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Abstract
Wireless rechargeable sensor networks have recently e-

merged as a promising platform that can effectively solve
the power constraint problem suffered by traditional battery-
powered systems. The problem of determining the best
charging routes for maximizing charging efficiency has been
studied extensively. However, the task assignment problem,
which plays a crucial role in efficiently utilizing the harvest-
ed energy and thus minimize the charging delay, has received
rather limited attention. In this paper, we study the problem
of assigning a given set of tasks in a wireless rechargeable
sensor network while maximizing the charger’s velocity to
minimize the charging delay. We first propose an online task
assignment algorithm, namely Lower Bound assignment (L-
B), that yields a quantifiable lower bound on the charging
velocity while guaranteeing a feasible assignment. This al-
gorithm further enables the transformation of our considered
task assignment problem into a variation of the classical mul-
tiple knapsack problem. We then present a fully polynomial-
time approximation scheme with a(2+ε)-approximation ra-
tio, namely ACT, that is built upon an existing greedy algo-
rithm designed for the original knapsack problem. Extensive
experimental results presented herein demonstrate that ACT
is able to achieve near-optimal performance in most cases,
and can achieve more than 15% performance improvement
compared to the baseline algorithms.

1 Introduction
Wireless sensor networks (WSNs) have been widely

adopted in a variety of application domains. In a typical
scenario, sensors are deployed in a certain region for exe-
cuting a large number of sensing, computing, and commu-
nication tasks. Unfortunately, stringent energy constraints
posed by traditional battery-powered WSNs have become a
critical bottleneck that impedes long-term operations of such
systems.

Through recent advances in wireless recharging technolo-
gies [15], wireless rechargeable sensor networks (WRSNs)
have emerged as a promising platform to effectively solve the
energy constraint problem [6, 7, 9]. A WRSN often deploys
one or more mobile chargers that traverse along an existing
infrastructure and replenish the dissipated energy of sensor
nodes [8, 7, 30]. For many practical applications of WRSNs,
the charging delay is not negligible and plays a critical role in

minimizing the system decision/operation cycle time [7, 30].
Prior works have focused on investigating the issue of de-
termining the best traversing routes while assuming constant
charger traversing velocity for minimizing the overall charg-
ing delay [7] and maximizing the network lifetime [30].

Sensor Node
Sensing Range

Monitoring Target Charger 

Figure 1: The charger wirelessly charges the sensor nodes
along the road segment before each monitoring period.

While identifying the optimal or near-optimal routes is
essential to minimize the charging delay, for many applica-
tions, such as warehouse and traffic monitoring [22, 17], the
charger’s traversing route is typically fixed due to geograph-
ical constraints. An example motivational scenario is vehicle
monitoring along a road network [11], as illustrated in Fig.1.
Sensor nodes are deployed along the road and the sensing
range of each sensor node covers part of the road segment.
The road segment can be entirely covered by all the sensor
nodes. A service vehicle carries wireless chargers and trav-
el along the road network to power these sensor nodes. The
monitoring task is composed by a set of sensing tasks uti-
lizing sensors including image, magnetic, sound and radia-
tion [11, 17]. During a monitoring period, due to the compu-
tational and energy capacity limitation, a single sensor node
normally can not handle all tasks. Thus, different sensing
tasks need to be assigned and distributed to different nodes
for accomplishing the monitoring task collectively. Thesen-
odes gather different sensing data to be fused at the sink. In
such scenarios with fixed traversing routes, identifying bet-
ter routes becomes relatively easy. Rather, maximizing the
charger’s traversing velocity through optimally utilizing the
charged energy on sensor nodes becomes critical in order to
minimize the charging delay.

This problem of maximizing the charger’s traversing ve-
locity is challenging because sensor nodes in a WRSN need
to be wireless charged to a degree such that they harvest e-



nough energy for executing a given number of sensing and
computing tasks, each of which possesses a specific ener-
gy requirement. This clearly conflicts with the objective of
maximizing the charger’s traversing velocity, where a faster
charging velocity may cause reduced amount of energy har-
vested by sensor nodes (the detailed charging model is given
in Sec. 2). Moreover, under a specific traversing velocity, the
amount of energy harvested by different sensor nodes varies
due to their different geographical locations. Our observa-
tion herein is that the strategy of assigning tasks to sensor
nodes is critical in maximizing the traversing velocity. A ju-
dicious task assignment may lead to a reduced amount of en-
ergy that sensor nodes require to complete all given tasks and
better utilize the energy harvested by each individual sensor,
thus allowing an increased charging velocity. Motivate by
this, we investigate in this paper the problem of maximizing
the charger’s traversing velocity (thus minimizing the charg-
ing delay) while guaranteeing a feasible task assignment.

Specifically, we consider the problem of assigning a giv-
en set of tasks in a WRSN while the charger travels along a
fixed route charging sensor nodes. Our objective is to min-
imize the charging delay while ensuring that sensor nodes
harvest enough energy for executing all tasks. To achieve
this objective, we design novel online task assignment algo-
rithms that seek to minimize the amount of required energy
harvested by sensor nodes, thus yielding the maximum fea-
sible charging velocity.

