Lecture 32: Chapter 12, Sections 1-2
Two Categorical Variables
Chi-Square

- Formulating Hypotheses to Test Relationship
- Test based on Proportions or on Counts
- Chi-square Test
- Confidence Intervals

Looking Back: Review

- 4 Stages of Statistics
 - Data Production (discussed in Lectures 1-4)
 - Displaying and Summarizing (Lectures 5-12)
 - Probability (discussed in Lectures 13-20)
 - Statistical Inference
 - 1 categorical (discussed in Lectures 21-23)
 - 1 quantitative (discussed in Lectures 24-27)
 - cat and quan: paired, 2-sample, several-sample (Lectures 28-31)
 - 2 categorical
 - 2 quantitative

Inference for Relationship (Review)

- \(H_0 \) and \(H_a \) about variables: not related or related
 - Applies to all three C\(\rightarrow \)Q, C\(\rightarrow \)C, Q\(\rightarrow \)Q
- \(H_0 \) and \(H_a \) about parameters: equality or not
 - C\(\rightarrow \)Q: pop means equal?
 - C\(\rightarrow \)C: pop proportions equal?
 - Q\(\rightarrow \)Q: pop slope equals zero?

Example: 2 Categorical Variables: Hypotheses

- Background: We are interested in whether or not smoking plays a role in alcoholism.
- Question: How would \(H_0 \) and \(H_a \) be written
 - in terms of variables?
 - in terms of parameters?
- Response:
 - in terms of variables
 - \(H_0 \): smoking and alcoholism _____ related
 - \(H_a \): smoking and alcoholism _____ related
 - in terms of parameters
 - \(H_0 \): Pop proportions alcoholic _____ for smokers, non-smokers
 - \(H_a \): Pop proportions alcoholic _____ for smokers, non-smokers
Example: Summarizing with Proportions

- **Background:** Research Question: Does smoking play a role in alcoholism?
- **Question:** What statistics from this table should we examine to answer the research question?
- **Response:** Compare proportions (response) for (explanatory).

<table>
<thead>
<tr>
<th></th>
<th>Alcoholic</th>
<th>Not Alcoholic</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoker</td>
<td>30</td>
<td>200</td>
<td>230</td>
</tr>
<tr>
<td>Nonsmoker</td>
<td>10</td>
<td>760</td>
<td>770</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>960</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Example: Test Statistic for Proportions

- **Background:** One approach to the question of whether smoking and alcoholism are related is to compare proportions.

<table>
<thead>
<tr>
<th></th>
<th>Alcoholic</th>
<th>Not Alcoholic</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoker</td>
<td>30</td>
<td>200</td>
<td>230</td>
</tr>
<tr>
<td>Nonsmoker</td>
<td>10</td>
<td>760</td>
<td>770</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>960</td>
<td>1,000</td>
</tr>
</tbody>
</table>

$\hat{p}_1 = \frac{30}{230} = 0.130$

$\hat{p}_2 = \frac{10}{770} = 0.013$

- **Question:** What would be the next step, if we’ve summarized the situation with the difference between sample proportions 0.130-0.013?
- **Response:** ______ the difference between sample proportions 0.130-0.013.

 Stan. diff. is normal for large n: __________

z Inference for 2 Proportions: Pros & Cons

- **Advantage:** Can test against one-sided alternative.
- **Disadvantage:**
 - 2-by-2 table: comparing proportions straightforward
 - Larger table: comparing proportions complicated, can’t just standardize one difference $\hat{p}_1 - \hat{p}_2$

Another Comparison in Considering Categorical Relationships (Review)

- Instead of considering how different are the proportions in a two-way table, we may consider how different the counts are from what we’d expect if the “explanatory” and “response” variables were in fact unrelated.
- Compared observed, expected counts in wasp study:

<table>
<thead>
<tr>
<th></th>
<th>Obs</th>
<th>A</th>
<th>NA</th>
<th>T</th>
<th>Exp</th>
<th>A</th>
<th>NA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>16</td>
<td>15</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>24</td>
<td>7</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>40</td>
<td>22</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Inference Based on Counts

To test hypotheses about relationship in \(r \)-by-\(c \) table, compare counts observed to counts expected if \(H_0 \) (equal proportions in response of interest) were true.

Example: Table of Expected Counts

- **Background:** Data on smoking and alcoholism:
 - | | Alcohol | Not Alcohol | Total |
 - |-----------------|-----------|------------|
 - | Smoker | 30 | 200 | 230 |
 - | Non-smoker | 10 | 760 | 770 |
 - | **Total** | **40** | **960** | **1,000** |

- **Question:** What counts are expected if \(H_0 \) is true?
- **Response:** Overall proportion alcoholic is ______

If proportions alcoholic were same for S and NS, expect

- \((40/1,000)(230)=____\) smokers to be alcoholic
- \((40/1,000)(770)=____\) non-smokers to be alcoholic; also
- \((960/1,000)(230)=____\) smokers not alcoholic
- \((960/1,000)(770)=____\) non-smokers not alcoholic

- **Note:** Each expected count is \(\frac{Column \; total \times \; Row \; total}{Table \; total} \)

Expect:

- \((40)(230)/1,000 = 9.2\) smokers to be alcoholic
- \((40)(770)/1,000 = 30.8\) non-smokers to be alcoholic; also
- \((960)(230)/1,000 = 220.8\) smokers not alcoholic
- \((960)(770)/1,000 = 739.2\) non-smokers not alcoholic
Chi-Square Statistic

- Components to compare observed and expected counts, one table cell at a time: \[
\text{component} = \frac{(\text{observed} - \text{expected})^2}{\text{expected}}
\]
Components are individual standardized squared differences.

