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Abstract—Backscatter communication reduces the batteryless
device’s power consumption at the cost of extra RF energy
transmitted from backscatter readers. Such extra cost results
in extremely low energy efficiency at readers, but is ignored by
existing systems that always use the highest transmit RF power
for maximum goodput. Instead, we envision that the maximum
goodput is unnecessary in many practical scenarios, allowing
adaptation of transmit RF power to the required goodput. In this
paper, we present RAScatter, a new backscatter system of precise,
adaptive and lightweight power adaptation towards energy-
efficient backscatter readers. RAScatter learns the entangled
correlation between backscatter channel conditions, transmit RF
power and goodput by designing a modular neural network,
which decomposes the complex learning task into multiple related
but simplified subtasks. This decomposition avoids redundancy
in neural networks and eliminates any confusion in training due
to insufficient training data in low-speed backscatter systems.
Experiment results over commodity batteryless tags show that
RAScatter improves the energy efficiency at backscatter read-
ers by 3.5× and reduces the readers’ power consumption in
backscatter communication by up to 80%.

I. INTRODUCTION

Backscatter enables wireless communication on batteryless
devices, such as RFID tags and energy-harvesting powered
sensors [21], [17] that are essential components of Internet
of Things (IoT). In backscatter communication, batteryless
devices are powered by RF signals transmitted from the
reader device. While reducing the batteryless devices’ power
consumption, such RF power delivery consumes high amounts
of extra energy at readers.

Such energy efficiency of backscatter readers is ignored by
most of existing backscatter systems [18], [8], [14]. Instead,
these systems usually assume unlimited power supply at read-
ers and use the highest RF power at readers for best backscatter
goodput [35], [12]. In these cases, through a measurement
study that compares different backscatter techniques with
commodity wireless radios, our results in Section II show that
the backscatter readers’ energy efficiency is at most 20% of
that on commodity radios, and could be up to 12,000 times
lower than high-speed radios such as WiFi.

With the recent technical advances of backscatter systems,
we have witnessed the migration of backscatter readers from
stationary and wall-powered to portable and battery-powered
(e.g., handheld RFID readers, laptops [34] and smartphones
[17]). Low energy efficiency of these power-constrained read-
ers, hence, seriously reduces the readers’ lifetime and becomes
the key barrier of using backscatter technologies in many
applications, such as batteryless video streaming [24] and real-
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Fig. 1. Correlation between goodput and transmit RF power in different
backscatter channel conditions

time biomedical monitoring [14]. For example, handheld RFID
readers with continuous readings have a battery life of <2
hours [5], which could be further shortened on recent long-
range [27] and high-throughput [8] backscatter systems.

To tackle with this barrier, we envision that neither the
highest backscatter goodput nor the maximum transmit power
at the reader is necessary in many practical scenarios. For
example, although the maximum data rate for a batteryless
RFID tag could be hundreds of kbps [2], 5-10 kbps is sufficient
for RFID applications such as activity recognition [11]. Sim-
ilarly, data rates of most body sensors that monitor humans’
glucose level, breath rate and body temperature do not exceed
1 kbps [6]. On the other hand, our experimental studies in
Section II show that the batteryless device can transmit data
via backscatter communication at reduced goodputs, even with
much lower transmit power from the reader. As a result,
according to the required goodput, we can adaptively reduce
the reader’s transmit RF power, but still keep backscatter
communication to be operable at all times.

Such power adaptation at backscatter readers, however,
is challenging because it is hard for a reader to precisely
determine how backscatter goodput is affected by the transmit
RF power. As shown in Figure 1, such correlation mainly
depends on the condition of backscatter channel1, as the
same transmit RF power could lead to higher goodput in a
channel with good condition. As a result, a viable solution
is to measure the channel condition at the reader from its
received signal. However, this received signal may be highly
fluctuating and unreliable, because it is a reflection of the

1We refer to the communication channel from batteryless device to reader.
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Fig. 2. RAScatter uses a modular neural network to depict the correlation
between backscatter channel conditions, transmit RF power and goodput

reader’s transmitted signal and could have been distorted on
the air before it reaches the batteryless device. Using numerical
channel metrics such as RSSI [35] or packet loss [12] is highly
inaccurate, especially when the backscatter channel changes
due to device mobility or environmental dynamics.

In this paper, we present Reader Adaptation in Backscatter
(RAScatter), a new backscatter system that precisely adapts
the transmit RF power in backscatter systems to the required
goodput. As shown in Figure 2, RAScatter uses a modular neu-
ral network at the reader to explicitly represents the channel
condition, RF power and goodput in backscatter communica-
tion as separate but smaller modules. These modules are then
interconnected with respect to their entangled correlations: a
convolutional neural network (CNN) is first used to extract
features from backscatter channel measurements, which are
then used as inputs to two neural networks that individually
decide transmit RF power and backscatter data rate. In this
way, RAScatter avoids any redundant component from a single
monolithic neural network, and hence eliminates confusions in
training that are caused by complicated channel dynamics and
cause errors in power adaptation.

