Problem 1. Let \(f(x, y) = xy \) be defined on the closed triangular region \(T \) with vertices \((-1, 0), (1, 0), \) and \((0, 1)\). Find the points on \(T \) where \(f \) has its absolute maximum and absolute minimum values, and find these values.

Problem 2. Let \(f(x, y, z) = ze^{x/y} \), and \(x = u + v, \ y = uv^2, \ z = v \).

a) Find the gradient of \(f \) at the point \((u, v) = (1, -1)\).

b) Calculate \(\frac{\partial f}{\partial v} \) and evaluate it at the point \((u, v) = (1, -1)\).

Problem 3. Let \(D \) be the region above the paraboloid \(z = 3 + x^2 + y^2 \) and below the paraboloid \(z = 11 - x^2 - y^2 \). Use the divergence theorem to find the surface integral \(\int \int_S \mathbf{F} \cdot \mathbf{n} \, dS \), where \(\mathbf{F}(x, y, z) = <2x, 2y, -3z> \), \(S \) is the boundary of \(D \), and \(\mathbf{n} \) is the outward unit normal vector to \(S \). Give a complete numerical answer.

Problem 4. a) A wire in the shape of the curve \(W \) described by the position vector \(r(t) = <t, t^3, 1> \), \(0 \leq t \leq 1 \), has density \(36yz \) at point \((x, y, z) \) on the curve. Find the mass of \(W \).

b) Evaluate the integral \(\int_W \mathbf{F} \cdot d\mathbf{r} \), where \(\mathbf{F}(x, y, z) = <x, y - x^3, \sin(x + yz)> \).

Problem 5. Consider the scalar field \(f(x, y, z) = xy - z^2x \).

a) Write the equation of the tangent plane \(T \) to the surface \(f(x, y, z) = 0 \) at the point \(A = (2, 1, -1) \).

b) Calculate the derivative of \(f \) at the point \(A \) in the direction of any non-zero vector \(\mathbf{v} \) laying in the tangent plane \(T \). Justify your answer.

c) Calculate the derivative of \(f \) at the point \(A \) in the direction opposite to the gradient of \(f \) at \(A \).

Problem 6. Let \(D = \{(x, y) : x^2 + y^2 \leq 1\} \), and \(C \) be the boundary of \(D \). Let \(\mathbf{F} \) be the vector field \(\mathbf{F}(x, y) = <-y, x> \). Evaluate \(\int_C \mathbf{F} \cdot d\mathbf{r} \).

Problem 7. Let \(S \) be the surface of a cylindrical glass described by equations \(x^2 + y^2 = r^2, \ z = 0, \ z = h \) with the bottom \(z = 0 \) being the part of \(S \), but the top \(z = h \) being open and thus not the part of \(S \). Use the divergence theorem to compute the surface integral \(\int \int_S \mathbf{F} \cdot d\mathbf{S} \), where \(\mathbf{F} \) is the vector field \(\mathbf{F}(x, y, z) = < y^2x, xy(x - y), 2xyz> \).

Hint: Cover up the top of the glass.
Problem 8. Let D be the region above the paraboloid $z = 1 + x^2 + y^2$ and below the plane $z - 9 = 0$. Use the divergence theorem to find the surface integral $\int \int_{S} F \cdot \mathbf{n} \, dS$, where $F(x, y, z) = <2xy, -y^2, z>$, S is the boundary of D, and \mathbf{n} is the outward unit normal vector to S.

Problem 9. a) Determine whether or not $F = <y^2e^z, 2xye^z, xy^2e^z>$ is a gradient field.

 b) Evaluate $\int_{L} F \cdot d\mathbf{r}$, where L is the straight line segment joining points $(-1, 1, 0)$ and $(1, 1, 0)$.

Problem 10. Let $F = <x - y, xz \ln(2 + y), z>$. Use Stokes’ theorem to evaluate the surface integral $\int \int_{S} \text{curl}(F) \cdot dS$, where S is the boundary of the unit cube $\{(x, y, z) : 0 \leq x, y, z \leq 1\}$ with the face in the plane $z = 0$ removed, and \mathbf{n} denotes the outward normal to S.