Lecture 12: more Chapter 5, Section 3
Relationships between Two Quantitative Variables; Regression

- Equation of Regression Line; Residuals
- Effect of Explanatory/Response Roles
- Unusual Observations
- Sample vs. Population
- Time Series; Additional Variables

Looking Back: Review

- 4 Stages of Statistics
 - Data Production (discussed in Lectures 1-4)
 - Displaying and Summarizing
 - Single variables: 1 cat, 1 quan (discussed Lectures 5-8)
 - Relationships between 2 variables:
 - Categorical and quantitative (discussed in Lecture 9)
 - Two categorical (discussed in Lecture 10)
 - Probability
 - Statistical Inference

Review

- Relationship between 2 quantitative variables
 - Display with scatterplot
 - Summarize:
 - Form: linear or curved
 - Direction: positive or negative
 - Strength: strong, moderate, weak
 If form is linear, correlation r tells direction and strength.
 Also, equation of least squares regression line lets us predict a response \hat{y} for any explanatory value x.

Least Squares Regression Line

Summarize linear relationship between explanatory (x) and response (y) values with line $\hat{y} = b_0 + b_1x$ that minimizes sum of squared prediction errors (called residuals).

- Slope: predicted change in response y for every unit increase in explanatory value x
- Intercept: where best-fitting line crosses y-axis (predicted response for $x=0$?)
Example: Least Squares Regression Line

- **Background:** Car-buyer used software to regress price on age for 14 used Grand Am’s.
 - The regression equation is
 - \(\text{Price} = 14690 - 1288 \text{ Age} \)
- **Question:** What do the slope (-1,288) and intercept (14,690) tell us?
- **Response:**
 - **Slope:** For each additional year in age, predict price ________________
 - **Intercept:** Best-fitting line ______________________

Example: Extrapolation

- **Background:** Car-buyer used software to regress price on age for 14 used Grand Am’s.
 - The regression equation is
 - \(\text{Price} = 14690 - 1288 \text{ Age} \)
- **Question:** Should we predict a new Grand Am to cost \$14,690 - 1,288(0) = \$14,690?
- **Response:**

Definition

- **Extrapolation:** using the regression line to predict responses for explanatory values outside the range of those used to construct the line.

Example: More Extrapolation

- **Background:** A regression of 17 male students’ weights (lbs.) on heights (inches) yields the equation
 - \(\hat{y} = -438 + 8.7x \)
- **Question:** What weight does the line predict for a 20-inch-long infant?
- **Response:**
Expressions for slope and intercept

Consider slope and intercept of the least squares regression line \(\hat{y} = b_0 + b_1 x \)

Slope: \(b_1 = r \frac{s_y}{s_x} \) so if \(x \) increases by a standard deviation, predict \(y \) to increase by \(r \) standard deviations

Intercept: \(b_0 = \bar{y} - b_1 \bar{x} \) so when \(x = \bar{x} \) predict \(\hat{y} = b_0 + b_1 \bar{x} = (\bar{y} - b_1 \bar{x}) + b_1 \bar{x} = \bar{y} \)

\(\rightarrow \) the line passes through the point of averages \((\bar{x}, \bar{y}) \)

Example: Individual Summaries on Scatterplot

Background: Car-buyer plotted price vs. age for 14 used Grand Ams [(4, 13,000), (8, 4,000), etc.]

Question: Guess the means and sds of age and price?

Response: Age has approx. mean ___ yrs, sd ___ yrs; price has approx. mean $_______, sd $_______.

Definitions

Residual: error in using regression line \(\hat{y} = b_0 + b_1 x \) to predict \(y \) given \(x \). It equals the vertical distance observed minus predicted which can be written \(y_i - \hat{y}_i \)

\(s \): denotes typical residual size, calculated as

\[
 s = \sqrt{\frac{(y_1 - \hat{y}_1)^2 + \cdots + (y_n - \hat{y}_n)^2}{n-2}}
\]

*Note: \(s \) just “averages” out the residuals \(y_i - \hat{y}_i \)

Example: Considering Residuals

Background: Car-buyer regressed price on age for 14 used Grand Ams [(4, 13,000), (8, 4,000), etc.].

The regression equation is

\[
\text{price} = 14686 - 1290 \text{ age}
\]

\[S = 2,175 \quad R^2 = 78.5\% \quad R^2(\text{adj}) = 76.7\% \]

Question: What does \(s = 2,175 \) tell us?

Response: Regression line predictions not perfect:

- \(x = 4 \rightarrow \) predict \(\hat{y} = 13,000 \rightarrow \) prediction error =
- \(x = 8 \rightarrow \) predict \(\hat{y} = 4,000 \rightarrow \) prediction error =

Typical size of 14 prediction errors is ________ (dollars)
Example: Considering Residuals

- Typical size of 14 prediction errors is \(s = 2.175 \) (dollars):
 - Some points’ vertical distance from line more, some less;
 - 2.175 is typical distance.

\[
\begin{align*}
\text{price} & \quad 15000 \\
\text{age} & \quad 0 \quad 5 \quad 10
\end{align*}
\]

Example: Residuals and their Typical Size \(s \)

- **Background:**
 - For a sample of schools, regressed average Math SAT on average Verbal SAT
 - average Math SAT on % of teachers w. advanced degrees

- **Question:** How are \(s = 7.08 \) (left) and \(s = 26.2 \) (right) consistent with the values of the correlation \(r \)?
- **Response:** On left \(r = \sqrt{R^2} = \sqrt{0.930} = 0.97 \); relation is _______ and typical error size is _______ (only 7.08).