The major challenge of training the modular neural network
is backscatter’s low data rate, which limits the available
amount of channel measurements as training data2 and could
easily result in overfitting. To address this challenge, we
design the modular neural network with respect to the unique
characteristics in backscatter communication, so that the neural
network could always be trained within the appropriate scope.
More specifically, neural network modules in RAScatter are
interconnected based on the causal relationship between the
backscatter communication parameters that they represent.
We use these characteristics to explicitly identify the most
prominent features from backscatter channel measurements
for training, and also incorporate these characteristics into the
neural network’s loss function.

In practice, the backscatter channel may continuously vary
and the current backscatter goodput may hence deviate from
the required goodput. In these cases, RAScatter adaptively
probes the channel and uses current channel measurements to

2Wireless channel measurements are obtained by probing the channel with
special packets.
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Fig. 3. Overview of backscatter communication

refine the neural network models online. Since our design of
modular neural network minimizes the neural network’s com-
plexity, it ensures fast inference that allows timely adaptation
to any instantaneous channel variation.

Our detailed contributions are as follows:
• We depict the entangled correlation between backscatter

channel condition, RF power and goodput, by designing
a modular neural network with the minimum complexity
and redundancy. This design ensures unbiased training
with limited data.

• We can timely reflect changes of the backscatter channel
by adaptively refining the neural network models on-
line. This online refinement also allows flexible run-time
changes on the required goodput to adapt to different
application requirements.

• We restrain all RAScatter’s operations at backscatter read-
ers, and require neither extra computation nor hardware
change on batteryless devices. It can hence be adopted to
most commodity batteryless devices.

We implemented RAScatter by using a USRP N210 SDR
as the backscatter reader, which communicates with WISP
5.1 batteryless tags [3]. We have evaluated the performance
of RAScatter under different backscatter channel conditions
in both indoor and outdoor scenarios. From our experiment
results, we have the following conclusions:
• RAScatter is accurate. Compared to traditional mono-

lithic neural networks, the accuracy of power adaptation
in RAScatter is more than 95% under different channel
conditions and goodput objectives. Such accurate power
adaptation improves the backscatter reader’s energy ef-
ficiency by up to 3.5×, and reduces the readers’ power
consumption in backscatter communication by up to 80%.

• RAScatter is adaptive. RAScatter well adapts to different
application scenarios with heterogeneous goodput ob-
jectives, communication distances, device mobility and
surrounding objects. RAScatter retains its accuracy of
power adaptation and improvement of energy efficiency
in these scenarios, and exhibits 2× better resilience to
channel variations and disturbances.

• RAScatter is lightweight. The energy consumed by neural
network inference is at most <1.4% of RF energy con-
sumption, and the inference latency is within 1ms. Hence,
it is widely applicable to any portable backscatter reader
with severe power constraints.
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Fig. 4. Energy efficiency of backscatter readers
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Fig. 5. Variations of channel frequency response over time
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II. BACKGROUND & MOTIVATION

To better understand the design of RAScatter, we first in-
troduce the basics of backscatter communication, and demon-
strate the low energy efficiency of backscatter readers with a
measurement study. We then motivate our design by showing
the ineffectiveness of using monolithic neural networks for
backscatter power adaptation.

A. Backscatter Communication

In backscatter communication, as shown in Figure 3, a
batteryless device conveys data by using an RF switch to
modulate the existing RF signal on the air, and an RF signal
source could sometimes also be a backscatter reader. Different
modulation methods, ranging from simple AM/FM [32], [17]
to fine-grained FSK/PSK or QAM modulations [18], could be
used to balance between goodput and modulation overhead.

Power-up delay measurement

The wisp tag is placed 0.8m away from the reader. The measurements are 
obtained by directly attaching the oscilloscope’s probe to the wisp’s buffer.

Fig. 7. Power-up delay on a batteryless tag

A batteryless device is usually equipped with an MCU and
sensors. Then, the amount of RF power may be insufficient
for the device’s continuous operation, and duty cycling must
be adopted. In each cycle, the device accumulates enough RF
energy before being powered up, and such power-up delay
depends on the condition of backscatter channel. For example

in Figure 7, a WISP tag has a power-up delay of up to 0.2s
to support its MSP430 MCU and ADXL362 IMU sensor to
operate for 20ms, limiting its average data rate to 2 kbps. Such
low data rate prevents collecting a sufficient amount of channel
measurements for neural network training, and motivates us to
adopt a modular neural network instead.

