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Abstract—In the practical Disconnected, Intermittent, and
Limited-bandwidth (DIL) network environment at the tactical
edge, warfighters have to be able to efficiently transmit data
between each other to ensure rapid situational response to the
surrounding environment. To tackle with the intermittent wireless
network connectivity in the DIL environment, the “carry-and-
forward” approach has been adopted to exploit warfighters’ mo-
bility and physically relay the data upon contacts with each other,
but its performance relies on accurate prediction of warfighters’
contacts with each other. In this paper, we present a novel
probabilistic framework that is able to ensure accurate prediction
of warfighters’ contacts by considering both initial deployment
information and in-situ contact patterns of warfighters at the
tactical edge. Analytically models are developed to depict the
characteristics of both aspects and are then integrated towards
a Bayesian-based probabilistic inference framework. Evaluation
results over practical DIL network traces show that our approach
can dramatically increase the accuracy of contact prediction and
further improve the performance of data forwarding in the DIL
network environment at the tactical edge.

I. INTRODUCTION

Mobile networking systems which do not rely on persistent
wireless infrastructure are crucial for warfighters at the tactical
edge to maintain their situational awareness and rapid response
to the surrounding environments [2]. Being different from
traditional tactical mobile networking systems such as the
Army’s Warfighter Information Network - Tactical (WIN-
T) [3] and DARPA’s Content-Based Mobile Edge Network-
ing (CBMEN) program [1] that assume end-to-end wireless
connectivity between warfighters [30], recent research efforts
have been focusing on the practical Disconnected, Intermittent,
and Limited-bandwidth (DIL) environments at the tactical
edge [28], [27], which are also known as Disruption Tolerant
Networks (DTNs) [10]. The environmental dynamics and
warfighter mobility in such environments lead to opportunistic
and intermittent network disconnection, and make it difficult
to maintain end-to-end communication links or global network
information. Instead, warfighters can only communicate when
they move into the communication range of others’ wireless
radios, referred to as contact. More specifically, to forward
data to a destination, researchers adopt the idea of “carry-
and-forward” [26]: node mobility is exploited to let nodes
physically carry data as relays, which forward data when they
opportunistically contact others. The key problem is hence
how to select the most appropriate relays with the best chance
to contact the data destinations.

The key factor to ensuring the efficiency of data forwarding
in the DIL tactical environment, therefore, is to accurately
predict contacts between warfighters in the future. However,
the accuracy of such contact prediction, in practice, could be
affected by various factors such as irregularity of warfighter
mobility and sporadic events in the theater. Instead, since
social relations among warfighters are likely to have long-
term characteristics and are less volatile than their mobility
patterns, social-aware schemes have been proposed to improve
the accuracy of contact prediction and performance of data
forwarding. More specifically, various sociological metrics,
including centrality [22] and community [19], have been
formulated with respect to the DIL environments and then
used as the metric for relay selection.
The major difficulty that impairs the accuracy of such social-

aware contact prediction at the tactical edge, nevertheless,
lies in the disconnection between the social relationship and
contact patterns of warfighters. On one hand, social rela-
tionship among warfighters are initially assigned during the
mission planning phase before their field deployment, in the
form of tactical squads or mission teams. Such relationship,
therefore, could be partially fixed at all times and independent
from the warfighters’ actual behaviors in the theater. On
the other hand, after deployment, warfighters at the tactical
edge may autonomously self-organize themselves in different
ways, in response to the situational contexts in the battlefield.
These dynamic changes of their social relationship, then,
are implicitly reflected by their contact patterns and can be
inferred with certain formalism of social network structures for
contact prediction in the future. Existing social-aware contact
prediction schemes [8], [15], [31], however, characterize the
social relationship among warfighters solely from their in-situ
contact patterns but ignore the prior knowledge of such social
relationship before deployment. This ignorance will lead the
results of contact prediction to deviate from the actual situation
at the tactical edge, seriously impairing the performance of the
mobile communication system.
In this paper, we propose to bridge this gap by proposing

