Review Problems (II)

1. Let

\[S = \left\{ \frac{n - m}{n + m} : n, m \in \mathbb{N} \right\}. \]

Find sup\(S \) and justify your answer.

2. Let \(x, y, t \in \mathbb{R} \). Suppose that \(x < y \) and \(t > 0 \). Show that there exists an irrational number \(z \) such that

\[x < \frac{z}{t} < y. \]

3. (i) Use the definition of the limit of a sequence to prove that

\[\lim_{n \to \infty} \left(\frac{n + 1}{2n + 1} \right) = \frac{1}{2}. \]

(ii) Prove that \(\left(\frac{2 + (-1)^n n}{2 + n} \right) \) is divergent.

4. Let \(x, y \) be two positive real numbers. Suppose that \(x > 1 \). Prove that there exists an \(m \in \mathbb{N} \) such that \(x^m > y \).

5. Let \(S \) be a nonempty subset of \(\mathbb{R} \). Determine whether the given statement is true or false.

 (i) If sup\(S \) exists and \(u = \sup S \), then \(u \in S \).

 (ii) If inf\(S \) exists and \(v = \inf S \), then for any \(n \in \mathbb{N} \) there exists an \(s_n \in S \) such that

 \[v < s_n + \frac{1}{n^2}. \]

 (iii) If both sup\(S \) and inf\(S \) exist and sup\(S = \inf S \), then \(S \) contains exactly one element.

 (iv) If \(x \in \mathbb{R} \) and \(n \in \mathbb{N} \), then there exists an irrational number \(\xi \) such that \(|x - \xi| < \frac{1}{n^2} \).

 (v) Let \(I_n = [a_n, b_n], n \in \mathbb{N} \), be a nested sequence of closed bounded intervals. Suppose that \(b_n - a_n > 0 \) for each \(n \in \mathbb{N} \). Then \(\bigcap_{n=1}^{\infty} I_n \) contains more than one element.