B. The Readers’ Energy Efficiency

We compare the readers’ energy efficiency in different
backscatter systems with that of commodity wireless radios,
which are all configured to operate at their maximum transmit
power. As shown in Figure 4(a), the backscatter reader’s
energy efficiency is at least 80% lower. When the backscatter
data rate is low (e.g., < 20 kbps), such energy efficiency will
further drop by 50 times and is more than 12,000 times lower
when compared with high-speed radios such as WiFi.

Further, Figure 4(b) shows that the backscatter reader’s
energy efficiency is largely affected by the reader’s mobility,
and drops by 35% when the distance between the reader
and the batteryless tag increases to 30cm. Hence, in practical
applications when backscatter readers are battery-powered
mobile devices, their energy efficiency will be very limited.

At the same time, as shown in Figure 7, the maximum
transmit RF power at the reader helps reduce the power-up
delay at the batteryless device, but is not a necessary condition
for backscatter communication to be operable. For example,
Figure 4(c) shows that a WISP tag can transmit data even when
the reader’s transmit power drops to 20% of the maximum,
and the reader’s energy efficiency actually increases with
lower goodputs. These experiment results verify that when
the required backscatter goodput is lower than the maximum,
we can adaptively decide the reader’s transmit RF power to
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Fig. 8. RAScatter system overview

achieve the required goodput with better energy efficiency,
without interrupting the backscatter communication.

C. Power Adaption with Neural Networks

The backscattered signal is a reflection of transmitted RF
signal that also subjects to channel path loss and distortion.
Backscatter communication, hence, is much more susceptible
to wireless channel fluctuations. To demonstrate this, we
experimentally compared the variation of backscatter channel
with that of WiFi and ZigBee channels3. As shown in Figure
5, variation of backscatter channel’s frequency response over
time is >8 dB higher than that of WiFi and ZigBee radios.

Due to such high channel variation, it is difficult to precisely
determine how the backscatter goodput is affected by transmit
RF power. A solution is to use a monolithic neural network,
which takes the backscatter channel condition as input and
the corresponding goodput and transmit power as output
labels in training. This solution, however, is ineffective due
to the following reasons. First, when the channel quickly
varies, backscatter channel measurements may lag behind
and not correspond to the output labels being used. Second,
backscatter’s low data rate results in limited training data.
For example, at 1 kbps, it takes >80 hours to collect 10k
channel measurements, which are the minimum training data
size required in monolithic neural networks. Hence, the neural
network training, as shown in Figure 6, usually retains high
loss and even does not converge. Increasing the network
complexity helps, but incurs high computing cost at portable
backscatter readers with power constraints.

III. SYSTEM OVERVIEW

As shown in Figure 8, RAScatter addresses these limitations
by using a modular neural network [10], which decomposes
a complex learning task into multiple related but simplified
subtasks. Existing designs are based on Mixture of Experts
[15] that divide the learning task into multiple identical sub-
tasks, but cannot remove the ambiguity in correlation between
backscatter channel conditions, RF power and goodput.

Instead, RAScatter constructs the modular neural network
based on the unique characteristics of backscatter communi-
cation, to avoid training bias and ambiguity due to insuffi-
cient amount of training data. After having known how the
backscatter goodput is determined by the channel condition

3We use USRP and XBee S2C [4] as WiFi and ZigBee transceivers.

and transmit RF power, an Energy Efficiency Optimizer will
further improve the energy efficiency of achieving the re-
quired goodput, by opportunistically increasing the transmit
RF power and reducing the power-up delay.

A. Channel Probing

RAScatter obtains backscatter channel measurements
through channel probing, which pings the batteryless device
and calculates channel’s frequency response from the received
reply. To ensure accuracy, the highest transmit RF power
and data rate are used. In addition, numeric channel metrics,
including the received signal strength, noise level and power-
up delay, are also included.

We collect data under different channel conditions for train-
ing. Under each channel condition, we increase transmit RF
power from 0 to the maximum in small levels, and maximize
the goodput in each level by finding the optimal data rate.
Each pair of transmit RF power and optimal data rate are then
used as the output labels, and the correspondingly achieved
goodput is used as the input objective.

B. Modular Neural Network

RAScatter first extracts features from backscatter channel
measurements, and then applies these features to two sub-
neural networks (NNs) that represent transmit RF power and
backscatter data rate, respectively. The first sub-NN (Power
Sub-NN) correlates channel conditions and goodput objective
with transmit RF power via regression, and the second sub-
NN (Rate Sub-NN) uses the output of Power Sub-NN to decide
the optimal data rate under the current channel condition. Such
interconnection between sub-NNs builds on the fact that, the
transmit RF power required to achieve the goodput can only
be minimized with the optimal data rate. More details about
sub-NN construction are in Section IV-A.

