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Abstract—Mobile computing capabilities of the hand-held mo-
bile devices are important for warfighters at the tactical edge to
efficiently process their in-situ sensory data about the surround-
ing environment, so as to maintain situational awareness. Mobile
cloud computing is generally applied to augment such capabilities
of mobile devices, but has been limited to the interaction between
the back-end cloud infrastructure, which availability, however,
could be limited due to the dynamic network characteristics at
the tactical edge. In this paper, we develop a novel theoretical
framework to exploit the potential of peer mobile devices on
mobile cloud computing, when they opportunistically move into
the communication range of each other. Our proposed frame-
work aims to adaptively configure the computational workload
allocations among mobile devices, by considering both the energy
consumption and timeliness of computational task execution.
Probabilistic methods are adopted to quantitatively estimate the
opportunistic network transmission delay and ensure that the
computational results could be delivered back to the task initiator
on time. Extensive trace-driven simulation results show that our
proposed framework could significantly improve the mobile cloud
computing performance, while reducing the energy consumption
of such computing, compared to the existing schemes.

I. INTRODUCTION

Hand-held mobile computing devices are nowadays crucial
for warfighters in the practical Disconnected, Intermittent, and
Limited-bandwidth (DIL) environments at the tactical edge
[30], [27] to maintain situational awareness to their surround-
ing environments, by processing a large variety of contextual
sensory data at real-time. For example, the background gunfire
sound could be processed at real-time for sniper detection
[33], and a photo of a susceptible object needs to be analyzed
immediately to exclude possible hazard of Improvised Ex-
plosive Devices (IEDs). Such computing workload that could
be computationally intensive, in some cases, may exceed the
local computational capabilities of the warfighters’ handheld
mobile devices, and hence experience degraded computing
performance on excessive response delay. These performance
degradation and delay increase would seriously hinder the
warfighters’ rapid situational response to sudden events and
adaptive operations at the tactical edge.
A straightforward solution to the aforementioned challenge

is Mobile Cloud Computing (MCC), which offloads the com-
putation workloads from local mobile devices to the remote
cloud, and is supported by various techniques such as code
migration and [6], [21] and Virtual Machine (VM) synthesis
[3], [14]. Such workload offloading, however, is challenging
to be realized in the DIL environments at the tactical edge
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where it is generally difficult to maintain the reliable long-haul
communication links back to the remote cloud or tactically
deployed cloudlets. Various military research efforts have been
made to effectively maintain such network connectivity at
the tactical edge, such as the Army’s Warfighter Information
Network - Tactical (WIN-T) [2] and DARPA’s Content-Based
Mobile Edge Networking (CBMEN) program [1], but they are
generally based on the traditional Mobile Ad-Hoc Networks
(MANETs) paradigm and unrealistically assume end-to-end
wireless connectivity between warfighters [31]. Tactical cloud
systems, such as the Army’s Distributed Common Ground
System (DCGS-A) and the Navy’s Tactical Cloud (NTC),
have also been deployed, but focus on ensuring universal
and interoperable data storage and access. The low-echelon
warfighters’ needs of in-situ distributed data processing and
analysis are generally ignored, but are critical to ensure the
situational awareness at the tactical edge.
Instead, the major focus of this paper is to fully unleash the

unexploited potential of collaborative mobile cloud comput-
ing capabilities among peer mobile devices. Being different
from the existing work which assumes end-to-end wireless
connectivity between warfighters [31], we consider that these
warfighters at the tactical edge are only intermittently con-
nected when they opportunistically contact each other, i.e.,
move into the communication range of each other’s short-range
radios. Such network paradigm, which has also been depicted
as Delay/Disruption Tolerant Networks [9], is appropriate to
represent the actual mobile networking scenarios at the tactical
edge, due to the unpredictable environmental uncertainty.
Built on such network modeling, we develop a novel

theoretical framework to adaptively configure the computa-
tional workload allocations among mobile devices, which are
heterogeneous in their local computational capabilities and
wireless networking conditions. Our framework takes both
energy consumption and timeliness of such computational
workload into account, to ensure that these workloads are
migrated to and executed at the most appropriate network
locations, so that they would be completed in time with
the minimum amount of energy consumption in computation
and data transmission. Such workload migration among peer
mobile devices hence improves the efficiency of network
resource utilization, enabling more prompt situational response
to unpredictable events at the tactical edge.
More specifically, we have made the following detailed

contributions:
∙ Our framework analytically ensures that the migration



of computational workloads among mobile nodes re-
duces the energy consumption of workload execution,
and further improves the efficiency of network resource
utilization by allowing recursive workload migration.

