆ ∈ Sel (Y (t)) such that E

w̆


ψ̆ − w̆′θ̆


= 0.

Take θ ∈ H (θ) such that for aψ ∈ Sel (Y (t)), E

w


ψ − w′θ


=

0. Let

θ̆ =

[
1 −λ′Π−1′

0 Π−1′

] [
θ1
θ−1

]
.

Then

E

w̆


ψ − w̆′θ


= E


(Πw−1 + λ)


ψ − (Πw−1 + λ)′Π−1′θ−1

+ λ′Π−1′θ−1 − θ1


= E

(Πw−1 + λ)


ψ −


w′

−1Π
′
+ λ′


Π−1′θ−1

+ λ′Π−1′θ−1 − θ1


= E

(Πw−1 + λ)


ψ − w′

−1θ−1 − θ1


= 0.

Hence θ̆ ∈ H

θ̆

. The reverse argument follows by the same logic.

Consider now the best linear predictor itself:

H

L

y (t)| w̆0

=


w̆0′θ̆ : θ̆ ∈ H


θ̆


=


w̆0′θ̆ : θ̆ =

[
1 −λ′Π−1′

0 Π−1′

] [
θ1
θ−1

]
, θ ∈ H (θ)


=


r : r = w̆0′

−1Π
−1′θ−1 − λ′Π−1′θ−1 + θ1, θ ∈ H (θ)


=


r : r =


w0′

−1Π
′
+ λ′


Π−1′θ−1 − λ′Π−1′θ−1 + θ1,

θ ∈ H (θ)


=

r : r = w0′

−1θ−1 + θ1, θ ∈ H (θ)


= H

L

y (t)|w0 . �

This result implies, for example, that demeaning the data will
have, in the partially identified case, the same effect that it has
in the point identified case. The sharp identification region of the
best linear predictor itself is not affected, and neither is the sharp
identification region of each slope parameter. On the other hand,
the sharp identification region of the intercept parameter may
change substantially. Similarly, rescaling the data leaves the sharp
identification region of the best linear predictor itself and of the
intercept unaffected. On the other hand, the sharp identification
region of the slope parameter may change substantially. Fig. 1
illustrates graphically these changes.19 Clearly, these changes in
the size and shape of the identification region are purely the result
of standardizing, so caution should be taken in interpreting the
results of the analysis.

4. A note on estimation and statistical inference

The sharp identification regions derived in Sections 2 and 3 can
be categorized as follows: (a) transformations of conditional or un-
conditional Aumann expectations; (b) sets of multinomial distri-
butions defined by a finite number of unconditional (conditional

19 These figures are for illustration only. Theywhere created using data taken from
theHealth and Retirement Study on individuals’ expectations of surviving to age 75,
mapped into intervals as in Manski and Molinari (2010). The interval expectation
data were projected on a constant and individuals’ age.
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Fig. 1. H(θ) and H(θ̆) obtained, respectively, using x−1 and x−1−E(x−1)√
var(x−1)

.

in the presence of instruments v and/or covariatesw) moment in-
equalities; (c) sets of continuous distributions defined by a contin-
uum of unconditional (conditional in the presence of instruments
v and/or covariatesw) moment inequalities indexed by k1, k2 ∈ Y.
Category (a) applies to Propositions 3.2, 3.3 and C.2–C.4. Categories
(b) and (c) apply to Propositions 2.2–2.6 and C.1, respectively for
the case of Y being discrete and Y = [0, 1]. Here we assume that
one observes a random sample (yi, zi, wi)

n
i=1 drawn from the same

population as (y, z, w). This in turn assures that the random sets

Yi(t), Y T
i ,

−→
Y i (t), and

−→
Y

T

i defined as in Eqs. (2.5), (2.7), (2.12) and
(C.1) with (y, z, w) replaced by (yi, zi, wi) are independently and
identically distributed, see Beresteanu and Molinari (2008, Lem-
mas A.3 and A.5).

Estimation of sharp identification regions of type (a) for
unconditional Aumann expectations can be carried out by
sample analog methods, replacing the Aumann expectation by a
Minkowski average of random sets as explained in Beresteanu
and Molinari (2008, Sections 3 and 4). Confidence sets and
confidence collections can be constructed to cover or have as a
member the sharp identification region and its subsets with a
prespecified asymptotic probability using the method proposed
by Beresteanu and Molinari.20 When the relevant unconditional
Aumann expectation is a subset of ℜ, the methods of Imbens
and Manski (2004) and Stoye (2009) can be employed to obtain
confidence sets that cover each point in the sharp identification
region with a prespecified asymptotic probability. For the case of
conditional Aumann expectations as in Propositions C.3 and C.4,
estimation and statistical inference can be carried out using the
methods proposed byAndrews and Shi (2009), Chernozhukov et al.
(2009) and Ponomareva (2010).

