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Outline

This Supplement includes four appendices. Appendix B establishes that the methodology of An-

drews and Shi (2009) can be applied in our context, to obtain confidence sets that uniformly cover

each element of the sharp identification region with a prespecified asymptotic probability. Ap-

pendix C shows that our approach easily applies also to finite games of incomplete information,

and characterizes ΘI through a finite number of moment inequalities. Appendix D specializes our

results in the context of complete information games, to the case that players are restricted to use

pure strategies only and Nash equilibrium is the solution concept. In this case, ΘI is character-

ized through a finite number of moment inequalities, and further insights are provided on how to

reduce the number of inequalities to be checked in order to compute it. Appendix E shows that

our methodology is applicable to static simultaneous move finite games regardless of the solution

concept used.1 Appendix F applies the results in Section 2 of Beresteanu, Molchanov, and Molinari

(2010, BMM henceforth) to the analysis of individual decision making, looking at random utility

models of multinomial choice in the presence of interval regressors data.

B Applicability of Andrews and Shi’s (2009) Generalized Moment
Selection Procedure2

B.1 Finite Games of Complete and Incomplete Information

Andrews and Shi (2009, Section 9; AS henceforth) consider conditional moment inequality problems

of the form E (md (y, x, θ, u) |x) ≥ 0 for all u ∈ B x− a.s., d = 1, ..., D. They show that the condi-

tional moment inequalities can be transformed into equivalent unconditional moment inequalities,

by choosing appropriate weighting functions (instruments) g ∈ G, with G a collection of instruments
and g that depend on x. This yields E (md (y, x, θ, g, u)) ≥ 0, for all u ∈ B, g = [g1, ..., gD]′ ∈ G and
d = 1, ..., D, where md (y, x, θ, g, u) = md (y, x, θ, u) g (x) . In the models that we analyze in BMM

Section 3 and in Appendix C below, the conditional moment inequalities are of the “ ≤ ”type, and

m (y, x, θ, u) = u′
[
1
(
y = tk

)
, k = 1, ..., κY

]
−E [h (Qθ, u) |x] ,

m (y, x, θ, g, u) =
(
u′
[
1
(
y = tk

)
, k = 1, ..., κY

]
−E [h (Qθ, u) |x]

)
g (x) .

1Specifically, we illustrate this by looking at games where rationality of level-1 is the solution concept (a problem
first studied by Aradillas-Lopez and Tamer (2008)), and by looking at games where correlated equilibrium is the
solution concept.

2We are grateful to Xiaoxia Shi for several discussions that helped us develop this Section.
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Notice that E [h (Qθ, u) |x] is a known (or simulated) function of θ, u and x, and that for each

u ∈ B, we have only one inequality. Notice also that by the positive homogeneity of the support
function, our moment inequalities can be written equivalently as E (m (y, x, θ, g, u)) ≤ 0, for all

g ∈ G and u ∈ S ≡ {u ∈ <κY : ‖u‖ = 1}. Hence, they are invariant to rescaling of the moment
function, which is important for finite sample inference (see, e.g., Andrews and Soares (2010)).

In all that follows, to simplify the exposition, we abstract from the choice of G. Once we establish
that our problem fits into the general framework of AS, one can choose instruments g as detailed in

Section 3 of AS. To avoid ambiguity, in this Section we denote F (y|x) ≡
[
P
(
y = tk|x

)
, k = 1, ..., κY

]
.

We first establish that ΘI can be equivalently defined using only the first κY−1 entries of Y, thereby
avoiding the problems for inference associated with linear dependence among the entries of F (y|x)

and also lowering the dimension over which the maximization is performed. Let F̃ (y|x) denote the

first κY − 1 rows of F (y|x), BκY−1 = {u ∈ <κY−1 : ‖u‖ ≤ 1}, SκY−1 = {u ∈ <κY−1 : ‖u‖ = 1}, and

Q̃θ = {q̃ = [[q (σ)]k , k = 1, ..., κY − 1] , σ ∈ Sel(Sθ)} .

Theorem B.1 Let Assumptions 3.1 in BMM (or C.1 below) and 3.2 in BMM hold. Then

Θ̃I ≡
{
θ ∈ Θ : max

u∈BκY−1

(
u′F̃ (y|x)−E

[
h
(
Q̃θ, u

)
|x
])

= 0 x− a.s.
}

=

{
θ ∈ Θ :

[
max

u∈SκY−1

(
u′F̃ (y|x)−E

[
h
(
Q̃θ, u

)
|x
])]

+

= 0 x− a.s.
}

= ΘI

Proof. The equality between the two representations above follows by standard arguments, see,

e.g., Beresteanu and Molinari (2008, Lemma A.1). To establish that Θ̃I = ΘI , observe that θ ∈ Θ̃I if

and only if F̃ (y|x) ∈ E
(
Q̃θ|x

)
. Pick θ ∈ ΘI . Then F (y|x) = E (q|x) for some q ∈ Sel (Qθ) . Notice

that this implies F̃ (y|x) = E (q̃|x) for q̃ ∈ Sel
(
Q̃θ

)
, hence, θ ∈ Θ̃I . Conversely, pick θ ∈ Θ̃I . Then

F̃ (y|x) = E (q̃|x) for some q̃ ∈ Sel
(
Q̃θ

)
, which in turn implies that q =

[
q̃; 1−

∑κY−1
k=1 q̃

]
∈ Sel(Qθ)

and F (y|x) = E (q|x) . Hence, θ ∈ ΘI .

AS propose a confidence set with nominal value 1−α for the true parameter vector, as follows:

CSn = {θ ∈ Θ : Tn (θ) ≤ cn,1−α (θ)} ,

where Tn (θ) is a test statistic and cn,1−α (θ) is a corresponding critical value for a test with nominal

significance level α. AS establish that, under certain assumptions, this confidence set has correct
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uniform asymptotic size.3 In order to apply the construction in AS, we maintain the following:

Assumption B.1 The researcher observes an i.i.d. sequence of equilibrium outcomes and ob-

servable payoff shifters {yi, xi}
n
i=1 . Define Σ̃x = diag

(
F̃ (y|x)

)
− F̃ (y|x) F̃ (y|x)′ , and let Σ̃x be

non-singular with a <
∥∥∥Σ̃x

∥∥∥ < b x − a.s. for some constants 0 < a < b < ∞, where
∥∥∥Σ̃x

∥∥∥ is a
matrix norm for Σ̃x compatible with the Euclidean norm.

AS propose various criterion functions Tn, some of the Cramér-von Mises type, some of the

Kolmogorov-Smirnov type. Here, we work with a mix of Cramér-von Mises and Kolmogorov-

Smirnov statistic, using a modification of the function S1 on page 10 of AS. Specifically, we use

Tn (θ) =
∫ (

max
u∈BκY−1

√
nm̄n (θ, g, u)

)2

dΓ(B.1)

=
∫ (

max
u∈SκY−1

√
nm̄n (θ, g, u)

)2

+

dΓ =
∫

max
u∈SκY−1

(√
nm̄n (θ, g, u)

)2
+
dΓ,

where Γ denotes a probability measure on G whose support is G as detailed in Section 3 of AS, the
second equality follows from the proof of Theorem B.1, and

m̄n (θ, g, u) =
1

n

∑n
i=1

(
u′w (yi)− f (xi, θ, u)

)
g (xi) ,

f (xi, θ, u) = E
[
h
(
Q̃θ, u

)
|xi
]
,

w (yi) =
[
1
(
yi = tk

)
, k = 1, ..., κY − 1

]
,

so that m̄n (θ, g, u) is the sample analog of a version of E (m (y, x, θ, g, u)) which is based on the

first κY − 1 entries of Y and on Q̃θ. Note that by the same argument which follows, our problem
specified as in equation (3.6) in BMM corresponds to the Cramér-von Mises test statistic of AS,

with modified function S1.

Below we show that our modified function S1 satisfies Assumptions S1-S4 of AS, and that

Assumption M2 of AS is also satisfied. This establishes that their generalized moment selection

procedure with infinitely many conditional moment inequalities is applicable. We note that one

3 Imbens and Manski (2004) discuss the difference between confidence sets that uniformly cover the true parameter
vector with a prespecified asymptotic probability, and confidence sets that uniformly cover ΘI (see also Stoye (2009)).
Providing methodologies to obtain asymptotically valid confidence sets of either type when the conditioning variables
have a continuous distribution is a developing area of research, to which the method of AS belongs. In certain
empirically relevant models (see for example Appendix C and Appendix D) the characterization in Theorem 2.1 of
BMM yields a finite number of (conditional) moment inequalities. In such cases, the methods of Chernozhukov,
Hong, and Tamer (2007) and Romano and Shaikh (2010) can be applied after discretizing the conditioning variables,
to obtain confidence sets which cover ΘI with a prespecified asymptotic probability, uniformly in the case of Romano
and Shaikh (2010). Ciliberto and Tamer (2009) verify the required regularity conditions for finite games of complete
information.
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can take the confidence set CSn applied with confidence level 1/2 to obtain half-median-unbiased

estimated sets, see AS and Chernozhukov, Lee, and Rosen (2009). Finally, one can also take the

criterion function in Theorem B.1, replace there F̃ (y|x) with its sample analog, and construct an

Hausdorff-consistent estimator of ΘI using the methodology proposed by Chernozhukov, Hong,

and Tamer (2007, equation 3.2 and Theorem 3.1). To see that their results are applicable, recall

that the payoff functions are assumed to be continuous in (xj , εj). Hence, the Nash equilibrium

correspondence has a closed graph, see Fudenberg and Tirole (1991, Section 1.3.2). This implies

that Qθ has a closed graph, and therefore the same is true for E(Qθ|x), see Aumann (1965, Corollary

5.2). In turn, this yields lim supθn→θ E (Qθn |x) ⊆ E (Qθ|x) . Observe that

max
u∈BκY−1

(
u′F̃

(
y|x
)
−E

[
h
(
Q̃θ, u

)
|x
])

= dH

(
F̃ (y|x) ,E

(
Q̃θ|x

))
.