Both the accuracy and overhead of neural network opera-
tions depend on its complexity. A complicated neural network
achieves higher accuracy but also increases the computation
overhead. In RAScatter, we extract channel features with two
2×3×2 convolutional layers, and each sub-NN then contains
three 10-neuron fully-connected layers. We will further show
how the neural network’s accuracy and overhead are affected
by its complexity in Section VIII-A.

To improve the neural network’s training efficiency and
inference accuracy, RAScatter uses a learning-based weighting
procedure to adaptively enhance the most prominent features,
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before applying them as inputs to the sub-NNs. The features’
weights are expected to reflect their impacts on the sub-
NNs, which feedback such impacts through their residual
connections. Details about such weighting procedure will be
described in Section IV-B.

To retain the accuracy of power adaptation over time,
RAScatter also probes the channel online and uses knowledge
about real-time channel condition changes to refine the neural
network model, when the current backscatter goodput deviates
from the required goodput. Details of such online model
refinement are in Section V.

C. Energy Efficiency Optimizer

Using the neural network’s output of the minimum RF
power (p0) and optimal data rate (r0) may not always
maximize the energy efficiency when achieving the required
goodput (G0), because it incurs long power-up delay and
reduces the time for data transmission. RAScatter, instead,
uses an Energy Efficiency Optimizer to seek for opportuni-
ties that further improve energy efficiency. This optimizer
applies a series of pre-defined goodput values (G1, G2,...,
Gn) as input objectives to the neural network, and identifies
imax = arg maxiGi/pi as the highest energy efficiency. If
Gimax > G0, the corresponding [pimax , rimax ] are used for
better energy efficiency. Details are in Section VI.

IV. MODULAR NEURAL NETWORK

In this section, we provide details of our design of the
modular neural network.

A. Sub-NN Construction

In the modular neural network, the Power sub-NN uses
regression to decide the minimum RF power. It is subjective
to various practical factors such as channel fluctuations and
hardware imperfection, which may make the collected training
data deviate from the ground truth. For example in Figure
9(a) where we measure the minimum RF power to achieve
the required goodput for 180 times, large variance is observed
at all goodput levels. To eliminate such ambiguity in training
data, the Power sub-NN probabilistically learns the transmit
RF power as a Gaussian distributionN (µP , σ

2
P ), and its output

in inference is then sampled from this distribution.
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Fig. 9. Correlation between goodput, transmit RF power and data rate on a
WISP tag

Backscatter systems usually shift their data rates between
discrete levels, and the Rate sub-NN learns to identify the
optimal data rate through classification. However, our experi-
ment results in Figure 9(b) show that the optimal data rate to
achieve the required goodput largely varies with the transmit
RF power, and such variation could be up to 8× when the tag
is far away from the reader. Hence, it is difficult for the Rate
sub-NN to decide such optimal data rate by itself.

In RAScatter, instead of separately training the two sub-
NNs, we use the Power sub-NN’s output as the Rate sub-NN’s
input as shown in Figure 8, and the two sub-NNs are then
jointly trained by minimizing both the relative error loss for
power regression and cross-entropy loss for rate classification.
The joint loss function is expressed as

Ljoint = Lpower + λLrate =

∣∣∣∣p− pp
∣∣∣∣− λ ·∑i

ri log(ri),

where p is Power sub-NN’s output in training, ri is Rate sub-
NN’s output in training as the probability for the i-th data
rate to be optimal, and p, ri are the corresponding labels.
λ is a hyperparameter that controls the contribution of each
individual loss. In this way, the power sub-NN’s training will
also receive the feedback from the Rate sub-NN, which can
enhance its convergence and power adaptation accuracy.

B. Feature Weighting before Sub-NNs

The features being extracted from the backscatter channel
measurements are highly variant, due to the dynamic con-
ditions of backscatter channel. Some features, as shown in
Figure 10(a), will be more prominent and have higher impact
on sub-NNs than others. The sub-NNs, however, are unable
to identify the prominence of these features by themselves
with an insufficient amount of data, and their accuracy will be
affected by those features with low prominence.