Estimation of sharp identification regions of types (b) and
(c) with conditional or unconditional moment inequalities can
be carried out by replacing probability distribution functions by
empirical distribution functions. By Theorem 1.2.22 in Molchanov
(2005) the resulting estimators of the sharp identification regions,
obtained by replacing the population versions of the capacity
and containment functionals with their empirical counterparts,
are consistent in the Hausdorff–Prokhorov metric. In the case of
sharp identification regions of type (b)with unconditionalmoment
inequalities, test of hypothesis and confidence statements can
be carried out using the methods proposed by Chernozhukov
et al. (2007), Andrews and Soares (2010), Bugni (2010) and Canay
(2010), among others. When sharp identification regions of type
(b) are defined via conditional moment inequalities but w is

20 Stata code implementing these procedures is freely downloadable at
http://www.arts.cornell.edu/econ/fmolinari/#Stata_SetBLP.

discrete, estimation and statistical inference can be carried out
using the methods proposed by Andrews and Shi (2009) and
Ponomareva (2010), even if v has a continuous distribution.

In the case of sharp identification regions of types (b) and (c)
with conditional moment inequalities indexed by a continuously
distributedw, existingmethods for construction of confidence sets
do not readily apply, because the object of interest is not a finite
dimensional parameter vector. Development of a procedure to
conduct statistical inference in this case is left for future research.

5. Aumann expectation or capacity functional?

It is often the case that theoretically one can use either
the ‘‘capacity functional approach’’ or the ‘‘Aumann expectation
approach’’ to address a specific partial identification problem.
However, there might be computational advantages to using one
of these approaches rather than the other. Here we give a few
examples of how to choose between them.

5.1. Limitations of the Aumann expectation approach

Consider first the case where the object of ultimate interest
is the partially identified probability distribution P(x) of an
unobservable random variable x ∈ X ⊂ ℜ

d. The researcher knows
that x ∈ Sel (X) for a random set X revealed by the data and
taking its realizations in X.21 In this case, the capacity functional
and Artstein’s inequality allow for a simple characterization of the
sharp identification region, see Eq. (2.3). On the other hand, the
Aumann expectation can be used to conclude that x ∈ Sel (X) if
and only if

E (x1 (A)) ∈ E (X1 (A)) ∀A ∈ F, (5.1)

where 1 (·) is the indicator function of the event in parenthesis
(see Molchanov (2005, Theorem 2.1.18)). Hence, one could char-
acterize H [P (x)] as the set of µ ∈ ΓX such that µ is the prob-
ability distribution of a random element ξ satisfying Eq. (5.1).
However, this characterization is much less tractable compu-
tationally than the characterization obtained through Artstein’s
inequality. Moreover, it is not simple, computationally, to incor-
porate into the Aumann expectation approach assumptions which
restrict P (x) directly, such as for example the statistical indepen-
dence conditions considered in Section 2.2.2.

Notice that there are cases in which the two approaches are
equivalent, both conceptually and computationally. To clarify this
claim, consider the following simple example.22 Let Xθ be a random
closed set with realizations in {0, 1}, and suppose that the specific
realizations that this set takes are a known function of a parameter
θ and some unobservable random variable ε. Let the distribution
function of ε be known up to a parameter vector which is included
in θ . Let θ be the object of ultimate interest. Assume that the
researcher observes a binary random variable x and can learn
its distribution, P (x = 1). Assume further that the informational
content of the economic model is equivalent to the statement that
x ∈ Sel (Xθ ).23 Then using Artstein’s inequality one can easily
characterize the sharp identification region of θ as24

H (θ) =

θ : P (x = k) ≤ TXθ ({k}) , k ∈ {0, 1}


.

21 In Section 2.2, we consider two examples: (1) X = Y and x = y (t) with
X = Y (t) ; and (2) X = YT and x = y (·)with X = Y T .
22 More general and complex instances of the same basic idea are studied in
Beresteanu et al. (2008) and Galichon and Henry (2009a).
23 See Beresteanu et al. (2009, Appendix B) for examples.
24 Here it suffices to look at singletons k because the realizations of Xθ are either
singletons, or the entire space {0, 1}, see Lemma B.1.
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On the other hand, one can construct a random closed setQθ taking
its realizations in {[1 0] , [0 1]} ⊂ ℜ

2 as follows

Qθ =


{[1 0]} if Xθ = {0} ,
{[0 1]} if Xθ = {1} ,
{[1 0] , [0 1]} if Xθ = {0, 1} .

Let P (x) = [P (x = 0) P (x = 1)]. Then

H (θ) = {θ : P (x) ∈ E (Qθ )} = {θ : ⟨P (x) , u⟩
≤ E (h (Qθ , u)) , u ∈ {[1 0] , [0 1]}} .