∙ Our framework also takes the time for delivering the
computational results back to the workload initiator into
consideration, so as to ensure timely workload completion
over a large network scope.

∙ We also notice the locality of computation and opera-
tional data at the tactical edge, and allows multiple mobile
nodes to coordinate with each other during workload
execution for better efficiency of network resource uti-
lization.

The rest of this paper is organized as follows. Section II
briefly reviews the existing work in mobile cloud computing.
Section III presents our models on the mobile network scenar-
ios and computing systems, and also highlights our basic idea
of the peer-to-peer mobile cloud computing framework. The
details of our proposed framework are presented in Section IV
and Section V. Section VI presents the performance evaluation
results. Section VII concludes the paper.

II. RELATED WORK

Mobile cloud computing (MCC) has been extensively stud-
ied. It integrates cloud computing into the mobile environment
[7] and allows mobile users to efficiently utilize the cloud
resources. Cloudlets, which are local resource-rich servers pro-
viding prompt cloud access to nearby mobile users, have been
suggested to avoid the wireless transmission latency between
smartphones and the remote cloud [26]. Other designs adopt
various cloud computing techniques such as virtualization [16]
and Service-Oriented Architecture (SOA) [32].
Workload offloading, as the key technical challenge in

MCC, focuses on how to offload and what to offload. Research
has been done to support efficient remote application execu-
tion. MAUI [6] relies on developers to specify the application
partitioning by annotating remoteable methods. Later solutions
improve the efficiency and reliability of workload offloading
through synthesis and migration of VMs [4]. CloneCloud [3]
creates an augmented clone of the local application on the
cloud, and ThinkAir [21] enforces on-demand VM creation
and resource allocation. Other schemes further improve the
offloading generality by supporting multi-threaded [14] and
interactive applications [23].
Appropriate decisions of application partitioning are the

prerequisite to efficient workload offloading and the answer of
“what to offload”. Such decisions are based on the profiling
data about application execution and system context, such as
the CPU usage, energy consumption, and network latency,
either through offline benchmark testing [3] or online applica-
tion profilers [20], [21]. Odessa [23] assumes linear speedup
over consecutive frames in a face recognition application.
ThinkAir [21] defines multiple static offloading policies, each
of which focuses on a sole aspect of system performance.
The efficiency of offloading decisions in practice, however,
are left unexamined and questionable. Analytical offloading

framework, on the other hand, has been studied [24], [13],
[6], [10], and they generally assume the method invocations
to be represented by a stationary calling graph. Offloading
decisions are then formulated as a graph cut problem [24],
[13], integer optimization [6], or fuzzy logic decision process
[10], assuming static execution patterns of user applications.
Cloud computing among peer mobile devices, on the other

hand, has also been studied in intermittently connected mobile
environments [29], [28]. In Serendipity [29], each computing
task being performed at mobile devices is modeled as a
Directed Acyclic Graph (DAG), such that the graph vertices
are programs and the directed graph edges represent data flows
between two programs. A graph vertex, further, is considered
as a PNP-block consisting of a pre-process, a post-process, and
a number of parallel tasks. These tasks are then allocated to
mobile nodes upon opportunistic contacts based on various
empirical heuristics, according to the different availability
of network contact information. However, Serendipity only
takes the task completion time into account when allocating
computing tasks, and delivers the computational results back
to the task initiator without any delay guarantee. Any expired
results are simply discarded. The factors of contact prediction
and multi-node coordination are also ignored. In contrast, our
proposed framework for peer-to-peer mobile cloud computing
quantitatively evaluates the probability of timely delivery of
the computational results in a probabilistic manner, and also
allows multiple mobile nodes undertaking similar computa-
tional workloads to adaptively coordinate with each other.