Instead, RAScatter explicitly identifies the features’ promi-
nence and applies such prominence as weights to raw features,
before using these features as sub-NN inputs. Being different
from current weighting schemes [28] that focus on information
equalization, we aim to further enhance the impacts of those
prominent features on the sub-NNs, so as to facilitate accurate
and timely inference. As shown in Figure 10(b), given the raw
features Fraw, two trainable linear projectors {αi,βi, i = 1, 2}
are used to encode the raw features into the disentangled
representation D and the corresponding score vector S as

D = α1
TFraw + β1, S = α2

TFraw + β2,

and these projectors are trained by the feedback from sub-
NN loss through a residual connection4. Then, S is used
to calculate the feature weights via scaling5 and softmax
operations, and these weights are applied to the encoded
features D. As shown in Figure 10(c), the weights generated
from features’ impacts in Figure 10(a) are highly skewed,
indicating that only few features are enhanced.

4Training is conducted by recursively propagating gradient-based feedback
backwards through the neural network.

5Scaling is needed in advance to prevent exponential saturation in training.
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Fig. 10. Feature weighting before sub-NNs in RAScatter

By using 1,000 backscatter channel measurements (train:test
= 4:1), we have verified that the feature weights could effi-
ciently prevent the sub-NN training from being interfered by
less prominent features, so as to reduce the inference error of
power regression (in Power sub-NN) and rate classification (in
Rate sub-NN) by 6% and 5%, respectively.

C. Adding Monotonicity Constraints

Neural network inference should be always consistent with
the naive monotonicity characteristics in backscatter systems:
first, higher RF power is needed to achieve higher goodput;
second, to achieve the same goodput, higher RF power is
needed when the power-up delay is longer. However, such
monotonicity may be violated due to overfitting in training,
leading to inaccurate power adaptation. For example in Figure
11(a), the Power sub-NN sometimes outputs lower RF power
even if higher goodput is required, and Figure 11(b) further
shows that such violations frequently happen in neural network
inference: 6.1% and 5.3% violations on two monotonicity
characteristics are observed, respectively.
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Fig. 11. Adding monotonicity constraints

We explicitly makes the neural network to learn the mono-
tonicity through training, by adding monotonicity constraints
to sub-NNs’ loss. We will first check if the monotonicity
characteristics are being violated in training, by comparing
sub-NNs’ inputs and outputs in each training epoch via dif-
ferentiation. If violation is found, a penalty will be added to
sub-NNs’ joint loss. Such penalty is separately constructed for
the two monotonicity characteristics as

P1 = −λ1Dpower, goodput, P2 = −λ2Dpower, power-up delay,

where Du,v denotes the differentiation of output u over input
v, and λ1, λ2 are hyperparameters for scaling. Since the
penalty will always be positive if the monotonicity is violated,

the sub-NN training will be instructed to avoid violation
of monotonicity. As shown in Figure 11(b), adding these
constraints could significantly suppress the occurrences of
these violations to the minimum (<1%).

V. ONLINE MODEL REFINEMENT

As shown in Section 2.3, the conditions of a backscatter
channel is highly dynamic and fluctuating over time. To
ensure the accuracy of power adaptation, RAScatter uses
online learning [25] to refine the neural network models with
real-time backscatter channel measurements, when the current
backscatter goodput deviates from the required goodput. This
online refinement, on the other hand, also allows flexible
changes on the required goodput at run-time.

The major challenge of online learning, however, is the
small amount of new training data that can be collected at real-
time. For example, online learning for each refinement needs at
least 32 backscatter channel measurements [7], but collecting
these measurements would take at least several seconds in a
low-speed backscatter system such as WiFi Backscatter [17].
To address this challenge, in RAScatter we design a new loss
function for online learning, to make sure that online learning
aims to achieve the required goodput with the minimum
transmit RF power.

For current time τ , this loss function is computed over a
sliding window with size T as

Lonline =
∑τ+T

t=τ
(Et + λ · Pt),

where λ is a scaling factor, Pt is the current transmit RF power
and Et measures the difference between the current goodput
(Gt) and the required goodput (G0). Intuitively, Et can be
defined as |Gt − G0|/G0, which is however, not related to
any sub-NN’s output. Instead, we incorporate the logarithmic
likelihood of the neural network’s prediction to define Et.
Given the neural network’s predicted probability (Rt) of the
optimal rate and the predicted transmit RF power Pt,

Et =

[
log (Rt) + log

(
1√

2πσP
e
− (Pt−µP )2

2σ2
P

)]
· |Gt −G0|

G0

where (µP , σP ) are the parameters of Gaussian distribution
learned by the Power sub-NN as described in Section IV-A.

To demonstrate the effectiveness of this online learning,
we test the neural network model trained offline in a new
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environment, where metal objects are placed nearby to change
the backscatter channel. As shown in Figure 12, online
learning can progressively approach to the required goodput,
and improve the energy efficiency accordingly. More detailed
evaluations on online refinement are in Section VIII-B.
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Fig. 12. Effectiveness of online model refinement

VI. ENERGY EFFICIENCY OPTIMIZER

The Backscatter goodput G increases with RF power P as

G = k1(
√
P − Vmax) log(1 + k2P ), (1)

where Vmax is batteryless device’s maximum electrical voltage
from energy harvesting, and k1 and k2 are system-specific
constants. Proof of Eq. (1) is in the Appendix.