- Chi-square test statistic \(\chi^2\) combines all components by summing them up:
\[
\text{chi-square} = \sum \left(\frac{(\text{observed} - \text{expected})^2}{\text{expected}}\right)
\]
Chi-square is sum of standardized squared differences.

Example: Chi-Square Statistic

- **Background**: Observed and Expected Tables:

<table>
<thead>
<tr>
<th>Obs</th>
<th>A</th>
<th>NA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>30</td>
<td>200</td>
<td>230</td>
</tr>
<tr>
<td>NS</td>
<td>10</td>
<td>760</td>
<td>770</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>960</td>
<td>1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exp</th>
<th>A</th>
<th>NA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>9.2</td>
<td>220.8</td>
<td>230</td>
</tr>
<tr>
<td>NS</td>
<td>30.8</td>
<td>739.2</td>
<td>770</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>960</td>
<td>1000</td>
</tr>
</tbody>
</table>

- **Question**: What is the chi-square statistic?
- **Response**: Find \(\text{chi-square} = \sum \left(\frac{(\text{observed} - \text{expected})^2}{\text{expected}}\right)\)

Example: Assessing Chi-Square Statistic

- **Background**: We found \(\text{chi-square} = 64\).
- **Question**: Is the chi-square statistic (64) large?
- **Response**:

Chi-Square Distribution

- \(\text{chi-square} = \sum \left(\frac{(\text{observed} - \text{expected})^2}{\text{expected}}\right)\) follows a predictable pattern (assuming \(H_0\) is true) known as \(\text{chi-square distribution}\) with \(\text{df} = (r-1) \times (c-1)\)

 - \(r = \text{number of rows (possible explanatory values)}\)
 - \(c = \text{number of columns (possible response values)}\)

Properties of chi-square:

- Non-negative (based on squares)
- Mean = df \([=1 \text{ for smallest } (2 \times 2) \text{ table}]\)
- Spread depends on df
- Skewed right
Chi-Square Density Curve

For chi-square with 1 df, \(P(\chi^2 \geq 3.84) = 0.05 \)
\(\Rightarrow \) If \(\chi^2 > 3.84 \), \(P\)-value < 0.05

Properties of chi-square:
- Non-negative
- Mean = df
 - df=1 for smallest [2×2] table
- Spread depends on df
- Skewed right

Example: Assessing Chi-Square (Continued)

- **Background:** In testing for relationship between smoking and alcoholism in 2×2 table, found \(\chi^2 = 64 \)
- **Question:** Is there evidence of a relationship in general between smoking and alcoholism (not just in the sample)?
- **Response:** For \(df=(2-1)\times(2-1)=1 \), chi-square considered “large” if greater than 3.84
 \(\Rightarrow \) chi-square=64 large? **____** \(P\)-value small? **____**
 Evidence of a relationship between smoking and alcoholism? **____**

Example: Relating Chi-Square & z

- **Background:** We found chi-square = 64 for the 2-by-2 table relating smoking and alcoholism.
- **Question:** What would be the \(z \) statistic for a test comparing proportions alcoholic for smokers vs. non-smokers?
- **Response:**

\[z^2 = \chi^2 \]
- \(z \) statistic (comparing proportions) \(\Rightarrow \) combined tail probability=0.05 for \(z = 1.96 \)
- chi-square statistic (comparing counts) \(\Rightarrow \) right-tail prob=0.05 for \(\chi^2 = 1.96^2 = 3.84 \)
Assessing Size of Test Statistics (Summary)

When test statistic is “large”:
- \(z \): greater than 1.96 (about 2)
- \(t \): depends on \(df \); greater than about 2 or 3
- \(F \): depends on DFG, DFE
- \(\chi^2 \): depends on \(df=(r-1)(c-1) \); greater than 3.84 (about 4) if \(df=1 \)

Explanatory/Response: 2 Categorical Variables

- Roles impact what summaries to report
- Roles do not impact \(\chi^2 \) statistic or \(P \)-value

Example: Summaries Impacted by Roles

- **Background**: Compared proportions alcoholic (resp) for smokers and non-smokers (expl).