The major contributions of this paper are listed as follows:

• We propose a new task assignment algorithm, namely
LB(Lower Bound) assignment, in WRSNs, which seeks
to minimize the charging delay. LB is an online algo-
rithm, meaning that tasks are assigned dynamically at
runtime while the charger is traversing and charging the
sensor nodes. LB yields an upper bound on the total
amount of required energy that sensor nodes need to
harvest in order to execute all given tasks. It thus yield-
s a quantifiable lower bound on the charging velocity
while guaranteeing a feasible assignment. We also an-
alytically prove that the ratio of the charging velocity
achieved by LB over an upper bound on the charging
velocity is a constant factor that can be computed pro-
vided specific task and system parameters.

• Moreover, the LB algorithm is significant in the sense
that it further enables us to formulate the task assign-
ment problem as a multiple knapsack problem with
variable capacity for each knapsack. Based upon this
problem formulation, we present an improved polyno-
mial time approximation scheme (ACT) with(2+ ε)-
approximation ratio. Our proposed ACT leverages a
classical multiple knapsack solution and applies several
efficient optimization techniques.

• We have conducted extensive experiments, which
demonstrate that our proposed algorithms are able to
achieve near-optimal performance compared to the op-
timal solution, and can achieve> 15% performance im-
provement compared to a baseline algorithm.

The rest of this paper is organized as follows. Sec. 2
describes our system model and problem formulation. In
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Figure 2: Charged Power vs. Distance

Sec. 3, we present the LB assignment and the resulting low-
er bound on the charger velocity. Then in Sec. 4, we present
a PTAS with an approximation ratio of 2+ ε that yields a
faster charger velocity. We evaluate our design in Sec. 5. We
discuss related works in Sec. 6 and conclude in Sec. 7.

2 Preliminaries
In this section, we present models used for the wire-

less charging and the task assignment problem in wireless
rechargeable sensor network.

2.1 Mobile Wireless Charging Model
Wireless recharging has become a promising technology

to address sustainable problem for battery-powered devices.
Much recent work [18, 20, 24] has shown that recharge-
able sensor nodes can harvest energy from ambient radio
frequency signals. Wireless Identification and Sensing Plat-
form (WISP) [25], developed by Intel Research, is one of
the most representative wireless rechargeable sensor node
platform for many sensing applications such as Passive Data
Logger (PDL) [32] and daily activity recognition [1].

To model the wireless charging power, Heet al. [9] pro-
pose a wireless recharging model based on theFriis’ free
space equation as follows:

Pr =
GsGrη

Lp
(

λ
4π(d+β)

)2P0, (1)

whered is the distance between the sensor node and charger.
All other parameters are constant based on the environment
and device settings.P0 is the source power,Gs is the source
antenna gain,Gr is the receive antenna gain,Lp is polariza-
tion loss,λ is the wavelength,η is rectifier efficiency, andβ is
a parameter to adjust theFriis’ free space equation for short
distance transmission. This model has been widely used in
prior work [7, 9, 27]. We have also validated this model by
conducting measurements-based experiments, which study
the relationship between the charged power and the distance
between a charger and a sensor node. The experiments were
conducted on WISP and the measured results are shown in
Fig. 2.

According to Eq. (1), the only variable that affects the
charged power of a sensor node is its distance from the charg-
er within a given environment. Thus, for readability, we ab-
breviate the charging model in Eq. (1) as:

P = κ(d). (2)

Based on this charging model, we calculate the charging
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Figure 3: Mobile Charging Model

power for a mobile charger. In Fig. 3, the charger travels
along a trajectoryAB, charging the sensor nodes continu-
ously. The charger’s location is a function of timet, which
can be denoted as(x(t),y(t)), and the coordinates of sensor
nodes is denoted(xs,ys). Therefore, the distance between
the sensor nodes and the charger can be computed as fol-
low:

fd(t) =
√

(x(t)− xs)2+(y(t)− ys)2. (3)

Then based on Eqs. (2) and (3), the charging power at time
t for the sensor nodes is κ( fd(t)) and the total amount of
charged energyEs(v) on sensor nodes can be denoted as:

Es(v) =
∫ L

v

0
κ( fd(t))dt, (4)

wherev is the charger’s velocity andL is the length ofAB.
From Eq. (4), we can see that given a fixed travel trajectory of
the charger, the total amount of charged energy on the sensor
s, Es(v), only depends on the charger’s travel velocity.
2.2 Problem Statement

We consider a wireless rechargeable sensor network with
a setS = {s1,s2,s3, . . . ,sm} of m stationary sensor nodes,
which need to execute a setT = {T1,T2,T3, . . . ,Tn} of n
tasks.1

Each taskTi requiresei amount of energy for execution.ei
equals to the sensing power ofsi multiplied by the monitor-
ing period. The locations of individual nodes can be obtained
with solutions proposed in [27] and represented as(x j,y j)
for node j. Given the location of each node and the charg-
er velocityv along a trajectory, we can estimate the charged
energy on a nodes j, denotedE j(v), using Eq. (4). There-
fore, the total amount of charged energy on all sensor nodes,

