1174

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.18, NO.5, MAY 2019

Reducing Event Latency and Power
Consumption in Mobile Devices by
Using a Kernel-Level Display Server

Stephen Marz

, Member, IEEE, Brad Vander Zanden

, and Wei Gao", Member, IEEE

Abstract—Mobile devices differ from desktop computers in that they have a limited power source, a battery, and they tend to spend
more CPU time on the graphical user interface (GUI). These two facts force us to consider different software approaches in the mobile
device kernel that can conserve battery life and reduce latency, which is the duration of time between the inception of an event and the
reaction to the event. One area to consider is a software package called the display server. The display server is middleware that
handles all GUI activities between an application and the operating system, such as event handling and drawing to the screen. In both
desktop and mobile devices, the display server is located in the application layer. However, the kernel layer contains most of the
information needed for handling events and drawing graphics, which forces the application-level display server to make a series of
system calls in order to coordinate events and to draw graphics. These calls interrupt the CPU which can increase both latency and
power consumption, and also require the kernel to maintain event queues that duplicate event queues in the display server. A further
drawback of placing the display server in the application layer is that the display server contains most of the information required to
efficiently schedule the application and this information is not communicated to existing kernels, meaning that GUI-oriented
applications are scheduled less efficiently than they might be, which further increases power consumption. We propose moving the
display server to the kernel layer, so that it has direct access to many of the event queues and hardware rendering systems without
having to interrupt the CPU. This adjustment has allowed us to implement two power saving strategies, discussed in other papers, that
streamline the event system and improve the scheduler. The combination of these two techniques reduces power consumption by an
average of 30 percent and latency by an average of 17 ms. Even without the implementation of these power saving techniques, the
KDS increases battery life by 4.35 percent or on average about 10 extra minutes for a typical mobile phone or 30 extra minutes for a

typical tablet computer. It also reduces latency by 1.1 milliseconds.

Index Terms—Graphical user interfaces, kernel display server, event handling

1 INTRODUCTION

ISPLAY servers are used by graphical user interfaces

(GUISs) to coordinate event handling and draw graphics
to the screen. They have traditionally served as “middleware”
between the application and the OS and have been imple-
mented in user space. However, running the display server in
user space on a mobile device has two important drawbacks:
1) most of the event handling and rendering routines histori-
cally implemented in display servers are now implemented
in the OS, which means that the display server duplicates
much of the kernel’s GUI functionality, and 2) it prevents
the recently introduced power saving hardware architec-
tures from fully realizing their ability to reduce power
consumption.

e S. Marz and B. Vander Zanden are with the Department of Electrical
Engineering and Computer Science, University of Tennessee, 1520 Middle
Drive, Min H. Kao Building, Knoxville, TN 37996.

E-mail: {stephen.marz, bvanderz)@utk.edu.

e W. Gao is with the Department of Electrical and Computer Engineering,
University of Pittsburgh, 3700 O’Hara Street, Benedum Hall, Pittsburgh,
PA 15261. E-mail: wgao@utk.edu.

Manuscript received 11 Aug. 2017; revised 12 June 2018; accepted 13 July
2018. Date of publication 19 July 2018; date of current version 1 Apr. 2019.
(Corresponding author: Stephen Marz.)

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TMC.2018.2857809

4

The reason display servers still run in user space is a
historical artifact. When graphical user interfaces became
widely adopted in the 1980s, display servers were imple-
mented in user space because the GUI was not considered
part of the OS and because developers wanted the flexibility
to choose their own display server. In the 1990s this situa-
tion changed as both Windows and Mac OS adopted graph-
ical interfaces for their look-and-feel and tightly integrated
their display servers with the OS, even though their display
servers continued to run in user space (the tight integration
precluded developers from choosing their own display
server). Mobile devices, such as tablets and smart phones,
have continued this custom of using the OS as a graphical
interface, tightly integrating the display server with the OS,
and running the display server in user space.

What has changed over time is that many of the services
that used to reside in the display server, such as event han-
dling and rendering, have migrated to both desktop and
mobile OS kernels, because certain real-time applications,
such as games, demand fast interaction and rendering.
Section 2 describes these efforts in greater detail. The move-
ment of event handling and rendering routines into the kernel
means that the display server increasingly duplicates kernel
activity. This duplicative overhead has ramifications for both
the performance and power consumption of mobile devices.

1536-1233 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on August 18,2020 at 04:34:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7487-9156
https://orcid.org/0000-0002-7487-9156
https://orcid.org/0000-0002-7487-9156
https://orcid.org/0000-0002-7487-9156
https://orcid.org/0000-0002-7487-9156
https://orcid.org/0000-0001-5645-7980
https://orcid.org/0000-0001-5645-7980
https://orcid.org/0000-0001-5645-7980
https://orcid.org/0000-0001-5645-7980
https://orcid.org/0000-0001-5645-7980
https://orcid.org/0000-0003-2144-6960
https://orcid.org/0000-0003-2144-6960
https://orcid.org/0000-0003-2144-6960
https://orcid.org/0000-0003-2144-6960
https://orcid.org/0000-0003-2144-6960
mailto:
mailto:

MARZ ET AL.: REDUCING EVENT LATENCY AND POWER CONSUMPTION IN MOBILE DEVICES BY USING A KERNEL-LEVEL DISPLAY...

First, modern kernels contain the event handling routines
that deal with inputs received via hardware, such as a
mouse, keyboard, or stylus. However, existing display serv-
ers still maintain event queues that duplicate the kernel
event queues and these display servers must use costly sys-
tem calls to obtain this information from the kernel. In par-
ticular, existing display servers use polling loops that
constantly poll the kernel’s event queues to determine
whether an event has occurred. This constant polling keeps
rousing the CPU and prevents it from being placed in a
lower power consuming sleep state. In a previous article,
we described an Event Stream Model (ESM) that pushes
events from input devices to the CPU rather than forcing
the CPU to constantly poll the input devices for events, as is
done by existing mobile device OS’s [1]. This scheme should
allow the CPU to sleep until events arrive because it elimi-
nates polling loops in the kernel. However, in order for this
ESM model to fully eliminate polling loops, the display
server must be moved to the kernel; otherwise the display
server continues to use a polling loop and the CPU cannot
be placed in a lower power sleep state.

A second drawback of this duplicative overhead is that
the display server must coordinate with the kernel to draw
to the screen. For example, existing Android implementa-
tions use four layers to render an app, thus slowing the CPU
considerably. First the app sends a surface to Surface Flinger,
Android’s display server, in user space. Then, Surface
Flinger composes the surface using a software package
called HWComposer. The surface is then passed to the direct
rendering manager (DRM), which is Android’s link between
user space and kernel space. DRM is handled by the DRI
driver in the kernel. This driver translates the surface into
something that the display driver can understand and then
sends it to the driver to be written to the display device,
which is typically the screen. The slowdown associated with
the communication through these multiple layers has given
rise to many “direct rendering” systems, such as DirectFB [2],
that bypass the HWComposer and directly utilize the DRM,
which allows the display server to write directly to the
graphics system in the kernel. However, this still leaves the
communication layer between the display server and the
kernel’s DRM, which our experimental results show moder-
ately increases power consumption and the amount of time
the operating system takes to handle events.

A third drawback of existing display servers is that they do
not provide the kernel with important scheduling information
that it could use to optimize the CPU’s performance. For
example, desktop computer users may place application
“windows” on top of each other, beside each other, or over-
lapping each other. By contrast, a mobile device may have
several applications running at the same time, but either only
one application is displayed, or on some devices with larger
displays, a couple apps might be displayed in side-by-side
windows. A display server on a mobile device knows which
apps are hidden and hence are in the background. If this infor-
mation were known to the kernel, it could stop scheduling
hidden apps which would increase the opportunities to place
the CPU in lower power consuming sleep modes. However,
this information is not known to the kernel and hence it will
keep scheduling the app, even though the app is invisible and
any drawing it does will be discarded by the display server.

1175

The first two drawbacks can be eliminated if the display
server is moved into the kernel for mobile devices and the
third drawback can be eliminated if the display server is re-
designed so that it can provide scheduling information to
the kernel’s scheduler. In this paper, we describe 1) how we
re-designed the Android display server to provide schedul-
ing information, 2) how we moved it from the application
layer to the kernel, and 3) how applications and middleware
interact with this new display server. Our display server,
which we have named the Kernel Display Server (KDS)
offers the following benefits:

1) It eliminates the need for the application layer to
continuously poll the kernel for events.

2) It has direct access to the kernel’s event queues and
the kernel’s graphics package rather than having to
access them through various system calls. While
many improvements have been made to the CPU
interrupts caused by system calls, they are by no
means a trivial expense in terms of power consump-
tion and latency [3].

3) It removes the need for multiple hardware drivers
for the GUI system. In a traditional display server, a
system programmer would write a driver to allow
the display server to communicate with the kernel,
and a second driver to allow the kernel to communi-
cate with the hardware. Since the KDS is already in
the kernel, it can directly interact with the kernel-
level driver, thus reducing the system programmer’s
burden. In particular the KDS has only 2 rendering
layers as opposed to Android’s 4 rendering layers.
With our KDS, the user space layer generates a
“surface” using Android’s Surface Flinger. This sur-
face is then passed directly to the KDS, which com-
poses it with the OS graphics and then uses
DirectFB [2] to draw it to the screen. By directly in-
corporating DirectFB into the display server, the
KDS eliminates the previous communication layer
between the application and DirectFB. The KDS also
combines compositing and drawing into a single
layer in the kernel, which essentially collapses the
last three layers of the existing Android rendering
pipeline into a single layer.

