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Abstract—Nowadays, mobile phones are usually embedded
with powerful cameras. Due to the convenience of carrying
mobile phones, an increasing number of people use mobile
phones to take photos anytime and anywhere. However, when
a user takes a photo of a scenery, a building or a target person,
sometimes an unexpected stranger is also included in the photo.
Such photos reveal where the stranger has been and thus can
breach his privacy. This problem has received little attention
in the literature. In this paper, we propose PrivacyCamera, a
cooperative system to protect the stranger’s privacy in the above
scenario. Through cooperation between the photographer and
the stranger, the system can automatically blur the stranger’s
face in the photo upon the stranger’s request when the photo is
being taken. This paper describes the design, analysis, prototype
implementation, and experimental evaluation of the system.
Experiments show that PrivacyCamera can effectively protect
stranger’s privacy in an efficient way.

Index Terms—Mobile Phone, Photo, Privacy

I. INTRODUCTION

Mobile phones are usually embedded with powerful cameras
today [1]. For example, iPhone 6 has an 8-megapixel camera.
As mobile cameras in the pocket, mobile phones are increas-
ingly used by people to take photos anywhere and anytime.
However, there are some privacy issues associated with this
convenience. When a user takes a photo of a beautiful view or
a friend using his mobile phone, a stranger may be accidentally
included in the photo, with the face clearly recognizable.
Figure 1 shows two examples. In Figure 1(a), the photographer
intends to take a photo of the building but a stranger appears;
in Figure 1(b), the photographer intends to picture the target
person but a stranger is also included. In these cases, the
photo can reveal the stranger’s location and even activity. For
strangers who do not want to appear in the photo and get
their location exposed, being accidentally included in a photo
breaches privacy. Thus, this problem should be addressed.

With the development of image processing technology, there
exist several softwares which can blur faces in a photo, such
as Adobe Photoshop and ObscuraCam [2]. However, none of
these commercial softwares can make the stranger in the photo
know that he is included in the photo and give him the right
to decide whether to blur his face or not. These solutions only
allow the photographer to make decisions as to blurring the
stranger’s face or not.

A naive solution for protecting stranger’s privacy is that
each user stores a pool of familiar faces (e.g., self, family
members and friends) in the phone and the phone simply
blurs all other faces in the photo. However, this solution may
cause unnecessary blurring. Some strangers may not care about
whether they are included in the photo or not. Blurring their
faces is not needed and can unnecessarily degrade the quality
of the photo.

(a) A stranger is included when the
photographer pictures a building

(b) A stranger is included when the
photographer pictures a target person

Fig. 1. Privacy issues with photos taken by mobile phones

In this paper, we propose a mobile cooperative privacy pro-
tection system, called PrivacyCamera, to protect the privacy
of a stranger who is accidentally included in a photo taken
by mobile phones. PrivacyCemara can work as an App on
both the photographer’s and the stranger’s mobile phone. At
the time of taking a photo, it can automatically notify nearby
strangers of the possible inclusion in the photo via peer-to-
peer short-range wireless communications (e.g., Wifi Direct
[3]). If a stranger does not want to appear in the photo, he
can send a request to the photographer. The photographer will
determine if the requesting stranger is in the photo or not. If
so, the photographer will blur the stranger’s face in the photo.

The contribution of this paper is summarized as follows:

• To the best of our knowledge, PrivacyCamera is the first
mobile system which can notify nearby strangers of the
possible inclusion in a photo when the photo is being
taken, give them an option to opt out, and blur a stranger’s
face upon his request.

• We design a location-based stranger determination
scheme to determine if a stranger is in the photo or not
based on his relative location to the photographer and the
heading direction of the camera, and theoretically analyze
its effectiveness.

• We design a Gaussian Blur-based face blurring scheme
that can smoothly blur a stranger’s face with minimal
negative effect on the quality of a photo.

• We implement a prototype system on Nexus 5 phones,
and evaluate the system’s performance and cost using
experiments.



The rest of the paper is organized as follows. Section II
presents the design of PrivacyCamera and theoretical analysis
of its performance. Section III describes the prototype im-
plementation. Section IV shows evaluation results. Section V
reviews related work. Section VI concludes the paper.

II. SYSTEM DESIGN

This section describes the design of PrivacyCamera and
analyzes its performance.

A. System Overview
Three types of entities are involved in the system: the pho-

tographer who takes photos using a mobile phone, the target
that the photographer intends to picture, and the stranger who
is near the photographer and might be unintentionally included
in the photo. The target can be a building, a natural scenery,
a person, etc. The system is designed for outdoor usage.