III. OVERVIEW

A. Network model

Opportunistic contacts among mobile devices are described
by the network contact graph (NCG) 𝐺(𝑉,𝐸), where the
contact process between nodes 𝑖, 𝑗 ∈ 𝑉 is modeled as an
edge 𝑒𝑖𝑗 ∈ 𝐸, and 𝑒𝑖𝑗 only exists at time 𝑡 if 𝑖 and 𝑗
have contacted before 𝑡. We assume that node contacts are
symmetric, i.e., 𝑖 contacts 𝑗 whenever 𝑗 contacts 𝑖, and 𝐺 is
therefore undirected. In the rest of this paper, we call a pair
of nodes 𝑖, 𝑗 as contacted neighbors if there exists 𝑒𝑖𝑗 ∈ 𝐸,
and call the node set {𝑗∣𝑒𝑖𝑗 ∈ 𝐸} ⊆ 𝑉 as the contacted
neighborhood of node 𝑖.
The characteristics of an edge 𝑒𝑖𝑗 ∈ 𝐸 are mainly deter-

mined by the properties of inter-contact time (ICT) distribution
among mobile nodes, which could vary according to the
specific network scenarios and have been suggested by the
existing research studies to follow either exponential [35],
power-law [19], or log-normal [5] distributions. Based on these
studies, we consider that any node in the network is able to
probabilistically predict the future contacts between nodes 𝑖
and 𝑗 based on the knowledge about their contact pattern in
the past. More specifically, such prediction is given in form of
𝑝𝑖𝑗(𝑡) that indicates the probability that 𝑖 and 𝑗 will contact
again within time 𝑡 in the future. Precise computation of 𝑝𝑖𝑗(𝑡)
has been extensively studied by the existing work [22], [12],
[11].



TABLE I
NOTATION SUMMARY

Notation Explanation

𝐶𝑖 The computational capability of node 𝑖
𝑇𝑖 The computing task initiated at node 𝑖
𝑤𝑖 Computational workload of 𝑇𝑖

𝑑𝑖 Operational dataset of 𝑇𝑖 with size 𝑠𝑖
𝐷𝑖 Completion deadline of 𝑇𝑖

𝑡𝑐 Current time
𝐸𝑖

𝐶 Node 𝑖’s energy consumption for the local execution of 𝑇𝑖

𝐸
(𝑖𝑗)
𝑇 (𝑠𝑖) The energy consumption of data transmission for

workload migration of 𝑇𝑖 from node 𝑖 to 𝑗
𝑝𝑖𝑗(𝑡) Probability that node 𝑖 and 𝑗 contact within time 𝑡 in future

B. System Model

In this paper, we focus on investigating the most efficient
computing strategy for executing a specific computing task
𝑇𝑖 = {𝑤𝑖, 𝑑𝑖, 𝐷𝑖} initiated by a node 𝑖 at time 0, where
𝑤𝑖 indicates the amount of computational workload of 𝑇𝑖,
𝑑𝑖 is the operational dataset of 𝑇𝑖 with the size 𝑠𝑖, and 𝐷𝑖

is the completion deadline of 𝑇𝑖. Different computing tasks
are handled separately. The problem of scheduling multiple
computing tasks being executed at the same node is orthogonal
to the main focus of this paper, and could be effectively
addressed by the existing work [29]. On the other hand,
identical computing tasks at different nodes due to data locality
will be handled in this paper through cooperative coordination
among mobile nodes.

We consider that each node 𝑖 has a local computing capa-
bility 𝐶𝑖 that indicates the amount of computational workload
that 𝑖 can undertake in unit time. As a result, the execution time
of the task 𝑇𝑖 at node 𝑖 is 𝑤𝑖/𝐶𝑖. Without loss of generality,
we assume that the energy consumption of a specific mobile
node due to computation is proportional to the execution
time of the corresponding computing task. The longer it
takes to execute the computing task locally, the more energy
is consumed. Such rate of energy consumption over time,
however, depends on the specific system model and computing
capability, and would be heterogeneous over different nodes.
Node 𝑖’s energy consumption due to the local execution of 𝑇𝑖

is hence 𝐸𝑖
𝐶 = 𝑘𝑖𝑐 ⋅𝑤𝑖/𝐶𝑖, which could be precisely estimated

locally before task execution by adopting various models for
mobile system energy consumption [18], [34].