Eq. (1) is illustrated by Figure 13, and shows that the energy
efficiency of backscatter communication (indicated by G/P )
generally drops when the goodput improves with higher RF
power, because the majority of the harvested RF energy will
be used to increase the duty cycle. On the other hand, when the
transmit RF power is too low, the energy efficiency will also
be impaired because of the long power-up delay and the short
time for data transmission. Hence, if the required goodput
(G0) in RAScatter is too low, we could use the transmit RF
power higher than the output of modular neural network (p0),
to further improve the energy efficiency6.

As shown in Figure 13, G/P has and only has one turning
point over P when P = pmax to reach the maximum energy
efficiency. However, it is hard to calculate pmax from Eq. (1)
due to the difficulty of estimating the constants k1 and k2.
Instead, we first decide if p0 < pmax by comparing the energy
efficiency between G0 and G0 + ∆G, and then find pmax via
numerical iteration from p0 if p0 < pmax.

Details of such numerical iteration are in Algorithm 1. In
each iteration, we first decide the most appropriate goodput
objective gmax that maximizes the energy efficiency, and then
obtain the transmit RF power to achieve gmax from the neural
network output. Since the logarithm component in Eq. (1)
increases much slower than the other polynomial component,
Eq. (1) can be approximated by G = a0

√
P + a1, and its

coefficients a0 and a1 can be computed for every given pair
of (Sl, Su). Afterwards, gmax is identified when G/P is

6The achieved backscatter goodput, in this case, will also be increased to
be higher than G0.
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Fig. 13. Energy efficiency optimizer

maximized, and the estimation of pmax (denoted as pmax in
the current iteration) will be produced as NRAS(gmax).

Algorithm 1 Energy Efficiency Optimizer
Input: G0: the required goodput; NRAS(·): RAScatter’s neu-

ral network
Output: (pmax, rmax): the transmit RF power and data rate

that maximize the energy efficiency.
1: G1 ← G0 + ∆G
2: (p0, r0)← NRAS(G0), (p1, r1)← NRAS(G1)
3: EE ← G0/p0, EE

′ ← G1/p1 //p0 < pmax if
EE′ > EE

4: if EE′ > EE then
5: Sl ← (p0, G0), Su ← (p1, G1),
6: poldmax ← 0, pmax ← p1,∆p ← |pmax−poldmax|/pmax

7: while ∆p > θ do
8: Decide (a0, a1) in G = a0

√
P + a1 with respect to

(Sl, Su)
9: gmax = arg maxGG/P

10: Sl ← Su, Su ← (pmax, gmax) = NRAS(gmax)
11: ∆p ← |pmax − poldmax|/pmax

12: end while
13: (pmax, rmax)← (pmax, rmax)
14: end if

In practice, Algorithm 1 can converge within a few iterations
(see Section VIII-B). Since only one neural network inference
is needed in each iteration, it incurs very low computation
cost. Its performance mainly depends on 1) the choice of ∆G

to decide where the iteration is initiated; and 2) the choice of
θ to decide when the iteration ends. We will experimentally
investigate the impact of these parameters in Section VIII-B.

VII. IMPLEMENTATION

We implemented RAScatter in the 915MHz UHF band
with WISP 5.1 batteryless tags. A USRP N210 with two
SBX-40 RF daughterboards is used as the reader. The two
daughterboards are connected to two RFMAX S9028PCRJ
circularly polarized antennas for Tx and Rx. The analog Tx
and Rx gains are 25dB and -10dB, respectively.

A. Backscatter Device Implementation

A WISP batteryless tag follows the EPC Gen 2 RFID
protocol to backscatter data obtained from its on-board sensor
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[32], but it lacks retransmission and rate selection mechanisms
that are well-implemented in commodity wireless radios7.
To tackle with possible data transmission failures, we buffer
the tag’s 32-bit sensory data in its non-volatile memory, and
retransmit when failures are detected by the reader.