The criterion function s (θ) ≡
∫
dH

(
F̃ (y|x) ,E

(
Q̃θ|x

))
dFx, with Fx the probability distribution

of x (or a probability measure which dominates it), is therefore lower semicontinuous in θ, because

lim inf
θn→θ

s(θn) ≥
∫

lim inf
θn→θ

dH

(
F̃ (y|x) ,E

(
Q̃θn |x

))
dFx ≥

∫
dH

(
F̃ (y|x) , lim supE

(
Q̃θn |x

))
dFx

≥
∫
dH

(
F̃ (y|x) ,E

(
Q̃θ|x

))
dFx = s(θ).

Conditions (c-e) in Assumption C1 of Chernozhukov, Hong, and Tamer (2007) are verified by

standard arguments.

We now verify AS’s assumptions.

Theorem B.2 Let Assumption B.1 hold. Then Assumptions S1-S4 and M2 of AS are satisfied.

Proof. Assumption S1-a follows because the moment inequalities are defined for u ∈ SκY−1,

hence any rescaling of the moment function is absorbed by a corresponding rescaling in u. The rest

of Assumption S1 and Assumptions S2-S4 are verified by AS. To verify Assumption M2, observe

that

m̃ (y, x, θ, u) ≡ u′w (y)− f (x, θ, u)

is given by the sum of a linear function of u and a Lipschitz function of u, with Lipschitz constant

equal to 1. It is immediate that the processes {u′w (yin) , u ∈ SκY−1, i ≤ n, n ≥ 1} satisfy
Assumption M2. We now show that the same holds for the processes {f (xin, θn, u) , u ∈ SκY−1,
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i ≤ n, n ≥ 1}. Assumption M2-(a) holds because for all u ∈ SκY−1,

∣∣∣∣ f (x, θ, u)

V ar (m̃ (y, x, θ, u))

∣∣∣∣ ≤
∣∣∣∣∣∣ f (x, θ, u)

E
(
u′Σ̃xu

)
∣∣∣∣∣∣ ≤ c

∣∣∣E [h(Q̃θ, u) |x]∣∣∣ ≤ cE(∥∥∥Q̃θ∥∥∥
H
|x
)
≤ c x− a.s.,

where the first inequality follows from the variance decomposition formula, c is a constant that

depends on a and b from Assumption B.1, and the last inequality follows recalling that Q̃θ takes

its realizations in the unit simplex which is a subset of the unit ball. Assumption M2-(b) follows

immediately because the envelope function is a constant. Assumption M2-(c) is verified observing

that f (x, θ, u) is Lipschitz in u, with Lipschitz constant equal to 1. By Lemma 2.13 in Pakes and

Pollard (1989), the class of functions {f (·, u) , u ∈ SκY−1} is Euclidean with envelope equal to a
constant, and therefore manageable. Assumption M2 for the processes {(u′w (yin)− f (xin, θn, u)) ,

u ∈ SκY−1, i ≤ n, n ≥ 1} then follows by Lemma E1 of AS.

B.2 BLP with Interval Outcome and Covariate Data

We maintain the following:

Assumption B.2 The researcher observes an i.i.d. sequence of tuples {yiL, yiU , xiL, xiU}ni=1. E
(
|yi|2

)
,

E
(
|xj |2

)
, E
(
|yixj |2

)
, and E

(
x4
j

)
are all finite, for each i, j = L,U.

Let Qθi be the mapping defined as in equation (5.1) in BMM using (yiL, yiU , xiL, xiU ) . Beresteanu

and Molinari (2008, Lemmas A.4, A.5 and proof of Theorem 4.2) establish that {Qθi}ni=1 is a

sequence of i.i.d. random closed sets, such that E
(
‖Qθi‖2H

)
< ∞. Define Tn (θ) similarly to the

previous Section:

Tn (θ) =

(
max
u∈B

(
−
√
nm̄n (θ, u)

))2

=

(
max
u∈S
−
√
nm̄n (θ, u)

)2

+

= max
u∈S

(
−
√
nm̄n (θ, u)

)2
+
,

m̄n (θ, u) =
1

n

n∑
i=1

h (Qθi, u) ,

where, again, the fact that u ∈ S guarantees that the above test statistic is invariant to rescaling
of the moment function. This preserves concavity of the objective function. We then have the

following result:

Theorem B.3 Let Assumption 5.1 in BMM and Assumption B.2 hold. Then Assumption EP on

page 37 of AS is satisfied.
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Proof. Let m (yiL, yiU , xiL, xiU , θ, u) = h (Qθi, u) . Following AS notation, define

√
nm̄n (θ, u) =

1√
n

n∑
i=1

h (Qθi, u) ,

γ1,n (θ, u) =
√
nE [h (Qθi, u)] ,

γ2 (θ, u, u∗) = E [h (Qθi, u)h (Qθi, u
∗)]−E [h (Qθi, u)]E [h (Qθi, u

∗)] ,

νn (θ, u) =
1√
n

n∑
i=1

[h (Qθi, u)−E (h (Qθi, u))] .

Given the above definitions, we have

√
nm̄n (θ, u) = νn (θ, u) + γ1,n (θ, u) .

By the Central Limit Theorem for i.i.d. sequences of random sets (Molchanov (2005, Theorem

2.2.1))

νn (θ, ·) =⇒ νγ2(θ) (·) ,

a Gaussian process with mean zero, covariance kernel γ2 (θ, u, u∗) , and continuous sample paths. It

follows from the Strong Law of Large Numbers in Banach spaces of Mourier (1955) that the sample

analog estimator γ̂2,n (θ, u, u∗) which replaces population moments with sample averages, satisfies

γ̂2,n (θ, ·, ·) a.s.→ γ2 (θ, ·, ·) , uniformly in u, u∗.

C Entry Games of Incomplete Information

We now consider the case that players have incomplete information (see, e.g. Aradillas-López

(2010), Brock and Durlauf (2001, 2007), Seim (2006), Sweeting (2009)). We retain the notation

introduced in BMM, but we substitute Assumption 3.1 there with the following one, which is fairly

standard in the literature. We continue to maintain Assumption 3.2.

Assumption C.1 (i) The set of outcomes of the game Y is finite. The observed outcome of the
game results from simultaneous move, pure strategy Bayesian Nash play.

(ii) All players and the researcher observe payoff shifters xj , j = 1, ..., J. The payoff shifter εj

is private information to player j = 1, ..., J, and unobservable to the researcher. Conditional on

{xj , j = 1, ..., J} , εj is independent of {εi}i 6=j . Players have correct common prior Fθ (ε|x) .

(iii) The payoffs are additively separable in ε : πj (yj , y−j , xj , εj ; θ) = π̃j (yj , y−j , xj ; θ) + εj . As-

sumption 3.1-(iii) in BMM holds.
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The independence condition in Assumption C.1-(iii) substantially simplifies the task of calculating

the set of BNE. Conceptually, however, our methodology applies also when players’ types are

correlated. The resulting diffi culties associated with calculating the set of BNE are to be faced

with any methodology for inference in this class of games. The correct-common-prior condition in

Assumption C.1-(iii) can be relaxed, but we maintain it here for simplicity.

For the sake of brevity, we restrict attention to two player entry games. However, this restriction

is not necessary. Our results easily extend, with appropriate modifications to the notation and the

definition of the set of pure strategy Bayesian Nash Equilibria (BNE), to the case of J ≥ 2 players

each with 2 ≤ κYj < ∞ strategies. In what follows, we characterize the set of BNE of the game,

borrowing from the treatment in Grieco (2009, Section 4), and then apply our methodology to this

set.4 To conserve space, we do not explicitly verify Assumptions 2.1-2.5 in BMM. Assumptions

2.1-2.3 follow by similar arguments as in Section 3 of BMM. Assumptions 2.4-2.5 follow by the

same construction that we provide at the end of Section 3 of BMM, replacing equation (3.7) there

with equation (8) in Grieco (2009, Theorem 4).

With incomplete information, players’ strategies are decision rules yj : E → {0, 1} , with E
the support of ε. The set of outcomes of the game is Y = {(0, 0) , (1, 0) , (0, 1) , (1, 1)} . Given
θ ∈ Θ and a realization of x and εj , player j enters the market if and only if his expected payoff

is non-negative. Therefore, equilibrium mappings (decision rules) are step functions determined

by a threshold: yj (εj) = 1 (εj ≥ tj) , j = 1, 2. As a result, player j’s beliefs about player −j’s
probability of entry under the common prior assumption is

∫
y−j (ε−j) dFθ (ε−j |x) = 1−Fθ (t−j |x) ,

and therefore player j’s best response cutoff is5

tbj (t−j , x; θ) = −π̃j (1, 0, xj ; θ)Fθ (t−j |x)− π̃j (1, 1, xj ; θ) (1− Fθ (t−j |x)) .

Hence, the set of equilibria can be defined as the set of cutoff rules:

Tθ (x) =
{

(t1, t2) : tj = tbj (t−j , x; θ) ∀ j = 1, 2
}
.

Note that the equilibrium thresholds are functions of x only. The set Tθ (x) might contain a finite

number of equilibria (e.g., if the common prior is the Normal distribution), or a continuum of

equilibria. For ease of notation we write the set Tθ (x) and its realizations, respectively, as Tθ and

Tθ (ω) ≡ Tθ (x (ω)) , ω ∈ Ω.