a probabilistic contact prediction framework that combines
both deployment information about the initial social rela-
tionship among warfighters and the in-situ contact patterns
of warfighters after deployment. Our basic approach is to
combine these two aspects with a Bayesian-based probabilistic
inference framework, and to depict the characteristics of both
deployment information and contact patterns of warfighters
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using analytical models. In particular, both models will be
developed in the temporal domain, and be able to reflect
the temporal evolutions of the social relationship and contact
patterns of warfighters over time. Our detailed contributions
are listed as follows:

∙ We integrate the deployment information and in-situ
contact patterns of warfighters at the tactical edge into
a generic framework.

∙ Our framework quantitatively models the temporal evo-
lution of the impact of the warfighters’ deployment
information on their social relationship over time.

∙ We implemented and evaluated our proposed framework
of contact prediction over realistic DIL network traces,
and demonstrated that it outperforms existing contact
prediction schemes.

The rest of this paper is organized as follows. In Section II
we review the existing work and motivates our proposed work.
Section III provides a high-level overview of our proposed
framework for contact prediction. Sections IV and V describe
the technical details of our design on exploiting deployment
information at the tactical edge. Section VI presents the results
of performance evaluation over various DIL network traces.
Section VII finally concludes the paper.

II. RELATED WORK

In DTNs, the relay selection metrics generally evaluate the
capability of a mobile node to forward data to the specified
destinations by contacting these destinations. Some schemes
predict such capability by estimating the co-location probabil-
ities of mobile nodes based on their mobility patterns in differ-
ent ways, such as the Kalman filter [7], semi-Markov chains
[32], and Hidden Markov Models [12]. More specifically,
[33] employs some nodes with desirable mobility patterns as
message ferries, and [6] analyzes the performance of such
mobility-assisted schemes theoretically.
Since node mobility patterns are highly volatile and difficult

to characterize or predict, node contact process [18] is also
exploited, as abstraction of node mobility, to calculate relay
selection metrics. More specifically, the nodes’ capability of
contacting others in the future is predicted, based on their
cumulative contact records from the past. Based on the exper-
imental [6], [21] and theoretical [5] analysis of node contact
characteristics, relay selection metrics have been proposed
to estimate node contact probability in the future [4], [13].
However, these metrics provide only simple heuristics for
selecting relays without performance guarantee. In addition,
since the modeling of nodes’ contact patterns may not be
strictly followed in practice, the accuracy contact prediction
based on such modeling will be seriously impaired in cases
of highly dynamic behaviors of mobile nodes.
Node contact process can also be exploited for contact

prediction from a social network perspective. Most schemes
exploit sociological centrality metrics [22] for relay selections.
Various metrics have been proposed to evaluate node central-
ity. In SimBet [8] and BUBBLE Rap [19], betweenness [11]
is used as the centrality metric which measures the social
importance of a node facilitating the communication among
other nodes. [16] propose Cumulative Contact Probability

(CCP) as the centrality metric based on the cumulative node
contact rates and the assumption of exponential distribution
of pairwise node inter-contact time. [14] furthermore extends
CCP to the multi-hop network scope. Social community
structure in DTNs, on the other hand, is usually used to
determine the network scope for evaluating node centrality,
and can be detected in a fully distributed manner in various
ways [20]. 𝑘-clique-based [25] method enables the detection of
overlapping communities, and modularity-based method [24]
works on weighted network contact graph. Based on such
community detection techniques, BUBBLE Rap [19] exploited
social community structures for data forwarding in DTNs
based on the cumulative node contact characteristics. Node
centrality is evaluated at various network scopes according to
the community boundary of the destination, and data is hence
forwarded in a hierarchical manner.
However, all the existing schemes above are limited to pre-

dicting node contacts based on their contact records in the past,
and exclude the prior information about the social relationship
among mobile nodes into account. As a result, the social-aware
contact prediction can only be conducted following the pre-
defined formulation of social network structure among mobile
nodes in the theater, and would suffer serious degradation
of accuracy when the actual social relationship among these
nodes deviates from such formulation. On the other hand,
when such social relationship is unexpectedly changed by
sporadic events during the network execution, these existing
schemes will be unable to adapt to such unexpected changes
and will mostly likely fail.

