Lecture 22: Chapter 9, Section 2
Inference for Categorical Variable: Hypothesis Tests

- 4 steps in Hypothesis Test: Posing Hypotheses
- Details of 4 Steps, Definitions and Notation
- 3 Forms of Alternative Hypothesis
- P-Value
- Example with “Greater Than” Alternative

Looking Back: Review

- 4 Stages of Statistics
 - Data Production (discussed in Lectures 1-4)
 - Displaying and Summarizing (Lectures 5-12)
 - Probability (discussed in Lectures 13-20)
 - Statistical Inference
 - 1 categorical: confidence intervals, hypothesis tests
 - 1 quantitative
 - categorical and quantitative
 - 2 categorical
 - 2 quantitative

Three Types of Inference Problem (Review)

In a sample of 446 students, 0.55 ate breakfast.
1. What is our best guess for the proportion of all students who eat breakfast?
 Point Estimate
2. What interval should contain the proportion of all students who eat breakfast?
 Confidence Interval
3. Do more than half (50%) of all students eat breakfast?
 Hypothesis Test

4 Steps in Hypothesis Test About p

(First pose question as choice between 2 opposing views about p.)

1. Check data production for bias.
2. We summarize with \hat{p}, standardize to z.
3. Find probability of \hat{p} this extreme.

These correspond to 4 Processes of Statistics.
Example: *Posing Hypothesis Test Question*

- **Background:** In a sample of 446 students, 0.55 ate breakfast. Do more than half of all students at that university eat breakfast?
- **Question:** How can we pose above question as two opposing points of view about \(p \)?
- **Response:**

Example: *Considering Data Production*

- **Background:** In a sample of 446 college students, 0.55 ate breakfast. We want to draw conclusions about breakfast habits of all students at that university.
- **Question:** What data production issues should be considered?
- **Response:** (discussed with confidence intervals)
 - Sampling: ____________________________ (for claims about _____)
 - Study design: _________________________ (for claims about _____)

Also, (for claims about _____) is population \(\geq 10n \)?
And (for claims about _____) is \(n \) large enough?

4 Steps in Hypothesis Test About \(p \)

(First pose question as choice between 2 opposing views about \(p \).)

1. Check data production for bias.
2. We summarize with \(\hat{p} \), standardize to \(z \).
3. Find probability of \(\hat{p} \) this extreme.
4. Perform inference, drawing conclusions about population proportion \(p \).
Behavior of Sample Proportion (Review)

For random sample of size n from population with p in category of interest, sample proportion \hat{p} has

- mean p
- standard deviation $\sqrt{\frac{p(1-p)}{n}}$

Hypothesis test: assume pop. proportion p is proposed value $= 0.50$ for breakfast example.

Looking Back: For confidence intervals, we had to substitute sample proportion for unknown p.

Example: Summarizing and Standardizing

- **Background:** In a sample of 446 students, 0.55 ate breakfast. Do more than half of all students at that university eat breakfast?
- **Question:** How do we summarize the data?
- **Response:** Summarize with \hat{p}. Standardize to z.

Looking Back: For confidence intervals, we had to substitute sample proportion for unknown p.

So 0.55 is ______ standard deviations above 0.50: pretty unusual.

Example: Estimating Relevant Probability

- **Background:** In a sample of 446 students, 0.55 ate breakfast. Do more than half of all students at that university eat breakfast?

 We summarized with $\hat{p} = 0.55$ and $z = \frac{0.55 - 0.50}{\sqrt{0.50(1-0.50)}/446} = +2.11$.

- **Question:** If $p=0.50$, how unlikely is it to get \hat{p} as high as 0.55 (that is, for z to be $\geq +2.11$)?

- **Response:** 68-95-99.7 Rule \rightarrow since $2.11 > 2$, $P(Z \geq +2.11)$ is ______________.

Such a probability can be considered to be __________.

4 Steps in Hypothesis Test About p

(First pose question as choice between 2 opposing views about p.)

1. Check data production for bias.
2. We summarize with \hat{p}, standardize to z.
3. Find probability of \hat{p} this extreme.

Example: Estimating Relevant Probability

- **Background:** In a sample of 446 students, 0.55 ate breakfast. Do more than half of all students at that university eat breakfast?

 We summarized with $\hat{p} = 0.55$ and $z = \frac{0.55 - 0.50}{\sqrt{0.50(1-0.50)}/446} = +2.11$.

- **Question:** If $p=0.50$, how unlikely is it to get \hat{p} as high as 0.55 (that is, for z to be $\geq +2.11$)?

- **Response:** 68-95-99.7 Rule \rightarrow since $2.11 > 2$, $P(Z \geq +2.11)$ is ______________.

Such a probability can be considered to be __________.
Illustration of Relevant Probability

Looking Ahead: The relevant probability for testing a hypothesis will be defined as the P-value.

4 Steps in Hypothesis Test About p

(First pose question as choice between 2 opposing views about p.)
1. Check data production for bias.
2. We summarize with \(\hat{p} \), standardize to \(z \).
3. Find probability of \(\hat{p} \) this extreme.
4. Perform inference, drawing conclusions about population proportion \(p \).

