1) Find the equation of the line tangent to \(y = \sin^{-1}(2x) \) at the point where \(x = -\frac{\sqrt{3}}{4} \).

2) Find the absolute minimum value of the function \(f(x) = x + \frac{2}{x} \) on the interval \([\frac{1}{2}, 6] \).

3) Determine the linear approximation of \(f(x) = \sin x \) at the point \(a = \frac{\pi}{6} \).

4) Water is evaporating from a conical cup at the rate of 0.5 \(cm^3/h \). The height of the cup is 10 \(cm \), and the diameter of the top is 6 \(cm \). How fast is the water level dropping when the water is 5 \(cm \) deep? (the volume of the cone is \(V = \frac{1}{3}\pi r^2 h \).)

5) Find \(y'(x) \) at \((2, -1) \), if \(3(x^2 + 4y) = y^2 + 2x - 4 \)

6) The graph of the derivative \(f'(x) \) of \(f(x) \) is given below. Find all points where the graph of \(f(x) \) has a local maximum.

7) For the function \(f(x) = \frac{3x^2 - 12x}{(x - 1)^2} \)
 a) find all critical and extremum points;
 b) find the intervals where the function is increasing and decreasing;
 c) find all horizontal and vertical asymptotes.

8) Find the derivative of \(y = (\arctan(3x^2))^\log_4 x \)

9) Evaluate the limit:
 \[
 \lim_{x \to 1^+} \left(\frac{1}{x - 1} \right)^{\ln x}
 \]

10) Evaluate the limit:
 \[
 \lim_{x \to 0} \frac{x \arctan(2x)}{(e^{3x} - 1) \sin x}
 \]