To remotely execute a computing task 𝑇𝑖 at another node
𝑗, 𝑇𝑖’s operational dataset 𝑑𝑖 needs to transmitted from node
𝑖 to node 𝑗 when 𝑖 and 𝑗 contact each other. The energy
consumption of such data transmission depends on the specific
conditions of wireless channel quality and bandwidth between
𝑖 and 𝑗 during data transmission. In particular, existing work
shows that such energy consumption does not linearly increase
with the amount of data being transmitted [6]. We denote
𝐸

(𝑖𝑗)
𝑇 (𝑠) as the amount of energy being consumed by trans-
mitting a data item with size s between node 𝑖 and 𝑗.

The notations being used throughout the rest of this paper
are summarized in Table I.
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C. The Big Picture

Our basic idea of ensuring the efficiency of peer-to-peer
mobile cloud computing is to develop a distributed framework
which takes both energy consumption, task execution time,
and multi-node coordination into account in a unified and
probabilistic manner. The big picture of our proposed mobile
cloud computing framework is illustrated in Figure 1, where
the computational capabilities of individual mobile nodes are
listed, and each edge between two mobile nodes represents the
contact pattern between the two nodes. As shown in Figure
1, when node 𝐴 contacts node 𝐶 which has a much higher
computational capability than 𝐴, 𝐴 migrates the computational
workload of its computing task 𝑇𝐴 to 𝐶, so that 𝑇𝐴 could
be completed with much shorter time and less energy con-
sumption. Such saving of computational energy consumption
exceeds the data transmission cost between 𝐴 and 𝐶, so as to
increase the overall efficiency of network resource utilization.
Afterwards, 𝐶 acts as the “sub-initiator” of 𝑇𝐴 and recursively
migrates the workload of 𝑇𝐴 to 𝐸. In contrast, 𝐶 decides not
to migrate 𝑇𝐴 to 𝐷 when they contact, even if 𝐶𝐷 > 𝐶𝐶 .
The main reason for this decision is the low contact frequency
between 𝐶 and𝐷 that reduces the likelihood of timely delivery
of the computational results of 𝑇𝐴 back to 𝐴 in time. More
details of quantitatively calculating such delivery likelihood
and making migration decisions accordingly will be presented
in Section IV.
Moreover, Figure 1 also demonstrates that another comput-

ing task 𝑇𝐵 is initiated at node 𝐵 simultaneously, and is later
migrated to node 𝐺 with higher computational capability. In
particular, due to the locality of environmental contexts and
operational dataset, the operations of 𝑇𝐴 and 𝑇𝐵 may partially
overlap with each other. As a result, when 𝐸 and 𝐺 contact
each other, they have the chance to migrate the workload of
one task to another, and hence execute the two tasks at the
same location. Such coordination avoids repetitive execution of
identical computational operations at different nodes, so as to
eliminate energy consumption on unnecessary computations.
The major challenge, however, is to appropriately make such
coordinating decisions to ensure that the deadlines of both
tasks could be met. We will present details of such multi-node
coordination in Section V.



IV. OPPORTUNISTIC WORKLOAD MIGRATION

In this section, we develop our probabilistic framework for
efficient decisions of workload migration among peer mobile
devices, when they opportunistically contact each other. We
take the characteristics of both network data transmission and
energy consumption into account, so as to migrate the compu-
tational workloads to the most appropriate network locations
and ensure that 1) the results of remote task execution could
be timely returned back to the task initiator before the task
expires, and 2) the amount of network energy consumption
saved by remote execution is maximized.