LOOP:
MOV.B R_1, &PTXOUT   ;[4] switch turns ON
NOPx5                 ;[5] switch keeps ON

MOV.B R_0, &PTXOUT  ;[4] switch turns OFF
NOPx5 ;[5] switch keeps OFF

DEC R_3           ;[1] loop index  loop index - 1
JNZ LOOP ;[2] continue the loop if index > 0

#cycle consumed by each instruction is commented in “[ ]”

12 cycles

9 cycles

NOPx2
to make 9 cycles

Fig. 14. Generating clock signals on a WISP tag

The major challenge of implementing rate selection on a
WISP tag is that its RF switch is not connected to its MCU’s
clock output, and the tag can only backscatter with a fixed
data rate of 160 kbps. Instead, we modify the tag’s firmware
to generate clock signals for different data rates. For example,
generating a 320kHz clock signal needs to toggle the RF
switch every 9 cycles. However, as shown in Figure 14, loop
maintenance also consumes 3 cycles, and we avoid these
redundant cycles by reducing the “NOP” instructions.

Query QueryQuery

Keep powering the tag

ACK

EPC
Tag active

EPC

… … ACK

rate selection bits retransmission bit

sensory datapreamble CRC-8

Tag in sleep mode … …

QueryQuery … …

M (b5b6) TRext Sel Session Target (b11) Q CRCDRCommand

seq. no.

96 bits

Keep powering the tag
Tag in sleep mode

Fig. 15. Transmission protocol and packet formats

B. Reader Implementation
As shown in Figure 15, the USRP reader follows the EPC

Gen 2 RFID protocol to power up and communicate with
the WISP tag. The reader continuously sends queries to the
tag every 62.5us, and controls the transmit RF power by
adjusting USRP’s Tx baseband gain. ASK modulation is used
in all packets, and the reader appoints the tag’s data rate
among 160/80/40/20 kbps. A timeout of 62.5us is set to detect
transmission failures. With 3 consecutive timeouts, the reader
requests retransmission through the query’s retransmission bit.

C. Neural Network Implementation
We construct and train the modular neural network using

TensorFlow, and deploy the trained model with TensorFlow C
API on a Raspberry Pi 3 microcontroller that is connected to
the USRP reader. Having received the outputs from RAScatter,
the reader applies the transmit RF power through its baseband
gain controller, and apply the optimal data rate through the
query being sent to the tag.

7On other backscatter tags with these mechanisms, RAScatter does not
require any hardware or firmware modification.
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T
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T

(a) Deployment (R: reader, T: tag)
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Reader

Batteryless
Tag

Tx Antenna

Rx Antenna

RF Signals

(b) Device layout
Fig. 16. Performance evaluation settings

VIII. PERFORMANCE EVALUATION

As shown in Figure 16, we use our implementation de-
scribed in Section VII to evaluate RAScatter in both in-
door (office and hallway) and outdoor scenarios, where most
backscatter applications such as smart locks [29], indoor
localization [22], occupation monitoring [20] and gesture
detection [16] are being operated. 2,114 backscatter channel
measurements are collected for offline neural network training,
by placing the tag in different locations and orientations.

We use bits per Joule (BpJ) as the metric to evaluate the
energy efficiency of backscatter communication. Such energy
efficiency is measured as the ratio between the amount of
backscattered sensory data and the amount of RF energy
(including probing) consumed by the reader, and is being
averaged over the tag’s all duty cycles. We also measure the
transmission delay of each piece of sensory data. Note that,
due to possible data transmission failures and retransmissions,
the goodput in each duty cycle and the delay of transmitting
different data pieces could be different.

In each experiment, to evaluate the accurcacy of RAScatter’s
power adaptation, we first decide the optimal energy efficiency
with respect to the required goodput objective, by exhaustively
examining all the possible transmit RF power levels and data
rates. Such optimal energy efficiency is then compared with
the energy efficiency achieved by RAScatter, to see how small
the difference between the two is.

In existing backscatter systems using the highest RF power,
different rate adaptation schemes are adopted to maximize the
goodput by choosing the best data rate. Hence, we compare
RAScatter with the following rate adaptation schemes:
• BLINK [35]: Rate adaptation is instructed by an offline

trained map that correlates the optimal data rate with
RSSI and packet loss.

• MobiRate [12]: The optimal data rate is decided based
on past history of data transmissions and the reader’s
empirical estimation of tag’s mobility.

A. Impact of Neural Network Complexity
We first investigate how RAScatter’s accuracy and overhead

of power adaptation are affected by the complexity of neural
network, with a fixed goodput objective of 63kbps. We then
vary the numbers of 2×3×2 convolutional layers (# CONV)
for feature extraction8 and 10-neuron fully connected layers