4) It splits a GUI into four threads-an event handling
thread, a drawing thread, a background thread, and a
foreground thread. These threads provide the sched-
uler with important information about an app and
allow it to more intelligently schedule apps. Since the
KDS is in the kernel, the kernel’s scheduler has direct
access to these threads, rather than having to rely on
a constant stream of system calls that would be
required to notify it of this scheduling information if
the display server were still in user space.

This KDS implementation has enabled us to implement
two other power saving strategies, an Event Stream Model
that pushes events from input devices to the CPU and elimi-
nates kernel polling loops [1], and a scheduling algorithm
that takes advantage of the thread information to de-schedule
apps when they are in the background [4]. These power sav-
ing strategies result in almost a 30 percent improvement to
battery life and a 17 ms reduction in latency for some apps,

Authorized licensed use limited to: University of Pittsburgh. Downloaded on August 18,2020 at 04:34:15 UTC from IEEE Xplore. Restrictions apply.

1176

where we define latency as the duration of time between the
inception of an event and the reaction to the event. Although
moving the display server into the kernel was primarily
done to enable other power saving strategies, the elimination
of duplicative overhead in our KDS implementation also
realizes a 4.35 percent improvement to battery life and a
1.1 millisecond reduction in latency when implemented by
itself, without any other power saving strategies.

The rest of this paper is organized as follows. Section 2
describes related work. Section 3 further makes the case for
why it is important to move the display server to the kernel.
Section 4 describes the kernel implementation and Section 5
describes the API the KDS provides for applications or mid-
dleware, such as Android. Section 6 describes the experi-
ments we used to measure the power savings that could be
achieved with the KDS. Section 7 discusses the potential
drawbacks of moving the display server to the kernel and
Section 8 provides a summary of our conclusions and results.

2 RELATED WORK

This section starts by reviewing the most commonly used
application-layer display servers. To our knowledge, there
are no kernel-level display servers. It then describes some
prior direct rendering solutions that bypass the application-
layer display server and that we have incorporated into our
KDS. This section concludes by discussing alternative
power management approaches that have been tried previ-
ously and alternative ways to measure power consumption
by mobile devices.

2.1 Display Servers

The most common display server for Unix type environ-
ments is the X11 display server, now commonly called X.
org [5], [6]. Graphical user interface applications connect to
the X11 display server in order to draw to the screen and to
handle events. The X.org server serves as “middleware”
between the application and the kernel. This display server
is implemented in user space and communicates through
character devices and system calls to and from the kernel [7].
The X windows system requires its own driver for each of
the input devices, graphics devices, and other devices that
work with the display server. This approach works with a
wide range of desktop architectures and Unix-flavored
OS’s. However, in mobile devices, it represents an addi-
tional layer between the kernel and application that tends to
lead to increased power consumption and latency since the
generic display server is unable to take full advantage of the
app-centric mobile device approach.

Wayland is an open-source display server meant as a
more modern, simpler X11 replacement for Unix-flavored
applications but it also suffers from its inability to take
advantage of the app-centric mobile device approach [8].
Furthermore, Wayland uses many of the drivers and tech-
nologies from the X11 system, such as the event polling
loop in the kernel, and hence, some of the inefficiencies of
the X11 system are inherited by the Wayland system.

The Android operating system for mobile devices con-
tains a software package called Surface Flinger which is ulti-
mately responsible for drawing graphics to the screen [9].
Surface Flinger is given a set of GUI components, such as a

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.18, NO.5, MAY 2019

menu bar, a tool bar, or a status bar, and then it merges all
of the components into a single object that the hardware can
draw. Typically, Surface Flinger utilizes OpenGL ES for
drawing most of its objects. This is important since OpenGL
ES maintains a client and server relationship, where the cli-
ent is in the application layer and the server is in the kernel
layer, thus necessitating costly system calls between the two
layers even when using direct rendering systems (described
in the next section).

MacOS uses the Quartz system to draw to the screen.
Since MacOS uses Darwin, which is a microkernel [10], the
drawing layer sits directly above the kernel layer and is not
directly in the kernel layer. The Quartz drawing system is
split into three sections: the compositor, the graphics library
called Quartz2D, and the window server, which is responsi-
ble for routing hardware events, such as a mouse click or
keyboard input [11]. Like other existing display servers,
Quartz uses polling loops that needlessly consume power
on idle, mobile devices.

Although not a display server, Ping-Peng et al. developed
an interaction model for cooperative, event-based systems,
such as distributed and multi-processor workloads that
influenced the design of our KDS [12]. Ping-peng created
primitives that combine complex events into “composite”
events that cover the life cycle of an event, which mirrors the
approach we take in the KDS and the ESM. For example,
Ping-pen’s language shows the multiple layers through
which an event may pass, such as originating in the kernel,
being sent to a socket, and being picked up by an application.
Their paper is purely theoretical, but their figures do a nice
job of documenting how an event “works”. Their event
semantics and event detection methods helped us under-
stand an event life cycle and lend credibility to combining a
display server with a kernel-level event handling model.

Netlink sockets appear to be an alternate way to elimi-
nate event polling loops from user space since they can
directly dispatch an event from the kernel to a user applica-
tion [13]. However, Netlink adds itself to a BSD socket, and
the BSD socket still requires polling [1]. Hence, the polling
is not eliminated using Netlink but simply pushed into the
kernel. In this respect it is much like epoll, which also
appears to eliminate polling in user space, but in fact trans-
fers the polling into the kernel [1].

2.2 Direct Rendering Solutions
In order to accelerate the rendering process, a number of
researchers have developed systems that allow graphical
applications to bypass the display server and directly com-
municate with an OS’s rendering engine. Direct framebuffer
(DirectFB) is a library and a Linux kernel module that
allows GUI applications to draw directly to the screen
through the kernel’s graphics driver [2]. Our KDS uses
DirectFB as a starting point, and in fact uses many of the
same kernel routines as DirectFB to draw to the screen.
DirectFB is a desirable starting point since it has been used
extensively in multiple consumer products, such as Roku.
Direct rendering manager is a kernel-level graphics sys-
tem that allows user applications to more or less directly ren-
der to the graphics processing unit (GPU) [14]. We use the
term “more or less” since the kernel still lies between the
application and the GPU. However, the DRM is positioned

Authorized licensed use limited to: University of Pittsburgh. Downloaded on August 18,2020 at 04:34:15 UTC from IEEE Xplore. Restrictions apply.

MARZ ET AL.: REDUCING EVENT LATENCY AND POWER CONSUMPTION IN MOBILE DEVICES BY USING A KERNEL-LEVEL DISPLAY...

one layer above the graphics driver in the kernel, and so it
bypasses some of the middleware layers associated with a
display server. OpenGL and other hardware rendering sys-
tems use DRM to directly interact with the GPU’s driver. It is
important to note that this exposes the GPU’s driver to a user
application and not necessarily the GPU itself.

Singhai and Bose explored the power consumption associ-
ated with graphics intensive applications [15]. Their approach
centered on the surface model present in Android operating
systems. The surface view system in Android is a software
layer compositing system which Java and other systems use.
Singhai and Bose decided to implement a Windows-style
GUI system where all drawing is performed on the main win-
dow. This reduces the mathematical complexities of flatten-
ing a layer. Our KDS implements this direct compositing
approach for applications, but does not do so with adorn-
ments, such as the battery status icons and toolbars.

2.3 Alternative Power Management Strategies

Our power management approach centers on improving
event handling and scheduling in the kernel. The most com-
mon alternative software approach to power management is
sleep management policies that attempt to aggressively put
applications to sleep when they are not being used [16].
Unfortunately, these policies have two drawbacks. First,
they can make a device seem less responsive. For example,
when one of the authors picks up his iPhone, it will show the
clock, and then the screen will turn black. A double press
then causes the screen to come back on, and then it goes off
again, before a final double press brings the screen on. This is
an example of the user battling an aggressive sleep policy.
To stop this lack of responsiveness, many applications must
use wake locks to force the mobile device to stay awake;
however, this comes at the cost of increased power consump-
tion since the mobile device cannot go to sleep while locked
awake [17]. Wake locks are necessary for certain applications
that cannot tolerate aggressive sleeping policies, such as
when the user is using a movie playing application. The
application programmer enables many of these wake locks,
which means that careless programmers could mistakenly
force the CPU to remain in the highest power consuming
state, even when there are no tasks for it execute. Hence
wake locks and their associated problems are a second draw-
back of aggressive sleep policies. Our approach, which
involves eliminating polling loops in the kernel and having
the display server communicate knowledge about apps to
the scheduler to improve scheduling should help obviate the
need for aggressive sleep policies since our approaches
should provide more intelligent ways to put apps to sleep.

A number of researchers have developed energy-aware
programming languages to assist with power management.
The Eon programming language is an energy-aware pro-
gramming language that is structured to automatically adapt
programs to a mobile devices energy state [18]. Eon is
designed to be portable among hardware platforms and to
maximize the performance of an application under several
energy conditions. The ET programming language is another
energy-aware programming language that specifically targets
the Android mobile operating system [19]. Their approach
differs slightly from the Eon programming language in that
the ET programming language identifies distinct patterns of

1177

program workload, which can then be used to determine the
power state to run the program. The ET programming lan-
guage allows the programmer to specify their routine’s
energy state or to allow the compiler to determine the most
efficient energy state for their routine. At present very few
actual applications are written in either language.