To see this, observe that for u = [1 0] ,

E (h (Qθ , [1 0]))
= ⟨[1 0] , [1 0]⟩ P (Xθ = {0})+ ⟨[0 1] , [1 0]⟩ P (Xθ = {1})

+ max {⟨[1 0] , [1 0]⟩ , ⟨[0 1] , [1 0]⟩} P (Xθ = {0, 1})
= P (Xθ = {0})+ P (Xθ = {0, 1}) = TXθ ({0}) .

Similar algebra gives that E (h (Qθ , [0 1])) = TXθ ({1}), hence es-
tablishing equivalence of the two approaches. Notice that in this
example a crucial role is played by the fact that the random vari-
able x and the random setXθ take on a finite number of realizations,
hence replicating the familiar result that the distribution of a dis-
crete random variable can be equivalently represented by taking
the expectation of a vector of indicator functions.

5.2. Limitations of the capacity functional approach

The capacity functional approach resulting from a judicious
application of Artstein’s inequality may not be computationally
practical for obtaining sharp identification regions of expectations,
unless the problem at hand is particularly simple. To illustrate this
claim, suppose first that one is interested in the expectation E(x)
of an unobservable random variable x ∈ X ⊂ ℜ

d, and that the
researcher knows that x ∈ Sel (X) for a random set X revealed by
the data and taking its realizations in X. In this case, the Aumann
expectation and Theorem 3.1 allow for a simple characterization of
the sharp identification region as

H[E(x)] =

η ∈ ℜ

d
: ⟨η, u⟩ ≤ E (h (X, u)) ∀u ∈ ℜ

d
: ‖u‖ = 1


.

If d = 1 and X ⊂ ℜ+ a.s., it turns out that H [E(x)] can be equiva-
lently characterized using the Choquet integral with respect to the
containment and capacity functionals, as

H [E (x)] =

[∫
xdCX ,

∫
xdTX

]
,

where

xdTX =


∞

0 TX ({x : x ≥ t}) dt , and similarly for

xdCX ,

see Molchanov (2005, Theorem 1.5.1). When X can take on nega-
tive values, the above definition can be extended, see Molchanov
(2005, p. 72). This result is the analog for random sets, of the fa-
miliar result that a nonnegative random variable x has E (x) =
Ω
x (ω) dP (ω) =


+∞

0 P (x > t) dt.
If d > 1, it is still possible to characterize the expectation of

the support function of X through the capacity functional, applying
a formula similar to the one above to the function ⟨x, u⟩ . This
function takes on negative values, and therefore one needs to use
the expression in Molchanov (2005, p. 72). However, this result is
a mere repetition of the Aumann expectation approach. Moreover,
it requires one to calculate the capacity functional of X , and then
take integrals with respect to it. This task can be computationally
intense. On the other hand, calculating directly the expectation
of the support function of X is usually straightforward and
computationally very simple.

There are additional cases in which taking expectations is a
crucial step towards characterizing a sharp identification region of
interest, and the Aumann expectation approach is preferable to the

capacity functional approach, because it is computationally much
faster as well as more intuitive. To clarify this claim, consider the
following simple example.25 Let Qθ be a random closed set with
realizations in [0, 1], and suppose that the specific realizations
that this set takes are a known function of a parameter vector
θ and some unobservable random variable ε. Let the distribution
function of ε be known up to a parameter vector which is included
in θ . Let θ be the object of ultimate interest. Interpret the selections
q ∈ Sel (Qθ ) as parameters of a Bernoulli law. Assume that the
researcher observes a binary random variable x and can learn
its distribution, P (x = 1). Assume further that the informational
content of the economic model is equivalent to the statement that
P (x = 1) = E (q⋆), with q⋆ ∈ Sel (Qθ ) and the expectation taken
with respect to the distribution of ε. One can easily characterize
the sharp identification region of θ as

H (θ) = {θ : P (x = 1) ∈ E (Qθ )}
= {θ : uP (x = 1) ≤ E (h (Qθ , u)) , u = ±1} ,

where the expectation of the support function of Qθ is taken
with respect to ε. For given θ , the support function of Qθ is
straightforward to calculate, and therefore the same is true for
H (θ).

Even in this stylized example, however, it is not immediate
how one can use the capacity functional approach to characterize
H (θ). This is because in order to construct a random set to
which x belongs with probability one, we would need to add an
auxiliary random variable z, uniformly distributed on [0, 1] and
independent of ε, and define

Xθ = {ξ : ξ = 1 (z < q) , q ∈ Sel (Qθ )} .

Such construction does not lead to a computationally feasible
application of Artstein’s inequality.

6. Conclusions

This paper has illustrated how the use of random set theory can
benefit, and simplify, partial identification analysis.We have revis-
ited results previously available in the literature, and established
new results concerning identification of the distributions of poten-
tial outcomes and response functions and their expectation, in the
presence of selectively observed data, statistical independence and
mean independence assumptions, and shape restrictions. We have
also derived new results concerning best linear prediction with in-
terval outcome data.