4We refer to Grieco (2009) for a thorough discussion of the related literature and of identification problems in
games of incomplete information with multiple BNE. See also Berry and Tamer (2007, Section 3).

5For example, with payoffs linear in x and given by π(yj , y−j , x, εj ; θ) = yj (y−jθ1j + xjθ2j + εj), we have that
player 1 enters if and only if (ε1 + x1θ21)Fθ (t2|x) + (ε1 + x1θ21 + θ11) (1− Fθ (t2|x)) ≥ 0. Therefore the cutoff is
tbj (t−j , x; θ) = −x1θ21Fθ (t2|x)− (x1θ21 + θ11) (1− Fθ (t2|x)) = −x1θ21 − θ11 (1− Fθ (t2|x)) .
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For given realization of the random variables characterizing the model, i.e., for given ω ∈ Ω,

we need to map the set of equilibrium decision rules of each player, into outcomes of the game.

Consider the realization t (ω) of t ∈ Sel (Tθ) . Through the threshold decision rule, such realization

implies the following action profile:

(C.1) q (t (ω)) =


1 (ε1 (ω) ≤ t1 (ω) , ε2 (ω) ≤ t2 (ω))
1 (ε1 (ω) ≥ t1 (ω) , ε2 (ω) ≤ t2 (ω))
1 (ε1 (ω) ≤ t1 (ω) , ε2 (ω) ≥ t2 (ω))
1 (ε1 (ω) ≥ t1 (ω) , ε2 (ω) ≥ t2 (ω))

 ∈ ∆3,

with ∆3 the simplex in <4. The vector q (t (ω)) indicates which of the four possible pairs of actions

is played with probability 1, when the realization of (x, ε) is (x (ω) , ε (ω)) and the equilibrium

threshold is t (ω) ∈ Tθ (x (ω)). Applying this construction to all measurable selections of Tθ, we

construct a random closed set in ∆3 :

Qθ = {q (t) : t ∈ Sel (Tθ)} .

For given x and θ ∈ Θ, define the conditional Aumann expectation

E (Qθ|x) = {E (q (t)|x) : t ∈ Sel (Tθ)} .

Notice that for a specific selection t ∈ Sel (Tθ) , given the independence assumption on ε1, ε2, the

first entry of the vector E (q (t)|x) is

E (1 (ε1 ≤ t1, ε2 ≤ t2)|x) = (1− Fθ (t1|x)) (1− Fθ (t2|x)) ,

and similarly for other entries of E (q (t)|x) . This yields the multinomial distribution over outcome

profiles determined by equilibrium threshold t ∈ Sel (Tθ). By the same logic as in Section 3 of

BMM, E (Qθ|x) is the set of probability distributions over action profiles conditional on x which

are consistent with the maintained modeling assumptions, i.e., with all the model’s implications.

By the same results that we applied in BMM, the set E (Qθ|x) is closed and convex.

Observe that regardless of whether Tθ contains a finite number of equilibria or a continuum,

Qθ can take on only a finite number of realizations corresponding to each of the vertices of ∆3,

because the vectors q (t) in equation C.1 collect threshold decision rules.6 As we show in the proof of

Theorem C.1, this implies that E (Qθ|x) is a closed convex polytope x−a.s., fully characterized by a
finite number of supporting hyperplanes. In turn, this allows us to characterize ΘI through a finite

number of moment inequalities, and to compute it using effi cient algorithms in linear programming.
6Hence, the set Qθ is a “simple” random closed set in ∆3, in the sense that there exists a finite measurable

partition Ω1, . . . ,Ωm of Ω and sets K1, ...,Km ∈ F such that Qθ (ω) = Ki for all ω ∈ Ωi, 1 ≤ i ≤ m.
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Theorem C.1 Let Assumption C.1 and Assumption 3.2 of BMM hold. Then

ΘI =

{
θ ∈ Θ : max

u∈B

(
u′P (y|x)−E [h (Qθ, u)|x]

)
= 0 x− a.s.

}
=

{
θ ∈ Θ : u′P (y|x) ≤ E [h (Qθ, u)|x] ∀ u ∈ D, x− a.s.

}
,

where D =
{
u =

[
u1 ... uκY

]′
: ui ∈ {0, 1} , i = 1, ..., κY

}
.

Proof. By the same argument as in the proof of Theorem 2.1 in BMM,

ΘI = {θ ∈ Θ : P (y|x) ∈ E (Qθ|x) , x− a.s.}

=

{
θ ∈ Θ : max

u∈B

(
u′P (y|x)−E [h (Qθ, u)|x]

)
= 0 x− a.s.

}
=

{
θ ∈ Θ : u′P (y|x) ≤ E [h (Qθ, u)|x] ∀ u ∈ B, x− a.s.

}
.

It remains to show equivalence of the conditions

(i) u′P (y|x) ≤ E [h (Qθ, u)|x] ∀u ∈ B,

(ii) u′P (y|x) ≤ E [h (Qθ, u)|x] ∀u ∈ D.

By the positive homogeneity of the support function, condition (i) is equivalent to u′P (y|x) ≤
E [h (Qθ, u)|x] ∀u ∈ <κY . It is obvious that this condition implies condition (ii). To see why

condition (ii) implies condition (i), observe that because the set Qθ and the set co [Qθ] are simple,

one can find a finite measurable partition Ω1, . . . ,Ωm of Ω and convex sets K1, ...,Km ∈ ∆κY−1,

such that by Theorem 2.1.21 in Molchanov (2005)

E (Qθ|x) = K1P (Ω1|x)⊕K2P (Ω2|x)⊕ ...⊕KmP (Ωm|x) ,

with Ki the value that co [Qθ (ω)] takes for ω ∈ Ωi, i = 1, ...,m (see Molchanov (2005, Definition

1.2.8)). By the properties of the support function, see Schneider (1993, Theorem 1.7.5),

h (E (Qθ|x) , u) =
m∑
i=1
P (Ωi|x)h (Ki, u) .

Finally, for each i = 1, ...,m, the vertices of Ki are a subset of the vertices of ∆κY−1. Hence the

supporting hyperplanes ofKi, i = 1, ...,m, are a subset of the supporting hyperplanes of the simplex

∆κY−1, which in turn are obtained through its support function evaluated in directions u ∈ D.

Therefore the supporting hyperplanes of E (Qθ|x) are a subset of the supporting hyperplanes of

∆κY−1.
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Remark 1 Grieco (2009) introduces an important model, where each player has a vector of payoff

shifters unobservable by the researcher. Some of the elements of this vector are private information

to the player, while the others are known to all players. Our results in Section 2 of BMM apply to

this set-up as well, by the same arguments as in Section 3 of BMM and in this Appendix.

Remark 2 Appendix B verifies the regularity conditions required by AS for models satisfying

Assumptions C.1 and 3.2 in BMM under the additional assumption that the researcher observes

an i.i.d. sequence of equilibrium outcomes and observable payoff shifters {yi, xi}
n
i=1.

D Pure Strategies Only: Further Simplifications

We now assume that players in each market do not randomize across their actions. In a finite game,

when restricting attention to pure strategies, one necessarily contends with the issue of possible

non-existence of an equilibrium for certain parameter values θ ∈ Θ and realizations of (x, ε) . To

deal with this problem, one can impose Assumption D.1 below:

Assumption D.1 One of the following holds:

(i) For a subset of values of θ ∈ Θ which includes the values of θ that have generated the observed

outcomes y, a pure strategy Nash equilibrium exists (x, ε)− a.s.
(ii) For each θ ∈ Θ and realizations of x, ε such that a pure strategy Nash equilibrium does not

exist, Sθ (x, ε) = vert (Σ (Y)) , with vert (·) the vertices of the set in parenthesis.

Assumption D.1-(i) requires an equilibrium always to exist for the values of θ that have generated

the observed outcomes y. If the model is correctly specified and players in fact follow pure strategy

Nash behavior, then this assumption is satisfied. However, the assumption implicitly imposes strong

restrictions on the parameter vector θ, the payoff functions, and the payoff shifters x, ε. On the other

hand, Assumption D.1-(ii) posits that if the model does not have an equilibrium for a given θ ∈ Θ

and realization of (x, ε) , then the model has no prediction on what should be the action taken by

the players, and “anything can happen.”In this respect, one may argue that Assumption D.1-(ii) is

more conservative than Assumption D.1-(i). We do not take a stand here on which solution to the

existence problem the applied researcher should follow. Either way, the approach that we propose

delivers the sharp identification region ΘI , although the set ΘI will differ depending on whether

Assumption D.1-(i) or D.1-(ii) is imposed. Moreover, one may choose not to impose Assumption

D.1 at all, and use a different solution concept. In that case as well, as we illustrate in Appendix

E, our approach can be applied to characterize the sharp identification region.
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When players play only pure strategies, the set Sθ takes its realizations as subsets of the vertices

of Σ (Y) , because each pure strategy Nash equilibrium is equivalent to a degenerate mixed strategy

Nash equilibrium placing probability one on a specific pure strategy profile. Hence, the realizations

of the set Qθ lie in the subsets of the vertices of ∆κY−1.