III. A BAYESIAN FRAMEWORK FOR CONTACT
PREDICTION

In this section, we introduce the high-level design of
our framework of contact prediction, which take both prior
information about the social relationship among warfighters
during the deployment phase and the in-situ contact patterns of
warfighters into account. Generally speaking, two warfighters
are more likely to contact each other in the theater if they
are socially correlated, e.g., belonging to the same tactical
squad. By the time of initial deployment, warfighters’ social
relationship are only determined by their tactical missions
and are fixed. As time elapses afterwards, social dynamics
among warfighters, which are resulted from the situational
battlefield changes, become the dominant factor determining
warfighters’ contact patterns and should be used more for
contact prediction.
Hence, our basic idea of incorporating the deployment

information into the contact prediction process is to further
extend the traditional contact prediction method towards a
Bayesian framework, such that

ℙ(𝑋𝑡∣𝑌𝑡) =
ℙ(𝑌𝑡∣𝑋𝑡) ⋅ ℙ(𝑋𝑡)

ℙ(𝑌𝑡)
, (1)

where 𝑋𝑡 indicates the event that two warfighters contact each
other at time 𝑡, and 𝑌𝑡 indicates that the two warfighters are
socially correlated at time 𝑡. Based on this formulation, the
posterior contact probability ℙ(𝑋𝑡∣𝑌𝑡) is determined by the
following three factors:
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∙ The prior contact probability ℙ(𝑋𝑡). The prior contact
probability is solely calculated from the recorded contact
patterns between warfighters in the past. For example,
by assuming that the pairwise inter-contact times (ICTs)
between two warfighters follow a certain probabilistic dis-
tribution, such probability can be calculated by estimating
the next ICT as a random variable. In this paper, we
refer to the existing research literature to compute such
probability.

∙ The marginal likelihood ℙ(𝑌𝑡). The marginal likelihood
evaluates the chance for two warfighters to be socially
correlated with each other after their initial deployment,
and is solely determined by the deployment information
about warfighters’ tactical missions, squad formations,
cooperation plan, etc. We will develop models to further
quantify the temporal variations of such marginal likeli-
hood after initial deployment of warfighters.

∙ The observational probability ℙ(𝑌𝑡∣𝑋𝑡). The observa-
tional probability evaluates the causality between contacts
and social relationship among warfighters. More specifi-
cally, when two warfighters have been observed to contact
each other, the chance for them to be socially related
is determined by the social network structure. We will
develop quantitative methods to depict such causality.

IV. MODELING OF DEPLOYMENT INFORMATION

In this section, we present our models depicting the char-
acteristics of warfighters’ deployment information that deter-
mines their initial social relationship.

A. Temporal Evolution

Principally, we model the temporal evolution of ℙ(𝑌𝑡) as a
piecewise function that is segmented by the tactical missions
being received by the warfighters before they are deployed to
the tactical edge. By the time of initial deployment, whether
two warfighters are socially correlated is solely determined by
the tactical mission plan, no matter whether they will contact
each other in the theater. Afterwards when time elapses, the
impact of initial deployment on the social relationship between
warfighters decreases over time, reflected by the change of the
value of ℙ(𝑌𝑡) over time.
Our modeling is illustrated in detail by Figure 1, where 𝑇𝑖

indicates the starting time of the 𝑖-th tactical mission being
assigned to warfighters, and 𝑁 is the number of nodes in the
network. When the deployment information indicates that two
warfighters are socially related by the time of deployment,
we have ℙ(𝑌0) = 1. Afterwards, as shown in Figure 1(a),
the probability for these two warfighters to retain such social
relationship decreases over time, and converges to 1/𝑁 by the
time when all the initial tactical missions have been completed.
The specific characteristics of such decrease, then, vary during
different missions and can be depicted by separate functions.
More specifically, we adopt exponential distributions for de-
scribing these characteristics, such that