Most power management approaches are more hardware
oriented. The most obvious one to users is the dimming of
the LCD screen after a certain period of disuse because the
LCD screen is typically the greatest consumer of power [20].
Unfortunately the power manager is often too aggressive
about dimming the display, which leads to applications
using the wake locks mentioned previously [16].

More subtle power management approaches react when
power is being used by apps and, like the LCD dimming
strategy, attempt to take advantage of idle pauses [21], [22].
They suffer the same drawbacks of potentially being too
aggressive about putting the CPU in a lower power state
and then suffering latency issues when the CPU must
respond to an event more quickly than was anticipated.

Our approach attempts to avoid these problems in two
ways. First, it eliminates polling loops so idle applications
by default do not consume power. Hence reactive power
management strategies are not required to put these apps to
sleep. Second, the KDS obtains greater information about an
application by having an application allocate its functions
to four separate threads-event, display, background, and
foreground-which gives the scheduler better information
about how to intelligently schedule apps, and in particular,
when it is possible to completely put apps to sleep to con-
serve power. For example, if an app is not in the foreground
and has no background tasks, it can be de-scheduled and if
all open apps can be de-scheduled, the CPU can be moved
to a lower power state.

2.4 Measuring Power Consumption

It is a rather daunting task to identify the specific areas
where a mobile device is consuming power. There are many
components in modern mobile devices that may interact to
increase power consumption. However, several tools have
been developed to accurately measure power consumption
in mobile devices and to show how each mobile device com-
ponent contributes to power consumption.

Power Tutor is an open source power measuring app
based on the Power Booter power model which is specifically
designed for mobile devices [23]. This app aggregates usage
statistics from the kernel and applies a battery consumption
model to scale the figures. AppScope and DevScope are a
pair of cooperating tools used to measure power consump-
tion in mobile devices [24]. One runs DevScope to get a
model of the system, and then runs AppScope with
DevScope’s result to get power measurements for a device.
Both of these approaches use formulas to model power con-
sumption. Unfortunately, this software solution does not
function with our experimental NVIDIA TK1 board. Instead,
our experiments use a Nvidia TK1 board that has a power
measuring system in the hardware that allowed us to mea-
sure power consumption directly, and hence, we did not use
these formulas to model the power consumption of our KDS.

Rice and Hay [25] and Murmuria [26] used actual kernel
statistics to measure power. However, this approach proved

Authorized licensed use limited to: University of Pittsburgh. Downloaded on August 18,2020 at 04:34:15 UTC from IEEE Xplore. Restrictions apply.

1178

ART Virtual Machines

ART App 1 Display Client

(Window Manager)

I

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.18, NO.5, MAY 2019

Kernel
Display Server

J |

ART App 2

Foreground /

Background —

Event Filter
ART App 3

Polling
Loop

Polling
Loop

Keyboard Event
Queue

Temporal Event Queue
(Ordered By Time Event
Received)

Mouse Event
Queue

Polling
Loop

Fig. 1. The existing pull model used by display servers store events into several queues where they are propagated through multiple layers to the
applications that will handle them. This figure illustrates the architecture of a typical event hub, which is a combination of the display server’s temporal
ordering and the display client’s event filter, for GUI applications. As an example of an event filter, Java requires applications to add event listeners. If
there are no event listeners for an event, then the event will be discarded (i.e., filtered out).

rather inaccurate and not-repeatable using the TK1, and as
noted earlier, we discovered a direct way to measure power
consumption in the TK1, thus eliminating the need to use
formulas or models.

Xiao and his associates developed an approach to mea-
suring power consumption in mobile devices that focused
on power consumption at the system level rather than the
individual component level [27]. We wanted to get power
consumption figures directly related to the KDS however so
this approach was not applicable to our research.

Kindelsberger and his associates have identified ways to
record long-term power consumption in mobile devices [28].
They found that the GUI, LCD, and WiFi systems consume
most of the power in a mobile device. The KDS is aimed at
reducing the power consumption of GUIs.

3 THE CASE FOR A KERNEL DISPLAY SERVER

The introduction briefly made the case for a kernel display
server and in this section we more fully explore the limita-
tions of a display server implemented in the application
layer. The original impetus for the KDS came from our
desire to reduce the number of polling loops that are
required by middleware display servers. With current dis-
play servers, applications must retrieve their events directly
from the display server, which in turn retrieves events
directly from the kernel’s event system. This means that an
event must first be stored in the kernel, where it is then
polled and retrieved by the display server. The display
server then stores the same event in its own event queue.
Finally, the application polls the display server for the
event, and the display server supplies the application with
the event. Fig. 1 shows the different polling loops and event
queues that are required by existing middleware display
servers. In mobile devices, these additional queues and poll-
ing loops are costly in terms of both increased power con-
sumption and increased latency.

The Kernel Display Server removes these additional
queues and polling loops by using an event push-model
called the Event Stream Model to push events to the appli-
cation (see Fig. 2) [1]. The ESM alerts the CPU whenever an

input device receives an event and takes advantage of the
fact that newer input devices are able to interrupt the CPU
when an event arrives. The ESM registers interrupt handlers
with the CPU that collect information about the event from
the input device and then forward the event to any event
handlers that are registered with the KDS and which the
KDS has “switched on” (the KDS switches off event han-
dlers associated with background apps). Older input devi-
ces required the CPU to periodically poll each devices’
event queue and existing mobile kernels still cater to the
restrictions of these older devices. Hence our ESM/KDS
model is aimed at exploring how kernels can be modified to
take advantage of the ability of input devices to directly
notify the CPU that an event has arrived.

The KDS mediates the interaction between the ESM and
the application (or application middleware such as Android
ART) by controlling which event handlers are active. For
example, if the user minimizes an application or puts it into
the background, the KDS will automatically unregister the
application’s input event handlers since the application can
no longer feasibly receive input events. When the applica-
tion is restored into the foreground, and hence starts inter-
acting with the user, the KDS re-registers the event handlers
with the ESM and normal event operations resume.

In addition to better event coordination and the elimina-
tion of event queues and polling loops, two additional gains
are realized by implementing the display server in the ker-
nel. First, it eliminates the need to make system calls in order
to acquire data from the kernel’s numerous data structures,
such as device event queues. A system call is a special CPU
instruction that causes the CPU to unconditionally jump to a
specific system call kernel routine. To make a system call, the
CPU must generate an interrupt to itself by using a specific
service call CPU instruction, context switch from the cur-
rently running application to the interrupt handler, and then
change the privilege level from application mode (typically
referred to as user mode) to kernel mode. While many archi-
tectures and operating systems have improved the efficiency
of this process, it is by no means an efficient procedure. Our
KDS removes many steps in this procedure since it has direct
access to several data structures within the kernel, and hence

Authorized licensed use limited to: University of Pittsburgh. Downloaded on August 18,2020 at 04:34:15 UTC from IEEE Xplore. Restrictions apply.

MARZ ET AL.: REDUCING EVENT LATENCY AND POWER CONSUMPTION IN MOBILE DEVICES BY USING A KERNEL-LEVEL DISPLAY... 1179

Kernel Display Server

ART Virtual Machines (API grouped by behavior)

kernel

Connect/Disconnect event

Surface/Redraw/Compose/Draw l

Draw_Thread/Fore_Thread/Back_Thread/
Keyboard_Event/Mouse_Event \
\ State —__ Switch event

handling on/off
Calls event handlers

ART App n /

Fig. 2. This figure shows how the KDS interacts with apps and the ESM via its APl and also shows how the KDS simplifies event routing and elimi-
nates event polling. The Connect/Disconnect commands allow an app to register with the KDS on start-up and de-register with the KDS when quit-
ting. The draw command group allows an app to obtain a drawing surface, notify the KDS that a redraw must occur, compose the app’s graphics with
the OS graphics, and draw the resulting image to the frame buffer. The thread and event group allows an app to register tasks and event handlers
with the KDS. The KDS in turn registers mouse and keyboard event handlers with the ESM. When an event occurs, the interrupt handler receives the
initial notification of the event and collects relevant information about the event from the input device. The event is then propagated through the event
interpreter and dispatcher routines which check to see if an event handler(s) has been registered for that event. If so, the event handler(s) for that
event is called. If an event handler is already executing, the Event Dispatcher stores the event in an event queue for an app. This is the only event
queue required for an app. Events are dispatched directly from the event queue to the app as opposed to the more circuitous route taken in Fig. 1.
Moving the display server to the kernel eliminates the need for the duplicate event queues previously maintained by display servers, thus eliminating
the rightmost polling loop in Fig. 1. Finally, the State command tells the KDS whether the app is in the foreground or the background. The KDS re-
registers event handlers if the app has moved into the foreground and de-registers event handlers if the app has moved into the background. The
KDS'’s APl is described in more detail in Section 5.1. The State command eliminates the need for the Foreground/Background filter shown in Fig. 1

ARTApp 1

Register callback
handlers

and eliminates the remaining two polling loops.

it improves the efficiency of handling events from the kernel
to the application. In turn, this improved process reduces
power consumption and latency.