Example 1 Consider a simple two player entry game similar to the one in Tamer (2003), omit

the covariates, assume that players’ payoffs are given by πj = yj (y−jθj + εj) , where yj ∈ {0, 1}
and θj < 0, j = 1, 2. Assume that players do not randomize across their actions, so that each

σj , j = 1, 2, can take only values 0 and 1. Figure 1 plots the set Sθ resulting from the possible

realizations of ε1, ε2. In this case, Sθ assumes only five values:

Sθ (ε) =



{(0, 0)} if ε ∈ E(0,0)
θ ≡ (−∞, 0]× (−∞, 0] ,

{(1, 0)} if ε ∈ E(1,0)
θ ≡ [−θ1,+∞)× (−∞,−θ2] ∪ [0,−θ1]× (−∞, 0] ,

{(0, 1)} if ε ∈ E(0,1)
θ ≡ (−∞, 0]× [0,+∞) ∪ [0,−θ1]× [−θ2,+∞) ,

{(1, 1)} if ε ∈ E(1,1)
θ ≡ [−θ1,+∞)× [−θ2,+∞) ,

{(0, 1) , (1, 0)} if ε ∈ EMθ ≡ [0,−θ1]× [0,−θ2] ,

where in the above expressions E(·,·)
θ denotes a region of values for ε such that the game admits

the pair in the superscript as a unique equilibrium, and EMθ denotes the region of values for

ε such that the game has multiple equilibria. Consequently, also the set Qθ assumes only five

values, equal respectively to
{

[1 0 0 0]′
}
,
{

[0 1 0 0]′
}
,
{

[0 0 1 0]′
}
,
{

[0 0 0 1]′
}
, and{

[0 1 0 0]′ , [0 0 1 0]′
}
. �

Hence, the sets Sθ and Qθ are “simple” random closed sets in Σ (Y) and ∆κY−1, respectively.

Because the probability space is non-atomic and Qθ is simple, E (Qθ|x) is a closed convex polytope,

fully characterized by a finite number of supporting hyperplanes.

Example 1 (Cont.) Consider again the simple two player entry game with pure strategies only

in Example 1. Then for ε ∈ EMθ the set Qθ contains only two points, [0 1 0 0]′ and [0 0 1 0]′ ,

and for ε /∈ EMθ it is a singleton. Therefore, the expectations of the selections of Qθ are given by

E (q) =
[
P
(
ε ∈ E(0,0)

θ

)
P
(
ε ∈ E(1,0)

θ

)
P
(
ε ∈ E(0,1)

θ

)
P
(
ε ∈ E(1,1)

θ

)]′
+ [0 p1 1− p1 0]′P

(
ε ∈ EMθ

)
,

where p1 = P
(

ΩM
1

∣∣ω : ε (ω) ∈ EMθ
)
, for all measurable ΩM

1 ⊂
{
ω : ε (ω) ∈ EMθ

}
, i = 1, 2. If the

probability space has no atoms, then the possible values for p1 fill in the whole [0, 1] segment. Hence,

E (Qθ) is a segment in ∆3. �
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Hence, checking whether P (y|x) ∈ E (Qθ|x) amounts to checking whether a point belongs to

a polytope, i.e. whether a finite number of moment inequalities hold x − a.s. In Theorem D.1 we

show that these inequalities are obtained by checking inequality u′P (y|x) ≤ E [h (Qθ, u)|x] for the

2κY possible u vectors whose entries are either equal to zero or to one.

Theorem D.1 Assume that players use only pure strategies, that Assumptions 3.1 and 3.2 in

BMM and Assumption D.1 are satisfied. Then for x− a.s. these two conditions are equivalent:
1. u′P (y|x) ≤ E [h (Qθ, u)|x] ∀ u ∈ <κY ,
2. u′P (y|x) ≤ E [h (Qθ, u)|x] ∀ u ∈ D =

{
u =

[
u1 ... uκY

]′
: ui ∈ {0, 1} , i = 1, ..., κY

}
.

Proof. Same argument as in the proof of Theorem C.1.

In Appendix D.2 we connect this result to a related notion in the theory of random sets, that

of a capacity functional (the “probability distribution”of a random closed set), and we provide an

equivalent characterization of the sharpness result which gives further insights into our approach. In

Appendix D.2 we provide results that significantly reduce the number of inequalities to be checked,

by showing that depending on the model under consideration, many of the 2κY inequalities in

Theorem D.1 are redundant.

To conclude this Appendix, it is important to discuss why the sharp identification region cannot

in general be obtained through a finite number of moment inequalities. When players are not

allowed to randomize over their actions, the family of possible equilibria is finite. Hence, the range

of values that ε takes can be partitioned into areas in which the set of equilibria remains constant,

that is, does not depend on ε any longer. However, when players randomize across their actions, in

equilibrium they must be indifferent among the actions over which they place positive probability.

This implies that there exist regions in the sample space where the equilibrium mixed strategy

profiles are a function of ε directly.7 When the distribution of ε is continuous, Qθ may take a

continuum of values as a function of ε, and E (Qθ|x) may have infinitely many extreme points.

Therefore, one needs an infinite number of moment inequalities to determine whether P (y|x)

belongs to it. In this case, the most practical approach to obtain the sharp identification region is

by solving the maximization problem in Theorem 3.2 of BMM.

7For example, in the two player entry game in Example 1 of BMM, for ε ∈ EθM , Sθ =
{

(0, 1) ,
(
ε2
−θ2 ,

ε1
−θ1

)
, (1, 0)

}
.

However, if one restricts players to use pure strategies, then for ε ∈ EθM , Sθ = {(0, 1) , (1, 0)} , with no additional
dependence of the equilibria on ε.
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D.1 Example: Two Type, Four Player Entry Game with Pure Strategies Only

Consider a game where in each market there are four potential entrants, two of each type. The

two types differ from each other by their payoff function. This model is an extension of the

seminal papers by Bresnahan and Reiss (1990, 1991). An empirical application of a version of this

model appears in Ciliberto and Tamer (2009, CT henceforth). We adopt the version of this model

described in Berry and Tamer (2007, pages 84-85), and for illustration purposes we simplify it by

omitting the observable payoff shifters x and by setting to zero the constant in the payoff function.

Let ajm ∈ {0, 1} be the strategy of firm j = 1, 2 of type m = 1, 2. Entry is denoted by ajm = 1,

with ajm = 0 denoting staying out. Players j = 1, 2 of type 1 and type 2 have respectively the

following payoff functions:

πj1 (aj1, a−j1, a12, a22, ε1) = yj1 (θ11 (a−j1 + a12 + a22)− ε1) ,(D.1)

πj2 (aj2, a−j2, a11, a21, ε2) = aj2 (θ21 (a11 + a21) + θ22a−j2 − ε2) .(D.2)

We assume that θ11, θ21 and θ22 are strictly negative and that θ22 > θ21. This means that a type

2 firm is worried more about rivals of type 1 than of rivals of its own type. Since firms of a given

type are indistinguishable to the econometrician, the observable outcome is the number of firms

of each type which enter the market. Let y1 = a11 + a21 denote the number of entrants of type

1 and y2 = a12 + a22 the number of entrants of type 2 that a firm faces, so that ym ∈ {0, 1, 2} ,
m = 1, 2. Then there are 9 possible outcomes to this game, ordered as follows: Y = {(0, 0) , (0, 1) ,

(1, 0) , (1, 1) , (2, 0) , (0, 2) , (1, 2) , (2, 1) , (2, 2)}. Notice that here players’actions and observable
outcomes of the game differ. Figure 2 plots the outcomes of the game against the realizations of

ε1, ε2. In this case, Qθ takes its realizations in the vertices of ∆8. For example, for ω : ε1 (ω) ≥ θ11,

ε2 (ω) ≥ θ22, the game has a unique equilibrium outcome, y = (0, 0) , and Qθ (ω) = {[1 0 0 0 0 0
0 0 0]′}; for ω : 2θ11 ≤ ε1 (ω) ≤ θ11, 2θ22 ≤ ε2 (ω) ≤ θ22, the game has two equilibrium outcomes,

y = (0, 1) and y = (1, 0) , and Qθ (ω) = {[0 1 0 0 0 0 0 0 0]′, [0 0 1 0 0 0 0 0 0]′}; etc.
Because the set Y has cardinality 9, in principle there are 29 = 512 inequality restrictions to

consider, corresponding to each binary vector of length 9. However, the number of inequalities

to be checked is significantly smaller. Because we are allowing only pure strategy equilibria, the

realizations of any σ ∈ Sθ are vectors of zeros and ones. Hence, for all ω ∈ Ω, [q (σ (ω))]k = 1 if∏J
j=1 σj

(
ω, tkj

)
= 1, and zero otherwise. Consider two equilibria tk, tl ∈ Y, 1 ≤ k 6= l ≤ κY , such

that

(D.3)

{
ω :

J∏
j=1

σj

(
ω, tkj

)
= 1

∣∣∣∣∣x
}
∩
{
ω :

J∏
j=1

σj

(
ω, tlj

)
= 1

∣∣∣∣∣x
}

= ∅,
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that is, the set of ω for which Sθ admits both tk and tl as equilibria has probability zero. Let

uk be a vector with each entry equal to zero, and entry k equal to 1, and similarly for ul. Then

the inequality
(
uk + ul

)′
P (y|x) ≤ E

[
h
(
Q (Sθ) , u

k + ul
)∣∣x] does not add any information beyond

that provided by the inequalities u′P (y|x) ≤ E [h (Q (Sθ) , u)|x] for u = uk and for u = ul. The

same reasoning can be extended to tuples of pure strategy equilibria of size up to κY . Applying

this simple reasoning, the sharp identification region that we give in this example is based on 26

inequalities, whereas ΘABJ
O and ΘCT

O are based, respectively, on 9 and 18 inequalities. Hence, the

computational burden is essentially equivalent.