1Note that we assume that tasks can be assigned to and executedon any
sensor node. This is a reasonable assumption that can be seenin many ap-
plication scenarios, in particular many state-of-the-artsensor systems that
apply the compressive sensing technique [2, 5]. The compressive sensing
technique allows an arbitrary subset of the sensor nodes in the system to
execute the required tasks, while still guaranteeing that all needed informa-
tion, which is expected to be provided by the entire sensor system, can be
obtained. For example, the container-keepers distribute sensor nodes in the
seaport containers in order to monitor the temperature. Traditionally, every
sensor node needs to execute the temperature sensing task and return the
results to the monitoring system. This may cause significantbut necessary
energy loss [2, 5, 14]. By applying the compressive sensing technique, on-
ly an arbitrary subset of the sensor nodes need to execute such temperature
sensing tasks. Based upon the obtained results, the complete temperature
data can be reconstructed accurately [14].

denotedEtotal , is:

Etotal =
m

∑
j=1

E j(v) (5)

SinceE j(v) is a monotonically decreasing function ofv ac-
cording to Eq. (4),Etotal is also a monotonically decreasing
function ofv. Consequently, our objective is to find the max-
imum velocityvmax for the charger, while guaranteeing that
all the tasks can be completed.

Energy is an essential constraint for the task assignmen-
t problem. A node can not execute a task if the required
amount of energy for executing the task is more than the
harvested energy. Formally, letA denote a task assignment,
wherexi, j is a binary decision variable. Letxi, j be 1, if Ti
is assigned to sensor nodes j, and 0 otherwise. In order to
execute all assigned tasks ons j, the amount of charged ener-
gy ons j should be more than the required amount of energy,
i.e.,

n

∑
i=1

xi, jei ≤ E j(v). (6)

A task assignment isfeasible under a charger’s traversing
velocity v if under this assignment, all sensors have enough
charged energy for executing their assigned tasks.

If both Eq. (6) and∑n
i=1 ∑m

j=1xi, j = n hold, then the
charged energy onm nodes is sufficient to execute alln tasks.
Therefore, we can formulate our problem as the following
integer linear programming (ILP):

max v (7)

subject to :
m

∑
j=1

xi j ≤ 1 (8)

n

∑
i=1

xi j × ei ≤ E j(v) (9)

n

∑
i=1

m

∑
j=1

xi, j = n (10)

xi, j = {0,1} (11)

3 A Feasible Lower Bound on Velocity
Although solving the above ILP guarantees an optimal so-

lution, it takes exponential time to search the solution space,
which is not practical. In this section, we present the LB
algorithm, which is an online task assignment algorithm that
yields an upper bound on the total amount of required energy
that sensor nodes need to harvest in order to execute all giv-
en tasks (Theorem 1). Thus, LB yields a quantifiable lower
bound on the charging velocity while guaranteeing a feasible
assignment. Before describing the algorithm, we first give
necessary definitions.
DEFINITION 1. Let E1,E2, . . . ,Em denote the amount of
charged energy on sensor nodes s1,s2, . . . ,sm, when the
charger travels with speed vact along its trajectory. Let esum
denote ∑n

i=1 ei. We index tasks such that ei ≤ e j holds if i ≤ j.
For conciseness, let Tsub denote {T1,T2, . . . ,Tm} with m tasks.
THEOREM 1. A feasible traveling velocity vlb for the charg-
er yields a total charged energy E(vlb) = max

{

∑n
k=m+1 ek +

(m−1) · en, ∑n
k=1 ek +(m−1) · em

}

, which guarantees that



there exists a feasible task assignment.

Proof. We prove Theorem 1 by showing that our proposed
LB algorithm guarantees to yield a feasible task assignment
undervact . The LB algorithm is a 2-Stage process (described
next) and the order of these 2 stages can not be inverted.
Stage 1 of LB: Assign{Tm+1,Tm+2, . . . ,Tn} to sensor nodes
in order. Before assigningTm+i(1 ≤ i ≤ n−m), we denote
the total amount of remaining energy on all sensor nodes as
Er and it holds that:

Er = E(vlb)−
m+i−1

∑
j=m+1

e j

= max
{

n

∑
k=m+1

ek +(m−1) · en−
m+i−1

∑
j=m+1

e j,

n

∑
k=1

ek +(m−1) · em−
m+i−1

∑
j=m+1

e j
}

≥
n

∑
k=m+1

ek +(m−1) · en−
m+i−1

∑
j=m+1

e j

≥
n

∑
k=m+i

ek +(m−1) · en

≥ m · em+i.