The broad picture emerging from our analysis is the following.
When a feature of a probability distribution of interest is partially
identified, it is often possible to trace back the lack of point
identification to the fact that either the data or the maintained
assumptions yield a collection of random variables which are
observationally equivalent. This collection is equal to the family of
selections of a properly specified random closed set, and random
set theory can be applied.

The first task that the researcher needs to carry out is to specify
the relevant randomclosed set. In the case of incomplete data, such
as the selection problem studied here, the relevant random closed
set is the collection of values that the potential outcome can take—
the observed (singleton) outcome when the treatment of interest
is realized, and the entire outcome space otherwise.

The next task is to carefully determine how the observable
variables relate to this random set. In certain partial identification
problems, such as the selection problem studied here, the

25 More general and complex instances of the same basic idea are studied in
Beresteanu et al. (in press).
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observable variables determine a random closed set to which the
(unobservable) variable of interest belongs with probability one.
In other partial identification problems, the observable variable
belongs to a random closed set which is determined by the
model. In other partial identification problems, the distribution of
the observable variable belongs to the Aumann expectation of a
random closed setwhich is determined by themodel. See Section 5
above and Beresteanu et al. (2009) for examples.

The final task is to determine which tool of random set
theory is best suited (either because computationally preferable,
or more intuitive) to characterize the sharp identification region
of the parameter of interest. In certain cases, working directly
with probability distributions is a crucial step in describing the
set of observationally equivalent parameters of interest, and the
informational content of the data and the model is equivalent
to saying that a random variable belongs to a properly specified
random set with probability one. Hence, here the capacity
functional approach based on Artstein’s inequality is ideal to
characterize the sharp identification region.

In other cases, taking expectations is a crucial step in describing
the set of observationally equivalent parameters of interest, and
the informational content of the data and the model is equivalent
to saying that the expectation of a random variable, or the
distribution of a random variable in the discrete case, belongs to
the Aumann expectation of a properly specified random set. Hence,
here the Aumann expectation approach is ideal to characterize the
sharp identification region.

Appendix A. Basic definitions

Random sets and selections
As the name suggests, a random set X is a measurable mapping

from a probability space (Ω, F, P) toF that associates a set to each
point in the sample space.

Definition A.1. A map X : Ω → F is called a random closed set
(or a set valued random variable) if for every compact set K in ℜ

d,
X−1 (K) = {ω ∈ Ω : X (ω) ∩ K ≠ ∅} ∈ F.

The measurability concept used above is different from the
more familiar one for vector valued random variables because it
must be restrictive enough to ensure that all functionals of interest
of the random set become random variables. An example of a
relevant functional of a random set which, given Definition A.1, is a
random variable, is its support function, see Definition A.6 below.
Definition A.1means that a random closed set is a random element
taking values in the family of closed sets equipped with the σ -
algebra generated by the families of closed sets {F : F ∩ K ≠ ∅}

for all compact sets K . Two simple examples can help clarify the
concept of a random set:

Example A.1 (Random Closed Set). (a) (Trivial) If x is a random
vector in ℜ

d, then X = {x} is a random closed set.

(b) Let x1, x2 be random variables in ℜ such that P (x1 ≤ x2) = 1.
The interval X = [x1, x2] is a random closed set.

Aumann’s (1965) work on correspondences suggests to think of
random sets as bundles of random variables — the selections of the
random sets. The formal definition follows:

Definition A.2. For any random set X , a (measurable) selection of X
is a randomvector xwith values inℜ

d such that x(ω) ∈ X (ω) P-a.s.
We denote by Sel (X) the set of all selections from X .

If X is a measurable closed valued almost surely non-empty
random set in F , Sel (X) is non-empty (Aumann (1965); see also
Li et al. (2002, Theorem 1.2.6)).

In practice, it has been common in certain partial identification
analyses to work with selections of random closed sets, although
the connection with random set theory was not made. For
example, when first proposing partial identification of conditional
expectations from selectively observed data,Manski (1989, Eq. (3))
assumed that a partially unobservable outcome variable y belongs
to a (non-stochastic) interval with probability one. This is exactly
the definition of a selection of a random set.26 The following
examples further clarify this connection.

Example A.2 (Selections). Consider the random sets in Exam-
ple A.1. Then we have:

(a) (Trivial) Sel ({x}) = {x} .
(b) Sel([x1, x2]) = {x : x is F-measurable and x(ω) ∈ [x1(ω),

x2(ω)] P-a.s.}. Note that each selection of [x1, x2] can be
represented as follows. Take a random variable r such that
P (0 ≤ r ≤ 1) = 1 and whose distribution is left unspecified
and can be any probability distribution on [0, 1]. Let

xr = rx1 + (1 − r) x2.

