Lecture 3: Chapter 3, Section 3
Designing Studies
(Focus on Observational Studies)

- Design; Experiment or Observational Study
- Establishing Causation
- Paired vs. Two-sample Design
- Pitfalls of Observational Studies

Looking Back: Review

- 4 Stages of Statistics
 - Data Production
 - Obtain unbiased sample (*discussed in Lecture 1*)
 - Design a study that assesses sampled values of single variable or relationship without bias
 - Displaying and Summarizing
 - Probability
 - Statistical Inference

Definitions

- **Observational study**: researchers record variables’ values as they naturally occur (can be **retrospective** or **prospective**).
- **Sample survey**: observational study with self-reported values, often opinions
- **Experiment**: researchers manipulate explanatory variable, observe response
- **Anecdotal evidence**: personal accounts by one or a few individuals selected haphazardly or by convenience. (*To be avoided.*)

- **Retrospective** observational study: researchers record variables’ values **backward in time**, about the past.
- **Prospective** observational study: researchers record variables’ values **forward in time** from the present.
Example: Scientific Evidence?

- **Background**: In response to a newspaper report, a mother wrote to the editor:
 “I have a problem with the study that stated that breast-fed babies are smarter than bottle fed… My 10-month old son has always been bottle fed and he is very smart. I have been told by his pediatrician that in some aspects he is ahead for his age. I feel that this study contains some inaccuracies. Obviously, the people who conducted this study have never met my son.”
- **Question**: What kind of evidence does she provide?
- **Response**:"

Example: Studies Claiming Causation

- **Background**: Consider these headlines...
 - When your hair’s a real mess, your self-esteem is much less
 - Dental X-rays might result in small babies
 - Family dinners benefit teens
 - Moderate walking helps the mind stay sharper
- **Question**: How convinced should we be that changes in the first variable actually cause changes in the second variable?
- **Response**: It depends on ____________________
 Since various designs are subject to various pitfalls, the first step is identify type of design.

Example: Identifying Study Design

- **Background**: Suppose researchers want to determine if TV makes people snack more.
 - While study participants are presumably waiting to be interviewed, half are assigned to a room with a TV on (and snacks), the other half to a room with no TV (and snacks). See if those in the room with TV consume more snacks.
- **Question**: What type of study design is this?
- **Response**:

Example: Identifying Study Design

- **Background**: Suppose researchers want to determine if TV makes people snack more.
 - Poll the class: “How many of you tend to snack more than usual while watching TV?”
- **Question**: What type of study design is this?
- **Response**:

Example: Identifying Study Design

- **Background:** Suppose researchers want to determine if TV makes people snack more.
 - Give participants journals to record hour by hour their activities the following day, including TV watched and food consumed. Afterwards, assess if food consumption was higher during TV times.
- **Question:** What type of study design is this?
- **Response:**

Example: Identifying Study Design

- **Background:** Suppose researchers want to determine if TV makes people snack more.
 - Ask participants to recall for each hour of the previous day, whether they were watching TV and what food they consumed. Assess if food consumption was higher during TV times.
- **Question:** What type of study design is this?
- **Response:**

Example: Designing Particular Type of Study

- **Background:** Suppose researchers want to determine if sugar makes children hyperactive
- **Question:** How can they test this, using each of the following types of design?
 - observational study
 - experiment
- **Response:** Obtain a sample of children, compare proportions hyperactive for low vs. high sugar intake
 - (for an observational study) with sugar intake determined by _____________________________
 - (for an experiment) with sugar intake determined by _____________________________

Example: Main Pitfall in Observational Studies

- **Background:** Suppose the observational study shows that a greater proportion of children with high sugar intake were found to be hyperactive.
- **Question:** Can we conclude sugar causes hyperactivity?
- **Response:** _________________

Individuals who opt for certain explanatory values may differ in ways that also affect the response.
Definition

- **Confounding variable**: one that confuses the issue of causation because its values are tied in with those of “explanatory” variable, and also play a role in “response” variable’s values.

Looking Ahead: Confounding variables are by far the most common weakness of observational studies.

Example: *Controlling for Confounding Variables*

- **Background**: Gender may be a confounding variable in the relationship between sugar and hyperactivity.
- **Question**: How can researchers take this possible confounding variable into account?
- **Response**:

Example: *Multiple confounding variables*

- **Background**: Suppose researchers want to determine if sugar makes kids hyperactive.
- **Question**: What are other possible confounding variables besides gender?
- **Response**: There are many other possible confounding variables:

Definitions

- **Two-sample design**: compares responses for two independent groups.
- **Paired design**: a pair of response values is recorded for each unit.

A Closer Look: Paired design is sometimes called “matched pairs”. Typical paired designs include before-and-after studies and comparisons of responses for pairs of individuals like twins, siblings, or married couples.
Example: Two-sample vs. paired study

- **Background:** Researchers seek evidence that sugar causes hyperactivity in children. A two-sample design would compare proportions hyperactive for 2 groups (low or high sugar).
- **Question:** How could evidence be gathered via a paired design?
- **Response:**

A Closer Look: Either design could be an observational study or an experiment.

Example: Drawback of prospective study

- **Background:** Suppose researchers use a prospective study to determine if TV makes people snack more.
 - Give participants journals to record hour by hour their activities the following day, including TV watched and food consumed. Afterwards, assess if food consumption was higher during TV times.
- **Question:** What is the study design’s disadvantage?
- **Response:**

Example: Drawback of retrospective study

- **Background:** Suppose researchers use a retrospective study to determine if TV makes people snack more.
 - Ask participants to recall for each hour of the previous day, whether they were watching TV and what food they consumed. Assess if food consumption was higher during TV times.
- **Question:** What is the disadvantage of this study design?
- **Response:**

Example: Vulnerability to Confounding Variables

- **Background:** Consider these headlines…
 - When your hair’s a real mess, your self-esteem is much less
 - Dental X-rays might result in small babies
 - Family dinners benefit teens
 - Moderate walking helps the mind stay sharper
- **Question:** To decide if each study is vulnerable to confounding variables, what should be the first step?
- **Response:** Determine if it was ________________
Example: Considering Confounding Variables

- **Background**: Consider this headline...
 - *When your hair’s a real mess, your self-esteem is much less*
- **Questions**: Was the study observational? Are there possible confounding variables?
- **Responses**: We’d suspect it to be ________

Example: More on Confounding Variables

- **Background**: Consider this headline...
 - *Dental X-rays might result in small babies*
- **Questions**: Was the study observational? Are there possible confounding variables?
- **Responses**: It had to be ______________

 No obvious confounding variables would link dental X-rays and small babies. (____________________ if anything, would cause the opposite result.)

Example: More Examples of Confounding

- **Background**: Consider these headlines...
 - *Family dinners benefit teens*
 - *Moderate walking helps the mind stay sharper*
- **Questions**: Were the studies observational? Are there possible confounding variables?
- **Responses**: The first had to be _____________

The second was probably _____________

 There’s possible confounding due to

Lecture Summary (Designing Studies)

- **Types of Study**
 - Experiment
 - Observational study (includes sample survey)
 - Anecdotal evidence
- **Causation and confounding variables in observational studies**
- **Paired or two-sample design**
- **Other pitfalls of observational studies**
 - Faulty memory (retrospective design)
 - Less natural behavior (prospective design)