Outline

1. Integration
2. Differentiation
3. Root Finding
4. Optimization
5. Adaptive Rejection Sampling
Numerical Integration

- The function `integrate()` is used to integrate functions of one variable over a finite or infinite interval.
- When integrating over infinite intervals use `-Inf` or `Inf`.
- The function you are integrating must accept a vector argument and return a vector with the function evaluated at each point in the argument vector. Use `Vectorize()` to create a function that performs vector computations.
- Using `integrate()` along with `sapply()` allows you to evaluate multiple integrals.

\[
\text{integrate}(f, \text{lower}, \text{upper}, \ldots)
\]

- `f` Function integrating
- `lower` Lower limit of integration
- `upper` Upper limit of integration
- `\ldots` Additional arguments passed to `f`

There are additional arguments for controlling the accuracy of the estimate.
Simple example
f <- function(x) exp(x)

Returns a class "integrate" object
(I <- integrate(f, lower=0, upper=1))
names(I)

Get the estimate of the integral
integrate(f, lower=0, upper=1)$value

Integrate a normal density function
integrate(dnorm, -1.96, 1.96, mean=0, sd=1)
integrate(dnorm, -Inf, Inf, mean=0, sd=1)

Vector Computations
g <- function(x) 1
integrate(g, 0, 1)

Need to vectorize g
g(1:10)
Vectorize(g)(1:10)
integrate(Vectorize(g), 1, 10)
Example - Numerical Multiple Integration

The following trick came from the R message board

\[\int_0^3 \int_1^2 x^2 y \, dy \, dx \]

Iterated Integral
integrate(function(x) {
 sapply(x, function(x) {
 integrate(function(y) x^2*y, 1, 2)$value
 })
}, 0, 3)

\[\int_0^1 \int_x^1 x \sin(y^2) \, dy \, dx \]

Double Integral
integrate(function(x) {
 sapply(x, function(x) {
 integrate(function(y) x*sin(y^2), x, 1)$value
 })
}, 0, 1)
Symbolic Derivatives

To perform symbolic derivatives of simple expressions use deriv()

```
deriv(expr, namevec, hessian=FALSE)
```

- `expr` Either a formula with no left-hand side or an expression
- `namevec` Character vector, giving the variable names with respect to which derivatives will be computed
- `hessian` Logical whether or not the second derivatives should be computed and returned

Returns an unevaluated call for computing the `expr` along with a gradient attribute containing the gradient matrix and if `hessian=TRUE` a hessian attribute containing the Hessian array
Example - Symbolic Derivatives

Formula argument
dx.expr <- deriv(~x^2, "x", hessian=TRUE) # Unevaluated expression
dx.expr

x <- 1:5
dx.num <- eval(dx.expr) # Evaluated expression
dx.num
attr(dx.num, "gradient") # Gradient Vector

Expression argument
Expression argument
dx.dy.expr <- deriv(expression(x^2*y^4), c("x", "y"), hessian=TRUE)
dx.dy.expr

x <- 1:5; y <- 1:5
dx.dy.num <- eval(dx.dy.expr)
dx.dy.num
attr(dx.dy.num, "hessian") # For matrix "x", the columns are
 # d2/dx2 and d2/dxdy
Root Finding

- The function `uniroot()` searches an interval for the root of a function

\[
\text{uniroot}(f, \text{interval}, \ldots)
\]

- `f` Function to get the root of
- `interval` Vector giving the interval `c(lower, upper)` to be searched
- `\ldots` Additional arguments to be passed to `f`

- *Only returns one root*, does not return multiple roots, if multiple roots exist
Example - Root Finding

Function we want to find the roots of
f <- function(x) {-x^4-.5*x^3+9*x^2-x-5}

Plot the function we want to find the roots of
curve(f(x), -3, 3, lwd=2, main=expression(f(x)==-x^4-.5*x^3+9*x^2-x-5))
abline(h=0, lty=2, lwd=1)
points(c(2.563, .866, -.697), c(0,0,0), pch=19, cex=1.5, col="blue")

Find the root between 0 and 2
uniroot(f, c(0, 2))

Only returns one root, even if there are multiple roots in the interval
uniroot(f, c(-3, 3))

The f values at the end points need to be of opposite sign
uniroot(f, c(1, 2))
Example - Simulating Survival Data

- Suppose we want to simulate \(n = 100 \) observations. The event times \(T \) follow a Weibull distribution with shape parameter \(a = 2 \) and scale parameter \(b = 1 \) and the censoring times \(C \) are distributed uniformly from 0 to \(\tau \). Then the observed time is, \(X = \min(T, C) \). Assume \(T \) and \(C \) are independent.