Figure 3 and Table 1 report ΘI , ΘCT
O —the outer region proposed by CT, and ΘABJ

O —the outer

region proposed by Andrews, Berry, and Jia (2004, ABJ henceforth), in a simple example with

(ε1, ε2)
iid∼ N (0, 1) and Θ = [−5, 0]3 . In the figure, ΘABJ

O is given by the union of the yellow, red

and black segments, and ΘCT
O by the union of the red and black segments. ΘI is the black segment.

Notice that the identification regions are segments because the outcomes (0, 0) and (2, 2) can only

occur as unique equilibrium outcomes, and therefore imply two moment equalities which make θ21

and θ22 a function of θ11.While, strictly speaking, the approach in ABJ does not take into account

this fact, as it uses only upper bounds on the probabilities that each outcome occurs, it is clear

(and indicated in their paper) that one can incorporate equalities into their method. Hence, we

use the equalities on P (y = (0, 0)) and P (y = (2, 2)) also when calculating ΘABJ
O .We generate the

data with θ?11 = −0.15, θ?21 = −0.20, and θ?22 = −0.10 and use a selection mechanism to choose

the equilibrium played in the many regions of multiplicity. The resulting observed distribution is

P (y) = [0.3021 0.0335 0.0231 0.0019 0.2601 0.2779 0.0104 0.0158 0.0752]′. Our results clearly show

that ΘI is substantially smaller than ΘCT
O and ΘABJ

O . The width of the bounds on each parameter

vector obtained using our method is about 46% of the width obtained using ABJ’s method, and

about 63% of the width obtained using CT’s method.

In order to further illustrate the computational advantages of our characterization of ΘI in

Theorem 3.2 of BMM, we also recalculated the sharp identification region for this example without

taking advantage of our knowledge of the structure of the game which reduces the number of

inequalities to be checked to 26, but by simply solving for each candidate θ ∈ Θ the problem

maxu∈B (u′P (y|x)−E [h (Qθ, u)|x]). We modified the simple Nelder-Mead algorithm described

in Section 3.4 of BMM to apply to a minimization in <9, wrote it as a program in Fortran 90, and

compiled and ran it on a Unix machine with a single processor of 3.2 GHz. Our recalculation of

ΘI yielded exactly the same result as described above, and checking 106 candidate values for θ ∈ Θ

took less than one minute.
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D.2 Dual Characterization of the Sharpness Result in the Pure Strategies Case

For a given realization of (x, ε) and value of θ ∈ Θ, the set of outcomes generated by pure strategy

Nash equilibria8 is

(D.4) Yθ (x, ε) = {y ∈ Y : πj (yj , y−j , xj , εj , θ) ≥ πj (ỹj , y−j , xj , εj , θ) ∀ỹj ∈ Yj ∀j} .

As we did for Sθ, we omit the explicit reference to this set’s dependence on x and ε. Given As-

sumption 3.1 of BMM, one can easily show that Yθ is a random closed set in Y (see Definition A.1
of BMM). Because the realizations of Yθ are subsets of the finite set Y, it immediately follows that
Yθ is a random closed set in Y without any requirement on the payoff functions.

The researcher observes the tuple (y, x), and the random set Yθ is a function of x (and of course

ε). Under Assumptions 3.1 and 3.2 of BMM and Assumption D.1, and given the covariates x, the

observed outcomes y are consistent with the model if and only if there exists at least one θ ∈ Θ

such that y(ω) ∈ Yθ (ω) x − a.s. (i.e., y is a selection of Yθ x − a.s., see Definition A.3 in BMM).
A necessary and suffi cient condition which guarantees that a random vector (y, x) is a selection of

(Yθ, x) is given by the results of Artstein (1983), Norberg (1992) and Molchanov (2005, Theorem

1.2.20 and Section 1.4.8), and amounts to the following:9

P{(y, x) ∈ K × L} ≤ P{(Yθ, x) ∩K × L 6= ∅} ∀K ⊂ Y, ∀ compact sets L ⊂ X .

This inequality can be written as P {y ∈ K|x ∈ L}P {x ∈ L} ≤ P {Yθ ∩K 6= ∅|x ∈ L}P {x ∈ L}
for all K ⊂ Y and compact sets L ⊂ X such that P {x ∈ L} > 0, and it is satisfied if and only if

(D.5) P {y ∈ K|x} ≤ P {Yθ ∩K 6= ∅|x} ∀K ⊂ Y x− a.s.

Because Y is finite, all its subsets are compact. The functional P {Yθ ∩K 6= ∅|x} on the right-
hand side of (D.5) is called the capacity functional of Yθ given x. The following definitions formally

introduce the unconditional version of this functional and a few related ones:
8Restrict the set Sθ to be a set of pure strategy Nash equilibria. Then when players actions and outcomes of the

game coincide, Yθ coincides with Sθ. However, under the more general assumption that y = g(a), where a ∈ A is a
strategy profile and g is an outcome rule, these two sets differ, and

Yθ (x, ε) = {y ∈ Y : y = g (a) , a ∈ A and πj (aj , a−j , xj , εj , θ) ≥ πj (ãj , a−j , xj , εj , θ) ∀ãj ∈ Aj ∀j} .

9Beresteanu and Molinari (2006, 2008, Proposition 4.1) use this result to establish sharpness of the identification
region of the parameters of a best linear predictor with interval outcome data. Galichon and Henry (2006) use it to
define a correctly specified partially identified structural model, and derive a Kolmogorov-Smirnov test for Choquet
capacities.
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Definition D.1 Let Z be a random closed set in <d, and denote by K the family of compact subsets
of <d. The functionals TZ : K → [0, 1] , CZ : K → [0, 1] , and IZ : K → [0, 1] , given by

TZ (K) = P{Z ∩K 6= ∅}, CZ (K) = P{Z ⊂ K}, IZ (K) = P{K ⊂ Z} , K ∈ K,

are said to be, respectively, the capacity functional of Z, the containment functional of Z,

and the inclusion functional of Z.

Denoting by Kc the complement of the set K, the following relationship holds:

(D.6) CZ (K) = 1−TZ (Kc) .

Example 2 Consider again the simple two player entry game in Example 1. Figure 1 plots the set

Yθ against the realizations of ε1, ε2. In this case, TYθ ({(0, 0)}) = P (ε1 ≤ 0, ε2 ≤ 0) , TYθ ({(1, 0)}) =

P (ε1 ≥ 0, ε2 ≤ −θ2) , TYθ ({(0, 1)}) = P (ε1 ≤ −θ1, ε2 ≥ 0) , TYθ ({(1, 1)}) = P (ε1 ≥ −θ1, ε2 ≥ −θ2) ,

TYθ ({(1, 0) , (0, 1)}) = TYθ ({(1, 0)}) + TYθ ({(0, 1)})− P (0 ≤ ε1 ≤ −θ1, 0 ≤ ε2 ≤ −θ2) . The ca-

pacity functional of the remaining subsets of Y can be calculated similarly. �

Notice that given equation (D.6), inequalities (D.5) can be equivalently written as

(D.7) CYθ|x (K) ≤ P {y ∈ K|x} ≤ TYθ|x (K) ∀K ⊂ Y x− a.s.,

where the subscript Yθ|x denotes that the functional is for the random set Yθ conditional on x.

We return to this representation of inequalities (D.5) when discussing the relationship between our

analysis and that of CT. Clearly, if one considers all K ⊂ Y, the left-hand side inequality in (D.7)
is superfluous: when the inequalities in (D.7) are used, only subsets K ⊂ Y of cardinality up to
half of the cardinality of Y are needed.

We can re-define the identified set of parameters θ as

(D.8) ΘI =
{
θ ∈ Θ : P {y ∈ K|x} ≤ TYθ|x (K) ∀K ⊂ Y x− a.s.

}
.

For comparison purposes, we reformulate the definition of the outer regions given by ABJ and CT

respectively through the capacity functional and the containment functional:

ΘABJ
O =

{
θ ∈ Θ : P {y = t|x} ≤ TYθ|x (t) ∀t ∈ Y x− a.s.

}
,(D.9)

ΘCT
O =

{
θ ∈ Θ : CYθ|x (t) ≤ P {y = t|x} ≤ TYθ|x (t) ∀t ∈ Y x− a.s.

}
.(D.10)

Both ABJ and CT acknowledge that the parameter regions they give are not sharp. Comparing the

sets in equations (D.9)-(D.10) with the set in equation (D.8), one observes that ΘABJ
O is obtained
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applying inequality (D.5) only for K = {t} for all t ∈ Y. Similarly, ΘCT
O is obtained applying

inequality (D.7) only for K = {t} (or, equivalently, applying inequality (D.5) for K = {t} and
K = Y\ {t} for all t ∈ Y). Clearly both ABJ and CT do not use the information contained in

the remaining subsets of Y, while this information is used to obtain ΘI . Two questions arise: (1)

whether ΘI as defined in equation (D.8) yields the sharp identification region of θ; and (2) if and

by how much ΘI differs from ΘABJ
O and ΘCT

O . We answer here the first question. Appendix D.1

answers the second question by looking at a simple example.

Theorem D.2 Assume that players use only pure strategies, and that Assumptions 3.1 and 3.2 in

BMM and Assumption D.1 are satisfied. Then for x− a.s. these two conditions are equivalent:
1. u′P (y|x) ≤ E [h (Qθ, u)|x] ∀ u ∈ <κY ,
2. P {y ∈ K|x} ≤ TYθ|x (K) ∀K ⊂ Y.

Proof. Beresteanu, Molchanov, and Molinari (2008, Theorem 4.1).