A Closer Look: If output reports R-sq, take its square root (+ or - depending on slope) to find \(r \).

Example: Typical Residual Size \(s \) close to \(s_y \) or 0

- **Background:** Scatterplots show relationships...
 - Price per kilogram vs. price per lb. for groceries
 - Students’ final exam score vs. (number) order handed in

- **Question:** Which has \(s = 0 \)? Which has \(s \) close to \(s_y \)?
- **Response:** Plot on right has \(s = \)____; no prediction errors. Plot on right: \(s \) close to_____. (Regressing on \(x \) doesn’t help; regression line is approximately horizontal.)

Regression line approx. same as line at average y-value.
Example: Typical Residual Size s close to \hat{s}_y

- **Background**: 2008-9 Football Season Scores
 - Regression Analysis: Steelers versus Opponents
 - The regression equation is $\text{Steelers} = 23.5 - 0.053 \text{Opponents}$
 - $S = 9.931$

 Descriptive Statistics: Steelers

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Median</th>
<th>TrMean</th>
<th>StDev</th>
<th>SE Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steelers</td>
<td>19</td>
<td>22.74</td>
<td>23.00</td>
<td>22.82</td>
<td>9.66</td>
<td>2.22</td>
</tr>
</tbody>
</table>

- **Question**: Since $s = 9.931$ and $\hat{s}_y = 9.66$ are very close, do you expect $|r|$ close to 0 or 1?
- **Response**: r must be close to ____________

Explanatory/Response Roles in Regression

Our choice of roles, explanatory or response, does **not** affect the value of the correlation r, but it **does** affect the regression line.

Example: Regression Line when Roles are Switched

- **Background**: Compare regression of y on x (left) and regression of x on y (right) for same 4 points:

- **Question**: Do we get the same line regressing y on x as we do regressing x on y?
- **Response**: The lines are very different.
 - Regressing y on x: ____________ slope
 - Regressing x on y: ____________ slope

Definitions

- **Outlier**: (in regression) point with unusually large residual
- **Influential observation**: point with high degree of influence on regression line.
Example: Outliers and Influential Observations

- **Background:** Exploring relationship between orders for new planes and fleet size. \((r = +0.69)\)

- **Question:** Are Southwest and JetBlue outliers or influential?

- **Response:**
 - Southwest: ______ (omit it \Rightarrow slope changes a lot)
 - JetBlue: ______ (large residual; omit it \Rightarrow \(r\) increases to +0.97)

Definitions

- **Slope** \(\beta_1\): how much response \(y\) changes in general (for entire population) for every unit increase in explanatory variable \(x\)

- **Intercept** \(\beta_0\): where the line that best fits all explanatory/response points (for entire population) crosses the \(y\)-axis

Looking Back: Greek letters often refer to population parameters.

Example: Outliers and Influential Observations

- **Background:** Exploring relationship between orders for new planes and fleet size. \((r = +0.69)\)

- **Question:** How does Minitab classify Southwest and JetBlue?

- **Response:**
 - Southwest: _______________ (marked ___ in Minitab)
 - JetBlue: _______________ (marked ___ in Minitab)

Influential observations tend to be extreme in horizontal direction.

Line for Sample vs. Population

- **Sample:** line best fitting sampled points: predicted response is
 \[
 \hat{y} = b_0 + b_1 x
 \]

- **Population:** line best fitting all points in population from which given points were sampled: mean response is
 \[
 \mu_y = \beta_0 + \beta_1 x
 \]

A larger sample helps provide more evidence of a relationship between two quantitative variables in the general population.
Example: Role of Sample Size

- **Background**: Relationship between ages of students’ mothers and fathers both have $r = +0.78$, but sample size is over 400 (on left) or just 5 (on right):

 ![Plot 1](image1.png)

 ![Plot 2](image2.png)

- **Question**: Which plot provides more evidence of strong positive relationship in population?
- **Response**: Plot on __________

 Can believe configuration on _______ occurred by chance.

Example: Time Series

- **Background**: Time series plot shows average daily births each month in year 2000 in the U.S.:

 ![Graph](image3.png)

- **Question**: Where do you see a peak or a trough?
 - **Response**: Trough in ______, peak in __________

Example: Time Series

- **Background**: Time series plot of average daily births in U.S.

- **Questions**: How can we explain why there are…
 - Conceptions in U.S.: fewer in July, more in December?
 - Conceptions in Europe: more in summer, fewer in winter?

- **Response**: **A Closer Look**: Statistical methods can’t always explain “why”, but at least they help understand “what” is going on.
Additional Variables in Regression

- **Confounding Variable**: Combining two groups that differ with respect to a variable that is related to both explanatory and response variables can affect the nature of their relationship.

- **Multiple Regression**: More advanced treatments consider impact of not just one but two or more quantitative explanatory variables on a quantitative response.

Example: *Additional Variables*

- **Background**: A regression of phone time (in minutes the day before) and weight shows a negative relationship.

 - **Questions**: Do heavy people talk on the phone less? Do light people talk more?
 - **Response**: ________ is confounding variable → regress separately for __________ → no relationship

Example: *Multiple Regression*

- **Background**: We used a car’s age to predict its price.

 - **Question**: What additional quantitative variable would help predict a car’s price?
 - **Response**:

Lecture Summary (Regression)

- Equation of regression line
 - Interpreting slope and intercept
 - Extrapolation
- Residuals: typical size is s
- Line affected by explanatory/response roles
- Outliers and influential observations
- Line for sample or population; role of sample size
- Time series
- Additional variables