Lecture 1: Chapters 1, 2
Introduction, Sampling

- Variable Types and Roles
- Summarizing Variables
- 4 Processes of Statistics
- Data Production; Sampling

Example: What Statistics Is All About

- Background: Statistics teacher has a large collection of articles and reports of a statistical nature.
- Question: How to classify them?
- Background: Statistics students are faced with a collection of exam problems at the end of the semester.
- Question: How to choose the right procedures to solve them?

Response (to both questions): Statistics is all about…

Looking Ahead: Identifying what kind of variables are involved is the key to classifying statistics problems and choosing the right solution tool.

The Five Variable Situations

- When studying relationships between two variables, we often think of one as explanatory and the other as response.
- Depending on the variables’ types and roles, we consider five possible situations.
Example: Identifying Types of Variables

- **Background:** Consider these headlines...
 - Dark chocolate might reduce blood pressure
 - Half of moms unaware of children having sex
 - Vampire bat saliva researched for stroke

- **Question:** What type of variable(s) does each article involve?

- **Response:**
 - Dark chocolate or not is ______________
 - Blood pressure is ______________
 - Being aware or not of children having sex is ___________
 - Bat saliva or not is ______________
 - Stroke recovery is probably ______________

Example: Categorical Variable Giving Rise to Quantitative Variable

- **Background:** Individual teenagers were surveyed about drug use.

<table>
<thead>
<tr>
<th>Teenager</th>
<th>Marijuana?</th>
<th>Harder Drugs?</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>#2</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>#3</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>#4</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- **Question:** What type of variable(s) does this involve?

- **Response:**
 - Marijuana or not is ______________
 - Harder drugs or not is ______________

Example: Categorical Variable Giving Rise to Quantitative Variable

- **Background:** Percentages of teenagers using marijuana or hard drugs are recorded for a sample of countries.

<table>
<thead>
<tr>
<th>Country</th>
<th>% Marijuana</th>
<th>% Harder Drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>22</td>
<td>4</td>
</tr>
<tr>
<td>#2</td>
<td>37</td>
<td>16</td>
</tr>
<tr>
<td>#3</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>#4</td>
<td>23</td>
<td>14</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- **Question:** What type of variable(s) does this involve?

- **Response:**
 - Percentage using marijuana is ______________
 - Percentage using harder drugs is ______________

Example: Categorical Variable Giving Rise to Quantitative Variable

- **Background:** Percentages of teenagers using marijuana or hard drugs are recorded for a sample of countries.

<table>
<thead>
<tr>
<th>Country</th>
<th>% Marijuana</th>
<th>% Harder Drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>22</td>
<td>4</td>
</tr>
<tr>
<td>#2</td>
<td>37</td>
<td>16</td>
</tr>
<tr>
<td>#3</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>#4</td>
<td>23</td>
<td>14</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- **Question:** What type of variable(s) does this involve?

- **Response:**
 - Type of drug (marijuana or harder drugs) is ______________
 - % Using the drugs is ______________
Example: Quantitative Variable Giving Rise to Categorical Variable

- **Background**: Researchers studied effects of dental X-rays during pregnancy.
 - *First approach*: X-rays or not; baby’s weight
 - *Second approach*: X-rays or not; classify baby’s wt. as at least 6 lbs. (considered normal) or below 6 lbs.

- **Question**: What type of variable(s) does each approach involve?

- **Response**:
 - X-rays or not is __________; baby’s weight is __________
 - X-rays or not is __________; baby’s wt. at least 6 lbs. or below 6 lbs. is __________

Definitions

- **Data**: recorded values of categorical or quantitative variables

- **Statistics**: science concerned with
 - gathering data about a group of individuals
 - displaying and summarizing the data
 - using info from data to draw conclusions about larger group

(All these skills are essential in both academic and professional settings.)

Summarizing Data

- **Categorical data**:
 - **Count**: number of individuals in a category
 - **Proportion**: count in category divided by total number of individuals considered
 - **Percentage**: proportion as decimal × 100%

- **Quantitative data**: mean is sum of values divided by total number of values

Example: Summarizing Variables

- **Background**: “…1.9% of students nationwide got special accommodations for SAT...At 20 prominent NE private schools, nearly 1 in 10 received special treatment...”

- **Question**: What type of variable is involved, and how is it summarized?