The system aims to protect the stranger’s privacy through
providing a method for the stranger to opt out from the
photo. The basic idea is that the photographer notifies nearby
strangers of the possible inclusion in a photo at the time of
taking the photo, and blurs a stranger’s face in the photo upon
the stranger’s request. Note that the system does not intend to
simply blur every stranger’s face in the photo. This is because
blurring inevitably affects the quality of the photo, even though
our design adopts an advanced blurring technique to minimize
such effect. To minimize the quality degradation brought to the
photo, the system only blurs a stranger’s face if he requests.

To make the system work, both the photographer and the
stranger are required to install PrivacyCamera (in the form of
an App) on their mobile phone. PrivacyCamera relies on the
cooperation between photographers and strangers to protect
privacy. Since each mobile phone user can sometimes be a
photographer and sometimes a stranger, PrivacyCamera users
essentially cooperatively protect each other’s privacy. It is
worthwhile to note that the paradigm of inter-user cooperation
has been successfully adopted in many real-world systems
such as peer-to-peer file downloading systems [4] and online
recommender systems [5]. This success has also motivated our
system design. The more users adopt this system, the better
privacy can be protected for each other.

As the first work in this direction, this paper starts with
considering two relatively simple photographing scenarios:
• Scenario 1: The target of a photo is not a person

but something else such as a building. One stranger is
accidentally included in the photo, and he may or may
not want his face to be blurred.

• Scenario 2: The target is a person. One stranger acciden-
tally appears in the photo, and he may or may not want
to blur his face.

Based on our observations, these two scenarios represent a
significant portion of photographing cases. Thus, our scheme
can enhance privacy in many real-world scenarios. We will
address more complex scenarios in future work.

Even under these two relatively simple scenarios, the prob-
lem is still challenging. First, there might be multiple strangers
nearby who can receive the notification of possible inclusion in
the photo. Some of them may request their faces to be blurred
but others may not request so. Although only one stranger is
included in the photo in the two scenarios, we still need to

Fig. 2. The architecture of PrivacyCamera

determine if the stranger in the photo is requesting for face
blurring or not, which is not easy. Second, in Scenario 2, if
the stranger in the photo requires face blurring, we need to
make sure that the stranger’s face, not the target’s, is blurred.

For simplicity, photographer is also used to denote the
photographer’s mobile phone when the context is clear. The
same applies to stranger.

B. The Architecture and Workflow of PrivacyCamera
As Figure 2 shows, the system consists of four major

modules: face detection, blurring request collection, stranger
determination and face blurring. When a photographer takes
a photo, the face detection module will run on the cap-
tured image. If no face is detected, no further processing is
needed. If any face is detected, the blurring request collection
module sends notifications to nearby strangers using peer-
to-peer short-range wireless communications. If a stranger
receiving the notification does not want to be included in
the photo, he sends a blurring request to the photographer.
Since this stranger may or may not be included in the photo,
to help the photographer determine if this stranger is the
one in the photo, this stranger puts his location (i.e., GPS
coordinates) in the request. To avoid linking attacks based on
the IP and MAC addresses exposed in communications, the
photographer and each stranger can frequently change their
IP and MAC addresses using standard mechanisms [6], [7].
Then, the stranger determination module of the photographer
will check if the requesting stranger is in the photo or not
based on their relative location and the heading direction of the
camera. If the stranger is in the photo, the face blurring module
of the photographer will smoothly blur his face; otherwise, the
request is ignored.

The design of PrivacyCamera is based on several tech-
nologies available in commercial-off-the-shelf mobile phones.
Face detection can be done using APIs provided by mobile
phones, e.g., the FaceDetector [8] APIs in Android SDK.
Peer-to-Peer communications between the photographer and
nearby strangers can be supported by short-range wireless
technologies such as WiFi Direct [3] and Bluetooth which
are available on most mobile phones today, e.g., Nexus 5. We
will introduce how these two modules can be implemented in
our prototype system in Section III. Next, we describe how to
determine if a stranger is in the photo and how to blur faces.

C. Stranger Determination
This module detect if a stranger who requests face blurring

is included in the photo or not. This is done through checking
if the stranger is in the field of view of the photographer’s
camera or not.