Then xr ∈ Sel ([x1, x2]). This representation has been used, for
example, by Ponomareva and Tamer (2011) and Tamer (2010).

Capacity functional and containment functional
The probability distribution of a random closed set X is

uniquely determined by its capacity functional, see Molchanov
(2005, Chapter 1, Sections 1.1–1.2). Here we formally define this
functional, along with the containment functional.

Definition A.3. The functionals TX : K → [0, 1] and CX : K →

[0, 1] given by

TX (K) = P{X ∩ K ≠ ∅}, CX (K) = P{X ⊂ K}, K ∈ K,

are said to be, respectively, the capacity functional and the
containment functional of X .

The following relationship holds:

CX (K) = 1 − TX

K c , (A.1)

where K c denotes the complement of the set K in ℜ
d. While TX is

defined on compact sets and K c might be open and not compact,
the notation TX (K c) stands for the probability of the (measurable)
event {X ∩ K c

≠ ∅}, and the functional TX is extended onto the
family of all sets as described in Molchanov (2005, page 9, Eqs.
(1.19)–(1.20); see also Theorem 1.1.12).

Example A.3 (Capacity and Containment Functional). Consider the
random sets in Example A.1. Then we have:
(a) TX (K) = P {{x} ∩ K ≠ ∅} = P {x ∈ K} = P{{x} ⊂ K} for
all K ∈ K . In the singleton case, the capacity functional and the
containment functional coincide, and are equal to the probability
distribution of x.

(b) In this case X is a random convex compact set taking
its realizations in ℜ. By Theorem 1.7.8 in Molchanov (2005), its
distribution is determined uniquely by the values of CX (K) for all
K convex compact sets, i.e. for all intervals [k1, k2] with k1, k2 ∈

ℜ : k1 ≤ k2. In this case, CX ([k1, k2]) = P {[x1, x2] ⊂ [k1, k2]} =

P {x1 ≥ k1, x2 ≤ k2} .

26 In this example, the randomset is especially simple because it takes on a specific
realization with probability 1.
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Aumann expectation and support function
Let L1 = L1


Ω,ℜd


denote the space of F-measurable random

variableswith values inℜ
d such that their L1-norm‖ξ‖1 = E (‖ξ‖)

is finite, and let the family of all integrable selections of X be given
by Sel1 (X) = Sel (X) ∩ L1. Then the Aumann expectation of X is
defined as follows.

Definition A.4. Let X be a random closed set with Sel1 (X) ≠ ∅.
The Aumann expectation of X is

E [X] =

∫
Ω

xdP : x ∈ Sel1 (X)


where

Ω
xdP is taken coordinate wise. If X is integrably bounded,

i.e., if sup {‖x‖ : x ∈ X} has a finite expectation, then27

E [X] =

∫
Ω

xdP : x ∈ Sel (X)

.

Clearly, since Sel (X) is non-empty, the Aumann expectation of an
integrably bounded random set is non-empty.

Example A.4 (Aumann Expectation). Consider the random sets in
Example A.1. Then we have:
(a) E [X] = E [{x}] = E (x), so that the Aumann expectation of a

singleton coincides with the expectation taken with respect to
P.

(b) E [X] = E [[x1, x2]] = [E (x1) , E (x2)], see Beresteanu and
Molinari (2008, Theorem 3.2-(i)).
The definition of Aumann expectation can be extended to the

case where one wants to condition on a σ -algebra as follows, see
Molchanov (2005, Theorem 2.1.46):

Definition A.5. Let X be an integrably bounded random closed set.
For each σ -algebra F0 ⊂ F there exists a unique integrable F0-
measurable random closed set X0, denoted by X0 = E [X |F0] and
called the conditional Aumann expectation of X , such that

SelF0 (X0) = cl {E (x| F0) : x ∈ Sel (X)} ,

where the closure is taken with respect to the norm in L1F0
. Since X

is integrably bounded, so is X0.

We conclude this section by introducing the notion of support
function of a random compact convex set X .

Definition A.6. Let X be a non-empty compact random set with
almost surely convex realizations. Then the support function of X at
u ∈ ℜ

d, denoted h (X, u), is the random variable

h (X, u) = sup
x∈X

⟨x, u⟩ .

In Definition A.6, ⟨·, ·⟩ denotes the inner product in ℜ
d. To

gain insight on the support function, see Fig. 2. It is well known
(e.g., Rockafellar (1970, Chapter 13) and Schneider (1993, Section
1.7)) that the support function of a non-empty compact convex set
is a continuous sublinear (hence convex) function. In particular,
h (X, u + v) ≤ h (X, u)+ h (X, v) for all u, v ∈ ℜ

d and h (X, cu) =

ch (X, u) for all c > 0 and for all u ∈ ℜ
d. Additionally, one can show

that the support function of a bounded set X ∈ ℜ
d is Lipschitz

with Lipschitz constant sup {‖x‖ : x ∈ X}, see Molchanov (2005,
Theorem F.1).