- The value of \(\tau \) is chosen to achieve the desired censoring rate. For this example we want 25% of the observations to be censored. Thus, \(P(C < T) = 0.25 \) and we need to choose \(\tau \) such that,

\[
P(C < T) = \int_0^\tau \int_c^\infty f_T(t)f_C(c) \, dt \, dc
\]

\[
= \frac{1}{\tau} \int_0^\tau \int_c^\infty f_T(t) \, dt \, dc
\]

\[
= \frac{1}{\tau} \int_0^\tau S_T(c) \, dc
\]

\[
= 0.25
\]
Example - Simulating Survival Data

Find τ by using `integrate()` and `uniroot()` to solve,

$$\frac{1}{\tau} \int_0^\tau S_T(c) \, dt \, dc - 0.25 = 0$$

Calculate tau for a uniform(0, tau) censoring distribution in order to get the
desired censoring rate (pctCensor) when the event times are Weibull(a, b)
uniformCensorUpperBound <- function(pctCensor, a, b) {
 f <- function(tau) {
 S <- function(t) {1-pweibull(t, shape=a, scale=b)}
 (integrate(S, 0, tau)$value)/tau - pctCensor
 }
 return(uniroot(f, c(0.001, 100))$root)
}

(tau <- uniformCensorUpperBound(.25, 2, 1))

Verify
T <- rweibull(100, shape=2, scale=1) # Event times
C <- runif(100, 0, tau) # Censor times
index <- apply(cbind(C, T), 1, which.min)-1 # Event indicator
table(index)/100
Integration
Differentiation
Roots
Optimization
Adaptive Rejection Sampling

Optimization

- R has several functions for optimization,
 - `optimize()` One dimensional optimization, no gradient or Hessian
 - `optim()` General purpose optimization, five possible methods, gradient optional
 - `constrOptim()` Minimization of a function subject to linear inequality constraints, gradient optional
 - `nlm()` Non-linear minimization, can optionally include the gradient and hessian of the function as attributes of the objective function
 - `nlminb()` Minimization using PORT routines, can optionally include the gradient and Hessian of the objective function as additional arguments

- These functions use different algorithms and accept different arguments, no one function is superior to the others. Which function you use depends on your particular problem; use `optimize()` for one-dimensional problems.
- To turn a minimization problem into a maximization problem, multiply the objective function and gradient by -1
- There are also packages with additional optimization functions, http://cran.r-project.org/web/views/Optimization.html
One-Dimensional Optimization

\[
\text{optimize}(f, \text{interval}, ..., \text{maximum}=\text{FALSE})
\]

\(f \) Function to be optimized
\(\text{interval} \) Vector giving the interval \((\text{lower}, \text{upper})\) to be searched
\(... \) Additional arguments to be passed to \(f \)
\(\text{maximum} \) Logical, find maximum if TRUE

- Cannot specify the gradient to assist with the optimization
Example - optimize()

Objective function
f <- function(x) {-x^4-.5*x^3+9*x^2-x-5}

Plot the objective function
curve(f(x), -3, 3, lwd=2, main=expression(f(x)==-x^4-.5*x^3+9*x^2-x-5))
abline(h=0, lty=2, lwd=1)

Find the minimum of f
(min.f <- optimize(f, c(-3, 3)))
points(min.f$minimum, min.f$objective, pch=19, cex=1.5, col="blue")

Find the maximum of f
(max.f <- optimize(f, c(-3, 3), maximum=TRUE))
points(max.f$maximum, max.f$objective, pch=19, cex=1.5, col="green3")

Be careful, may not get a global max
(max.f <- optimize(f, c(1, 3), maximum=TRUE))
points(max.f$maximum, max.f$objective, pch=19, cex=1.5, col="red")
Multi-Dimensional Optimization

\[
\text{optim(par, fn, gr=NULL, ..., method, control)}
\]

- **par**: Initial values
- **fn**: Function to be optimized, argument is a vector of parameters
- **gr**: A function that returns the gradient, same argument as \text{fn}
- **...**: Additional arguments passed to \text{fn}
- **method**: Method to be used
- **control**: List of control parameters (number of iterations, tolerance, etc.)

- By default the minimum is found, to find the maximum set the control parameter \text{fnscale} to -1, control=list(fnscale=-1). This divides the objective function and gradient by -1.
Example - optim()

Two-dimensional objective function, the argument needs to be a vector
f <- function(x) {
 x1 = x[1]
 x2 = x[2]
 z = 10*x1^2*x2 - 5*x1^2 - 4*x2^2-x1^4-2*x2^4
 return(z)
}

Plot the objective function
x <- y <- seq(-4, 4, len=50)
z <- outer(x, y, FUN=function(x,y) apply(cbind(x,y), 1, f))
filled.contour(x, y, z,
 color.palette=colorRampPalette(c("blue4","blue3","white","green3","green4")))

Find the maximum points, from the contour plot there appears to be two maximums
convergence=0 means convergence
convergence=1 means reached max number of iterations
(pt1 <- optim(c(-2, 2), f, control=list(fnscale=-1)))
(pt2 <- optim(c(2, 2), f, control=list(fnscale=-1)))
Example - optim()