A. Basic Approach

We first consider the basic scenario: when node 𝑖, the
initiator of a computing task 𝑇𝑖, contacts another node 𝑗, 𝑖
decides whether to migrate the execution of 𝑇𝑖 from 𝑖 to
𝑗. Without loss of generality, we assume that 𝐶𝑖 < 𝐶𝑗 ,
otherwise it is trivially unnecessary for migrating 𝑇𝑖 for remote
execution. The major challenge for such decision of workload
migration, however, is two-fold. On one hand, such workload
migration should reduce the cumulative energy consumption
of the execution of 𝑇𝑖, which stems from both the computation
of task execution and wireless transmission of the operational
dataset of 𝑇𝑖 for such execution. On the other hand, 𝑖 needs to
determine whether 𝑗 is the best choice for workload migration
among all of its contacted neighbors, i.e., whether it is better
to migrate 𝑇𝑖 to 𝑗 instantaneously, or to wait for contacting
with another node with higher computational capability.
According to our system model described in Section III-B,

when 𝐶𝑖 < 𝐶𝑗 , the execution of 𝑇𝑖 on node 𝑗 consumes less
energy than that on node 𝑖 due to the shorter execution time,
and such difference in energy consumption can be computed
as 𝐸𝑖

𝐶 −𝐸𝑗
𝐶 . Therefore, when the execution of 𝑇𝑖 is migrated

from 𝑖 to 𝑗, the amount of energy being saved is

𝑆
(𝑖𝑗)
𝐶 = 𝐸

(𝑖𝑗)
𝑇 (𝑠𝑖)− (𝐸𝑖

𝐶 − 𝐸𝑗
𝐶), (1)

i.e., the amount of energy being saved from computation of
𝑇𝑖 on 𝑗 should exceed the energy consumption of transmitting
𝑑𝑖 from 𝑖 to 𝑗.
Moreover, for node 𝑖 to make the appropriate migration

decision between 𝑗 and another contacted neighbor 𝑘, we take
the estimations of their future contacts into consideration, so
as to make sure that the computational results of 𝑇𝑖 could be
returned back to 𝑖 in time. More specifically, assuming that
𝑇𝑖 is initiated by 𝑖 at time 0 and the ICT between 𝑖 and 𝑗 is
generally much longer than the workload execution time, the
probability for such timely delivery of computational results
from 𝑗 to 𝑖 is simply 𝑝𝑖𝑗(𝐷𝑖 − 𝑡𝑐), i.e., the computational
result of 𝑇𝑖 is delivered back to 𝑖 when the next time 𝑗 con-
tacts 𝑖. Comparatively, such probability for another contacted
neighbor 𝑘 of 𝑖 is

𝑝
(2)
𝑖𝑘 (𝐷𝑖 − 𝑡𝑐) =

∫ 𝐷𝑖

𝑡𝑐

(𝑓𝑖𝑘(𝑡)⊗ 𝑓𝑖𝑘(𝑡))𝑑𝑡, (2)

where 𝑓𝑖𝑘(𝑡) is the Probability Density Function (PDF) of the
ICT distribution between node 𝑖 and 𝑘, and ⊗ indicates convo-
lution of functions. Eq. (2) hence measures the probability that
𝑘 contacts 𝑖 twice before 𝑇𝑖 expires. 𝑖 is then able to migrate
𝑇𝑖 to 𝑘 during the first contact, and 𝑘 return the computational
results back to 𝑖 when they contact again. By combining Eq.
(1) and Eq. (2), we conclude that 𝑖 only migrates 𝑇𝑖 to 𝑘
instead of 𝑗 if

𝑆
(𝑖𝑘)
𝐶 ⋅ 𝑝(2)𝑖𝑘 (𝐷𝑖 − 𝑡𝑐) > 𝑆

(𝑖𝑗)
𝐶 ⋅ 𝑝𝑖𝑗(𝐷𝑖 − 𝑡𝑐). (3)

In general, each time when 𝑖 contacts another node 𝑗, it will
perform the comparison specified by Eq. (3) for each of its
contacted neighbors, and hence selects the most appropriate
node for workload migration.

