Review Problems (III)

1. Evaluate
\[\iiint_B e^{(x^2+y^2+z^2)/2} \, dV, \]
where \(B \) is the unit ball \(B = \{(x, y, z) : x^2 + y^2 + z^2 \leq 1\} \).

2. Let \(f \) be a scalar-valued function and \(F \) a vector field on \(\mathbb{R}^3 \). Determine if the given expression is meaningful.

 (i) \(\text{curl(curl \, F)} \) \hspace{1cm} YES \hspace{1cm} NO

 (ii) \(\text{curl(div \, F)} \) \hspace{1cm} YES \hspace{1cm} NO

 (iii) \(\text{grad(curl \, F)} \) \hspace{1cm} YES \hspace{1cm} NO

 (iv) \((\text{grad} \, f) \times (\text{curl} \, F) \) \hspace{1cm} YES \hspace{1cm} NO

 (v) \(\text{grad}[(\text{grad} \, f) \cdot F] \) \hspace{1cm} YES \hspace{1cm} NO

3. Let \(C \) denote the path from \((0, 4)\) to \((2, 0)\) along the parabola \(y = 4 - x^2 \). Evaluate the line integral
\[\int_C 2x \sin y \, dx + (x^2 \cos y - 3y^2) \, dy. \]

4. Evaluate
\[\int_C (2x^2y + e^x) \, dx + (x^3 + xy^2) \, dy, \]
where \(C \) consists of the line segment from \((-2, 0)\) to \((2, 0)\) and the top half of the circle \(x^2 + y^2 = 4 \).

5. Let \(\mathbf{F}(x, y, z) = xi + yj + zk \). Evaluate the surface integral
\[\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma, \]
where \(S \) is the boundary surface of the cylinder \(\{(x, y, z) : x^2 + y^2 = 4, 0 \leq z \leq 4\} \).