This process is illustrated in Figure 3. First, the camera’s
heading direction is determined using the orientation sensor
embedded in mobile phones. Note that the heading direction
read from compass is in degrees east of Magnetic North
instead of True North (there is a declination angle between the
two), and it should be converted in degrees east of True North
(i.e., β in the figure) so as to be in the same coordinate system
with GPS coordinates. Next, the stranger’s relative direction
to the photographer (i.e., α in the figure) is obtained using
the GPS coordinates of the stranger and the photographer.
Then, the relative angle from the stranger to the camera
(denoted by δ) is calculated as δ = |β − α|. Lastly, we
determine if the stranger is in the field of view of the camera
or not. The horizontal view angle of the camera (denoted
by γ) which specifies the effective horizontal scope of the
camera can be obtained using the API of mobile OS (e.g.,
GetHorizontalViewAngle() on Android OS). For example, it
is 60◦under default focal length for the Nexus 5 phone. If
δ ≤ γ/2, the stranger is in the photo; otherwise, he is not in
the photo.

Fig. 3. Detecting if a stranger is in field of view of a camera

For Scenario 2, it is not enough to determine that the
stranger is in the photo. We also need to tell which face is the
target and which is the stranger. To achieve this goal, we adopt
a heuristic approach. We observe from real-life experiences
that when we take a photo of a target person, we usually
intentionally make the target’s face larger than anyone else
accidentally included into the photo. For example, if a stranger
is too close to the camera which makes his face larger than
the target’s, the photographer will probably change a facing
direction or ask the target to move a little so that the target is
better captured into the photo than the stranger. Thus in the
photo the stranger’s face should be smaller than the target’s.
Based on this, the smaller face will be determined as the
stranger in Scenario 2.

D. Face Blurring

The goal of face blurring is to mask the identifiable features
of a face without reducing the quality of the photo much.

As a preparation step for face blurring, we first need to
determine a blurring area in the face which encloses the main
identifiable features of the face. In this paper, a square area
is used as the blurring area. Specifically, the square is drawn
by setting the middle point between eyes as the center of the
square, and setting the length of a side as 2.4 times of the
distance between eyes. Our tests show that the square drawn
in this way can cover the main identifiable features of a face
with the minimum area (see Figure 5). Next, we describe how
to blur this square area.

To blur faces smoothly, the Gaussian Blur algorithm [9]
is used in this paper. The effect of Gaussian Blur is like
viewing an image through a translucent screen. The basic idea
of Gaussian Blur is to adjust the color value of each target pixel
(under the RGB color model) as the weighted average of the
color value of itself and other nearby pixels. The weights are
calculated based on Gaussian function such that closer pixels
have higher weights. Since the pixels closer to the target pixel
usually have more similar colors with the target pixel than the
pixels farther away, this blurring method can achieve smooth
blurring with minimal effect on photo quality.

Given a target pixel to blur, all the pixels that will be used
to blur the target pixel are enclosed in a circle with radius R
and centered in the target pixel. Let C denote this circle. Let
the target pixel be the origin of a two-dimensional coordinate
system whose coordinates are [0, 0]. Then for pixel [x, y] in the
circle, where x and y represent the abscissa and the ordinate
of this pixel, its weight is calculated as follows:

w(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (1)

where σ is the standard deviation of Gaussian distribution.
Let v[x,y](R,G,B) denote the color values of a pixel [x, y].
Then the blurred color values of the target pixel is computed
as follows:

v[0,0](R,G,B) =
∑

[x,y]∈C

v[x,y](R,G,B)
w(x, y)∑

[x,y]∈C w(x, y)

(2)

Here, we use a simple example in Figure 4(a) to illustrate
how a target pixel is blurred. In this example, there are 9
pixels in an image, and the central pixel is the target pixel
which is marked in red color. The blur radius is set such that
only the target pixel and its direct neighbors are in the circle.
The coordinates of the 9 pixels are shown in Figure 4(a). The
original RGB color values of each pixel is shown in Figure
4(b). To conduct Gaussian Blur, the weight for each pixel is
calculated by Equation 1. Suppose σ in Equation 1 is 1.5. Then
the original weight for each pixel computed by Equation 1 is
shown in Figure 4(c). After that the new color values for the
target pixel can be calculated using Equation 2, which are
shown in Figure 4(d).

For the square blurring area, we can blur each pixel in this
square from the leftmost pixel to the rightmost pixel in each
row and row by row using Gaussian Blur. Given a certain σ,
the effect of Gaussian Blur is more intense as the blur radius
increases. To fully hide the identifiable features in the face,
a big enough blur radius should be set. Our tests show that
the effect of Gaussian Blur with σ = 3 and R = 30 is good
enough. Figure 5 shows the blur effects under different radius
values and fixed σ = 3. It can be seen that when the blur
radius is 30 the face cannot be identified.