B. Recursive Workload Migration

The decision of workload migration made by a task initiator
𝑖 is only made based on 𝑖’s local knowledge about the
computational capabilities and contact patterns of other nodes
within its contacted neighborhood, and hence may not be
optimal from the global perspective of the network. In this
section, we aim to further improve the efficiency of such
workload migration, by allowing the intermediate executers to
further migrate their local workloads recursively, when they
opportunistically contact other nodes.
Generally speaking, when an intermediate executer 𝑗, which

is currently undertaking a computational task 𝑇𝑖 initiated
by node 𝑖, contacts another node 𝑘, 𝑗 decides whether to
recursively migrate 𝑇𝑖 to 𝑘 following the similar process
as described in Section IV-A. The major challenge of such
recursive migration, however, is that the computational results
of 𝑇𝑖 need to be sent back to the original task initiator 𝑖 in
time, and the estimation of such data delivery time is more
challenging due to the larger network scope being involved
into such migration. To precisely estimate such data delivery
time across multiple hops on the NCG, we formulate the multi-
hop data transmission characteristics among intermittently
connected mobile nodes in the form of an opportunistic path
defined as follows.

Definition 1: Opportunistic path
A 𝑛-hop opportunistic path 𝑃𝐴𝐵 = (𝑉𝑃 , 𝐸𝑃 ) between
two nodes 𝐴 and 𝐵 consists of a node set 𝑉𝑃 = {𝐴,𝑁1,
𝑁2, ..., 𝑁𝑛−1, 𝐵} and an edge sequence 𝐸𝑃 = {𝑒1, 𝑒2, ..., 𝑒𝑛}
such that 𝑉𝑃 ⊂ 𝑉 and 𝐸𝑃 ⊂ 𝐸.

Further, we define the weight of an opportunistic path
between nodes 𝐴 and 𝐵 as the probability 𝑝𝐴𝐵(𝑇 ) that data
could be forwarded from 𝐴 to 𝐵 along 𝑃𝐴𝐵 within time 𝑇 . It
is easy to see that the computation of 𝑝𝐴𝐵(𝑇 ) mainly depends
on the ICT distributions of the node pairs on the opportunistic
path. More specifically, letting the random variable 𝑋𝑖 with a
PDF 𝑝𝑖(𝑥) indicate the ICT between node 𝑁𝑖 and 𝑁𝑖+1 on
the opportunistic path, the total time for transmitting data from
𝐴 to 𝐵 along 𝑃𝐴𝐵 is 𝑌 =

∑𝑛
𝑖=1𝑋𝑖, and the PDF 𝑝𝑌 (𝑥) is

calculated by convolutions on 𝑝𝑖(𝑥) as

𝑝𝑌 (𝑥) = 𝑝1(𝑥)⊗ 𝑝2(𝑥)... ⊗ 𝑝𝑛(𝑥).



The corresponding weight of the opportunistic path is then
computed as

𝑝𝐴𝐵(𝑇 ) =

∫ 𝑇

0

𝑝𝑌 (𝑥)𝑑𝑥. (4)

Eq. (4) shows that the calculation of the opportunistic path
weight is a generalization of Eq. (2), and varies according to
the different models of ICT distributions. For example, when
each 𝑋𝑖 is assumed to be exponentially distributed with the
parameter 𝜆𝑖, the opportunistic path weight could be expressed
as [25]

𝑝𝐴𝐵(𝑇 ) =

𝑛∑
𝑖=1

𝐶
(𝑛)
𝑖 ⋅ (1− 𝑒−𝜆𝑖𝑇 ),

where 𝐶(𝑛)
𝑖 =

𝑛∏
𝑗=1,𝑗 ∕=𝑖

𝜆𝑗

𝜆𝑗−𝜆𝑖
.

In practice, the information of the opportunistic path from
the current task executer to the original task initiator 𝑖 is
recursively maintained by the intermediate executers, each
time when the task 𝑇𝑖 is migrated. As a result, when 𝑗 makes
the decision of workload migration on its contacted neighbor
𝑘, it will substitute the quantity 𝑝𝑖𝑘(𝐷𝑖−𝑡𝑐), which is specified
in Eq. (4), into Eq. (3), so as to ensure that the computational
result of 𝑇𝑖 could be timely returned back to 𝑖 from 𝑘.