A second gain afforded by our kernel implementation of
the display manager is that the KDS is aware of the various
roles played by GUI code, some of which is I/O bound and
some of which is CPU bound. For example, a GUI applica-
tion must be able to handle inputs, such as a finger tap,
which are I/O bound, while simultaneously displaying
feedback to the screen or vibrating the device in response to
that input, which are CPU bound actions. Depending on the
application, there could be several more pieces of code that
will traditionally fall into either CPU-bound code, 1/0O-
bound code, or some percentage of both. For example, a
video player will need to decode incoming video, which
will require both constant network access and constant CPU
access for decoding. These types of code can be prioritized
in the scheduler for more efficient processing [29].

4 KDS IMPLEMENTATION

The KDS has several subsystems that are used to draw
graphical objects to the screen and to coordinate with the
ESM and scheduling routines. At the kernel level, the KDS
includes three subsystems: (a) the thread system that coor-
dinates with the ESM and scheduler (b) the compositor sys-
tem, and (c) the drawing system.

4.1 KDS Thread System

A GUI has three primary functions: accept input in the form
of events, process the events to update the application’s
state, and draw the updated application state to the display.
The KDS allocates four threads in which the GUI applica-
tion may place its code to handle these three activities: (a)
an event handling thread that executes event handlers that
are responding to hardware inputs, (b) a display thread for
drawing to the screen, (c) a background thread for handling

constant activity, such as decompressing video frames, and
(d) a foreground thread which runs both when the app is
the topmost layer and accepting input from the user and
when the screen is turned off and the app needs to perform
certain activities, such as audio decoding and playing.

When the programmer directs the KDS to run a function
on a thread, the KDS first clears the thread of any existing
code and then replaces it with the code specified by the func-
tion pointer. The KDS is then responsible for scheduling and
executing the code on the threads. The four threads that the
KDS automatically allocates may only be used by one task at
a time. However, the application programmer might want to
run multiple tasks on a single thread, such as decoding both
audio and video on the background thread. In this example,
the programmer would create a single function that forks
two threads, one for the audio task and one for the video
task. The programmer would then pass this function to the
background thread via a KDS command. Since the function
executes on the background thread, any threads that it forks
would run on the background thread as well.

Fortunately, middleware can almost completely hide this
thread messiness from the application programmer. First, the
KDS itself manages the event thread and allows the program-
mer to attach multiple event handlers to the thread through
commands described in Section 5. Second, middleware such
as Java’s virtual machine will typically handle interactions
with the event handling and display threads. For example, in
Java a programmer overrides the paint_component
method to draw to the screen. With our implementation the
programmer would continue to use this routine to draw to
the screen. The Java middleware would be responsible for
ensuring that the code in the paint_component method
executes on the KDS drawing thread. Finally, the middle-
ware can be tasked with marshalling all the background and
foreground tasks that the programmer wishes to execute and
implementing the functions that fork multiple threads for
each of these different foreground and background tasks.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on August 18,2020 at 04:34:15 UTC from IEEE Xplore. Restrictions apply.

1180
1: function KDS_COMPOSE(sur face)
2 flattened_sur face < CREATE_BLANK_SURFACE()
3: for all layer in sur face do
4 flattened_sur face.DRAW(layer)
5: end for

6: end function

Fig. 3. The KDS compositor is a simple layer-flattening algorithm which
flattens multiple-layered surfaces into a single layer surface (bitmap).
Surfaces are allocated for different GUI decorations. For example, one
surface is allocated for an application to draw its graphics and another
surface is allocated for the system to draw icons, such as the battery sta-
tus icons. The composer ensures that the GUI decorations are appropri-
ately placed so that it looks like a single contiguous picture.

Hence the programmer only needs to indicate to the middle-
ware whether a callback procedure, such as one for decoding
compressed video frames, should run in the background or
the foreground. Thus, the cognitive load on an app program-
mer is not significantly increased by the KDS.

A customized scheduler can use knowledge of these four
threads to more intelligently schedule an app. For example
the event handling threads might be placed on a lower power
shadow core that spins up quickly from a sleep state and can
respond more quickly to input events while the remaining
threads might be placed on faster, more power hungry cores.
Additionally, when an app is not being displayed, only its
background thread might be scheduled for execution.

4.2 The Compositor System

A typical Android application has three layers displayed on
the screen comprised of 1) the application’s GUI, 2) the sys-
tem’s navigation bar, and 3) the system’s status bar (how-
ever some apps may have more or fewer layers—for
example a game may hide the status and navigation
bars) [9]. These three layers get flattened into a single sur-
face by the KDS compositor. The compositor makes sure
that the GUI buttons, menus, and other decorations look
like they are on top of a window pane.

The KDS compositor uses a simple ordered list to deter-
mine how to layer objects into a single image (see Fig. 3).
The list stores all of the objects that need to be drawn and is
sorted by an increasing “z-index” which is set by the appli-
cations programmer. This means the objects with a lower z-
index are drawn first and the objects with a higher z-index
are drawn last. Therefore, higher z-index surfaces “lie” on
top of lower z-index surfaces.

The KDS compositor is rather simple in its design since
most GUI graphics packages, such as Android’s Surface
Flinger handle much of the compositing. However, the dif-
ference is that the KDS compositor flattens the entire
screen, including all GUI attachments, whereas Surface
Flinger composes the graphics for each running application.
In other words, the KDS determines how applications are
layered on top of each other, and Surface Flinger determines
how objects are layered on a single application. The KDS
compositor should run in the drawing thread since it only
needs to run when the results can be seen by the user.

4.3 The Drawing System

The KDS drawing system is a low-level drawing mecha-
nism that is called by the middleware drawing routine,
such as Android’s Surface Flinger, and is responsible for

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.18, NO.5, MAY 2019

1: function KDS_DRAW_2D(dev, flat_sur face)

2 framebuf fer + GETFBFORAPP(dev)

3 for all pizel in flat_sur face do

4 framebuf fer[pizel.x][pizel.y] < pizel.rgb

5 end for

6: end function

Fig. 4. The KDS 2-dimensional drawing system draws a composed and
flattened surface to the framebuffer of the device that is passed in as a
parameter. The dev parameter would normally be a C-style struct con-
taining information about the device to be drawn to, such as a GPU. The
drawing system uses the already existing framebuffer utilities in the
Android kernel. The GetFrameBufferForApp is merely a helper function
which returns the framebuffer that is allocated to the application. In the
actual kds_draw_2d code, if the pixel being written to (on the last line of
the code) exceeds the bounds of the application’s window, then an error
is thrown. Since the KDS coordinates with the SurfaceFlinger, such an
out-of-bounds write should never happen. However, it is an additional
check in case someone uses their own display manager on top of the
KDS and fails to ensure that the surface drawing area will not intrude on
another application.

drawing GUI objects to the graphics framebuffer and runs
after the compositor system has finished executing. Fig. 4
depicts the KDS drawing routine. The routine sweeps
through the flattened surface created by the KDS composi-
tor and copies the bits to the framebuffer.

The KDS uses many of the DirectFB routines that are
already written in the Linux/Android kernel. As previously
mentioned, DirectFB provides helper functions to draw to
the framebuffer using the hardware to improve the drawing
speed. This allowed us to implement the KDS without hav-
ing to duplicate DirectFB’s functionality.

The KDS is initialized after the framebuffer system and
uses the first enumerated framebuffer as its drawing sur-
face. This presents a drawback if the device is connected to
an external display, since the KDS will not recognize it.
However, most mobile devices are not typically used in this
manner, and therefore, the KDS is relatively safe in assum-
ing the first framebulffer is the desired drawing target.

The KDS does not automatically place the drawing code
in the drawing thread. Instead, the programmer or middle-
ware must ensure that they place the call to the KDS draw-
ing system in the drawing thread. This is desirable since the
KDS cannot predict every instance where the programmer
wishes to use the KDS’ drawing system.

5 CONNECTING THE KDS TO ANDROID AND
THE APPLICATION

This section describes the set of commands supported by
the KDS, how applications connect to the KDS, and how the
KDS coordinates with Android. It also presents a complete
example that shows how an application would use the vari-
ous KDS subsystems presented in the previous section to
draw a pair of overlapping rectangles to the screen when
the user presses a key on the keyboard.

5.1 The KDS Application Programmer Interface

The application programmer communicates with the KDS
by obtaining a private “communication” device and then
writing commands to the communication device by passing
it a command block (see Fig. 5). The means through which
the programmer obtains this communication device are
described in the next section. The KDS system supports the
set of commands shown in Table 1.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on August 18,2020 at 04:34:15 UTC from IEEE Xplore. Restrictions apply.

MARZ ET AL.: REDUCING EVENT LATENCY AND POWER CONSUMPTION IN MOBILE DEVICES BY USING A KERNEL-LEVEL DISPLAY...

1: Struct kds_command {
2: Integer request_type
3: Integer data_length
4: Blob data

5: };

Fig. 5. The C-style structure that an application sends to its private KDS
control device to get the KDS to execute a command on its behalf. The
request_type is what command the application wishes to use. The “blob”
data is simply a memory pointer that contains up to “data_length” bytes.