E. Analysis on the Effectiveness of Protection

Suppose a stranger is included in a photo and he requests
to blur his face. For the stranger’s face to be really blurred, a
precondition is that the stranger determination module suc-
cessfully detects the stranger as being in the photo based
on the stranger’s claimed location measured by GPS. Here,



(a) Pixel coordinate in
an image

(b) Original color values for
each pixel

(c) Original weight for
each pixel

(d) Blurred color values for
the central pixel

Fig. 4. An example process of Gaussian Blur for blurring the central pixel

(a) without blurring (b) radius=10 (c) radius=20 (d) radius=30

Fig. 5. Effect of Gaussian Blur with different radiuses

we analyze the true protection rate of PrivacyCamera, which
is defined as the percentage of times when the system can
successfully detect a stranger as being in the photo given that
the stranger is really in the photo.

The true protection rate depends on a few factors: GPS
accuracy r, the horizontal view angle of the camera γ, the
real distance between the stranger and the camera d, and
the real relative angle from the stranger to the camera δ. It
actually equals to the probability that when the stranger is
really in the camera’s field of view, its GPS-measured location
is also in the camera’s field of view. If we draw a circle
centered at the stranger’s real location with radius r, a true
protection happens when the GPS-measured location is within
the intersection between the circle and the view of the camera.
The probability is equal to the fraction of the circle in the
intersection (assuming that it is equally likely for the GPS-
measured location to be any point in the circle). Figure 6
shows two special cases when the stranger is directly facing
the camera (i.e., δ = 0) and the distances are 5 meters and 10
meters.

Since r and γ depend on the device, we can consider these
two parameters as constants. In fact, we obtained r and γ on
Nexus 5 phones (see Section IV), which are 5 meters and
60◦, respectively. For simplicity, we use these values in our
analysis. Next we analyze the true protection rate as a function
of d and δ.

Generally speaking, given a certain δ, the true protection
rate will be higher when d increases, since longer d can better
tolerate the inaccuracy of GPS. Here, we want to find out the
upper bound and lower bound of the true protection rate. Since
the effective range of face detection is 10 meters as shown in
Section IV-C, the case with d = 10 meters is considered as the
upper bound. The worst case happens when the stranger and

(a) Case: d=5 meters (b) Case: d=10 meters

Fig. 6. Two special cases where δ=0◦and r=5 meters

the photographer are at the same location, i.e., d = 0. Besides,
we also consider the case with d = 5 meters as a reference
point in the middle, based on our experience that a stranger
is more than 5 meters away from the camera in most cases.

The true protection rate for the lower bound case is pretty
straightforward to derive. Since γ is 60◦, the true protection
rate equals to the probability that the GPS-measured location
is within the view of the camera, which is 60

360 = 16.7%.
The true protection rate for the other two cases d = 5 and

d = 10 with changing δ can be deduced using geometry. We
omit the detailed process due to the space limitation. For d = 5
meters, the true protection rate is given in Equation 3; for
d = 10 meters, the true protection rate is given in Equation 4.

P1 =
1

3
+
h1 ×

√
r2 − h21 + h2 ×

√
r2 − h22

πr2
, (3)

where h1 = r × sin(30 − δ), h2 = r × sin(30 + δ) and δ ∈
[0◦, 30◦].



P2 =
2arccos

h

r
360

+
h×
√
r2 − h2
πr2

,
(4)

where h = d× sin(30− δ) and δ ∈ [0◦, 30◦].
Based on these two equations, we can calculate the theo-

retical true protection rate for any specific relative angle δ in
these two cases. Figure 7 shows the numerical results where
the x-axis is the relative angle δ. The upper bound achieves to
100% when the stranger is directly facing to the camera (i.e.,
δ = 0) with the distance of 10 meters. When the stranger and
the photographer stand at the same spot, the true protection
rate is 16.7%, which is the lower bound. For the case with
d = 5 meters, the true protection rate decreases from 60% to
46% when the relative angle increases. When the real distance
is between 5 meters and 10 meters, the true protection rate is
expected to sit between the red dashed line and the green
dotted line.
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Fig. 7. True protection rate when the distance from the stranger to the camera
is 0 meters, 5 meters, and 10 meters. X-axis is the relative angle δ.

III. IMPLEMENTATION

We implemented a prototype system on Nexus 5 phones.
The system uses Android 5.1.1 OS and Android 4.3 APIs. This
section describes the implementation of major modules. The
face blurring module is implemented as described in Section
II-D and thus not described in details here.

A. Face Detection
The face detection module is implemented based on the

FaceDetector [8] class provided in Android SDK. Faces in
an image can be detected by calling the findFaces method
of FaceDetector. This method detects faces by finding pupils
in the image. The findFaces method returns a number of
detected faces in the image and populates them into an array
of FaceDetector.Faces class [10].