<table>
<thead>
<tr>
<th></th>
<th>Alcoholic</th>
<th>Not Alcoholic</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoker</td>
<td>30</td>
<td>200</td>
<td>230</td>
</tr>
<tr>
<td>Nonsmoker</td>
<td>10</td>
<td>760</td>
<td>770</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>960</td>
<td>1,000</td>
</tr>
</tbody>
</table>

 \(\hat{p}_1 = \frac{30}{230} = 0.130 \)
 \(\hat{p}_2 = \frac{10}{770} = 0.013 \)

 \(\frac{30}{40} = 0.75 \quad \frac{200}{960} = 0.21 \)

- **Question**: What summaries would be appropriate if alcoholism is explanatory variable?

- **Response**: Compare proportions _______ (resp) for ____________________________ (expl).

Example: Comparative Summaries

- **Background**: Calculated proportions for table:

<table>
<thead>
<tr>
<th></th>
<th>Alcoholic</th>
<th>Not Alcoholic</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoker</td>
<td>30</td>
<td>200</td>
<td>230</td>
</tr>
<tr>
<td>Nonsmoker</td>
<td>10</td>
<td>760</td>
<td>770</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>960</td>
<td>1,000</td>
</tr>
</tbody>
</table>

 \(\hat{p}_1 = \frac{30}{230} = 0.130 \)
 \(\hat{p}_2 = \frac{10}{770} = 0.013 \)

 \(\frac{30}{40} = 0.75 \quad \frac{200}{960} = 0.21 \)

- **Question**: How can we express the higher risk of alcoholism for smokers and the higher risk of smoking for alcoholics?

- **Response**: Smokers are ___ times as likely to be alcoholics compared to non-smokers. Alcoholics are ______ times as likely to be smokers compared to non-alcoholics.
Guidelines for Use of Chi-Square Procedure

- Need random samples taken independently from several populations.
- Confounding variables should be separated out.
- Sample sizes must be large enough to offset non-normality of distributions.
- Need populations at least 10 times sample sizes.

Rule of Thumb for Sample Size in Chi-Square

- Sample sizes must be large enough to offset non-normality of distributions.
 Require expected counts all at least 5 in 2×2 table
 (Requirement adjusted for larger tables.)

Looking Back: Chi-square statistic follows chi-square distribution only if individual counts vary normally. Our requirement is extension of requirement for single categorical variables \(np \geq 10\), \(n(1-p) \geq 10\) with 10 replaced by 5 because of summing several components.

Example: Role of Sample Size

- **Background:** Suppose counts in smoking and alcohol two-way table were 1/10\(^{th}\) the originals:

<table>
<thead>
<tr>
<th></th>
<th>Alcoholic</th>
<th>Not Alcoholic</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoker</td>
<td>3</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>Nonsmoker</td>
<td>1</td>
<td>76</td>
<td>77</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>96</td>
<td>100</td>
</tr>
</tbody>
</table>

- **Question:** Find chi-square; what do we conclude?
- **Response:** Observed counts 1/10\(^{th}\) \(\rightarrow\) expected counts 1/10\(^{th}\) \(\rightarrow\) chi-square ________ instead of 64.

But the statistic does not follow \(\chi^2\) distribution because expected counts (0.92, 22.08, 3.08, 73.92) are __________; individual distributions are not normal.

Confidence Intervals for 2 Categorical Variables

Evidence of relationship \(\rightarrow\) to what extent does explanatory variable affect response?

Focus on **proportions:** 2 approaches

- **Compare confidence intervals** for population proportion in response of interest (one interval for each explanatory group)
- **Set up confidence interval for difference** between population proportions in response of interest, 1\(^{st}\) group minus 2\(^{nd}\) group
Example: Confidence Intervals for 2 Proportions

- **Background:** Individual CI’s are constructed:
 - **Non-smokers** 95% CI for pop prop \(p \) alcoholic \((0.005, 0.021)\)
 - **Smokers** 95% CI for pop prop \(p \) alcoholic \((0.09, 0.17)\)
- **Question:** What do the intervals suggest about relationship between smoking and alcoholism?
- **Response:** Overlap?____
 Relationship between smoking and alcoholism?____ (____ likely to be alcoholic if a smoker).

Example: Difference between 2 Proportions (CI)

- **Background:** 95% CI for difference between population proportions alcoholic, smokers minus non-smokers is \((0.088, 0.146)\)
- **Question:** What does the interval suggest about relationship between smoking and alcoholism?
- **Response:** Entire interval ______suggests smokers ______ significantly more likely to be alcoholic \(\rightarrow\) there ______ a relationship.

Lecture Summary

(Inference for Cat \(\rightarrow\) Cat; Chi-Square)

- Hypotheses in terms of variables or parameters
- Inference based on proportions or counts
- Chi-square test
 - Table of expected counts
 - Chi-square statistic, chi-square distribution
 - Relating \(z \) and chi-square for \(2 \times 2 \) table
 - Relative size of chi-square statistic
 - Explanatory/response roles in chi-square test
- Guidelines for use of chi-square
- Role of sample size
- Confidence intervals for 2 categorical variables