Example A.5 (Support Function). Consider the random sets in
Example A.1. Then we have:
(a) h (X, u) = h ({x} , u) = ⟨x, u⟩ , u ∈ ℜ

d.
(b) h (X, u) = h ([x1, x2] , u) = max {ux1, ux2} , u ∈ ℜ.

27 Observe that for any x ∈ Sel (X) , ‖x‖ ≤ sup {‖x‖ : x ∈ X} .Hence, all selections
of an integrably bounded random set are integrable and Sel1 (X) = Sel (X).

h(X,u)

X

u

Fig. 2. Support function of X at u: h(X, u) is orthogonal to the supporting
hyperplane to X with exterior normal vector u.

Appendix B. Auxiliary results

Lemma B.1. Let X be a random compact set taking its realization in
a finite space X ⊂ ℜ

d. Assume that the probability space can be
partitioned asΩ = Ω1 ∪Ω2. Let X (ω) = {χ (ω)} for ω ∈ Ω1 and
X (ω) = X for ω ∈ Ω2, with χ a random vector taking its realization
in X. Then a random vector x is stochastically smaller than X if and
only if

P(x = k) ≥ P{χ = k|Ω1}P (Ω1) = CX (k)

for all k ∈ X.

Proof. Given that X is either a singleton or the entire space, for
each K ∈ K (X) , K ≠ X,

P (X ⊂ K) = P{X ⊂ K |Ω1}P (Ω1)+ P{X ⊂ K |Ω2}P (Ω2)

= P{X ⊂ K |Ω1}P (Ω1) = P{χ ∈ K |Ω1}P (Ω1) .

Because X is finite, P{χ ∈ K |Ω1} =
∑

k∈K P{χ = k|Ω1}. Hence,
if the dominance condition holds for singleton sets K = {k} for all
k ∈ X, it also holds for any K ⊂ K (X). �

Lemma B.2. Let X be a random compact convex set. Then a random
vector x is stochastically smaller than X if and only if

P(x ∈ K) ≥ P{X ⊂ K} = CX (K)

for all compact convex sets K . Moreover, it suffices to consider all K
being convex polytopes.

Proof. If a random closed set X is compact convex almost surely,
its distribution is uniquely determined by the values of the
containment functional CX (K) = P(X ⊂ K) on all compact convex
polytopes K , see Molchanov (1993, 2005, Theorem 1.7.8). We now
show that the dominance condition verified on such polytopes
suffices to guarantee the condition in Theorem 2.1. Realize x and X
on the same probability space; then by standard results in convex
analysis (e.g., Rockafellar (1970, Theorem 13.1)), x ∈ X if and only
if the support function of x is dominated by the support function
of X . By a result on ordering of stochastic processes (Kamae et al.
(1977)) this is the case if and only if

P(⟨x, u1⟩ ≤ s1, . . . , ⟨x, uk⟩ ≤ sk) ≥ P(h(X, u1)

≤ s1, . . . , h(X, uk) ≤ sk) (B.1)

for all unit vectors u1, . . . , uk, real numbers s1, . . . , sk, and k ≥ 1.
By letting K be a convex polytope bounded by hyperplanes with
normals u1, . . . , uk located at distances s1, . . . , sk from the origin,
we see that the left-hand side in Eq. (B.1) becomes P(x ∈ K), while
the right-hand side becomes P(X ⊂ K). If such a polytope is not
bounded, one can pass to the limit in the condition written for all
bounded polytopes. �
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Appendix C. Partial identification of probability distributions
and expectations of response functions with independence
assumptions and shape restrictions

Construction of the relevant random set for y(·) under Assumption
MTR

In this case, we need to assume that the outcomes in Y can be
ordered, and we need to define a proper random set that contains
the response function y (·), i.e. the vector [y (0) , . . . , y (T )], and is
such that this function is monotone in t . Observe that if z = t ,
the data and the MTR Assumption reveal that y (t) = y, y (s) ∈

Sel ([0, y]) for each s ∈ T : s < t, y (s) ∈ Sel ([y, 1]) for each s ∈

T : s > t , and P (0 ≤ y (0) ≤ y (1) ≤ · · · ≤ y (T ) ≤ 1) = 1. Hence

we construct a random set
−→
Y

T
whose vertices are given in Box I

with vert (·) the vertices of the set in parenthesis. If Y = [0, 1],

then
−→
Y

T
= co


vert


−→
Y

T 
is a simplex. If Y is finite, then

−→
Y

T

is the collection of points in YT contained in co

vert


−→
Y

T 
.

This characterization, while exact, is somewhat abstract. Hence,
to illustrate, we specialize it to the case that Y = [0, 1] and
T = {0, 1, 2}. In this case,

−→
Y

T
= co

y
y
y


,

y
y
1


,

y
1
1


for z = 0.