From each instance of the FaceDetector.Faces class, we can
obtain the distance between the two eyes of a face in pixels
and the coordinates of the middle point between the two eyes.
As introduced in Section II-D, the face blurring module uses
these information to determine the blurring area for a face.

B. Blurring Request Collection
This module enables the photographer to send notifications

to nearby strangers, and enables each stranger to send a blur-

ring request as well as his location to the photographer. In our
prototype, Wifi Direct [3], [11], [12] is used to implement the
peer-to-peer communications between the photographer and
the strangers. The photographer first discovers nearby peers by
calling the discoverPeers method of WifiP2pManager system
service. Next he sends a notification to each peer and collects
the blurring request from peers. Then the communications end.
Note that the peer discovery and communications between the
photographer and strangers happen only when a photo is taken.

Location Acquisition The stranger gets his location using
the LocationManager [13] service. Depending on the device,
several technologies can be applied to determine current
location, including GPS and cellular network. In the prototype,
we check the availability of GPS and cellular network in
turn. Then, we can find the current location by calling the
corresponding method of GPS or cellular network. Finally,
the longitude and latitude of the current location are obtained.

C. Stranger Determination

We introduced how to detect if a stranger is in the photo
or not in Section II-C. Here, we describe how to obtain the
parameters used in that approach (see Figure 3) on a phone.

The camera’s heading direction (β in Figure 3) can be
obtained by reading sensor data from gyroscope embedded in
Android phones. However, the returned value is in degrees east
of Magnetic North instead of True North. To be in the same
coordinate system with GPS coordinates, we convert it to be
in degrees east of True North by adding the declination angle
between Magnetic North and True North. The declination
angel can be obtained by calling the native method in Android
APIs.

We can obtain the relative direction from the stranger to
the photographer (α in Figure 3) by calling the bearingTo
method of the Location object, passing in the stranger’s
current location. Since the original bearing value returned from
bearingTo is within the range from negative 180◦to positive
180◦, we normalize it to be within the range from 0◦to 360◦.

With the camera’s heading direction and the relative di-
rection from the stranger to the photographer, we can easily
calculate the relative angle δ in Figure 3 and normalize it to
be within 0◦and 180◦.

The horizontal view angle of the camera γ in Figure 3 can
be obtained by calling the getHorizontalViewAngle method
of the Camera.Parameters object. In our current prototype,
only the rear-facing camera without zooming in and zooming
out has been considered. However, the value with zooming in
and zooming out can be obtained similarly, and our general
approach is applicable to those cases as well.

IV. EVALUATIONS

A. Experimental Methodology

The experiments are conducted outdoors on the campus
of the University of Arkansas under fine weather. Figure 8
shows two typical scenes of experiments. In the experiments,
standard GPS instead of assisted GPS (A-GPS) [14] is used for
location acquisition since A-GPS has lower accuracy. Before
conducting each test, we wait around 30 seconds to make
sure that the GPS receiver is able to get the latest location
information. Each test is done at a different location. We do



Fig. 8. Experiment scene
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not zoom in and zoom out the rear-facing camera, and just
use the default focal length.

B. GPS Accuracy Test
As GPS is used to determine the location of strangers, the

accuracy of location obtained from the GPS receiver of a
phone is an important factor that determines the performance
of the system. The accuracy level of GPS may vary from tens
of meters to millimeters [15]. The actual accuracy depends
on many factors, such as sky blockage, receiver quality and
atmosphere condition [16]. For high-quality consumer-grade
GPS receivers, the accuracy can be within 5 meters under the
open sky and 10 meters under closed canopies [17].

To examine the accuracy of GPS receivers on mobile
phones, we conducted 100 tests at different locations. Each
test calls the getAccuracy method of the Location object
in Android to get an approximate accuracy at the current
location in meters. The approximate accuracy is defined in
the following way: if we draw a circle with the center at the
current location and the radius equal to the accuracy, there is
a 68% possibility that the true location is inside the circle.
The test results are shown in Figure 9. The average accuracy
is about 5 meters, and in 66% of the tests the accuracy is no
more (i.e., not worse) than 5 meters.