V. MULTI-NODE COORDINATION

In practical application scenarios at the tactical edge, both
the workload and operational dataset of computational tasks
being initiated and executed at mobile nodes could exhibit
significant locality, due to the dynamic squad formation and
tactical missions in the theater. As a result, the computational
task initiated by a mobile node could be highly similar to
these tasks initiated by other nodes nearby. In this section, we
present techniques which aim at efficient coordination among
the executers of computational tasks with noticeable similarity,
so as to further improve the efficiency of network resource
utilization by avoiding repetitive computational overhead on
the same workload.

A. Coordinated Execution of Similar Tasks

Our basic idea of such multi-node coordination, as il-
lustrated by Figure 1, is that the executers of two similar
computational tasks exchange the task information when they
contact each other, so as to identify the overlapping part of
their computational tasks. Such overlapping part could stem
from either the similarity of operational dataset, or similar pre-
and post-processing on such data. Afterwards, the decision
of workload migration, which is similar to that described
in Section IV, will be made at the task executer with less
computational capability, to decide whether to migrate the
overlapping workload to another executer with higher compu-
tational capability. In practice, such workload migration is able
to be systematically realized by existing application partition
techniques [6], [14], which enable remote execution for a
partition of user applications at the level of either methods or
threads. As a result, such overlapping workload will only be
executed once for both computational tasks, so as to reduce the
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overall energy consumption for peer-to-peer computing. The
execution results are then returned back to the other executer
when they contact again in the future. For example in Figure
1, the computational results will be returned to 𝐸 when 𝐸
and 𝐺 contact again. 𝐸 is then able to accomplish the local
execution of 𝑇𝐴 and return the result back to 𝐴.

B. Concurrent Task Executions

In cases that the task completion deadline is approaching
or the probability of timely data delivery computed in Section
IV is not sufficiently high, we also propose to intentionally
employ multiple executers to undertake the computational task
concurrently, so as to ensure that the task could be completed
in time.
Such concurrent task execution is illustrated in Figure 2.

Each time when an executer of a computational task contacts
another node and decides to migrate its local workload to the
new executer, instead of migrating the whole computational
workload as described in Section IV, it adaptively partitions
such workload, which is then executed simultaneously at both
executers. As shown in Figure 2, such partitions are recursively
conducted among multiple mobile nodes, according to the
specific node contact patterns and computational capabilities.
The subsequent concurrent executions at multiple nodes could
hence expedite the task completion.
This concurrency also enables flexible balancing between

the peer-to-peer computing performance and overhead. The
more mobile nodes are involved into the execution of a specific
computing task, the faster that this task could be completed, at
the cost of higher data transmission overhead among multiple
mobile nodes. In practice, such tradeoff needs to be adaptively
adjusted according to the specific task completion deadline
and network contact patterns. We refer the development of
such adjustment algorithm and related formal analysis as our
future work.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
framework for opportunistic peer-to-peer mobile cloud com-
puting. The performance of our proposed framework is first
evaluated against the baseline of local workload execution,
and is then compared with the existing scheme of peer-to-peer
mobile cloud computing, i.e., Serendipity [29].

A. Simulation Setup

Our experiments are performed over various realistic DIL
network traces. These traces record contacts among users
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carrying hand-held mobile devices at various networking envi-
ronments, including the university campus (MIT Reality [8])
and conference site (Infocom [17]). These devices periodically
detect their peers via their Bluetooth interfaces, and a contact
is then recorded when two devices move close to each other.
As summarized in Table II, the two traces differ in their scale,
contact density, and contact durations.
Without loss of generality, we assume that each mobile

node in the network has a specific level of computational
capability that is normally distributed within the range of
[0, 1]. Correspondingly, each node has a probability 𝑝 to start
a new computing task every hour. It randomly generates the
task’s computational workload also in the range of [0, 1], and
randomly generates the task completion deadline in the range
[0.5⋅𝑇𝑎𝑣𝑔, 1.5⋅𝑇𝑎𝑣𝑔] where 𝑇𝑎𝑣𝑔 is the average deadline among
all the tasks. The quantity of 𝑝 is varied to simulate different
levels of computational workload throughout the network. We
assume that the wireless channel bandwidth is 1 Mbps, and
the sizes of the operational datasets of computational tasks
are uniformly distributed in [10𝑀𝑏, 50𝑀𝑏]. The PowerTutor
model [15] is then applied to estimate the energy consumption
of computation and data transmission.
The following metrics are used in our experiments:

∙ Task completion ratio, which is the percentage of com-
putational tasks being completed before they expire.