𝑓𝑖(𝑡) = 𝑒−𝜆𝑖𝑡 + 𝑐𝑖, (2)
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Fig. 1. Temporal variation of the impact of deployment information on the
social relationship between warfighters

whose parameters 𝜆𝑖 and 𝑐𝑖 could be easily computed based on
the fixed values of 𝑓𝑖(𝑡) at the boundary of the corresponding
tactical mission.
Otherwise, when the two warfighters are not socially related

by the time of deployment, we have ℙ(𝑌0) = 0. Afterwards, as
shown in Figure 1(b), ℙ(𝑌𝑡) increases over time and converges
at 1/𝑁 by the completion of tactical missions. Being similar
with the previous case, we also depict the characteristics of
such increase using stepwise functions, such that

𝑔𝑖(𝑡) = 𝑡𝑎𝑖 + 𝑏𝑖. (3)

Such modeling of deployment information, essentially, con-
siders that the warfighters may encounter various types of
situational dynamics and sporadic events after being deployed
at the tactical edge, and the amount of such unexpected
contexts in the battlefield may increase over time and have
more significant impacts on the social relationship among
warfighters. As a result, as time elapses, the impact of deploy-
ment information on the social relationship among warfighters
diminishes, reflected by the value of ℙ(𝑌𝑡) being deviated from
its initial value.

B. In-field Mission Changes

Our model is also able to depict the in-field changes of
tactical missions, which may be delivered to warfighters via
long-haul wireless communication links or other communi-
cation vehicles during their operations. When a new tactical
mission is assigned to squads at the tactical edge at time 𝑇
(𝑇𝑖−1 < 𝑇 < 𝑇𝑖), it will basically reset the value of ℙ(𝑌𝑡)
to one of its initial values (0 or 1), depending on the social
relationship between warfighters being defined by the new
mission. Afterwards, the temporal variation of ℙ(𝑌𝑡) will be
recomputed with the new set of tactical missions, following
the same method that we have described in Section IV-A.

V. CAUSALITY ANALYSIS

In this section, we present our formulation on the ob-
servational probability ℙ(𝑌𝑡∣𝑋𝑡), which indicates the causal-
ity between the social relationship and contact patterns of
warfighters and play a vital role in contact prediction as
described in Eq. (1). Our basic idea of this formulation is to
exploit the existing sociological concepts, including centrality
and community, to quantify the probability for two warfighters
who contact each other to be socially correlated. More specifi-
cally, when both centrality values and community structures of
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warfighters are inferred from their contact patterns [17], [19],
[15], we observe that two warfighters with high centrality are
more likely to be socially correlated if they are at the same
community. On the other hand, two warfighters are unlikely
to be socially correlated if they are in different communities.
Based on this observation, when two warfighters 𝐴 and

𝐵 are at the same community, we define the observation
probability between these two warfighters as

ℙ(𝑌𝑡∣𝑋𝑡) =
𝐶𝐴

𝑁
⋅ 𝐶𝐵

𝑁
, (4)

where 𝑁 is the number of nodes in the community where 𝐴
and 𝐵 belong to, and 𝐶𝐴 and 𝐶𝐵 are the centrality values
of 𝐴 and 𝐵, respectively. In practice, the centrality value of a
warfighter is usually proportional to the size of the community
it belongs to. For example, betweenness measures the number
of geodesic paths connecting other nodes in the community
that have to pass through the specific warfighter, and hence
has a higher value in a large community. Similarly, CCP [17]
evaluates the average probability for other nodes to contact
the specific warfighter. On the other hand, we simply define
ℙ(𝑌𝑡∣𝑋𝑡) = 0 if warfighters belong to different communities.
In practice, the knowledge about social community struc-