The COMPOSE command takes a layered surface and
returns a flattened surface using the kds_compose func-
tion shown in Fig. 3. The DRAW command takes the flat-
tened surface and writes it to the framebuffer using the
kds_draw_2d function shown in Fig. 4. The DRAW_TH-
READ, BACK THREAD, and FORE THREAD requests
allow the programmer to attach tasks to each of these three
threads. Notice that only the foreground, background, and
drawing threads are exposed through the APIL This is
because the KDS automatically manages the event thread
via the KEYBOARD EVENT and MOUSE EVENT com-
mands, which allow the programmer to attach keyboard
and mouse handlers to the event thread. The SURFACE
command allocates a new surface on a display device and
returns it to the application programmer. The REDRAW
command manually forces a rerun of the drawing thread.
The STATE command is used by the window manager to
notify the KDS that the application changed states (from
background to foreground and so forth). The KDS system
uses this command to de-register an app’s event handlers
when the application changes state to the background and
to re-register the application’s event handlers when the
application changes state back to the foreground. Finally,
the CONNECT command connects the application to the
KDS and the DISCONNECT command disconnects an
application from the KDS and frees the resources.

5.2 Attaching an Application to the KDS
Applications begin interacting with the KDS by calling the
kds_connect function shown in Fig. 6. kds_connect

TABLE 1
This Table Lists the KDS’s API
Request Inputs
CONNECT Application
COMPOSE Layered Surface
DRAW Device and Flattened Surface
SURFACE Device to allocate surface on

DRAW_THREAD
FORE_THREAD
BACK_THREAD

Pointer to drawing function
Pointer to foreground function
Pointer to background function

REDRAW

STATE State of window
DISCONNECT Application

Events

KEYBOARD_EVENT A keyboard handler

MOUSE_EVENT A mouse handler

The request is a simple C++-style, enumeration constant. Device for both the
DRAW and SURFACE commands would be a device structure containing
information about the device to be drawn to, such as a GPU.

1181

1: function KDS_CONNECT(application)
2: struct kds_command cmd
3 kds <— OPEN(”/dev/kds/control”)
4: cdev < kds.CREATE_COMMUNICATION_DEVICE()
5: cmd.request_type < CONNECT
6: cmd.data < application
7 cmd.data_length < SIZEOF(application)
8 cdev.WRITE(cmd)
9: kds.CLOSE()

10: return cdev

11: end function
Fig. 6. An application connects to the KDS through the kds_connect
routine, which opens a central KDS control device located in the device
filesystem. The KDS then creates a private communication device
specifically for the application connecting to the KDS. All further commu-

nication between the KDS and the application is through the new, private
communication device.

returns the communication device described in the previous
section that the application subsequently uses to communi-
cate with the KDS.

The kds_connect function attaches an application to
the KDS through the device file system common in UNIX-
style operating systems, including Android. As shown in
Fig. 6, kds_connect initiates this process by opening
“/dev/kds/control”, which returns a “kds_control_device”.
kds_connect then asks the control device to return a new,
private “communication” device specifically for that applica-
tion. This communication device ensures that a malicious
application cannot commandeer other applications’ requests
to the KDS. Finally kds_connect attaches the application
to the communication device by sending the CONNECT
command to this device.

5.3 Linking Android with the KDS

Android’s GUI system contains a software service called Sur-
face Flinger which is the starting point for drawing surfaces to
the screen [9]. In existing Android systems, SurfaceFlinger
renders the application to the screen in a number of steps. First
the application obtains a drawing surface from Android’s
Surface Flinger and draws its GUI to this surface. It then
returns this surface to Surface Flinger, which employs a sub-
service called the Hardware Compositor (HWC) to flatten the
application layer and the system-generated navigation bar
and status bar layers into a single surface. Finally, the com-
posed layer is drawn to the display device using the Hard-
ware Abstraction Layer’s (HAL) interface to the drawing
device. This process is illustrated in Fig. 7a.

The KDS modifies this rendering process in three ways:

1) It intercepts the application’s surface request to Sur-
faceFlinger, gets a surface from SurfaceFlinger and
returns it to the application. The application draws
to this surface in exactly the same manner that it
would draw to a SurfaceFlinger surface.

2) When the application is ready to have the surface
composited, the surface is given to the KDS compo-
sitor, which flattens the application and system-
provided surfaces.

3) The flattened surface is directly rendered to the fra-
mebuffer using the KDS-provided drawing function.

The updated rendering pipeline is shown in Fig. 7b. Our

KDS implementation uses its own compositing/drawing

Authorized licensed use limited to: University of Pittsburgh. Downloaded on August 18,2020 at 04:34:15 UTC from IEEE Xplore. Restrictions apply.

1182

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.18, NO.5, MAY 2019

Application — Surface Flinger — HWC — HAL — GPU

Application — KDS.SURFACE — Surface Flinger — kds_compose — kds_draw_2d — HAL — GPU

Fig. 7. (a) The Android rendering pipeline and (b) the modified KDS/Android rendering pipeline. The HW composer is effectively bypassed by the

KDS compositing and drawing routines.

routines for increased flexibility and performance on our
NVIDIA TKI1 testing platform. The TK1 does not have an
actual hardware composer so our routines make use of the
GPU instead. As an added benefit, a programmer might be
able to perform offscreen drawing and buffer swapping
with these routines. However, Android has incentivized the
development of actual hardware devices to perform compo-
sition so implementors on other mobile devices that provide
such a hardware device might find it equally feasible to sim-
ply use the device’s hardware composer and eliminate the
KDS’s composition and drawing routines. In this case the
implementor could revert to the rendering pipeline shown
in Fig. 7a (the KDS would no longer need to intercept the
surface request since the interception is done for the benefit
of the KDS compositor and drawing routines).

When an application wishes to draw, it performs the
same actions that it would with Android’s current drawing
system. Since we modified Surface Flinger to work with the
KDS, the modified Surface Flinger code intercepts the
screen drawing commands, coordinates with the kernel,
and ultimately writes to the screen’s framebuffer. In other
words, Surface Flinger is drawing to a virtual screen (called
a surface), which the KDS then draws to the actual screen
after making certain adjustments.

Putting the KDS between Surface Flinger and the hard-
ware composer adds an additional layer between the appli-
cation and the screen. However, by using the existing
Android drawing system we allow the end-user applications
to ignore which display system is being used by the mobile

1: function DRAW_SCENE(kds_device) > kds_device is the
communication device returned from kds_connect

2: struct kds_command cmd

3: Surface surf <— SFLINGER.CREATE_SURFACE()

4: Layer layl < surf.CREATE_LAYER(0) > z-index 0
5: Layer layl < surf.CREATE_LAYER(1) > z-index 1
6: lay1l.RECTANGLE(0, 0, 15, 15)

7: lay2.RECTANGLE(10, 10, 15, 15)

8: cmd.request_type < COMPOSE

9: cmd.data < surf

10: emd.data_length < surf.size

11: kds_device. WRITE(cmd)

12: FlatSurface flat_sur face < cmd.data

13: cmd.request_type < DRAW

14: cmd.data_length <—SI1ZEOF(flat_surface)

15: kds_device. WRITE(cmd)
16: end function

Fig. 8. This example pseudocode shows an application attaching, inter-
acting, and detaching with the KDS by drawing two 15 x 15 squares.
There is a 5 x 5 pixel overlap of layer2 on top of layer1. Therefore,
during composition, a bottom-right, 5-pixel square of layer1 will be
obscured and overwritten by the pixel values of layer2. This figure is
meant to help the reader understand how the application layer interacts
with the KDS. In practice, these commands would be in a middleware
package, such as Android’s Surface Flinger and the application pro-
grammer would not have to worry about writing these commands.

OS. In other words, current mobile applications do not need
to be modified to incorporate the KDS’ benefits. This allows
for much more flexibility and a much shorter adoption
period when mobile devices are upgraded to the KDS.

5.4 Example Application Interaction with the KDS
Fig. 8 shows how an application would use the commands
enumerated in the previous section to interact with the KDS
compositing and drawing subsystems in order to draw
graphics to the screen and Fig. 9 shows how an application
would use the KDS thread subsystem to set up event han-
dling and to allocate code to different KDS threads. These
two figures together illustrate how the application layer
interacts with the KDS layer to draw two overlapping rec-
tangles when the user presses a key on the keyboard.

1: Device kds_device > The kds communication device
for this app
. struct kds_command cmd
: function KEY_CALLBACK(event)
> Redraw the scene

cmd.request_type < REDRAW
kds_device.WRITE(cmd)
: end function
: function DRAW_THREAD

DRAW_SCENE(kds_device) > Drawing function from
Fig 8.
10: end function
11: function BG_THREAD
12: > Perform actions, such as decoding audio.
13: end function
14: function MAIN()
15: kds_device + KDS_CONNECT(this)
16: cemd.request_type <+ KEY BOARD_EVENT
17: cemd.data +— KEY_CALLBACK
18: cmd.data_length < SIZEOF(KEY_CALLBACK)
19: kds_device. WRITE(cmd)
20: cmd.request_type < DRAWING_THREAD
21: emd.data <+ DRAW _THREAD
22: cmd.data_length < SIZEOF(DRAW_THREAD)
23: kds_device.WRITE(cmd)
24: cmd.request_type <+ BACK_THREAD
25: cmd.data <+ BG_THRFEAD
26: cmd.data_length < S1ZEOF(BG_THREAD)
27: kds_device. WRITE(cmd)
28: cmd.request_type < DETACH
29: cmd.data <+ NULL
30: cmd.data_length < 0
31: kds_device. WRITE(cmd)
32: end function

Fig. 9. This example pseudocode shows an application separating its
code into three of the individual KDS threads (event handling, back-
ground, and drawing are shown above). For event handling, the KDS
can automatically register and de-register events with our kernel imple-
mentation of the ESM model depending on the foreground or back-
ground state of the application.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on August 18,2020 at 04:34:15 UTC from IEEE Xplore. Restrictions apply.