D.3 On the Number of Inequalities to Be Checked in the Pure Strategies Case

As discussed in Appendix D.1, when it is assumed that players play only pure strategies, often

there is no need to verify the complete set of 2κY inequalities, because many are redundant. Using

the insight in Theorem D.2, one can show that the result in equation (D.3) can be restated using

the set Yθ and its capacity functional. In particular, if K1 and K2 are two disjoint subsets of Y
such that

(D.11) {ω : Yθ (ω) ∩K1 6= ∅|x} ∩ {ω : Yθ (ω) ∩K2 6= ∅|x} = ∅,

that is, the set of ω for which Yθ intersects both K1 and K2 has probability zero, then the

inequality P {y ∈ K1 ∪K2|x} ≤ P {Yθ ∩ (K1 ∪K2) 6= ∅|x} does not add any information be-
yond that provided by the inequalities P {y ∈ K1|x} ≤ P {Yθ ∩K1 6= ∅|x} and P {y ∈ K2|x} ≤
P {Yθ ∩K2 6= ∅|x}. Therefore, prior knowledge of some properties of the game can be very helpful
in eliminating unnecessary inequalities. For example, in a Bresnahan and Reiss entry model with

4 players, if the number of entrants is identified, the number of inequalities to be verified reduces

from 65,536 to at most 100. Theorem D.3 below gives a general result which may lead to a dra-

matic reduction in the number of inequalities to be checked. While its proof is simple, this result

is conceptually and practically important.
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Theorem D.3 Take θ ∈ Θ and let Assumptions 3.1 and 3.2 in BMM and Assumption D.1 hold.

Consider a partition of Ω into sets Ω1, . . . ,ΩM of positive probability. Let Yi

Yi = ∪{Yθ(ω) : ω ∈ Ωi}.

denote the range of Yθ(ω) for ω ∈ Ωi. If Y1, . . . ,YM are disjoint, then it suffi ces to check (D.5) only

for all subsets K such that there is i = 1, . . . ,M for which K ⊆ Yi.

Proof. Beresteanu, Molchanov, and Molinari (2008, Theorem 5.1).

A simple Corollary of Theorem D.3, the proof of which is omitted, is the following:

Corollary D.4 Take θ ∈ Θ and let Assumptions 3.1 and 3.2 in BMM and Assumption D.1 hold.

Assume that Ω = Ω1∪Ω2 with Ω1∩Ω2 = ∅, such that Yθ(ω) is a singleton almost surely for ω ∈ Ω1.

Let Yi = ∪ω∈ΩiYθ(ω), i = 1, 2, and assume that Y1 ∩ Y2 = ∅ and that κY2 ≤ 2. Then inequalities

(D.5) hold if

(D.12) P{Yθ = {t}|x} ≤ P{y = t|x} ≤ P{ t ∈ Yθ|x}

x− a.s. for all t ∈ Y.

An implication of this Corollary is that in a static entry game with two players in which only

pure strategies are played, the outer region proposed by CT coincides with ours, and is sharp.10

In this example, Y1 = {(0, 0) , (1, 1)} , Y2 = {(0, 1) , (1, 0)} , and Ω2 = {ω : Yθ ∩ Y2 6= ∅}. An
application of equation (D.3) shows that actually the sharp identification region can be obtained

by checking only five inequalities which have to hold for x − a.s., given by inequalities (D.5) for
K = {(0, 0)} , {(1, 0)} , {(0, 1)} , {(1, 1)} , {(1, 0) , (0, 1)} . On the other hand, the example in Section
3.4 of BMM shows that CT’s approach does not yield the sharp identification region when mixed

strategies are allowed for.

When no prior knowledge of the game such as, for example, that required in Theorem D.3 is

available, it is still possible to use the insight in equation (D.11) to determine which inequalities

yield the sharp identification region, by decomposing Y into subsets such that Yθ does not jointly
hit any two of them with positive probability. One may wonder whether in general the set of

inequalities yielding the sharp identification region is different from the set of inequalities used by

ABJ or CT. The following result shows that in general the answer to this question is “yes”.

10A literal application of ABJ’s approach does not take into account the fact that in this game (0, 0) and (1, 1) only
occur as unique equilibria of the game, and therefore does not yield the sharp identification region, as ABJ discuss
(see page 32).
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Theorem D.5 Let Assumptions 3.1 and 3.2 in BMM and Assumption D.1 hold. Assume that

there exists θ ∈ Θ, with Yθ 6= ∅ P− a.s., such that for all x ∈ X̃ ⊂ X , with P
(
X̃
)
> 0, there exist

t1, t2 ∈ Y with

(D.13) IYθ|x(t1, t2) > 0.

(a) If P
{{
t1, t2

}
∩ Yθ 6= ∅

∣∣x} < 1 for all t1, t2 ∈ Y, then there exists a random vector z which

satisfies inequalities (D.5) for K = {t} for all t ∈ Y but is not a selection of Yθ.
(b) If

(D.14) P{κYθ > 1|x} > IYθ|x(t1) + IYθ|x(t2)−CYθ|x(t1)−CYθ|x(t2),

then there exists a random vector z which satisfies inequalities (D.5) for K = {t} and K = Y\ {t}
for all t ∈ Y but is not a selection of Yθ.

Proof. Beresteanu, Molchanov, and Molinari (2008, Theorems 5.2 and 5.3)

These results show that the extra inequalities matter in general, compared to those used by ABJ,

and CT, to fully characterize Yθ and determine if y ∈ Sel (Yθ). In fact, the assumptions of Theorem

D.5-(a) are satisfied whenever the model has multiple equilibria with positive probability, which

implies that the expected cardinality of Yθ given x is strictly greater than one, and it has at least

three different equilibria. The assumptions of Theorem D.5-(b) are satisfied whenever (1) there are

regions of the unobservables of positive probability where two different outcomes can result from

equilibrium strategy profiles; and (2) the probability that the cardinality of Yθ is greater than one

exceeds the probability that each of these two outcomes is not a unique equilibrium. It is easy to

see that these assumptions are not satisfied in a two player entry game where players are allowed

only to play pure strategies, but they are satisfied in the four player, two type game described in

Section D.1.

E Extensions to Other Solution Concepts

While in Section 3 of BMM and Appendix D we focus on economic models of games in which

Nash Equilibrium is the solution concept employed, our approach easily applies to other solution

concepts. Here we consider the case that players are assumed to be only level-1 rational, and

the case that they are assumed to play correlated strategies. For simplicity, we exemplify these

extensions using a two player simultaneous move static game of entry with complete information.

62



E.1 Level-1 Rationality

Suppose that players are only assumed to be level-1 rational. The identification problem under this

weaker solution concept was first studied by Aradillas-Lopez and Tamer (2008, AT henceforth). Let

the econometrician observe players’actions. A level-1 rational profile is given by a mixed strategy

for each player that is a best response to one of the possible mixed strategies of her opponent. In

this case one can define the θ-dependent set

Rθ (x, ε) =

{
σ ∈ Σ (Y) :

∀j ∃ σ̃−j ∈ Σ (Y−j) s.t.
πj (σj , σ̃−j , xj , εj , θ) ≥ πj

(
σ′j , σ̃−j , xj , εj , θ

)
∀σ′j ∈ Σ (Yj)

}
.

Omitting the explicit reference to its dependence on x and ε, Rθ is the set of level-1 rational strategy

profiles of the game. By similar arguments to what we used above, this is a random closed set in

Σ (Y) . Figure 4 plots this set against the possible realizations of ε1, ε2, in a simple two player

simultaneous move, complete information, static game of entry in which players’payoffs are given

by πj = yj (y−jθj + εj) , yj ∈ {0, 1} , and θ1, θ2 are assumed to be negative.

The same approach of Section 3 of BMM allows us to obtain the sharp identification region for

θ as

ΘI =
{
θ ∈ Θ : u′P (y|x) ≤ E [h (Q (Rθ) , u)|x] ∀ u ∈ B x− a.s.

}
,

with

Q (Rθ) = {([q (σ)]k , k = 1, . . . , κY) : σ ∈ Sel (Rθ)} ,

where [q (σ)]k , k = 1, . . . , κY , is defined in Section 3 of BMM.

In our simple example in Figure 4, with omitted covariates, for any ω ∈ Ω such that ε (ω) ∈
[0,−θ1]× [0,−θ2] ,[

q

((
ε2 (ω)

−θ2
,
ε1 (ω)

−θ1

))]
∈ co [{[q (0, 0)] , [q (1, 0)] , [q (0, 1)] , [q (1, 1)]}] ,

and therefore it follows that E (Q (Rθ)) is equal to E
(
Q
(
R̃θ

))
, with R̃θ restricted to be the set

of level-1 rational pure strategies. Hence, by Theorem D.1 below, ΘI can be obtained by checking

a finite number of moment inequalities.

For the case that ε has a discrete distribution, AT (Section 3.1) suggest to obtain the sharp

identification region as the set of parameter values that return value zero for the objective function of

a linear programming problem. For the general case in which ε may have a continuous distribution,

AT apply the same insight of CT and characterize an outer identification region through eight

moment inequalities similar to those in equation (D.10). One may also extend ABJ’s approach to
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this problem, and obtain a larger outer region through four moment inequalities similar to those in

equation (D.9). Our approach, which yields the sharp identification region, in this simple example

requires one to check just 14 inequalities.

As shown in AT (Figure 3), the model with level-1 rationality only places upper bounds on θ1, θ2.