ture among warfighters can be efficiently obtained from the
deployment information, in form of tactical squad formation
or warfighter locations in a specific target area. Based on
such knowledge, we are able to efficiently identify warfighters
community membership at real-time and then measure their
centrality values within the appropriate scope. Hence, we en-
sure that the observational probability is correctly calculated.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
contact prediction framework over multiple sets realistic DIL
network traces. As described by Table I, these traces collect
contacts among mobile users at university campus (MIT
Reality [9], UCSD [23]) and conference site (Infocom [6]). We
will compare the accuracy of our contact prediction framework
with multiple existing schemes in different application settings
over these traces.

TABLE I
TRACE SUMMARY

Trace MIT Reality UCSD Infocom

Network type Bluetooth WiFi Bluetooth
Number of devices 97 275 78

Number of internal contacts 114,046 123,225 182,951
Duration (days) 246 77 4

Contact detection period (secs) 120 20 120
Pairwise contact freq. (per day) 4.6 0.024 7.52
Average contact duration (hours) 0.57 10.45 0.142
Average pairwise inter-contact 84.13 47.17 1.883

time (hours)

A. Experiment Setup

The key challenge of conducting the experiments is to
establish the knowledge about the initial social relationship
among mobile nodes in the network. In our experiments, we
exploit the background information about mobile nodes that is
included as the demographic data in different traces to emulate
the deployment information about the initial social relationship

among these nodes. First, the MIT Reality trace is collected
from the faculty and students in the MIT Media lab, and hence
contains the social relationship among the participants based
on their research teams. Second, the Infocom trace consists of
attendants to the Infocom conference, whose relationship can
be characterized by analyzing their academic profiles. Last, the
UCSD trace records the WiFi affiliations of college students
during different time periods in their residence halls, and the
social relationship among these students can hence be inferred
by investigating their dormitories.
Based on such knowledge, we are able to compute the

marginal likelihood ℙ(𝑌𝑡) using the method being described
in IV, using different time periods of a day (i.e., 24 hours) to
emulate different tactical missions. Furthermore, we exploit
our previous work, which formulates the transient contact
patterns during different short time periods between mobile
nodes, to compute the prior contact probability ℙ(𝑋𝑡), and
exploit both egocentric between centrality to compute the
observational probability ℙ(𝑌𝑡∣𝑋𝑡).
We compare our contact prediction framework with the

following existing schemes:
∙ Mobility-based prediction [12]: Contacts between mobile
nodes are predicted by characterizing their mobility pat-
terns. Two nodes are considered to contact each other
when they move into the communication range of each
other.

∙ Contact-based prediction [17]: Contact patterns between
each pair of mobile nodes are formulated as a homoge-
neous Poisson process. Future contacts are the predicted
by estimating the next inter-contact time between mobile
nodes.

∙ Social-based prediction [8]: Future contacts are predicted
according to the betweenness centrality of different mo-
bile nodes.

In our experiments, we use the first half of the trace to
estimate the parameters of different contact prediction frame-
works, and then use the second half of the trace to evaluate
the accuracy of contact prediction. For each contact happened
at time 𝑡, if the estimated probability of contact occurrence at
𝑡 is higher than 𝑝%, we consider that this contact has been
successfully predicted. We evaluate the accuracy of contact
prediction with different values of 𝑝.