MARZ ET AL.: REDUCING EVENT LATENCY AND POWER CONSUMPTION IN MOBILE DEVICES BY USING A KERNEL-LEVEL DISPLAY...

While the interaction with the KDS communication
device might seem complex and esoteric, we have devel-
oped a user API that includes higher-level functions, such
as the kds_connect function, that handles encoding and
decoding these messages to the control device. Our API is
built into Android’s virtual machine, so application pro-
grammers do not have to initiate any of this communication,
but instead, it is completely handled by Android. Hence,
existing Android applications can work with the KDS with-
out any modification.

6 EXPERIMENTAL RESULTS

The primary goal of the kernel display server is to conserve
power and reduce latency in mobile devices. It does so in
two ways: 1) by enabling other software strategies to more
effectively manage power consumption, and 2) by eliminat-
ing system calls between the application layer and the ker-
nel layer and by streamlining the movement of events from
the kernel to the application. This section first describes our
testing environment. Then it shows the power savings we
have achieved by 1) coupling the KDS with other power
management saving strategies and 2) by running the KDS
along. This section concludes by discussing the battery life
improvements that might be expected using the KDS with
the two other power saving strategies or by itself.

6.1 Testing Environment

We designed three applications that would simulate how an
actual user would interact with their mobile device. One
was a program where the user traced a spiral with a stylus
while randomly clicking and releasing the stylus to create
mouse down/up events. The second program was a text
messaging app. The third program was a video playing sys-
tem which directed large amounts of data to the framebuffer
with a minimal number of input events.

The spiral application tests how well the KDS handles
events that are relatively evenly spaced, the text message
app tests how well the KDS handles bursty events with
occasional long delays between events, and the video appli-
cation tests how well the KDS handles drawing GUI compo-
nents to the screen. Together these three apps provide a
good representation of the types of demands apps typically
place on the kernel. For example, games match the regu-
larly-spaced event profile of the spiral app, many social
media apps match the bursty event with long pauses profile
of the text messaging app, and music-playing apps like Pan-
dora, audio-playing apps like Sirius, and video-playing
apps like YouTube and ESPN, match the computational but
low event generation profile of the video app.

The applications were run on a 32-bit NVIDIA TK1
reference board [30]. Power consumption was directly
determined using the TK1’s onboard power consumption
monitoring system. To measure latency, we designed a
high-resolution timing system. We used one of the NVIDIA
K1 CPU’s high-resolution timers to measure latency within
one millisecond resolution. The timer was set to a fixed 1
kHZ rate to provide a wall clock timer. The timer operated
by automatically increasing its internal counter by one for
each cycle. When the stylus made an input, the kernel
recorded the wall clock time. We then placed code in the
application’s event handler to record the wall clock time

1183

. Mouse Down
. Mouse Up

Fig. 10. In the stylus motion/click test, the user started at point A and
manually traced the spiral to point Z while randomly pressing and releas-
ing the stylus (shown as mouse down and up events). The blue stars
indicate where the user pressed the stylus and the red stars indicated
where the user released the stylus as the user traced the spiral.

Total Events = 1614

(now presumably advanced since the event was generated).
The difference between the two is the event’s latency.

6.1.1 Spiral Tracing App

Fig. 10 illustrates our spiral tracing application in which the
user traced a spiral while randomly pressing and releasing
the stylus. We recorded the events and then replayed this
record to have a consistent test between our KDS and the
existing Android system. The test generated 1,614 events
over 60 seconds, which corresponds to an event input rate
of 26.9 events per second.

We ran the pre-recorded script on both systems ten times
and then averaged the results.

6.1.2 Text Messaging App

The text-messaging app generates random messages using a
simulated keyboard and sends them to a server using the
standard Android text messaging service. The server then
responds with a random message to simulate a reply. The
testing program simulates a user reading a message by
remaining idle for 5 seconds after receiving the server’s resp-
onse and then generates a return text message. The testing
was conducted over 20 second intervals resulting in an aver-
age of 3 messages being sent to the server and 3 messages
being received from the server.

6.1.3 Video Playing App

The video playing application displayed a 30 second movie
clip and was designed to test if the direct, kernel control of
the framebuffer would have any impact on power con-
sumption. For the entire duration of this test, no events
were handled, which allowed us to control for the event
model. The movie clip was encoded using MPEG-4, Part 10
(AVC/H.264). It was 1,920 pixels wide by 1,080 pixels tall,
29.97 frames per second, and with a start to finish running

Authorized licensed use limited to: University of Pittsburgh. Downloaded on August 18,2020 at 04:34:15 UTC from IEEE Xplore. Restrictions apply.

1184 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.18, NO.5, MAY 2019
100Q ; ; ; ; 18 T T
PULE—
900+ KDS— | 18
| 14
800 v
‘ 12
700+ 4
Power taterey 10)
™ 600 i
8
500+ 4 6
400 - 4
30 1 1 1 1 1 2 1 1 1 1 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60

Testing Time (s)

Power Consumption

Testing Time (s)

Latency

Fig. 11. Power consumption in milliwatts and latency in milliseconds for the spiral tracing program during a 60 second user interaction when run using

the pull model, red, and the KDS model, green.

800 T T T
750
700

650

Power

(mw) (ms)
5!

50
500

450

400

350

6 8 10 12 14 16 18 20

Testing Time (s)

Power Consumption

Latency

10

Testing Time (s)

Latency

Fig. 12. Power consumption in milliwatts and latency in milliseconds for the text message program during a 20 second user interaction when run

using the pull model, red, and the KDS model, green.

time of 30 seconds. We ran the test, with the same parame-
ters ten times and then averaged the results.

6.2 Power Savings

As noted earlier, the KDS makes it possible for the kernel to
implement two new power saving strategies. First, the ker-
nel can switch from the existing pull event-handling model
that utilizes polling loops to a push event-handling model
that eliminates polling loops. Second, the kernel can more
effectively schedule applications by taking advantage of the
threads—event handling, display, foreground, and back-
ground—-to which an app assigns its functions. Using both of
these power saving strategies along with the KDS imple-
mentation, we achieved the following savings [4]:

e Spiral App: Power was reduced by up to 185 milliwatts
(roughly 23 percent) and latency was reduced by up to
6.7 milliseconds (Fig. 11).
Text Messaging App: Power was reduced by up to
218 milliwatts (roughly 30 percent) and latency was
reduced by up to 17 milliseconds (Fig. 12).
Video App: Power was reduced by an average of
182 milliwatts (roughly 6 percent) but at peak rates
power was reduced by almost 400 milliwatts (roughly
11 percent). Because of the lack of events there was no
latency for this test (Fig. 13).

By itself the KDS produces less savings. For the spiral app
our KDS had a slight latency reduction of 1.1 milliseconds and

reduced power consumption by 11.7 milliwatts (roughly
1.5 percent). For the video app our KDS system showed
an average power reduction of 47.4 milliwatts (roughly
1.3 percent) and a peak power reduction of 82.1 milliwatts
(roughly 2.3 percent). Latency was not an experimental vari-
able for this test because the test involved no event handling.
The text messaging app was implemented after we had imple-
mented the other power saving strategies so we do not have
an independent measurement for the KDS for the text messag-
ing app. However it is likely that the power consumption
savings would be comparable to the other two apps, roughly
1 to 2 percent, because the power savings is derived from the
streamlining of the event handling and rendering pipelines,
which while helpful, is not going to lead to significant power
savings by itself.

4200

T
PULL ——

4000

3800

3600

3400

3200

3000

2800

2600
0

Fig. 13. Power consumption in milliwatts for a 30 second video clip when
run using the pull model, red, and the KDS model, green.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on August 18,2020 at 04:34:15 UTC from IEEE Xplore. Restrictions apply.

MARZ ET AL.: REDUCING EVENT LATENCY AND POWER CONSUMPTION IN MOBILE DEVICES BY USING A KERNEL-LEVEL DISPLAY...

TABLE 2
The Battery Capacity is a Sampling of Typical Lithium lon
Batteries in Both Smartphones and Tablet Devices

Battery Lifew/o Life w/ Life w/ KDS &

Capacity (mAh) KDS (hours) KDS (hours) other power
strategies

1,000 3.0 3.1 3.9

2,000 6.0 6.3 7.8

4,000 10.0 10.4 13.0

8,000 15.0 15.7 19.5

However, since the TK1 is a development board, it does not use batteries.
Therefore, we used the power consumption numbers and converted them to bat-
tery capacity. NOTE: This table does not consider user habits or every device
configuration and is only a summary of what could be expected using our
model with varying battery capacities.

It is important to note that while the KDS by itself does
not generate significant power savings, it does achieve sig-
nificant power savings and latency reductions when com-
bined with the ESM model [1] and a modified scheduler [4]
because 1) it eliminates polling loops in user space that
would otherwise prevent the CPU from being placed in
lower power-saving modes, and 2) it introduces threads
that provide important information to the scheduler about
what type of GUlI-related activity is being performed by
each GUI task.

6.3 Battery Consumption Analysis

Based on our experimental results, we estimate that by itself
the KDS would improve battery life by 4.35 percent and with
the event handling and scheduling strategies it would
improve battery life by 30 percent. We made this estimate by
examining current battery capacities and estimating how
much time they would power a mobile device. We then used
the power consumption improvements from our experiment
results to calculate an estimated battery life improvement.
Table 2 shows standard battery capacities and the amount of
time a mobile device could be powered by them. We added a
column that displays the battery life that may be expected by
using our KDS alone and by using our KDS with the two
other power saving strategies we have devised. For example,
a battery that could last 10 hours without the KDS would see
its life extended by .435 hours or roughly 26 minutes with
the KDS alone and by 3 hours with the KDS and the two
other power saving strategies.