C. Face Detection Test
This part evaluates the effectiveness of the face detection

module in detecting faces in a photo. Considering that the
strength of light might affect detection, we conducted tests
in the morning, at noon and in the evening. As shown in
Figure 10, even under dark lighting conditions, the face
detection module can effectively detect the face in photos.
Additionally, we changed the positions of the person to be

TABLE I
TRUE PROTECTION RATE FOR SCENARIO 1 WHEN d = 5 METERS

Test Relative angle to camera
0◦ 15◦ 30◦

Test 1 20◦ 2◦ 15◦

Test 2 8◦ 41◦ 20◦

Test 3 17◦ 3◦ 22◦

Test 4 12◦ 60◦ 16◦

Test 5 40◦ 18◦ 54◦

Test 6 34◦ 13◦ 41◦

Test 7 37◦ 49◦ 39◦

Test 8 18◦ 17◦ 29◦

Test 9 20◦ 37◦ 44◦

Test 10 23◦ 24◦ 61◦

True Protection Rate 70% 60% 50%

detected within the field of view of the camera. Specifically,
since the horizontal view angle of Nexus 5 is 60◦, we did
tests when the relative angel from the person to the camera
(δ in Figure 3) is 0◦, 10◦, 20◦and 30◦. The results show that
faces can be successfully detected when the distance between
the person and the camera is within 10 meters at any relative
angles, but cannot be detected when the distance is over 11
meters. When the distance is between 10 meters and 11 meters,
faces can sometimes be detected.

D. Accuracy of Protection
This part evaluates the effectiveness of our system in

protecting the stranger’s privacy.
1) True Protection Rate for Scenario 1: This group of tests

considers Scenario 1 where one stranger appears in the photo.
Suppose the stranger wants to blur his face. We evaluate
the true protection rate. In our tests, the stranger stands 5
meters and 10 meters away from the camera. The stranger
and the photographer are positioned in ways such that the
relative angle between the stranger and the camera’s heading
direction (δ in Figure 3) is 0◦(i.e., the camera directly faces
the stranger), 15◦and 30◦. The camera’s heading direction is
randomly set in each test. If the relative angle calculated by
the stranger determination module is no more than 30◦, the
stranger is successfully detected as being in the image and his
face is blurred. Figure 11(a) gives an example to show the
effect of blurring.

Table I and Table II show the true protection rates when the
distance is 5 meters and 10 meters respectively. In each table,
we also show the relative angles calculated by the stranger
determination module to provide more information. In both
cases, the true protection rate decreases when the relative angle
increases, i.e., when the stranger is closer to the edge of the
camera’s view. The true protection rate is higher when the
distance is 10 meters than when it is 5 meters, because longer
distance can better tolerate the inaccuracy of GPS location.
Moreover, we can find that these test results are consistent
with our theoretical analysis shown in Figure 7.

2) False Protection Rate For Scenario 1: Suppose in Sce-
nario 1, the stranger in the photo (denoted by A) does not
request to blur his face. However, another nearby stranger B
who is not in the photo may submit a blurring request. In this
case, we define false protection rate as the percentage of times
when the stranger B not in the photo is mistakenly detected
as being in the photo and stranger A’s face is hence falsely



Fig. 10. Face detection under poor lighting conditions

TABLE II
TRUE PROTECTION RATE FOR SCENARIO 1 WHEN d = 10 METERS

Test Relative angle to camera
0◦ 15◦ 30◦

Test 1 23◦ 18◦ 29◦

Test 2 3◦ 19◦ 2◦

Test 3 8◦ 39◦ 44◦

Test 4 7◦ 46◦ 38◦

Test 5 5◦ 22◦ 35◦

Test 6 0◦ 34◦ 21◦

Test 7 22◦ 17◦ 46◦

Test 8 21◦ 2◦ 25◦

Test 9 19◦ 15◦ 29◦

Test 10 31◦ 25◦ 17◦

True Protection Rate 90% 70% 60%

blurred. In the tests, stranger B and the photographer are
positioned in ways such that the relative angle from stranger
B to the camera (δ in Figure 3) is 30◦, 60◦, 90◦, 120◦,
150◦and 180◦. If the relative angle calculated by the stranger
determination module is no more than 30◦, stranger B is
falsely detected as being in the photo. Table III and Table
IV show the results when the distance between B and the
photographer is 5 meters and 10 meters respectively. Similar
to the true protection rate case, the relative angles calculated by
the stranger determination module are also shown. We can see
that the false protection rate decreases when the relative angle
increases and when the distance increases which is reasonable.

We further evaluate the false protection rate in a more noisy
environment, where there are five strangers like stranger B in
the above test who are not in the photo but submit a blurring
request. In this case, we define false protection rate as the
percentage of times when anyone of these five strangers not
in the photo is mistakenly detected as being in the photo and
stranger A’s face is hence falsely blurred. In this group of
tests, the distance between strangers and the photographer
is between 5 and 10 meters, and the relative angle from
strangers to the camera is within 30◦to 90◦. All the strangers’
locations are randomly selected within these ranges. Over 20
independent tests, the false protection rate is as low as 10%.