B. Accuracy of Contact Prediction

We first evaluate the accuracy of our contact prediction
framework, in comparison with other existing contact pre-
diction methods, over different sets of DIL network traces.
The evaluation results with different thresholds for determining
successful contact prediction (reflected by the value of 𝑝) are
shown in Figure 2. Generally speaking, the accuracy of contact
prediction is trace-dependent, and is mainly determined by the
trace size and regularity of nodes’ contact patterns in the trace.
In smaller traces with more regular contact patterns such as
Infocom, it is easier to precisely predict node contacts; while
contact prediction will become more difficult if the network
size grows and nodes behave more irregularly.
Nevertheless, in all traces, since our proposed contact pre-

diction framework incorporates the deployment information
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(a) MIT Reality (b) Infocom (c) UCSD
Fig. 2. Accuracy of contact prediction

(a) MIT Reality (b) Infocom (c) UCSD
Fig. 3. Impact of mission durations on the accuracy of contact prediction

which contains the initial social relationship among mobile
nodes in the network, it is able to reach a much higher accu-
racy of contact prediction compared to other existing schemes.
More specifically, it is able to outperform the social-based
contact prediction schemes by over 25%, and outperform
the mobility-based contact prediction schemes by more than
40%. In particular, when the threshold for successful contact
prediction increases and becomes more strict, the advantage
of our proposed approach is more significant and could be up
to 60%. The major reason for this difference is that higher
threshold of contact prediction needs that the predicted time
for contact occurrence to be more strictly aligned with the
actual contact time, requiring more precise knowledge about
social relationship and behavior patterns among mobile nodes.

Furthermore, since we use different time periods of a day
to emulate different tactical missions, we also evaluated the
impact of the different mission durations on the accuracy
of contact prediction. The evaluation results are shown in
Figure 3. If the duration of each mission is short, the social
relationship among mobile nodes within each mission will
relatively change faster, leading to higher extent of behavior
dynamics of mobile nodes and lower accuracy of contact
prediction. Afterwards, when the mission duration increases,
such accuracy of contact prediction improves correspondingly
by up to 30%. However, if the mission duration belongs
too long, such accuracy drops again because the impact of
deployment information has diminished before the mission
completes. From Figure 3, we also note that the optimal
mission duration that maximizes the accuracy of contact

prediction varies over different sets of traces, depending on
the specific social relationship and inter-contact times between
mobile nodes in the network.

C. Improvement of Data Forwarding Performance

In this section, we further apply our proposed contact
prediction framework for data forwarding in DIL network
environment, and evaluate the impact of contact prediction
accuracy on the performance of data forwarding that is mea-
sured by the data delivery ratio. In our experiments, we
exploit the results of contact prediction to compute utilities for
relay selection following the approach described in [17], and
adopt Spray-and-Wait [29] as the data forwarding strategy. We
vary the time constraint for data delivery to emulate different
application scenarios in practical tactical edge.
The evaluation results are shown in Figure 4. Generally

speaking, the data delivery ratio is also trace-dependent and
determined by the average inter-contact times between mobile
nodes. Shorter inter-contact times result in more contact op-
portunities in the unit amount of time, leading to a higher data
delivery ratio. Since the utilities for relay selection measure
the relays’ chances of contacting the destinations, they directly
correlate the performance of data forwarding to the accuracy of
contact prediction. As shown in Figure 4, since our approach
is able to significantly improve the accuracy of contact pre-
diction, it is able to correspondingly improve the data delivery
ratio by over 30%. In particular, when the time constraint for
data delivery is short and requires higher accuracy for contact
prediction, the improvement of data delivery ratio could be up
to 50%.
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(a) MIT Reality (b) Infocom (c) UCSD
Fig. 4. Performance of data forwarding with different methods of contact prediction

VII. CONCLUSION

In this paper, we present a novel framework for contact
prediction in the DIL network environment at the tactical
edge. Our basic idea of improving the accuracy of contact
prediction is to incorporate the deployment information about
warfighters’ initial social relationship with each other into
account, and to combine these deployment information with
the warfighters’ in-situ contact patterns for contact prediction.
We have developed a Bayesian framework to quantitatively
compute the contact probability with analytical modeling
on the deployment information. The evaluation results over
multiple sets of realistic DIL network traces show that our
framework is able to dramatically increase the accuracy of
contact prediction, further improving the performance of data
forwarding in DIL network environments.
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