Plot maximum points on contour plot
filled.contour(x, y, z,
 color.palette=colorRampPalette(c("blue4","blue3","white","green3","green4")),
 plot.axes={
 axis(1); axis(2)
 points(pt1$par[1], pt1$par[2], pch=19, col="red", cex=1.5)
 text(pt1$par[1], pt1$par[2], round(pt1$value, 3), pos=1)
 points(pt2$par[1], pt2$par[2], pch=19, col="red", cex=1.5)
 text(pt2$par[1], pt2$par[2], round(pt2$value, 3), pos=1)
 })

Find maximum points using gradient
g <- function(x) {
 x1 = x[1]
 x2 = x[2]
 dx1 <- 20*x1*x2 - 10*x1 - 4*x1^3
 dx2 <- 10*x1^2 - 8*x2 - 8*x2^3
 return(c(dx1, dx2))
}

Not all methods use the gradient, default method "Nelder-Mead" does not
optim(c(-2, 2), fn=f, gr=g, method="BFGS", control=list(fnscale=-1))
Constrained Optimization

- For box constraints use the "L-BFGS-B" method in `optim()` and the arguments `lower` and `upper` to give bounds for the arguments.
- For linear inequality constraints use `constrOptim()`

```
constrOptim(theta, f, grad, ui, ci, control, ...)
```

- `theta` Starting values, \(p \times 1 \) vector
- `f` Function to be optimized
- `grad` Function that returns the gradient
- `ui` Constraint matrix, \(k \times p \)
- `ci` Constraint vector, \(k \times 1 \) vector
- `control` List of control parameters
- `...` Additional arguments passed to `f`

- Feasible region is defined by \(ui \times theta - ci \geq 0 \)
Example - Constrained Optimization

f <- function(x) { # Objective function
 x1 = x[1]; x2 = x[2]
 10*x1^2*x2 - 5*x1^2 - 4*x2^2-x1^4-2*x2^4
}
g <- function(x) { # Gradient
 x1 = x[1]; x2 = x[2]
 dx1 <- 20*x1*x2 - 10*x1 - 4*x1^3; dx2 <- 10*x1^2 - 8*x2 - 8*x2^3
 return(c(dx1, dx2))
}
Box constraints, x1>0
optim(c(1,0), f, lower=c(0, -Inf), method="L-BFGS-B", control=list(fnscale=-1))
Inequality constraints, x1>=0 and x1>=x2
constrOptim(c(3,1), f, g, ui=matrix(c(1,1,0,-1), nrow=2), ci=c(0,0),
 control=list(fnscale=-1))
Plot the objective function, with inequality constraints
x <- y <- seq(-4, 4, len=50)
z <- outer(x, y, FUN=function(x,y) apply(cbind(x,y), 1, f))
filled.contour(x, y, z, xlab=expression(x[1]), ylab=expression(x[2]),
 color.palette=colorRampPalette(c("blue4","blue3","white","green3","green4")),
 plot.axes={axis(1); axis(2)
 abline(a=0, b=1, lwd=2)
 lines(c(0,0), c(-4,0), lwd=2)
})
Suppose we are interested in generating a random sample from a distribution with density f. Unfortunately, this distribution is very difficult to sample from. However, there is another density g that is easy to sample from where for some constant c, $f(x) \leq cg(x)$ for all x.

Thus we can generate a sample X from f by using rejection sampling,

1. Generate Y from g
2. Generate a random uniform(0,1) number U
3. If $U \leq f(Y)/(cg(Y))$ set $X=Y$

It may be difficult to determine g, in this case use adaptive rejection sampling.

Adaptive rejection sampling (ARS) is a method that performs rejection sampling where the envelope function g is constructed and refined during the sampling process.

Method is only applicable to univariate probability density functions that are log-concave.
Adaptive Rejection Sampling

- The function `ars()` in the `ars` package performs ARS

\[
\text{ars}(n=1, f, f\text{prima}, \ldots)
\]

- `n` Sample size
- `f` Function that returns \(\log(f(u,\ldots))\), where \(f(u)\) is the density we want to sample from
- `fprima` \(d/du \log(f(u,\ldots))\)
- `\ldots` Additional arguments to be passed to \(f\)
library(ars)

Mixture of two normal distributions with equal weight
f <- function(x) {.5*dnorm(x) + .5*dnorm(x, mean=2)}

integrate(f, -Inf, Inf) # Density integrates to 1
curve(f(x), -3, 5, lwd=2) # Density shape

Log-density
f.log <- function(x) {log(f(x))}
curve(f.log, -3, 5, lwd=2) # Log-concave down

Derivative of the log-density
f.log.prime <- function(x) {(-x*.5*dnorm(x) + -(x-2)*.5*dnorm(x, mean=2))/f(x)}

ARS sample
data <- ars(10000, f.log, f.log.prime)

Verify
hist(data, freq=FALSE)
curve(f(x), lwd=2, col="blue", add=TRUE)