(12)

SinceEr ≥ m ·em+i, the average amount of remaining energy
on each sensor node is no less thanem+i. Thus, we can al-
ways find a sensor node with an amount of remaining energy
no less thanem+i. Then, we assignTm+i to this sensor n-
ode. By applying this argument inductively oni, we are able
to find sensor nodes to whichTm+1,Tm+2, . . . ,Tn can be as-
signed.Stage 2 of LB: Assign tasks inTsub to sensor nodes.
After Stage 1, we denote the total amount of remaining en-
ergy on all sensors asEtr and it holds that:

Etr = E(vlb)−
n

∑
j=m+1

e j

= max
{

n

∑
k=m+1

ek +(m−1) · en−
n

∑
j=m+1

e j,

n

∑
k=1

ek +(m−1) · em−
n

∑
j=m+1

e j
}

≥
n

∑
k=1

ek +(m−1) · em−
n

∑
j=m+1

e j

=
m

∑
k=1

ek +(m−1) · em

=
m−1

∑
k=1

ek +m · em,

(13)

SinceEtr ≥ ∑m−1
k=1 ek +m ·em, there exists at least one sen-

sor nodesx that has a remaining energy greater thane1. Thus,
we can assignT1 to sx. Similarly, if we assign tasks inTsub
in order, then after assigningTi−1 (2 ≤ i ≤ m), the total
amount of remaining energy on all sensor nodes is at least
∑m−1

k=1 ei+m ·em−∑i−1
j=1e j = ∑m

k=i ek +(m−1) ·em. Thus, we

can always find a sensor nodesy whose remaining energy is
no less thanem. We can assignTi to sy.

After completing this 2-Stage process, we have assigned
all n tasks to sensor nodes with a total charged energy of
E(vlb). The theorem thus follows.

Intuitively, since∑n
k=1 ek denotes the total amount of en-

ergy required to execute then tasks, Theorem 1 shows that
the amount of redundant energy is related to the number of
sensor nodes. Note that in order to guarantee a feasible task
assignment, the above-mentioned 2-Stage LB algorithm only
relies on the total amount of harvested energy on all sensor
nodes. Thus, it can be executed online, which implies that
sensor charging, task assignment, and task execution can be
operated at the same time regardless of the amount of har-
vested energy on each individual sensor node. While the
charger is traveling and charging the sensor nodes, tasks can
be assigned to sensor nodes that harvest enough energy. All
n tasks are guaranteed to be assigned after the 2-Stage pro-
cess (i.e., when the total amount of harvested energy on all
sensor nodes reachesE(vlb)).
Example. We use an example to illustrate the 2-Stage task
assignment, as shown in Fig. 4. In this figure, notationsi( j)
denotes the amount of remaining energy on sensor nodesi
and the number shown in the task block denotes the amount
of energy required by that task. For this system, the task
set is{T1,T2,T3} and the sensor set is{s1,s2}. According
to Theorem 1,Eo = max{esum + e2, esum +(e3− e1)} = 13.
Fig. 4(b) shows the amount of harvested energy increasing
with time t for s1 ands2, when the charger travels withvlb
and finally the total amount of harvested energy ons1 ands2
is 13. Since the 2 stages in Theorem 1 can not be inverted, we
has to assignT3 first to guarantee a feasible task assignment.
In Fig. 4(b), we observe that the amount of harvested energy
ons2 is 5 at timet1. Therefore, we assignT3 to s2 at t1. After
assigningT3, the algorithm entersStage 2, we start to assign
Tsub. At time t1, the amount of harvested energy ons1 is 4.5,
which is larger thane1. Thus we also assignT1 to s1 at t1.
Fig. 4(c) shows the system status after assigningT3 andT1.
In Fig. 4(b), we can see that the total amount of harvested
energy ons1 is 5 at t2. So after executingT1, the amount
of remaining energy is enough to executeT2. T2 can thus be
assigned tos1 att2. Fig. 4(d) shows the final task assignment.
Approximation Ratio of LB. The LB algorithm yields a fea-
sible velocityvlb. We now derive the approximation ratio
betweenvlb and the maximum possible velocityvmax.

According to Eq. (5), the total amount of harvested energy
on all sensor nodesE is a monotonically decreasing function
of the charger’s traveling velocityv, therefore, the inverse
function forv can be described as:

v = E−1(Etotal), (14)

whereEtotal is the total amount of harvested energy on all
sensors. v is also a monotonically decreasing function of
Etotal .
THEOREM 2.

E−1(E(vlb))

E−1(esum)
≤

vlb

vmax
≤ 1. (15)

Proof. Assuming when the charger travels withvmax,
the total amount of harvested energy on all sensor nodes is
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Figure 4: Example for 2-Stage Process

E(vmax). SinceE(vmax) must yield a feasible task assign-
ment to accomplish all tasks, it is clear thatE(vmax) ≥ esum
must hold (esum is defined in Def. 1. Sincev is a monoton-
ically decreasing function ofE−1(Etotal), E−1(E(vmax)) ≤

E−1(esum). Therefore, vlb
vmax

= E−1(E(vlb))

E−1(E(vmax))
≥ E−1(E(vlb))

E−1(esum)
. S-

incevlb ≤ vmax,
vlb

vmax
≤ 1. Hence, the theorem follows.