Example: Drawing Conclusions About p

- **Background**: In a sample of 446 students, 0.55 ate breakfast. Do more than half of all students eat breakfast? We summarized with \(\hat{p} = 0.55 \) and \(z = \frac{0.55 - 0.50}{\sqrt{0.50(1-0.50) \times \frac{1}{446}}} = +2.11 \)

The probability of \(z \) being +2.11 or higher is less than (1-0.95)+2= 0.025, (fairly unlikely).
- **Question**: What do we conclude about \(p \)?
- **Response**:

Hypothesis Test About p (More Details)

First state 2 opposing views about \(p \), called null and alternative hypotheses \(H_0 \) and \(H_a \).
1. Consider sampling and study design as for C.I.
2. Summarize with \(\hat{p} \); does it tend in the suspected direction? Standardize to \(z \), assuming \(p = p_0 \) \((p_0 \text{ is proposed value}) \); consider if \(z \) is “large”.
3. Find prob. of \(\hat{p} \) this high/low/different, called ‘P-value’ of the test; consider if it is “small”.
4. Draw conclusions about \(p \): choose between null and alternative hypotheses. (Statistical Inference)
Definitions

- **Null hypothesis** \(H_0 \) : claim that parameter equals proposed value.
- **Alternative hypothesis** \(H_a \) : claim that parameter differs in some way from proposed value.
- **P-value**: probability, assuming \(H_0 \) is true, of obtaining sample data at least as extreme as what has been observed.

Looking Back: We considered the probability, assuming \(p = 0.5 \) cards are red, of getting as few as 0 red cards in 4 or 5 picks.

Notation

- Proposed value of population proportion: \(p_0 \)

Null and alternative hypotheses in test about unknown population proportion:

\[
H_0 : p = p_0 \quad \text{vs.} \quad H_a : \begin{cases}
 p > p_0 \\
 p < p_0 \\
 p \neq p_0
\end{cases}
\]

Looking Ahead: The form of the alternative hypothesis will affect Steps 2, 3, 4 of the test.

Example: What Are We Testing About?

- **Background**: Consider 3 problems:
 - \(\frac{30}{400} = 0.075 \) students picked #7 “at random” from 1 to 20. Is this evidence of bias for #7?
 - Do fewer than half of commuters walk? \(\frac{111}{230} \) of surveyed commuters at a university walked.
 - % disadvantaged in Florida community colleges is 43%. Is Florida Keys College unusual with 47.5% disadvantaged?
- **Question**: In each case, are we trying to draw conclusions about a sample proportion \(\hat{p} \) or a population proportion \(p \)?
- **Response**:___________________

Looking Ahead: We’ll refer to sample proportion later, to decide which of two claims to believe about the unknown population proportion.

Example: Three Forms of Alternative

- **Background**: Consider 3 problems:
 - \(\frac{30}{400} = 0.075 \) students picked #7 “at random” from 1 to 20. Is this evidence of bias for #7?
 - Do fewer than half of commuters walk? \(\frac{111}{230} \) of surveyed commuters at a university walked.
 - % disadvantaged in Florida community colleges is 43%. Is Florida Keys College unusual with 47.5% disadvantaged?
- **Question**: How do we write the hypotheses in each case?
- **Response**:___________________

Looking Ahead: We’ll refer to sample proportion later, to decide which of two claims to believe about the unknown population proportion.
Definitions

- **One-sided alternative hypothesis** refutes equality with $> \text{ or } <$ sign
- **Two-sided alternative hypothesis** features a not-equal sign

Note: For a one-sided alternative, sometimes the accompanying null hypothesis is written as a (not strict) inequality. Either way, the same conclusions will be reached.

Assessing Merit of Data in One-Sided Test

If sample proportion does not tend in the direction claimed by alternative hypothesis in a 1-sided test, there is no need to proceed further.

Example: *When Test Can Be Cut Short*

- **Background:** The moon has four phases: new moon, first quarter, full moon, and last quarter, each in effect for 25% of the time. A neurologist whose patients claimed their seizures tended to be triggered by a full moon found 20% of 470 seizures were at full moon.
- **Question:** Do we need to carry out all 4 steps in the test?
- **Response:**

How to Assess P-Value

P-value: probability, assuming H_0 is true, of obtaining sample data at least as extreme as what has been observed. How to find P-value depends on form of alternative hypothesis:

- **Right-tailed probability** for $H_a : p > p_0$
- **Left-tailed probability** for $H_a : p < p_0$
- **Two-tailed probability** for $H_a : p \neq p_0$

P-Value for $H_a : p > p_0$ **is Right-tailed Probability**

$H_0 : p = p_0$ vs. $H_a : p > p_0$

P-Value for $H_a : p < p_0$ **is Left-tailed Probability**

$H_0 : p = p_0$ vs. $H_a : p < p_0$

P-Value for $H_a : p \neq p_0$ **is Two-tailed Probability**

$H_0 : p = p_0$ vs. $H_a : p \neq p_0$

Drawing Correct Conclusions

Two possible conclusions:

- **P-value small** \Rightarrow reject H_0 \Rightarrow conclude H_a.
State we have evidence in favor of H_a.
(not same as proving H_a true and H_0 false).
- **P-value not small** \Rightarrow don’t reject H_0 \Rightarrow conclude H_0 may be true.
(not same as proving H_0 true and H_a false)
Example: Test with “Greater Than” Alternative

- **Background**: 30/400 = 0.075 students picked #7 “at random” from 1 to 20.
- **Question**: In general, is \(p > 0.05 \) (evidence of bias?)
- **Response**: First write \(H_0: __________ vs. H_a: _________ \)
 1. Students are “typical” humans; bias is issue at hand.
 2. \(0.075 > 0.05 \) so the sample did favor #7. If \(p = 0.05 \), \(\hat{p} \) standardizes to \(z = \)
 3. \(P\)-value = __________________
 4. Reject \(H_0 \)? _____ Conclude? __________________

Lecture Summary

Inference for Proportions: Hypothesis Test

- 4 steps in hypothesis test
 - Checking data production
 - Summarizing and standardizing
 - Finding a probability (\(P\)-value)
 - Conclusions as inference
- Posing null and alternative hypotheses
- Definitions and notation
- 3 forms of alternative hypothesis
- Assessing \(P\)-value
- Example with “greater than” alternative