- **Response**: special accommodations for SAT is ____________, summarized with ____________ or ____________

 Hint: think about who or what are the individuals. What information is recorded for each of them?
Example: Summarizing Variables

- **Background:** “…On average, a white man with a college diploma earned $65,000 in 2001. Similarly educated white women made 40% less; black and Hispanic men earned 30% less…”
- **Question:** What type of variable is considered for each demographic group, and how is it summarized?
- **Response:** Earnings is ______________ summarize with _____________

A Closer Look: When comparing quantitative values for two or more categorical groups, we sometimes quantify the difference by reporting what percentage higher or lower one mean is compared to the other.

Example: Identifying Types and Roles

- **Background:** Consider these headlines---
 - Men twice as likely as women to be hit by lightning
 - Do Oscar winners live longer than less successful peers?
- **Questions:** What types of variables are involved? For relationships, what roles do the variables play?
- **Responses:**
 - Gender is __________ and __________
 Hit by lightning or not is __________ and __________
 - Winning an Oscar or not is __________ and __________
 - Life span is __________ and __________

Example: More Identifying Types and Roles

- **Background:** Consider these headlines---
 - 35% of returning troops seek mental health aid
 - Smaller, hungrier mice
 - County’s average weekly wages at $811, better than U.S. average
- **Questions:** What types of variables are involved? For relationships, what roles do the variables play?
- **Responses:**
 - Seeking mental health aid or not is __________
 - Size is __________ and __________
 - Appetite is __________ and __________
 - Wages are __________

Roles of Variables

When studying relationships between two variables, we often think of one as explanatory and the other as response.
Definitions

- **Random** occurrence is one that happens by chance alone, and not according to a preference or an attempted influence.
- **Probability**: formal study of the chance of occurring in a random situation.
- **Statistical Inference**: drawing conclusions about population based on sample.

Looking Ahead: Probability and Inference are linked through their roles in the 4-stage process of Statistics.

Statistics as Four-Stage Process

- **Data Production**
- **Displaying and Summarizing**
- **Probability**
- **Statistical Inference**

Looking Ahead: Besides the word “probability”, a Probability statement may use the word “chance” or “likelihood” (the only synonyms available).

Four Processes of Statistics

1. **Data Production**: Take sample data from the population, with sampling and study designs that avoid bias.
2. **Displaying and Summarizing**: Use appropriate displays and summaries of the sample data, according to variable types and roles.
3. **Probability**: Assume we know what’s true for the population; how should random samples behave?
4. **Statistical Inference**: Assume we only know what’s true about sampled values of a single variable or relationship, what can we infer about the larger population?

Data Production

- Use a good **sampling design** to get an unbiased sample so we can ultimately generalize from sample to population (Part 4)
- Create a good **study design** so what we learn is unbiased summary of what’s true about the variables in our sample (Part 2)
Definition

- **Bias**: tendency of an estimate to deviate in one direction from a true value

Some sources of bias:
- **Selection bias**: due to unrepresentative sample, rather than to flawed study design
- **Sampling frame** doesn’t match population
- **Self-selected (volunteer) sample**
- **Haphazard sample**
- **Convenience sample**
- **Non-response**

Example: *Bias in Sampling*

- **Background**: Professor seeks opinions of 6 from 80 class members about textbook...
 1. Have students raise hand if they’d like to give an opinion
 2. Sample the next 6 students coming to office hours
 3. Pick 6 names “off the top of his head”
- **Questions**: Is each sampling method biased? If so, how?
- **Responses**:
 1.
 2.
 3.

Example: *More Bias in Sampling*

- **Background**: Professor seeks opinions of 6 from 80 class members about textbook...
 1. Assign each student in classroom a number (1, 2, 3, …), then use software to select 6 at random...
 2. Take a random sample from the roster of students enrolled; mail them anonymous questionnaire...
- **Questions**: Is each sampling method biased? If so, how?
- **Responses**:
 1.
 2.

Definitions

- **Probability sampling plan** incorporates randomness in the selection process so rules of probability apply.
- **Simple random sample** is taken at random and without replacement.
- **Stratified random sample** takes separate random samples from groups of similar individuals (strata) within the population.
Definitions

- **Cluster sample** selects small groups (clusters) at random from within the population (all units in each cluster included).
- **Multistage sample** stratifies in stages, randomly sampling from groups that are successively more specific.
- **Systematic sampling plan** uses methodical but non-random approach (select individuals at regularly spaced intervals on a list).

Lecture Summary *(Introduction, Sampling)*

- **Variables**
 - Categorical or quantitative
 - Explanatory or response
- **Summaries**
 - Categorical: count, proportion, percentage
 - Quantitative: mean
- **4 Processes**: Data Production, Displaying and Summarizing, Probability, Inference
- **Data Production**: need unbiased sampling and unbiased study design
- **Types of Bias**
- **Types of Samples**