Example. Sincev = E−1(Etotal) is an inverse function of
Eq. (5), we can quantitatively calculate the approximation

ratio E−1(E(vlb))
E−1(esum)

of LB with given system parameters. Con-
sider one of the settings used in our experiments for example,
which is given in Sec. 5. Specifically, we setGsGrη

Lp
( λ

4π )
2P0 =

36 andβ = 30 for the charging model given in Eq. (1). As-
sume that 5000 tasks are randomly generated with power as-
sumption parameters given in Table. 1 and the system con-
tains 100 sensor nodes, we can calculateE(vlb) = 5.25KJ
andesum = 5.12KJ according to Theorem 1 and the defini-
tion of esum. Thus, the lower bound on the velocity yielded
by LB is vlb = E−1(E(vlb)) = 0.65m/s and the upper bound
on the velocity isvmax = E−1(esum) = 0.5m/s. (Note that
we omitted the detailed calculation steps due to space con-
straints.) Therefore, the approximation ratio of LB for this
example system is given by 0.5/0.65≈ 76%.

Let vub denoteE−1(esum). According to Theorem 2,vlb ≤
vmax ≤ vub. In the following sections, we introduce a binary
search algorithm to findvmax.

4 Practical Binary Compression
In the previous section, we have shown that the LB al-

gorithm yields a lower boundvlb (Theorem 1) and an up-
per boundvub (Theorem 2) on the feasible velocity for the
charger. This implies that for any velocity≤ vlb, we can al-
ways find a corresponding feasible task assignment, and for
any velocity> vub, we can not find a feasible task assign-
ment. Thus, the optimal velocityvmax falls in the interval
[vlb,vub]. According to Theorem 2,[vlb,vub] is expected to
yield a rather limited solution space in most cases. In this
section, we present novel techniques that findvub by com-
pressing the limited solution space of[vlb,vub].

4.1 Task Scheduling for A Given Energy Dis-
tribution

According to the mobile charging model in Sec.2, we
know that the amount of harvested energy on each sensor n-
ode only depends on the charger’s traveling speedv. In other
words, eachv ∈ [vlb,vub] corresponds to an energy distribu-
tion on these sensor nodes. Our key observation is that since

the amount of harvested energy on each sensor node decreas-
es monotonously when the charger’s velocity increases, we
can apply the binary search algorithm to reduce the searching
space efficiently.

In the rest of this section, we investigate how to derive
a feasible task assignment under a givenv using the binary
search algorithm. For any givenv, the amount of harvested
energy on each sensor node is fixed. Our objective is thus
changed to determine whether all tasks can be completed by
sensor nodes with fixed energy distributions.

The Task Assignment Problem (TAP) can be formulated
by the following ILP:

max z =
n

∑
i=1

k

∑
j=1

xi j (16)

subject to :
k

∑
j=1

xi j ≤ 1 (17)

n

∑
i=1

xi j × ei ≤ E j(v) (18)

x = {0,1} (19)

where z denotes the number of tasks executed by the
rechargeable sensor nodes, when the charger travels with
speedv. If z = n, then the correspondingv guarantees that
all n tasks can be assigned.

4.2 Multiple Knapsack Problem
According to the above formulation, we observe that TAP

has many similarities with the Multiple Knapsack Problem
(MKP). MKP can be defined as follows: given a set ofn
items and a set ofm knapsacks (m ≤ n) such that each itemi
has a profitpi and sizesi, and each knapsackj has a capacity
c j, how to selectm disjoint subsets of items such that the to-
tal profit of the selected items is maximized while satisfying
the constraint that each subset can only be assigned to a k-
napsack whose capacity is no less than the total size of items
in the subset.

For TAP, the amount of charged energy to each sensor
node corresponds to the capacity of each knapsack; the con-
sumed energy to accomplish each task corresponds to the
size of each item. Our objective is to assign tasks to these
sensor nodes as many as possible while guaranteeing that al-
l sensor nodes have enough charged energy to execute the
assigned tasks.

Therefore, TAP is a special case of MKP, where the prof-
it for each item equals 1. The solutions proposed to tackle
MKP can also be used to solve TAP.
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Figure 5: Example task assignments illustrating the three optimization techniques.

4.3 Our Proposed PTAS Algorithm.
MKP is a nature extension of the single knapsack prob-

lem, which has been studied extensively [12, 19, 3]. MKP
is NP- hard [12]. Many solutions were proposed to seek
the optimal profit for MKP [10] [13] [3]. In [3], a poly-
nomial time greedy scheme is designed, which yields a
(2+ ε)− approximation algorithm. The time complexity of
this algorithm isO(mn log(1/ε)+m/ε4), using the results of
Lawler [16] for the knapsack problem.