3) True Protection Rate for Scenario 2: The true protection
rate for Scenario 2 depends on two factors. One factor is the
true protection rate for Scenario 1, and the other factor is
the accuracy of correctly telling the stranger’s face from the

TABLE III
FALSE PROTECTION RATE FOR SCENARIO 1 WHEN d = 5 METERS

Test Relative angle to camera
30◦ 60◦ 90◦ 120◦ 150◦ 180◦

Test 1 15◦ 28◦ 87◦ 82◦ 138◦ 169◦

Test 2 20◦ 35◦ 72◦ 95◦ 179◦ 171◦

Test 3 22◦ 42◦ 73◦ 83◦ 165◦ 178◦

Test 4 16◦ 74◦ 63◦ 94◦ 147◦ 174◦

Test 5 54◦ 77◦ 67◦ 147◦ 124◦ 159◦

Test 6 41◦ 72◦ 58◦ 136◦ 178◦ 167◦

Test 7 39◦ 63◦ 78◦ 127◦ 175◦ 192◦

Test 8 29◦ 65◦ 79◦ 121◦ 179◦ 203◦

Test 9 44◦ 82◦ 97◦ 123◦ 160◦ 163◦

Test 10 61◦ 79◦ 50◦ 138◦ 158◦ 168◦

False Protection Rate 50% 20% 0% 0% 0% 0%

TABLE IV
FALSE PROTECTION RATE FOR SCENARIO 1 WHEN d = 10 METERS

Test Relative angle to camera
30◦ 60◦ 90◦ 120◦ 150◦ 180◦

Test 1 29◦ 71◦ 110◦ 146◦ 127◦ 169◦

Test 2 2◦ 83◦ 113◦ 135◦ 144◦ 171◦

Test 3 44◦ 82◦ 118◦ 157◦ 142◦ 178◦

Test 4 38◦ 75◦ 99◦ 126◦ 138◦ 174◦

Test 5 35◦ 41◦ 102◦ 137◦ 129◦ 159◦

Test 6 21◦ 65◦ 99◦ 140◦ 136◦ 167◦

Test 7 46◦ 82◦ 97◦ 128◦ 131◦ 192◦

Test 8 25◦ 56◦ 98◦ 156◦ 168◦ 203◦

Test 9 29◦ 68◦ 86◦ 117◦ 152◦ 163◦

Test 10 17◦ 76◦ 83◦ 105◦ 149◦ 168◦

False Protection Rate 40% 0% 0% 0% 0% 0%

target’s face. We first ran tests to evaluate the accuracy of
correctly telling the stranger’s face from the target’s. In our
tests, the stranger stands farther from the camera than the target
as assumed in Section II-C. They do not stand in a line so
that both of their faces appear in the photo. To make sure
both faces can be detected, we keep them within 10 meters
from the camera. Over 20 tests, we found that the system
can always successfully tell the stranger’s face. As a result,
the true protection rate in Scenario 2 should be the same as
that of Scenario 1. Figure 11(b) gives an example to show the
effect of blurring.



(a) Scenario 1 (b) Scenario 2

Fig. 11. The effect of blurring the stranger’s face in Scenario 1 and Scenario
2

TABLE V
RUNNING TIME OF BLURRING FACES

Distance Blur Radius
10 20 30

5 meters 4ms 7ms 13ms
10 meters 2ms 4ms 7ms

E. Cost Evaluation

1) Communication Delay: This part evaluates the round-
trip delay from the time the photographer sends out a noti-
fication to the time he receives a request from the stranger.
In the tests the stranger stands 5 meters and 10 meters away
from the camera, and 10 tests were run for each distance. The
average delays are 188ms and 193ms when the distances are 5
meters and 10 meters, respectively. Hence, the communication
delay is short.

2) Running Time of Blurring Faces: This part evaluates the
time needed to blur a face on a mobile phone. Two factors
affect the time, the distance from the stranger to the camera
and the blur radius of Gaussian Blur. The distance has an
effect since it affects the size of the blurring area. If the blur
radius is larger, more computations are needed for blurring
each pixel of the blurring area. In these tests, we set the
distance as 5 meters and 10 meters, and set the blur radius
as 10, 20 and 30. Table V shows the results, where each data
point is the average of 5 tests. When the distance increases,
the running time decreases. This is because longer distance
means smaller face in the photo and hence smaller blurring
area. When the blur radius increases, the time increases due
to the higher computation load. In all these cases, the running
time of blurring faces is very short.

3) Power Consumption: To measure the power consump-
tion of our system on the phone, we utilize a widely used
App called PowerTutor [18] which can accurately monitor
the power consumption of different Apps. We compare the
consumption of our system with Google Maps and Chrome.