−→
Y

T
= co

0
y
y


,

0
y
1


,

y
y
y


,

y
y
1


for z = 1.

−→
Y

T
= co

0
0
y


,

0
y
y


,

y
y
y


for z = 2.

Characterization of the sharp identification regions for P (y (·)) under
Assumptions SI-RF and MTR

Proposition C.1. Let Assumptions SI-RF and MTR hold. Then the
sharp identification region for P(y(·)) is

H [P (y (·))] =


µ : µ (K) ≥ ess sup

v∈V
P


−→
Y

T
⊂ K |v


∀K ∈ K


YT


.

If Y = [0, 1], it suffices to check the above condition for all K being
convex polytopes in ℜ

T+1.

Proof. The assumptions are summarized by requiring that (y(t),

v) ∈ Sel((
−→
Y

T
, v)) ∩ I, where I is the set of random elements

(ξ , v) ∈ YT
×V such that ξ is statistically independent of v. If

Assumptions SI-RF and MTR are correct, this intersection is non-
empty. By the same argument as in the proof of Proposition 2.4,

([y(0), . . . , y(T )], v) ∈ (
−→
Y

T
, v) if and only if ∀K ∈ K


YT


P ([y(0), . . . , y(T )] ∈ K |v) ≥ P


−→
Y

T
⊂ K |v


v-a.s.

By the SI-RF assumption, (y(0), . . . , y(T )) is statistically indepen-
dent of v. Hence, the above condition reduces to

P ([y(0), . . . , y(T )] ∈ K |v) ≥ ess sup
v∈V

P

−→
Y

T
⊂ K |v


∀K ∈ K


YT


.

The last claim follows directly from Lemma B.2. �

Formal derivation of the worst-case sharp identification regions for
E(y(t)) and E(y(·))

Proposition C.2. The sharp identification region for E(y(t)) is given
by

H [E(y(t))] = {η ∈ ℜ : ⟨η, u⟩ ≤ E (h (Y (t) , u)) , u = ±1}
= {η ∈ [E (y| z = t) P (z = t) ,

E (y| z = t) P (z = t)+ P (z ≠ t)]} .

The sharp identification region for E(y(·)) is given by

H [E(y(·))] =

η ∈ ℜ

T+1
: ⟨η, u⟩ ≤ E


h

Y T , u


∀u ∈ ℜ

T+1
= {η ∈ ×t∈T [E (y| z = t) P (z = t) ,

E (y| z = t) P (z = t)+ P (z ≠ t)]} .

Proof. The random set Y (t) collects all the information given
by the data concerning y(t), and therefore y(t) ∈ Sel(Y (t)). This
implies that E(y(t)) ∈ E[Y (t)]. Conversely, if η ∈ E[Y (t)], then
there exists a selection ỹ(t) ∈ Sel(Y (t)) such that E(ỹ(t)) = η, and
therefore η is an admissible value for the conditional expectation
of a selection of Y (t). The final result follows from Theorem 3.1,
observing that

E (h (Y (t) , u)) = E (h (Y (t) , u)| z = t) P (z = t)
+ E (h (Y (t) , u)| z ≠ t) P (z ≠ t)

= uE (y| z = t) P (z = t)+ h (Y, u) P (z ≠ t)

=


−E (y| z = t) P (z = t) if u = −1,
E (y| z = t) P (z = t)+ P (z ≠ t) if u = 1.

A similar reasoning gives that E(y(·)) ∈ E

Y T


. The final result

follows from Theorem 3.1, observing that Y T is a hyperrectangle
taking its realizations inℜ

T+1, fully defined by its support function
in directions u ∈ U = {u = [u0 · · · uT ]

′
: ui ∈ {−1, 1} and uk = 0

for k ≠ i, i = 0, . . . , T }, and that

E

h

Y T , u


=

T−
t=0

E

h

Y T , u

 z = t

P (z = t)

=

T−
t=0

E

max


⟨α, u⟩ : αs ∈ {0, 1}

for s ≠ t, αt = y
 z = t


P (z = t) . �

Adding mean independence and monotone treatment response
assumptions

Suppose now that the researcher also observes a variable v
defined on (Ω, F, P) and taking values in V ⊂ ℜ. We consider
the following assumption, which uses the nomenclature inManski
(2003, Section 2).

Assumption MI (Mean Independence of Outcomes and Instru-
ments).

E(y(t)|v) = E(y(t)), t ∈ T .

Notice that Assumption MI is equivalent to an assumption stating
that the entire response function ismean independent of v. Manski
(2003, Proposition 2.4) derives the sharp identification region for
E(y(t)) under AssumptionMI. His result can be extended to obtain
the sharp identification region for E(y(·)) under Assumption MI.
They can further be extended by additionally imposing shape
restrictions in the form of the MTS assumption. We provide these
results here.

