9-12. Why is $D_e(N_2) > D_e(N_2^+)$, but $D_e(O_2^+) > D_e(O_2)$?

N_2: $\ldots \underbrace{2\sigma_g^2}_{2s} \underbrace{2\sigma_u^2}_{2p} \underbrace{3\sigma_g^2}_{1\Pi_u} \underbrace{1\Pi_u^4}_{2p}$

N_2^+: one of the electrons is removed from the $3\sigma_g$ or $1\Pi_u$ orbitals which are bonding.

$BO(N_2) = 3$, $BO(N_2^+) = 2.5$

$\Rightarrow D_e(N_2) > D_e(N_2^+)$

O_2: $\ldots \underbrace{2\sigma_g^2}_{2s} \underbrace{2\sigma_u^2}_{2p} \underbrace{3\sigma_g^2}_{1\Pi_g} \underbrace{1\Pi_g^4}_{2p}$

O_2^+: An electron is removed from the $1\Pi_g$ orbital which is antibonding.

$BO(O_2) = 2$, $BO(O_2^+) = 2.5$

$\Rightarrow D_e(O_2) < D_e(O_2^+)$

9-17 Compare NO and NO$^+$

NO: $\ldots \underbrace{1\sigma_g^2}_{1s} \underbrace{2\sigma_g^2}_{2p} \underbrace{3\sigma_g^2}_{2s} \underbrace{4\sigma_g^2}_{2p} \underbrace{5\sigma_g^2}_{2s} \underbrace{1\Pi_g^4}_{2p}$ $BO = 3$

NO$^+$: $\ldots \underbrace{1\sigma_g^2}_{1s} \underbrace{2\sigma_g^2}_{2p} \underbrace{3\sigma_g^2}_{2s} \underbrace{4\sigma_g^2}_{2p} \underbrace{5\sigma_g^2}_{2s} \underbrace{1\Pi_g^4}_{2p}$ $BO = 2.5$

iso electronic with N_2. Bonding antibonding
9-19. | Molecule | k (N/m) | BO |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B_2</td>
<td>350</td>
<td>1</td>
</tr>
<tr>
<td>C_2</td>
<td>930</td>
<td>2</td>
</tr>
<tr>
<td>N_2</td>
<td>2260</td>
<td>3</td>
</tr>
<tr>
<td>O_2</td>
<td>1140</td>
<td>2</td>
</tr>
<tr>
<td>F_2</td>
<td>450</td>
<td>1</td>
</tr>
</tbody>
</table>

The force constants correlate with the bond orders as expected.

9-22. How does the orbital energy diagram of OH differ from that of HF?

$BO = 1$

OH also has a bond order $= 1$, since the electron that is “missing” (relative to HF) has been removed from a non-bonding orbital.
9-31. What are the term symbols of O_2, N_2, O_2^+, N_2^+?

O_2 \[\sigma_g^2 \pi_u^2 \pi_g^2 \pi_u \rightarrow \Sigma_g^+ \]

O_2^+ \[\sigma_g^2 \pi_u^2 \pi_g^2 \pi_u \rightarrow \Sigma_g' \]

N_2 \[\sigma_g^2 \pi_u^2 \pi_g^2 \pi_u \rightarrow \Sigma_u^+ \]

N_2^+ \[\sigma_g^2 \pi_u^2 \pi_g^2 \pi_u \rightarrow \Sigma_u^+ \]

9-36. Dipole moment of LiH if 100% ionic?

\[\mu = q_1 R = (1.602 \times 10^{-19} \text{ C})(1.59 \times 10^{-10} \text{ m}) \]

\[= 2.55 \times 10^{-20} \text{ C} \cdot \text{m} \]

What is the percentage of ionic character?

\[\frac{\text{Expt. dipole}}{\text{ideal dipole}} = \frac{q_1 R}{q_2 R} = \frac{q_1}{q_2} = \frac{19.62}{25.5} \]

$q_1 = 0.77 \text{ e} \text{m}$, 77% ionic character.