Figure 5 plots the upper contours ofΘI ,Θ
CT
O , andΘABJ

O in a simple example with (ε1, ε2)
iid∼ N (0, 1)

and Θ = [−5, 0]2 . The data is generated with θ?1 = −1.15, θ?2 = −1.4, and using a selection

mechanism which picks outcome (0, 0) for 40% of ω : ε (ω) ∈ [0,−θ?1]× [0,−θ?2] , outcome (1, 1) for

10% of ω : ε (ω) ∈ [0,−θ?1] × [0,−θ?2], and each of outcome (1, 0) and (0, 1) for 25% of ω : ε (ω) ∈
[0,−θ?1]× [0,−θ?2]. Hence, the observed distribution is P (y) = [0.5048 0.2218 0.1996 0.0738]′. Our

methodology allows us to obtain significantly lower upper contours compared to AT (and CT)

and ABJ. The upper bounds on θ1, θ2 resulting from the projections of ΘABJ
O , ΘCT

O and ΘI are,

respectively, (−0.02,−0.02) , (−0.15,−0.26) , and (−0.54,−0.61).

E.2 Objective Correlated Equilibria

Suppose that players play correlated equilibria, a notion introduced by Aumann (1974). A corre-

lated equilibrium can be interpreted as the distribution of play instructions given by some “trusted

authority” to the players. Each player is given her instruction privately but does not know the

instruction received by others. The distribution of instructions is common knowledge across all

players. Then a correlated joint strategy γ ∈ ∆κY−1, where ∆κY−1 denotes the set of probability

distributions on Y, is an equilibrium if, conditional on knowing that her own instruction is to play

yj , each player j has no incentive to deviate to any other strategy y′j , assuming that the other

players follow their own instructions. In this case one can define the θ-dependent set

Cθ (x, ε) =

γ ∈ ∆κY−1 :

∑
y−j∈Y−j

γ (yj , y−j)πj (yj , y−j , xj , εj , θ) ≥∑
y−j∈Y−j

γ (yj , y−j)πj
(
y′j , y−j , xj , εj , θ

)
, ∀yj ∈ Yj , ∀y′j ∈ Yj , ∀j

 .

Omitting the explicit reference to its dependence on x and ε, Cθ is the set of correlated equilibrium

strategies of the game. By similar arguments as those used before, it is a random closed set in

∆κY−1. Notice that Cθ is defined by a finite number of linear inequalities on the set ∆κY−1 of

correlated strategies, and therefore it is a non-empty polytope. Yang (2008) is the first to use this

fact, along with the fact that co [Q (Sθ)] ⊂ Cθ, to develop a computationally easy-to-implement

estimator for an outer identification region of θ, when the solution concept employed is Nash

equilibrium. Here we provide a simple characterization of the sharp identification region ΘI , when

the solution concept employed is objective correlated equilibrium. In particular, the same approach

64



of Section 3 of BMM allows us to obtain the sharp identification region for θ as

ΘI =
{
θ ∈ Θ : u′P (y|x) ≤ E [h (Cθ, u)|x] ∀ u ∈ B x− a.s.

}
.

In our simple two player simultaneous move, complete information, static game of entry, Yj =

{0, 1} , j = 1, 2, Y = {(0, 0) , (1, 0) , (0, 1) , (1, 1)} . Omitting again the covariates, we assume that
players’ payoffs are given by πj = yj (y−jθj + εj) , where yj ∈ {0, 1} and θj is assumed to be

negative (monopoly payoffs are higher than duopoly payoffs), j = 1, 2. Figure 6 plots the set

Cθ against the possible realizations of ε1, ε2, for this example. Notice that for ω ∈ Ω such that

ε (ω) /∈ [0,−θ1] × [0,−θ2] , the game is dominance solvable and therefore Cθ (ω) is given by the

singleton Qθ (ω) resulting from the unique Nash equilibrium in these regions. For ω ∈ Ω such that

ε (ω) ∈ [0,−θ1]×[0,−θ2] , Cθ (ω) is given by a polytope with five vertices, three of which are implied

by Nash equilibria, see Calvó-Armengol (2006), and given by

γ0 (ω) = [0 0 1 0]′ ,

γ1 (ω) =
[
1 − ε2(ω)

θ2+ε2(ω) −
ε1(ω)

θ1+ε1(ω) 0
]′ (

1− ε1(ω)
θ1+ε1(ω) −

ε2(ω)
θ2+ε2(ω)

)−1
,

γ2 (ω) =
[(

1 + ε2(ω)
θ2

)(
1 + ε1(ω)

θ1

)
− ε2(ω)

θ2

(
1 + ε1(ω)

θ1

)
−
(

1 + ε2(ω)
θ2

)
ε1(ω)
θ1

ε2(ω)
θ2

ε1(ω)
θ1

]′
,

γ3 (ω) =
[
0 − ε2(ω)

θ2+ε2(ω) − ε1(ω)
θ1+ε1(ω)

ε1(ω)
θ1+ε1(ω)

ε2(ω)
θ2+ε2(ω)

]′ (
ε1(ω)

θ1+ε1(ω)
ε2(ω)

θ2+ε2(ω) −
ε1(ω)

θ1+ε1(ω) −
ε2(ω)

θ2+ε2(ω)

)−1
,

γ4 (ω) = [0 1 0 0]′ .

Also in this case one can extend the approaches of ABJ and CT to obtain outer regions defined,

respectively, by four and eight moment inequalities.

Figure 7 and Table 2 report ΘI , ΘCT
O , and ΘABJ

O in a simple example with (ε1, ε2)
iid∼ N (0, 1)

and Θ = [−5, 0]2 . In the figure, ΘABJ
O is given by the union of the yellow, red and black areas, and

ΘCT
O by the union of the red and black areas. ΘI is the black region. The data is generated with

θ?1 = −1.15, θ?2 = −1.4, and using a selection mechanism which picks each of outcome (0, 0) and (1, 1)

for 10% of ω : ε (ω) ∈ [0,−θ?1]× [0,−θ?2], and each of outcome (1, 0) and (0, 1) for 40% of ω : ε (ω) ∈
[0,−θ?1]× [0,−θ?2]. Hence, the observed distribution is P (y) = [0.26572 0.34315 0.36531 0.02582]′.

Also in this case ΘI is smaller than ΘCT
O and ΘABJ

O , although the reduction in the size of the

identification region is less pronounced than in the case where mixed strategy Nash equilibrium is

the solution concept.
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F Multinomial Choice Models with Interval Regressors Data

This Section of the Supplement applies the methodology introduced in Section 2 of BMM to provide

a tractable characterization of the sharp identification region of the parameters θ characterizing

random utility models of multinomial choice, when only interval information is available on regres-

sors. In doing so, we extend the seminal contribution of Manski and Tamer (2002), who considered

the same inferential problem in the case of binary choice models. For these models, Manski and

Tamer (2002) provided a tractable characterization of the sharp identification region, and proposed

set estimators which are consistent with respect to the Hausdorff distance. However, their charac-

terization of the sharp identification region does not easily extend to models in which the agents

face more than two choices, as we illustrate below.

We assume that an agent chooses an alternative y from a finite choice set C = {0, . . . , κC − 1}
to maximize her utility. The agent possesses a vector of socioeconomic characteristics w. Each

alternative k ∈ C is characterized by an observable vector of attributes zk and an attribute εk
which is observable by the agent but not by the econometrician. The vector

(
y, w, {zk, εk}κC−1

k=0

)
is defined on a non-atomic probability space (Ω,F,P) . The agent is assumed to possess a random

utility function of known parametric form.

To simplify the exposition, we assume that the random utility is linear, and that w, zk and εk,

k = 0, . . . , κC − 1, are all scalars. However, all these assumptions can be relaxed and are in no way

essential for our methodology. We let the random utility be π (k;xk, εk, θk) = αk+zkδ+wβk+εk ≡
xkθk + εk, k ∈ C, with xk = [1 zk w] and θk = [αk δ βk]

′ . We normalize π (0;x0, ε0, θ0) = ε0.

For simplicity, we assume that εk is independently and identically distributed across choices with a

continuous distribution function F (ε) that is known. We let θ =
[
{αk}κC−1

k=1 δ {βk}
κC−1
k=1

]′
∈ Θ

be the vector of parameters of interest, with Θ the parameter space. We denote εk = εk−ε0, k ∈ C,
and ε =

[{
εk
}κC−1

k=1

]
. Under these assumptions, if the econometrician observes a random sample of

choices, socioeconomic characteristics, and alternatives’attributes, the parameter vector θ is point

identified.

Here we consider the identification problem arising when the econometrician observes only

realizations of {y, zkL, zkU , w} , but not realizations of zk, k = 1, . . . , κC − 1. Following Manski

and Tamer (2002), we assume that for each k = 1, . . . , κC − 1, P (zkL ≤ zk ≤ zkU ) = 1, and

that δ > 0. We let xkL = [1 zkL w] , xkU = [1 zkU w] , xk = [1 zkL zkU w] , and x = [1

{zkL}κC−1
k=1 {zkU}κC−1

k=1 w]. Incompleteness of the data on zk, k = 1, . . . , κC − 1, implies that there

are regions of values of the exogenous variables where the econometric model predicts that more
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than one choice may maximize utility. Therefore, the relationship between the outcome variable

of interest and the exogenous variables is a correspondence rather than a function. Hence, the

parameters of the utility functions may not be point identified.