Our proposed algorithm is built upon this greedy
scheme [3], while preserving the theoretical property of the
(2+ ε) approximation ratio.2 For brevity, we denote this
greedy scheme as “GREEDY”. Under GREEDY, the sen-
sor nodes are considered as independent components. Each
sensor is considered in turn and tasks are assigned to each
considered sensor by applying the PTAS [26] designed for
the single knapsack problem on the remaining tasks. Thus,
GREEDY seeks to maximize the number of tasks assigned to
each individual sensor. However, our key observation herein
is that maximizing the number of tasks assigned to each sen-
sor may not maximize the total number of tasks assigned to
all sensor nodes. Thus, based upon GREEDY, we present an
improved algorithm by globally exploring the correlationsa-
mong sensor nodes in order to maximize the total number of
assigned tasks, as described next.

Assuming a feasible solution given by [3] isFi (i =
1,2, ...,m), whereFi is the set of tasks assigned tosi. First
we give necessary definitions.
DEFINITION 2. Let P =

⋃m
i=1 Fi and R = T −P, where T

is the task set {T1,T2, . . . ,Tn}, P is the set of tasks that have
already been assigned, and R is the set of remaining tasks
that cannot be assigned under GREEDY. Let zi denote the
total number of assigned tasks on si and ci denote the current
reminder energy on si. Let g j denote the index of the sensor
where Tj is assigned.

Our algorithm applies the following three optimization
techniques on the task assignment obtained by GREEDY. As
demonstrated by the experiments presented later, these op-
timization techniques are effective in practice for increasing
the number of assigned tasks. After executing the GREEDY

2We would like to emphasize here that LB is a key enabler of thisprob-
lem transformation process and leverage prior methods designed for the o-
riginal MKP. MKP requires that each knapsack has a fixed capacity. Howev-
er, for our task assignment problem, the capacity of each knapsack (which
corresponds to the charged energy of each sensor node) may vary if the
charger’s velocity changes. Thus, TAP can be transformed toa MKP with
variable knapsack capacity. In order to efficiently leverage prior methods
such as GREEDY, we have to have a limited variation range for the knap-
sack capacity, which is determined by the solution space of the charger’s
velocity. Clearly this is enabled by the lower bound on the charger’s veloci-
ty provided by LB as shown in Theorems 1 and 2.

algorithm, no sensor has enough remaining energy to exe-
cute tasks inR in the resulting task assignment. Thus, the
idea behind these optimization techniques is to increase the
remaining energy on sensor nodes in order to allow more
tasks to be assigned. Note that the order of applying these
optimization techniques can be arbitrarily determined. Al-
though different orderings may yield different performance,
they are incomparable in general and the resulting perfor-
mance heavily depends on the task and system parameters.
Task Swapping. This optimization technique increases the
remaining energy on sensor nodes by swapping the assigned
tasks with the unassigned tasks. The swapping process can
be described as follows: for eachTi (Ti ∈ R), searchP to find
the minimumk which satisfiesei < ek. Then swapTi for Tk
such that the remaining energy is increased on sensor nodegk
while the total number of assigned tasks does not decrease.
This process ends untilR = φ, or for eachTi(Ti ∈ R), we can
not find aTk (Tk ∈ P) that satisfiesei < ek.

Fig. 5 presents an example illustrating this swapping pro-
cess. After executing the Greedy algorithm, taskT1 is not
assigned, ande1 = 4, as illustrated in Fig. 5(a).T2 (e2 = 6)
is assigned ons1. If we swapT2 for T1 on s1, the total num-
ber of assigned tasks on sensor nodes is not decreased and
the amount of remaining energy ons1 is increased. So we
swapT2 for T1. Fig. 5(b) shows the task assignment after
swapping. The complexity of this process isO(n2).
Task Moving. This optimization technique seeks to increase
the remaining energy on sensor nodes by moving tasks from
one sensor node to another. The moving process can be
described as follows: for each sensor nodesi (1 ≤ i ≤ m),
searchP to find the minimumk which satisfiesci ≥ ek and
ci < cgk − ek. Then moveTk from sgk to si such that the re-
maining energy onsgk is increased up toci. The process ends
until all sensor nodes are tested.

As shown in Fig. 5(b), after swapping, ifT4 (withe4 = 3)
is moved froms2 to s1, then the amount of remaining energy
on s2 becomes 5, which is larger thanc1 = 4. Therefore,
we moveT4 to s1. Fig. 5(c) shows the assignment after the
moving step. The complexity of this moving step isO(m×
n2).
Task Exchanging. This optimization technique increases
the amount of remaining energy on sensor nodes by exchang-
ing the assigned tasks on different sensor nodes. For each
Ti (Ti ∈ P), we exchangeTi with Tk (Tk ∈ P) if any task
Tj (Tj ∈ R) can be assigned to sensorgi or sensorgk after
this exchange process. This exchanging step is executed on
all pairs of tasks.