First, to evaluate our power consumption when no photos
are taken, we tested these Apps running in the background for
5 minutes. Table VI shows their average power consumption. It
can be seen that PrivacyCamera consumes much lower power
than the other two Apps.

TABLE VI
POWER CONSUMPTION WHEN RUNNING IN THE BACKGROUND

Google Maps Chrome PrivacyCamera
Average Power (mW) 25 32 10

Then we measure the power consumption of one conver-
sation between the photographer and the stranger (including
sending notification and receiving blurring request) and blur-
ring one face on the phone. For comparison, we also measured
the power consumption of visiting one web page in Chrome
and searching for one location in Google Maps. Table VII
shows the results, where each data point is the average result
of 10 tests. In our system, each communication conversation
only consume 0.12J, which is the lowest among the tested
operations. The power consumption of blurring one face is
7.5J. Based on this number, a fully-charged battery (3.8V, 2300
mAh) of Nexus 5 phone can support the blurring of 4195 faces
before being depleted. Thus, the power consumption is low.
We noticed that the power consumption for blurring one face is
higher than visiting one web page and searching one location.
However, users usually do not take photos as often as they
visit web pages and searching locations. Thus, we expect that
the overall power consumption of PrivacyCamera should be
lower than Chrome in practice.

TABLE VII
POWER CONSUMPTION WHEN RUNNING IN THE FOREGROUND

Test Application Operation Average Energy Usage(J)
Google Maps Search for 1 location 2.4

Chrome Visit 1 web page 1.4
PrivacyCamera Conduct 1 conversation 0.12
PrivacyCamera Blur 1 face 7.5

V. RELATED WORK

Jung and Philipose [19] propose a method to protect video
privacy. The wearable camera will stop recording a person
when it detects that the person is making certain gestures,
e.g., waving hands. MarkIt [20] detects the sensitive objects
predefined by users in videos and covers the sensitive objects
with markers before releasing the video to third-party appli-
cations. Jana et al. [21] design an OS abstraction Recognizer
to enforce fine-grained access control in augmented reality
system. It can reduce the quality of raw sensor data when
third-party applications request to access it. A similar system is
SemaDroid [22]. Jana et al.[23] implement a privacy protection
layer to restrict untrusted applications to access input data from
perceptual sensors. For example, a person’s face sketch can
be transformed depending on different privacy levels. Privacy-
preserving crowdsensing schemes [24], [25], [26] can preserve
anonymity for participant-contributed data including photos,
but they do not protect the privacy of strangers included in
photos.

Schiff et al. [27] propose a system to detect persons that
wear special tracking markers and block their faces from pho-
tos. However, people must wear special markers beforehand
which does not apply to our considered problem. Bo et al.
[28] design a protocol to protect the privacy of people being
photographed based on people’s privacy desires, which are
contained in a physical tag. In their approach, however, people
are required to wear clothes with QR-code as privacy tags.



Wang et al. [29] propose an approach to protect people’s
privacy based on the recognition of their visual fingerprints
in images or videos, including motion patterns and visual
appearance (e.g., clothing color). However, it requires people
to upload their visual fingerprints to the server whenever their
visual fingerprints such as clothing are changed, which needs
intensive intervention by people. Moreover, their approach
relies on a server to do the detection which does not fit our
scenario. Templeman et al. [30] prevent private images from
being shared with others based on attributes extracted from
the image such as location and content. PlaceAvoider [31] is
a system that can notify the photographer when an application
is going to capture images in sensitive areas (e.g., bedroom).
Pidcock et al. [32] propose a system to notify bystanders
of nearby mobile sensing activities. Tan et al. [33] propose
a system to protect photo privacy in Android phones. The
system can recognize the photos that contain persons known to
the phone owner, and denies third-party applications to access
these photos. However, none of the above approaches can be
applied to protect stranger’s privacy in our scenarios.

VI. CONCLUSION AND FUTURE WORK

This paper proposed a system PrivacyCamera to protect
strangers’ privacy who are accidentally included in a photo
taken by mobile phones. The system can notify nearby
strangers of the possible inclusion in a photo and allow them
to decide if to blur their faces in the photo. We designed
techniques to detect if a stranger requesting face blurring is in
the photo or not based on GPS locations. We implemented a
prototype system, and evaluated the system’s performance and
cost through experiments. Evaluations show that the system
can accurately detect the stranger and blur his face to protect
his privacy.

This work made an initial step towards protecting strangers’
privacy when taking photos by mobile phones. Many open
issues still remain. Future directions include considering more
complex scenarios with multiple strangers in the photo and
multiple strangers who are not in the photo but nearby.
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