In the case of binary choice, Manski and Tamer (2002) establish that the sharp identification

region for θ is given by

ΘI =
{
θ ∈ Θ : P

(
x1Lθ + ε1 > 0

∣∣x) ≤ P (y = 1|x) ≤ P
(
x1Uθ + ε1 > 0

∣∣x) , x− a.s.} .
This construction is based on the observation that if the agent chooses alternative 1, this implies

that ε1 > −x1θ ≥ −x1Uθ. On the other hand, ε1 > −x1Lθ ≥ −x1θ implies that the agent chooses

alternative 1.11 In the case of more than two choices, one may wish to apply a similar insight as in

the work of CT, and construct the region

(F.1)

ΘO =


θ ∈ Θ : ∀m ∈ C, x− a.s.,

P
(
xmθm + εm ≥ xkθk + εk ∀ (xm, xk) ∈ [xmL, xmU ]× [xkL, xkU ] , ∀k ∈ C, k 6= m

∣∣x)
≤ P (y = m|x) ≤

P
(
∃ xm ∈ [xmL, xmU ] s.t. ∀k ∈ C, k 6= m,∃ xk ∈ [xkL, xkU ] with xmθm + εm ≥ xkθk + εk

∣∣x)
 .

The lower bound on P (y = m|x) in equation (F.1) is given by the probability that ε falls in

the regions where choice m ∈ C is the only optimal alternative. The upper bound is given by the
probability that ε falls in the regions where choice m ∈ C is one of the possible optimal alternatives.
Similarly to the case of ΘCT

O in the finite games analyzed in Section 3 of BMM, ΘO is just an outer

region for θ, and is not sharp in general. Appendix D.2 provides further insights to explain the lack

of sharpness of ΘO.12

We begin our treatment of the identification problem by noticing that, if xk were observed for

each k ∈ C, one would conclude that a choice m ∈ C maximizes utility if

π (m;xm, εm, θm) = xmθm + εm ≥ xkθk + εk = π (k;xk, εk, θk) ∀ k ∈ C, k 6= m.

Hence, for a given θ ∈ Θ and realization of x and ε, we can define the following θ-dependent set:

Mθ (x, ε) = {m ∈ C : ∃ xm ∈ [xmL, xmU ](F.2)

s.t. ∀k ∈ C, k 6= m,∃ xk ∈ [xkL, xkU ] with xmθm + εm ≥ xkθk + εk}.

This is the set of choices associated with a specific value of θ and realization of x and ε, which

are optimal for some combination of xk ∈ [xkL, xkU ] , k ∈ C, and therefore form the set of model’s

11For −x1Uθ ≤ ε1 ≤ −x1Lθ, the model predicts that either alternative 0 or 1 may maximize the agent’s utility.
12Appendix D.2 focuses on the lack of sharpness of ΘCT

O in finite games with multiple pure strategy Nash equilibria.
The same reasoning applies to the set ΘO in equation (F.1).
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predictions. As we did in Section 3 of BMM, we write the set Mθ (x, ε) and its realizations,

respectively, as Mθ and Mθ (ω) ≡ Mθ (x (ω) , ε (ω)) , omitting the explicit reference to x and ε.

Because Mθ is a subset of a discrete space, and any event of the type {m ∈Mθ} can be represented
as a combination of measurable events determined by εk, k ∈ C, Mθ is a random closed set in C,
see Definition A.1 of BMM.

We now apply to the random closed set Mθ the same logic that we applied to the random

closed set Sθ in Section 3 of BMM. The treatment which follows is akin to the treatment of static,

simultaneous move finite games of complete information, when players use only pure strategies.

For a given parameter value θ ∈ Θ and realization m (ω) , ω ∈ Ω, of a selection m ∈ Sel (Mθ) ,

the individual chooses alternative k = 0, . . . , κC − 1 if and only if m (ω) = k. Hence, we can

use a selection m ∈ Sel (Mθ) to define a random point q (m) whose realizations have coordinates

[q (m (ω))]k = 1 (m (ω) = k) , k = 0, . . . , κC − 1, with 1 (·) the indicator function of the event in
parenthesis. Clearly, the random point q (m) is an element of the unit simplex in the space of

dimension κC , denoted ∆κC−1. Because Mθ is a random closed set in C, the set resulting from
repeating the above construction for each m ∈ Sel (Mθ) and given by

Q (Mθ) = {([q (m)]k , k = 0, . . . , κC − 1) : m ∈ Sel (Mθ)} ,

is a closed random set in ∆κC−1. Hence we can define the set

E (Q (Mθ)|x) = {E (q|x) : q ∈ Sel (Q (Mθ))} = {(E ( [q (m)]k|x) , k = 0, . . . , κC − 1) : m ∈ Sel (Mθ)} .

Because the probability space is non-atomic and the random set Q (Mθ) takes its realizations in a

subset of the finite dimensional space <κC , the set E (Q (Mθ)|x) is a closed convex set for x− a.s.
By construction, it is the set of probability distributions over alternatives conditional on x which

are consistent with the maintained modeling assumptions, i.e., with all the model implications. If

the model is correctly specified, there exists at least one value of θ ∈ Θ such that the observed

conditional distribution of y given x, P (y|x) , is a point in the set E (Q (Mθ)|x) for x−a.s., where
P (y|x) ≡ [P (y = k|x) , k = 0, . . . , κC − 1] .

Using the same mathematical tools leading to Theorem 3.2 of BMM, we obtain that the set of

observationally equivalent parameter values which form the sharp identification region is given by

(F.3) ΘI =

{
θ ∈ Θ : max

u∈B

(
u′P (y|x)−E [h (Q (Mθ) , u)|x]

)
= 0 x− a.s.

}
,

with B the unit ball in <κC .
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Notice that the set Q (Mθ) assumes at most a finite number of values, and its realizations lie in

the subsets of the vertices of ∆κC−1. The conditional Aumann expectation of Q (Mθ) is given by

the weighted Minkowski sum of the possible realizations of co [Q (Mθ)]. Each of these realizations is

a polytope, and therefore E (Q (Mθ)|x) is a closed convex polytope. By Theorem D.1, a candidate

θ belongs to ΘI as defined in equation (F.3) if and only if u′P (y|x) ≤ E [h (Q (Mθ) , u)|x] for each

of the 2κC possible u vectors whose entries are either equal to zero or to one. Hence, ΘI can be

obtained through a finite set of moment inequalities which have to hold for x− a.s.
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G Tables and Figures

Table 1: Projections of ΘABJ
O , ΘCT

O and ΘI , and reduction in bounds width compared to ABJ.
Four player, two type entry game with pure strategy Nash equilibrium as solution concept.

True Values Projections of:
ΘABJ
O ΘCT

O ΘI

θ?11 −0.15 [−0.154,−0.144] [−0.153,−0.146] [−0.152,−0.147]
(27%) (54%)

θ?21 −0.20 [−0.206,−0.195] [−0.204,−0.197] [−0.203,−0.198]
(27%) (54%)

θ?22 −0.10 [−0.106,−0.096] [−0.104,−0.097] [−0.103,−0.098]
(27%) (54%)

Table 2: Projections of ΘABJ
O , ΘCT

O and ΘI , reduction in bounds width (in parentheses), and area
of the identification regions compared to ABJ. Two player entry game with correlated equilibrium
as solution concept.

True Values Projections of:
ΘABJ
O ΘCT

O ΘI

θ?1 −1.15 [−4.475,−0.485] [−4.475,−0.585] [−4.125,−0.595]
(2.5%) (11.5%)

θ?2 −1.40 [−4.585,−0.625] [−4.585,−0.725] [−4.425,−0.735]
(2.4%) (6.8%)

Approximate Reduction in Total Area Compared to ΘABJ
O (7.9%) (23.1%)
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Figure 1: The random set of pure strategy NE profiles, Sθ, and the random set of pure strategy
NE outcomes, Yθ, as a function of ε1, ε2 in a two player entry game. In this simple example the
two sets coincide.

ε2

 θ2

 θ1 ε1

Sθ  = Yθ  ={(0,0)} Sθ = Yθ = {(1,0)}

Sθ = Yθ = {(1,0),(0,1)}

Sθ = Yθ = {(0,1)} Sθ = Yθ = {(1,1)}

73



Figure 2: The random set of pure strategy NE outcomes as a function of ε1, ε2 in a four player,
two type entry game.

 4θ11  3θ11  2θ11  θ11

 θ22

 2θ22

 θ21 + θ22

 θ21 + 2θ22

 2θ21 + θ22

(2,1)
 2θ21 + 2θ22

(2,2)

(2,0) (1,0) (0,0)

(1,0),(0,1) (0,1)

(2,0),(0,2) (1,0),(0,2)

(2,1),(1,2)

(1,2) (0,2)

(2,0),(0,2),
(1,1)

(2,0),(1,2) (2,0),(0,2)

Figure 3: Identification regions in a four player, two type entry game with pure strategy Nash
equilibrium as solution concept.
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Figure 4: The random set of level-1 rational profiles as a function of ε1, ε2 in a two player entry
game.

ε2

 θ2

 θ1 ε1

Rθ = {(1,0)}

(ε2/θ2,ε1/θ1),(1,0),(1,1)}

Rθ = {(0,0)} Rθ = {(1,0),(0,0)}

Rθ = {(0,1)} Rθ = {(0,1),(1,1)} Rθ = {(1,1)}

Rθ = {(0,1),(0,0)} Rθ = {(0,0),(0,1), Rθ = {(1,0),(1,1)}

Figure 5: Upper contours of the identification regions in a two player entry game with level-1
rationality as solution concept.
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Figure 6: The random set of correlated equilibria as a function of ε1,ε2 in a two player entry game.
The correlated equilibria γ1, γ2, γ3 are defined in Section E.2.

ε2

 θ2

 θ1 ε1

Cθ = {[1 0 0 0]} Cθ = {[0 1 0 0]}

Cθ = co[[0 0 1 0],γ1,γ2,γ3,[0 1 0 0]]

Cθ = {[0 0 1 0]} Cθ = {[0 0 0 1]}

Figure 7: Identification regions in a two player entry game with correlated equilibrium as solution
concept.
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