An illustrating example is shown in Fig. 5. After the mov-
ing step (Fig.5(c)), the amount of remaining energy ons2 is
5. If we exchangeT3 (withe3 = 5) andT1 (withe1 = 4), the



100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

Sensor Node Number

C
ha

rg
er

 V
el

oc
ity

 (
m

/s
)

 

 

Upper Bound
ACT
Greedy
Lower Bound

(a) Velocity VS. Sensor Node Number

100 200 300 400 500 600 700 800 900 1000
4.5

5

5.5

6

6.5

7

Sensor Node Number

T
ot

al
 C

ha
rg

ed
 E

ne
rg

y 
on

 A
ll 

N
od

es
 (

K
J)

 

 

Upper Bound
ACT
Greedy
Lower Bound

(b) Total Energy VS. Sensor Node
Number

100 200 300 400 500 600 700 800 900 1000
0.5

1

1.5

2

2.5

Sensor Node NumberS
ta

nd
ar

d 
D

ev
ia

tio
n 

of
 R

em
ai

ni
ng

 E
ne

rg
y

 

 

ACT
Greedy

(c) Standard Deviation VS. Node Num-
ber

Figure 6: Impact of the Sensor Node Number

Table 1: Executing Power for Sensing Modules

Model Consumed Power

Temperature: TI TMP175 0.275mW

General Purpose ADC: MAX 1363 1.5696mW

Humidity: Sensirion SHT15 3mW

Accelerometer: ST Micro LISL02DQ 3.6mW

Light: TSL 2651 5.5mW

Processor(TELOSB): TI MSP430 0.726mW

Processor(MicaZ): ATmega 128L 44mW

GPS: LS20033 180mW

Gyroscope: ADIS16266 205mW

amount of remaining energy ons2 becomes 6, which allows
T2 to be assigned tos2. We thus exchangeT3 andT1, and the
resulting task assignment is shown in Fig. 5(d)(d). We then
assignT2 ∈ R to s2. Fig. 5(d)(e) shows the final task assign-
ment after applying all the three optimization techniques.As
seen, applying these techniques enables all the tasks in this
example system to be successfully assigned. The complex-
ity of the exchanging process is alsoO(n2). Note that this
process ends when the sum of the remaining energy on any
two sensors is smaller than the energy required by the unas-
signed task that consumes the minimum energy among all
unassigned tasks.

5 Evaluation
To evaluate our proposed task assignment algorithms, we

have conducted extensive experiments assuming differen-
t network settings and different trajectories for the mobile
charger.

5.1 Experiment Setup
We simulated a network consisting of 500 wireless

rechargeable nodes randomly deployed in an area of 100m×
100m two-dimensional square. Regarding the charging mod-
el as given in Eq. (1), we setGsGrη

Lp
( λ

4π )
2P0 = 36 andβ = 30.

A total number of 5000 tasks are generated for each exper-
iment. We simulate an application scenario where 9 cate-
gories of tasks need to be performed, as shown in Table. 1.
The power consumption values listed in this table are ob-
tained from the corresponding sensors’ data sheet. The exe-
cuting time of a task is randomly selected from[1s,10s].

5.2 Baseline Settings
Since the literature on investigating the task assignment

problem in RWSNs is limited, we set the greedy algorith-
m [3] discussed in Sec.4 as the baseline for comparison pur-
poses. We also compare our proposed approach with two

other methods: the lower boundvact and the upper bound
vmax, as discussed in Sec.3.
Results. We investigate the performance of our algorithm
with different system parameters including the number of
wireless rechargeable nodes, the number of tasks and dif-
ferent kinds of traveling trajectories.

5.3 Impact of Sensor Node Number
We explore the scalability of our design and investigate

the impact of the number of nodes on the feasible charger
velocity, as shown in Fig.6(a). In the experiment, the number
of sensor nodes is varied from 100 to 1000. We can see that
ACT yields near optimal velocity, which is close to the up-
per boundvs. Another observation is that both ACT and the
greedy algorithms yield better performance when more sen-
sors are involved in the system. This is because the density
of sensor nodes in the square increases when the number of
sensors increases, which implies that the charger may charge
more sensor nodes at the same time and the total harvested
energy thus increases. This further implies that the charger
can travel with a faster velocity. However, when the num-
ber of sensor nodes is more than 900, ACT and the greedy
algorithm achieve similar performance. Also the charger’s
velocity stops increasing. The reason is because the sensor
on which the assigned tasks require the maximum amoun-
t of energy gives an upper bound of the charger’s velocity.
Thus, whenever this sensor has been charged with enough
energy under a certain velocity, the velocity cannot increase
any further. Fig.6(b) shows the total amount of charged ener-
gy under difference approaches. As seen in this figure, ACT
also performs quite close to the upper boundvs under al-
l cases. Fig. 6(c) shows the standard deviation of remaining
energy on sensors with the sensor numbers varying from 100
to 500. Our algorithm yields smaller deviations under all
cases, which implies that the amount of remaining energy on
sensors under our algorithm is more balanced.