Proposition C.3. Let AssumptionMI hold. Then the sharp identifica-
tion region for E(y(t)) is
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vert

−→
Y

T 
=


t-th entry −→



0
0
...
0
y
y
...
y
y


,



0
0
...
0
y
y
...
y
1


, . . . ,



0
0
...
0
y
1
...
1
1


, . . . ,



0
0
...
y
y
1
...
1
1


, . . . ,



0
y
...
y
y
1
...
1
1


,



y
y
...
y
y
1
...
1
1




for z = t (C.1)

Box I.

H [E(y(t))] = {η ∈ ℜ : ⟨η, u⟩ ≤ E (h (Y (t) , u)| v) ,
u = ±1, v-a.s.}

=


η ∈


ess sup

v∈V
E (y| z = t, v) P (z = t|v) ,

ess inf
v∈V

[E (y|z = t, v) P (z = t|v)+ P (z ≠ t|v)]

.

The sharp identification region for E(y(·)) is given by

H [E(y(·))] =

η ∈ ℜ

T+1
: ⟨η, u⟩ ≤ E


h

Y T , u

 v
∀u ∈ ℜ

T+1, v-a.s.


=


η ∈ ×t∈T


ess sup

v∈V
E (y| z = t, v) P (z = t|v) ,

ess inf
v∈V

[E (y| z = t, v) P (z = t|v)+ P (z ≠ t|v)]

.

Proof. For each v ∈ V , the data reveals that E(y(t)|v) ∈ E[Y (t)|
v], which holds if and only if

E (h (y(t), u)| v) = E ( ⟨y(t), u⟩| v)
≤ E (h (Y (t) , u)| v) , u = ±1.

AssumptionMI states thatE(y(t)|v) = E(y(t)), which is equivalent
to E ( ⟨y(t), u⟩| v) = E (⟨y(t), u⟩) for each u = −1, 1. Hence we
obtain

E (⟨y(t), u⟩) ≤ E (h (Y (t) , u)| v) , u = ±1, v-a.s.

The final expression for the bounds follows from Proposition C.2.
The same reasoning gives the result for H [E(y(·))]. �

Proposition C.4. Let Assumptions MI and MTR hold. Let
−→
Y (t) and

−→
Y

T
be defined as in Eqs. (2.12) and (C.1), respectively. Then the sharp

identification region for E(y(t)) is

H [E(y(t))] =


η ∈ ℜ : ⟨η, u⟩ ≤ E


h

−→
Y (t) , u

 v ,
u = ±1, v-a.s.


=


η ∈


ess sup

v∈V
E (y| z ≤ t, v) P (z ≤ t|v) ,

ess inf
v∈V

[E (y| z ≥ t, v) P (z ≥ t|v)+ P (z < t|v)]

.

The sharp identification region for E(y(·)) is given by

H [E(y(·))] =


η ∈ ℜ

T+1
: ⟨η, u⟩ ≤ E


h

−→
Y

T
, u

 v
∀u ∈ ℜ

T+1, v-a.s.

.

Proof. The same argument as in the proof of Proposition C.3 gives
that

H [E(y(t))] =


η ∈ ℜ : ⟨η, u⟩ ≤ E


h

−→
Y (t) , u

 v ,
u = ±1, v-a.s.


,

H [E(y(·))] =


η ∈ ℜ

T+1
: ⟨η, u⟩ ≤ E


h

−→
Y

T
, u

 v
∀u ∈ ℜ

T+1, v-a.s.

.

To get the final expressions, observe that

E

h

−→
Y (t) , u

 v = E (h ([0, y] , u)| z > t, v) P (z > t|v)

+ E ( ⟨y, u⟩| z = t, v) P (z = t|v)
+ E (h ([y, 1] , u)| z < t, v) P (z < t|v)

=


E ( ⟨y, u⟩| z ≤ t, v) P (z ≤ t|v) if u = −1
E ( ⟨y, u⟩| z ≥ t, v) P (z ≥ t|v)+ P (z < t|v) if u = 1. �

While E

h

−→
Y

T
, u

 v does not have a simple closed form
expression for arbitrary T , it is extremely simple to compute in
practice. To illustrate this claim, we specialize the above result to
the case that Y = [0, 1] and T = {0, 1, 2}. Let u = [u0 u1 u2] and
let usum = (u0 + u1 + u2). Then

E

h

−→
Y

T
, u

 v =

2−
t=0

E

h

−→
Y

T
, u

 z = t, v

P (z = t|v)

= E (max {yusum, y (u0 + u1)+ u2,

yu0 + (u1 + u2)}| z = 0, v) P (z = 0|v)

+ E (max {y (u1 + u2) , yu1 + u2, yusum,

+ y (u0 + u1) u2}| z = 1, v) P (z = 1|v)

+ E (max {yu2, y (u1 + u2) , yusum}| z = 2, v) P (z = 2|v) .
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