7 POTENTIAL DRAWBACKS OF THE KDS

Moving the display server from user space into kernel space
has three potential drawbacks. First it reduces flexibility
because it is “hard coded” into the kernel and hence the dis-
play server can no longer be swapped out for another dis-
play server. However, this drawback could be mitigated if
the KDS were re-implemented in a commercial product. All
display servers must use the same kernel functions so it is
possible to design a drop-in display server module, much
like drivers, file systems, and other systems are currently
handled in Linux. It should also be noted that the loss of
flexibility is more of a theoretical concern than a practical
concern because OS developers long ago sacrificed flexibil-
ity when they chose to tightly integrate display servers with
their OS’s, so in practice this flexibility was already lost.

1185

Second, the KDS could introduce security issues by intro-
ducing new attack vectors. However, many of the essential
event handling and rendering routines used by the display
server have already moved into the kernel. The attack vec-
tors for our KDS would have to occur either through the reg-
istration of callback functions with events or with the calls to
the rendering routines. In the former case, any function
pointer handed to the registration routines will be called by
our event handlers, but the kernel will not jump to the mem-
ory address unless the pointer lies in the appropriate applica-
tion space. These functions also cannot crash the display
server because they are restricted to user space. Hence if they
crash then the application will crash but the display server
will be unaffected. Once an application crashes, it exits and
our implementation cleans up after it just like a normally ter-
minated application so the KDS does not increase the chance
of a server crash if an application function crashes.

It also should not be possible to attack the KDS through its
rendering routines. The KDS uses existing kernel functions
to write to the drawing surface. All the KDS does is copy bits
from user space into frame buffers. Even if the attacker is try-
ing to pass the KDS malicious code, the drawing routines
will simply interpret it as pixels to be drawn to the screen.
Buffer overflow situations do not apply because we are not
providing the application with a variable-sized storage area.
Any data we receive from the application is fixed size, either
a pointer or a screen area. Also as noted in Fig. 4, if the app-
lication attempts to draw a pixel that exceeds the bounds
of the applications window, then an error is thrown. The
KDS does not make any kernel memory areas directly acces-
sible by the application so the application cannot either
inspect kernel memory nor modify it without invoking the
KDS gatekeeper functions. Finally, the KDS allocates new
private communication devices to each application so it is
not possible for malicious applications to commandeer other
applications’ requests to the KDS as long as the kernel’s nor-
mal protection mechanisms prevent malicious applications
from accessing other applications” process space.

The final drawback of the KDS is that the kernel is bigger.
Much of the KDS has to be compiled into the kernel, which
grows the size of the kernel image by about 22 kilobytes.
However this increase in size is not significant relative to
the size of existing kernels. Additionally, because the KDS
is part of a research project rather than a commercial imple-
mentation, we did not make it modular. It might be possible
to reduce the size of the KDS'’s kernel image by using kernel
modules.

In sum, the drawbacks of moving the display server to the
kernel are relatively mild, and the flexibility and size issues
could be further mitigated in a commercial implementation.

8 CONCLUSION AND FUTURE WORK

Existing display servers for mobile devices run in user space
largely because of outdated decisions made in the 1980s
when GUIs were not an integral part of the OS. OS develop-
ers failure to migrate display servers to the kernel has had
two negative impacts on OS performance: 1) display servers
duplicate much of the event handling and rendering func-
tionality that has been migrated to the OS, and 2) OS’s are
unable to fully take advantage of recent power saving

Authorized licensed use limited to: University of Pittsburgh. Downloaded on August 18,2020 at 04:34:15 UTC from IEEE Xplore. Restrictions apply.

1186

hardware architectures because display servers are forced
to use polling loops that constantly rouse the CPU and
because display servers cannot provide important schedul-
ing information that could allow the OS to de-schedule
background apps.

In this paper, we have described the design and imple-
mentation of a kernel level display server optimized for
mobile devices. This display server divides the workload of
an app into four threads—an event handling thread, a draw-
ing thread, a foreground thread, and a background thread-
that helps improve the scheduling of apps. Middleware can
handle the allocation of tasks to the event handling and
drawing threads, so an app developer only needs to write
callback procedures and assign them to either the fore-
ground or background thread.

Our KDS streamlines the implementation of the OS by
eliminating the polling loops required by application-layer
displayer servers and by permitting the display server to
directly interact with the kernel’s data structures rather
than communicating with them via system calls. The
shorter event path, improved event coordination, reduc-
tion in system calls, and improved scheduling afforded by
the KDS provide a reduction in power consumption and a
reduction in latency as compared with application-level
display servers. The biggest drawback in moving the dis-
play server to the kernel is some loss of flexibility because
the display server cannot be as easily swapped out with
another display server. However, in practice OS develop-
ers long ago made the choice to tightly integrate the dis-
play server with the OS and hence this flexibility was
really already lost.

Moving the display server into the kernel has allowed us
to implement a stream-lined event push model [1] and an
improved scheduler [4]. The event model eliminates polling
loops that were required to fetch events into the application.
Eliminating these polling loops leads to less frequent rous-
ing of the CPU and allows the scheduler to more frequently
place the CPU in lower power-consuming sleep states. The
scheduler takes advantage of the KDS's division of an app
into four threads. For example, the drawing, event han-
dling, and foreground threads can be suspended when an
app is not the foreground app. Additionally, the scheduler
can use its knowledge of the threads to assign them to dif-
ferent cores. For example, it might assign the event handling
thread to a so-called shadow core that spins up faster from a
sleeping state but is not as fast as more power-hungry cores.
These cores might be assigned to the drawing, foreground,
and background tasks. We have published some prelimi-
nary information on this scheduler [4] and plan to report
more fully on it in the future.

These two power saving strategies have achieved almost
a 30 percent improvement in battery performance and a
17 ms reduction in event handling latency. Neither power
saving strategy would be possible without the movement of
the display server to the kernel. Even without the imple-
mentation of these power saving strategies, the KDS by
itself improves battery life by 4.35 percent, which translates
to about ten extra minutes of battery life for a typical mobile
phone or thirty extra minutes of battery life for a typical tab-
let computer. The KDS also reduces latency by an average
of 1.1 milliseconds.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.18, NO.5, MAY 2019

ACKNOWLEDGMENTS

The research reported in this paper is being supported by
US National Science Foundation grant CNS-1617198.

REFERENCES
(11

S. Marz and B. V. Zanden, “Reducing power consumption and
latency in mobile devices using an event stream model,” ACM Trans.
Embedded Comput. Syst., vol. 16, no. 1, pp. 11:1-11:24, Oct. 2016.
[Online]. Available: http:/ /doi.acm.org/10.1145/2964203

D. O. Kropp, Direct Frame Buffer (DirectFB), 2014. [Online]. Available:
https:/ /github.com/deniskropp/DirectFB/blob/master/README
E. Vicente, R. Matias, L. Borges, and A. Macedo, “Evaluation of
compound system calls in the Linux kernel,” in Proc. 3rd Brazilian
Symp. Comput. Syst. Eng., 2011, pp. 164-169.

S. G. Marz, “Reducing power consumption and latency in mobile
devices using a push event stream model, kernel display server,
and GUI scheduler,” Department is Electrical Engineering and
Computer Science, Ph.D. dissertation, Univ. Tennessee, Knoxvile,
TN, USA, 2016.

G. Lehey, “Setting up X11: A no-tears guide to XFree86 configu-
ration,” Linux J., vol. 1995, no. 15es, Jul. 1995. [Online]. Available:
http:/ /dl.acm.org/ citation.cfm?id=324855.324859

R. R. Repasky, “Easy access to remote graphical unix applications
for windows users,” in Proc. 32nd Annu. ACM SIGUCCS Conf.
User Serv., 2004, pp. 357-359. [Online]. Available: http://doi.acm.
org/10.1145/1027802.1027886

S. Anderson, R. Mor, and A. Coopersmith, “X transport interface,”
2002. [Online]. Available: https:/ /www.x.org/releases/X11R7.7/
doc/xtrans/xtrans.html

K. Hogsberg, The Wayland Protocol, https:/ /wayland.freedesktop.
org/docs/html/, Freedesktop.org, 2012. [Online]. Available:
https:/ /wayland.freedesktop.org/docs/html/

Surface Flinger and Hardware Composer, 1st ed., https://source.
android.com/devices/graphics/arch-sf-hwc, Open Android Proj-
ect, May 2017. [Online]. Available: https://source.android.com/
devices/graphics/arch-sf-hwc

C. Toporek, C. Stone, and J. McIntosh, MAC OS X in a Nutshell: A
Desktop Quick Reference, 1st ed. Sebastopol, CA, USA: O'Reilly
Media, 2003.