5.4 Impact of Task Number
Fig. 7 shows the experimental results investigating the im-

pact due to different number of tasks. In the experiment the
number of tasks is varied from 2500 to 5500. Intuitively,
with a larger number of tasks and a fixed number of sensors,
it is more likely that sensors need to harvest more energy in
order to execute all of the tasks. This in turn implies that the
charger may need to decrease its speed. This observation is
verified in Fig. 7(a) and Fig. 7(b), where a clear decreasing
trend for the charger’s velocity and a clear increasing trend
for the total amount of charged energy on all sensors can be
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Figure 7: Impact of the Task Number
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Figure 8: Impact of the Task Average Energy
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Figure 9: CDF

observed, respectively. As seen in Fig.7(a), ACT achieves
quite close performance to the upper bound, yielding a faster
speed than the greedy algorithm. The corresponding results
on the total amount of harvested energy under the four tested
algorithms are shown in Fig.7(b). Fig. 7(c) shows the stan-
dard deviation of the amount of remaining energy on sensors
with the task number varying from 2500 to 5500 under ACT
and the greedy algorithm. ACT gets smaller deviations under
all cases, which means that the amount of remaining energy
on sensor nodes for ACT is more balanced, regardless of the
number of tasks.

5.5 Impact of the Task Average Energy
In this experiment, we study the impact due to different

distributions of the energy consumption of tasks by varying
the average energy consumption of tasks from 0.05J to 2J,
and the results are shown in Fig. 8. In Fig. 8(a), we can
see that the charger’s velocity decreases as the average en-
ergy consumption of tasks increases. This is because with a
larger average energy consumption, tasks need more energy,
thus the charger needs to travel with a lower speed to charge
more energy on these sensors. An increasing trend of the
amount of harvested energy on all sensor nodes is observed

in Fig. 8(b) when the average energy consumption of tasks
increases.

5.6 System Insight
In order to reveal the insight about why our proposed al-

gorithm ACT can significantly reduce charging delay, we
conduct an experiment to observe the amount of remain-
ing energy on each sensor node while the harvested ener-
gy can accomplish all tasks with ACT. For comparison, we
also show the results under the greedy algorithm [26] with
the same system settings. Intuitively, an algorithm becomes
more efficient when the amount of remaining energy on each
sensor node is small after accomplishing all the tasks (all the
sensor nodes use up their harvested energy is the best case).
Fig.9 shows the cumulative distribution of sensor node num-
ber when the amount of remaining energy varies from 0J to
20J. The cumulative ratio of sensor number associated with
the remaining energyJ represents the number of sensors with
remaining energy less thanJ. As seen in this figure, for each
remaining energy value, ACT is able to achieve a higher cu-
mulative ratio of sensor number than the greedy algorithm.
This implies that ACT is able to better utilize the harvest
energy, leaving a smaller number of sensors with large re-
maining energy after assigning all tasks. Given that the same
set of tasks is tested under both algorithm, the greedy algo-
rithm fails to assign as many tasks as ACT because it yields
a greater remaining energy.

6 Related Work
Recently, the research problem of improving charging ef-

ficiency in wireless rechargeable sensor networks has re-
ceived much attention [15, 28, 31, 4, 23]. Many pioneer work
has focused on hardware design to improve charging effi-
ciency [15, 28]. Kurset al. [15] improve the overall output
efficiency of charging multiple devices. Sampleet al. [28]
design a scheme of analog circuitry for WISP node to obtain



an efficient conversion of the incoming RF energy. From
the view of networks, some recent work has investigated the
network charging coordination to improve charging perfor-
mance. Heet al. [9] consider the static reader deployment in
a wireless rechargeable sensor networks so that the nodes can
harvest enough energy for continuous operation. In [30], X-
ie et al. consider the joint design of traveling path of mobile
wireless charging vehicle (WCV), flow routing among the
network, and charging time of WCV at each stopping point,
and propose a near-optimal solution with guaranteed accura-
cy. The authors in [21] build a proof-of-concept prototype of
wireless charging system for sensor networks and conduc-
t experiments to evaluate its feasibility and performance in
small-scale networks. Binet al. [29] investigate how to mini-
mize charging cost by reducing energy consumption rate and
improving recharging efficiency.

To the best of our knowledge, none of the prior work co-
considers the task assignment problem along with the charg-
ing delay minimization problem. We consider the problem of
finding the maximum charging velocity and a corresponding
feasible task assignment such that each sensor has enough
charged energy to execute the assigned tasks. This distin-
guishes this paper from the prior work.

7 Conclusion
In this paper, we study a general scenario of randomly de-

ployed rechargeable wireless sensor network, where a charg-
er travels along a fixed trajectory to charge energy on the sen-
sor nodes that need to execute a set of tasks. Our objective
is to find the maximum velocity for the mobile charger while
ensuring a corresponding feasible task assignment. We first
propose an online task assignment algorithm LB that yield-
s a quantifiable lower bound on the charging velocity while
guaranteeing a feasible assignment. LB further enables us
to transform the considered task assignment problem into
a variation of the classical multiple knapsack problem. We
then present an improved task assignment algorithm, namely
ACT, that built upon an existing greedy algorithm designed
for the original knapsack problem. The effectiveness of our
proposed algorithm has been demonstrated by extensive ex-
periments. In the future work, it would be interesting to ex-
plore the proposed techniques to address the problem of min-
imizing the overall system delay including both the charging
delay and the task execution delay.
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