∙ Task completion time, which is the average time being
taken to complete a computational task.

∙ Energy consumption of task execution, which is the
average amount of energy being consumed by executing
each computational task. Such energy consumption is
normalized against the baseline of local execution.

TABLE II
TRACE SUMMARY

Trace MIT Reality Infocom

Number of devices 97 78
Number of internal contacts 114,046 182,951

Duration (days) 246 4
Contact detection period (secs) 120 120
Pairwise contact freq. (per day) 4.6 7.52
Average contact duration (hours) 0.57 0.142

B. Performance of Opportunistic Peer-to-Peer Mobile Cloud
Computing

We first evaluate the performance of our proposed proba-
bilistic framework on improving the performance and energy

efficiency of opportunistic peer-to-peer mobile cloud comput-
ing. The experimental results on the MIT Reality trace are
shown in Figure 3. Generally speaking, since our proposed
framework takes both the elapsed time of task execution and
transmission of the tasks’ operational datasets into consider-
ation, and probabilistically quantifies the likelihood of timely
data delivery between the remote task executers and local
task initiators, it is able to ensure that tasks are executed
at appropriate network locations and returned back to the
task initiators on time. As shown in Figure 3(a), the task
completion ratio of our framework is more than 40% higher
than that of local execution, and 20% higher than that of
Serendipity when the task completion deadline changes from
1 hour to 12 hours. Similarly, Figure 3(b) shows that when
the task completion deadline is uniformly set at 6 hours, our
framework is able to significantly reduce the task completion
time. Such reduction is particularly noticeable when the task
generation probability (𝑝) is higher than 0.6 and the subsequent
computational workload in the network is intensive. Figure
3(b) shows that our framework performs more than 30% better
than Serendipity in such cases.
On the other hand, Figure 3(c) also shows that our proposed

framework is able to dramatically reduce the energy consump-
tion of computational task executions, which includes the en-
ergy consumed by both computations and data transmissions.
The major reason for such reduction is that our framework
quantitatively takes the measurements of energy consumption
into consideration when making workload migration decisions.
As shown in Figure 3(c), the amount of energy being saved
by our framework increases along with the task generation
probability, such that more energy would be saved when the
overall computational workload in the network becomes more
intensive. When 𝑝 > 0.6, the energy consumption of our
framework is around 20% less than that of Serendipity.

C. Effectiveness of Multi-Node Coordination

Moreover, we also experimentally evaluate the effectiveness
of our approach to multi-node coordination proposed in Sec-
tion V. The experiment results based on the Infocom trace
are shown in Figure 4. Generally speaking, Figure 4 shows
that our proposed approach to multi-node coordination is able
to significantly improve the efficiency of remote workload
execution. In particular, when the amount of computational
workload in the network increases, different computational



(a) Task completion ratio (b) Task completion time
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tasks are more likely to overlap with each other, and hence
multi-node coordination leads to more increase of the task
completion ratio and reduction of the task completion time.
More specifically, such difference is smaller than 5% when
𝑝 ≤ 0.3, but would be up to 30% when 𝑝 > 0.8.

VII. CONCLUSIONS

In this paper, we present an analytical framework enabling
opportunistic peer-to-peer mobile cloud computing among
mobile devices at the tactical edge, which is featured by
the Disconnected, Intermittent, and Limited-bandwidth (DIL)
network environments. Our proposed framework ensures ap-
propriate workload migration by quantitatively measuring the
energy consumption and data transmission delay of computa-
tional workloads simultaneously. As a result, we ensure that
workload migration is able to not only reduce the energy
consumption of workload execution, but also to deliver the
computational results back to the task initiator on time. Ex-
tensive simulation results show that our proposed framework
could significantly improve the task completion ratio and time,
as well as reducing the power consumption of task executions.
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