J. Siracusa, “Mac OS X 10.4 tiger,” Ars Technica, vol. 2005,
Apr. 2005. [Online]. Available: https://arstechnica.com/apple/
2005/04/macosx-10-4/13/

Y. Ping-Peng, C. Gang, D. Jin-Xiang, and H. Wei-Li, “An event
and service interacting model and event detection based on the
borker/service model,” in Proc. 6th Int. Conf. Comput. Supported
Cooperative Work Des., 2001, pp. 20-24. [Online]. Available: http://
www.nreresearchpress.com/doi/book/10.1139/9780660184937#.
WV0ZF4jyuUk

P. Neira Ayuso, R. M. Gasca, and L. Lefevre, “Communic-
ating between the kernel and user-space in Linux using
Netlink sockets,” Softw. Practice Experience, vol. 40, pp. 797-810,
Aug. 2010.

The Direct Rendering Manager: Kernel Support for the Direct Render-
ing Infrastructure, 1st ed., http://dri.sourceforge.net/doc/
drm_low_level.html, Precision Insight, Inc., May 1999. [Online].
Available: http:/ /dri.sourceforge.net/doc/drm_low_level.html
A. Singhai and J. Bose, “Reducing power consumption in graphic
intensive Android applications,” in Proc. 6th Int. Conf. Commun.
Syst. Netw., 2014, pp. 1-4. [Online]. Available: https:/ /www.ieee.
org/conferences_events/conferences/conferencedetails/index.
html?Conf ID=32213

W. L. Bircher and L. John, “Predictive power management for
multi-core processors,” in Proc. Int. Conf. Comput. Archit., 2012,
pp. 243-255. [Online]. Available: http://dx.doi.org/10.1007 /978—
3-642-24322-6_21

A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff, “What is keeping
my phone awake?: Characterizing and detecting no-sleep energy
bugs in smartphone apps,” in Proc. 10th Int. Conf. Mobile Syst.
Appl. Serv., 2012, pp. 267-280. [Online]. Available: http://doi.
acm.org/10.1145/2307636.2307661

J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. Corner, and
E. Berger, “Eon: A language and runtime system for perpetual
systems,” in Proc. 5th Int. Conf. Embedded Netw. Sensor Syst., 2007,
pp. 161-174.

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Authorized licensed use limited to: University of Pittsburgh. Downloaded on August 18,2020 at 04:34:15 UTC from IEEE Xplore. Restrictions apply.

http://doi.acm.org/10.1145/2964203
https://github.com/deniskropp/DirectFB/blob/master/README
http://dl.acm.org/citation.cfm?id=324855.324859
http://doi.acm.org/10.1145/1027802.1027886
http://doi.acm.org/10.1145/1027802.1027886
https://www.x.org/releases/X11R7.7/doc/xtrans/xtrans.html
https://www.x.org/releases/X11R7.7/doc/xtrans/xtrans.html
https://wayland.freedesktop.org/docs/html/
https://source.android.com/devices/graphics/arch-sf-hwc
https://source.android.com/devices/graphics/arch-sf-hwc
https://source.android.com/devices/graphics/arch-sf-hwc
https://source.android.com/devices/graphics/arch-sf-hwc
https://arstechnica.com/apple/2005/04/macosx-10--4/13/
https://arstechnica.com/apple/2005/04/macosx-10--4/13/
http://www.nrcresearchpress.com/doi/book/10.1139/9780660184937#.WV0ZF4jyuUk
http://www.nrcresearchpress.com/doi/book/10.1139/9780660184937#.WV0ZF4jyuUk
http://www.nrcresearchpress.com/doi/book/10.1139/9780660184937#.WV0ZF4jyuUk
http://dri.sourceforge.net/doc/drm_low_level.html
http://dri.sourceforge.net/doc/drm_low_level.html
http://dri.sourceforge.net/doc/drm_low_level.html
https://www.ieee.org/conferences_events/conferences/conferencedetails/index.html?Conf_ID=32213
https://www.ieee.org/conferences_events/conferences/conferencedetails/index.html?Conf_ID=32213
https://www.ieee.org/conferences_events/conferences/conferencedetails/index.html?Conf_ID=32213
http://dx.doi.org/10.1007/978--3-642-24322-6_21
http://dx.doi.org/10.1007/978--3-642-24322-6_21
http://doi.acm.org/10.1145/2307636.2307661
http://doi.acm.org/10.1145/2307636.2307661

MARZ ET AL.: REDUCING EVENT LATENCY AND POWER CONSUMPTION IN MOBILE DEVICES BY USING A KERNEL-LEVEL DISPLAY... 1187

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]

M. Cohen, H. S. Zhu, S. E. Emgin, and Y. D. Liu, “Et programming
language,” in Proc. Annu. ACM SIGPLAN Conf. Object-Oriented
Program. Syst. Languages Appl., 2012, pp. 831-850.

A. Carroll and G. Heiser, “An analysis of power consumption in a
smartphone,” in Proc. USENIX Annu. Tech. Conf., Jun. 2010,
pp. 271-284.

H.-C. Shih and K. Wang, “An adaptive hybrid dynamic power
management algorithm for mobile devices,” Comput. Netw.,
vol. 56, no. 2, pp. 548-565, Feb. 2012. [Online]. Available: http://
dx.doi.org/10.1016/j.comnet.2011.10.005

U. A. Khan and B. Rinner, “Online learning of timeout policies for
dynamic power management,” ACM Trans. Embedded Comput.
Syst., vol. 13, no. 4, pp. 96:1-96:25, Mar. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2529992

L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and
L. Yang, “Accurate online power estimation and automatic bat-
tery behavior based power model generation for smartphones,” in
Proc. 8th IEEE/ACMJIFIP Int. Conf. Hardware/Softw. Codes. Syst.
Synthesis, 2010, pp. 105-114. [Online]. Available: http://doi.acm.
org/10.1145/1878961.1878982

C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, “AppScope:
Application energy metering framework for android smartphone
using kernel activity monitoring,” in Proc. USENIX Annu. Tech.
Conf., 2012, pp. 387-400. [Online]. Available: https://www.
usenix.org/conference/atc12/technical-sessions/ presentation/
yoon

A. Rice and S. Hay, “Decomposing power measurements for
mobile devices,” in Proc. IEEE Int. Conf. Pervasive Comput. Com-
mun., Mar. 2010, pp. 70-78.

R. Murmuria, J. Medsger, A. Stavrou, and J. M. Voas, “Mobile
application and device power usage measurements,” in Proc.
IEEE 6th Int. Conf. Softw. Secur. Rel., Jun. 2012, pp. 147-156.

Y. Xiao, R. Bhaumik, Z. Yang, M. Siekkinen, P. Savolainen, and
A. Yla-Jaaski, “A system-level model for runtime power estima-
tion on mobile devices,” in Proc. IEEEJACM Int. Conf. Green
Comput. Commun. Int. Conf. Cyber Phys. Social Comput., Dec. 2010,
pp- 27-34.

J. Kindelsberger, F. Willnecker, and H. Krcmar, “Long-term
power demand recording of running mobile applications,” in
Proc. IEEE 10th Int. Conf. Global Softw. Eng. Workshops, Jul. 2015,
pp- 18-22.

C. Qin and F. Rusu, “Scalable I/O-bound parallel incremental gra-
dient descent for big data analytics in glade,” in Proc. 2nd Work-
shop Data Analytics Cloud, 2013, pp. 16-20. [Online]. Available:
http://doi.acm.org/10.1145/2486767.2486771

NVIDIA, “NVIDIA Tegra K1 processor specifications,” 2015.
[Online]. Available: http://www.nvidia.com/object/tegra-k1-
processor.html

Stephen Marz received the BS degree in com-
puter science from the lllinois Institute of Technol-
ogy, in 2004, the MSIT degree from Kaplan
University, in 2010, and the PhD degree in com-
puter science from the University of Tennessee, in
2016. He has been involved in operating system
development (since 1996), graphical user inter-
face development (since 2004), and Android OS
and middleware development (since 2010). He is
currently a lecturer with the Electrical Engineering
and Computer Science Department, University of
Tennessee in Knoxville. He is a member of the
IEEE and ACM.

Brad Vander Zanden received the BS degree in
accounting and computer science from the Ohio
State University, in 1982, and the MS and PhD
degrees in computer science from Cornell, in
1985 and 1989, respectively. He was a post doc-
toral researcher with CMU from 1988 to 1990. His
research interests encompass graphical user
interfaces, instructional technology, and Android
OS and middleware development. He is currently
a professor with the Department of Electrical Engi-
neering and Computer Science, University of Ten-
nessee, Knoxville. He is a member of the ACM.

Wei Gao received the BE degree in electrical engi-
neering from the University of Science and Tech-
nology of China, in 2005, and the PhD degree in
computer science from Pennsylvania State Univer-
sity, in 2012. He is currently an associate professor
with the Department of Electrical and Computer
Engineering, University of Pittsburgh. His research
interests include wireless and mobile network sys-
tems, mobile social networks, cyber-physical sys-
tems, and pervasive and mobile computing. He is a
member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on August 18,2020 at 04:34:15 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1016/j.comnet.2011.10.005
http://dx.doi.org/10.1016/j.comnet.2011.10.005
http://doi.acm.org/10.1145/2529992
http://doi.acm.org/10.1145/1878961.1878982
http://doi.acm.org/10.1145/1878961.1878982
https://www.usenix.org/conference/atc12/technical-sessions/presentation/yoon
https://www.usenix.org/conference/atc12/technical-sessions/presentation/yoon
https://www.usenix.org/conference/atc12/technical-sessions/presentation/yoon
http://doi.acm.org/10.1145/2486767.2486771
http://www.nvidia.com/object/tegra-k1-processor.html
http://www.nvidia.com/object/tegra-k1-processor.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

