Economic Development

To date, we’ve studied endogenous growth using a model designed to characterize growth at the *frontier* of technological development. Here, we will study growth in a model designed to characterize *developing* economies.

Recall the production function for a frontier economy:

\[Y = L Y^{1-\alpha} \int_0^A x_j^\alpha \, dj \]

The production function to be adopted for our hypothetical developing economy is analogous:

\[Y = L_Y^{1-\alpha} \int_0^h x_j^\alpha \, dj \]

where \(h \leq A \). The size of \(h \) relative to \(A \) indicates how close to the technological frontier the developing economy is.
As in the Romer model, $x_j = x$ for all j, thus

$$K = \int_0^h x_j \, dj = \int_0^h x \, dj = x \int_0^h dj = x \left[j \right]_0^h = x(h - 0) = hx$$

So, $x = K/h$. Substituting for x in the production function yields

$$Y = K^\alpha (YA_L)^{1-\alpha},$$

exactly as in the Romer model. Moreover, as usual,

$$\cdot K = I - dK,$$

so the law of motion of K is standard.

Thus using familiar arguments, the model can be shown to yield balanced growth for per capita output y and capital k, linked to the growth rate of technology h:

$$g_y = g_k = g_h$$

What remains to be specified is a law of motion for h.
We will assume that the growth rate of h depends on two variables: the amount of time spent studying, captured by the variable u introduced in Ch. 3 (recall specifically equation 3.2, p. 48); and the distance of the developing economy away from the frontier, captured by the variable A/h.

Note: the closer A/h is to 1, the closer the developing economy is to the frontier. The larger is A/h, the farther is the economy from the frontier.

The growth rate of h is given by equation 6.5:

$$\frac{\dot{h}}{h} = \mu e^{\varphi u} \left(\frac{A}{h} \right)^\gamma$$

where $\mu > 0$, $\varphi > 0$, and $0 < \gamma < 1$.

So, g_h is increasing in u and A/h, but increases with A/h at a decreasing rate.

In the steady state, g_h is constant.

Tasks:

- Show $g_h = g_A$ in the steady state (note: here, g_A is exogenous).
- Calculate the steady state value of A/h.
- Graph g_h against A/h, use to illustrate transition dynamics.
- Show how changes in u alter steady state values and transition dynamics.