8For simplicity, we fix the number of neurons in each layer.
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network complexities
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Fig. 18. Overhead of neural network inference
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Fig. 19. Energy efficiency under different goodput objectives
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Fig. 20. Accuracy of power adaptation under different
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(# FC) for sub-NN construction.
Ideally, goodput achieved by RAScatter should exactly

match the goodput objective, achieving the optimal energy
efficiency at the same time. However in practice, while the
accuracy of power adaptation generally increases when the
neural network becomes more complicated, Figure 17 shows
that high complexity sometimes also results in overfitting and
hence low accuracy. In particular, since the optimal energy ef-
ficiency relates to the goodput objective, RAScatter’s achieved
energy efficiency could possibly exceed 100% when compared
with the optimal energy efficiency, if the goodput objective
is not achieved. Based on these results, we use (#CONV,
#FC)=(2,3) in all the following evaluations. On the other hand,
Figure 18 shows that RAScatter’s latency of neural network
inference on Raspberry Pi 3 is generally lower than 1ms, and
the energy consumption of such inference is <1.4% of RF
energy consumption, even with the highest inference frequency
(10 times per second). Hence, RAScatter is lightweight and
affordable on most portable backscatter readers.

B. Performance of Power Adaptation

To evaluate RAScatter’s performance of power adaptation,
we use the goodput achieved by MobiRate with the high-
est transmit RF power as the baseline, and adopt different
percentages of this baseline as the goodput objectives for
RAScatter. In all experiments, we vary the communication dis-
tance between 20cm and 120cm to produce different channel
conditions, but the tag remains stationary in each experiment.

Figure 19(a) shows that the reader’s energy efficiency in-
creases when the goodput objective drops. When the goodput
objective drops to 30% of the baseline, RAScatter can achieve
3.5× improvement on the energy efficiency in the indoor office
scenario, which is equivalent to reducing the reader’s power
consumption by 71%. In hallway and outdoor scenarios, RAS-
catter performs even better due to less multipath and irrelevant
wireless signal interference, and the amount of power saving
can reach 80% in the hallway scenario. Meanwhile, Figure
19(b) shows that, since using lower transmit RF power incurs
more data transmission failures, RAScatter also incurs moder-
ate increase of data transmission delay. However, it is shown
that such amount of delay increase can be effectively restrained
to <10ms if the goodput objective is >50%. In practice,
these results allow users to flexibly balance between energy
efficiency and timeliness of backscatter communication, based
on the application requirements.

Based on these results, we conduct the rest of experiments
in this section in the indoor office scenario, which is the most
difficult scenario for power adaptation and its results can hence
be considered as the baseline of RAScatter’s performance.

Further, we evaluate RAScatter’s accuracy of power adap-
tation with respect to the optimal energy efficiency. For cases
of BLINK and MobiRate in these experiments, we manually
reduce the reader’s RF power from the maximum to exactly
achieve the goodput objective. Results in Figure 20 show
that, the energy efficiency achieved by RAScatter is very
close to the optimum. Even when the goodput objective is

9



very low (<20%) and the channel becomes more dynamic
due to the low RF power being used, its deviation from
optimum can be restrained within 10%. This means that, for
most goodput objectives, RAScatter can achieve near-optimal
energy efficiency at the backscatter reader.
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Fig. 21. Performance of online model refinement

Performance of online model refinement. As described in
Section V, online model refinement is only conducted when
the current goodput sufficiently deviates from the required
goodput objective. Figure 21(a) shows that, when such thresh-
old (η) of deviation that triggers online model refinement
varies from 5% to 20%, the neural network model is refined
more frequently, leading to another 40% improvement of the
energy efficiency. On the other hand, higher thresholds also
reduce the sensitivity to channel variations and result in slight
drop of energy efficiency. Based on these results, we use
η=15% in the following evaluations.

Further, after the neural network has been trained offline, we
test the system in a new untrained environment with densely
placed metal objects nearby, and then evaluate the performance
of online refinement. Figure 21(b) shows that in this case,
online refinement well adapts to the new environment and
achieves lower error in power adaptation.
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Performance of energy efficiency optimizer. As described
in Section VI, its performance depends on the parameters in
numerical iteration. As shown in Figure 22(a), if ∆G/G0 is
too high or too low, the iteration’s initiation will be more sus-
ceptible to the random error from neural network prediction,
leading to lower accuracy. On the other hand, as shown in
Figure 22(b), the iteration usually converges within 3 rounds,
and more iterations produce little improvement.

C. Impact of Communication Distance

To evaluate RAScatter’s performance over different com-
munication distances, we set the goodput objective to be 90%
of baseline, and place the tag at near (20∼50cm), medium

(50∼80cm), far (80∼120cm) distances from the reader. As
shown in Figure 23, when the tag moves far away from
the reader, the backscatter signal becomes weaker, leading
to lower energy efficiency and longer transmission delay.
However, while achieving the similar delay with BLINK and
MobiRate, RAScatter achieves >50% improvement of energy
efficiency with the near distance, and 30% improvement with
the medium distance. Such benefit reduces to 30% and 20%
at far distance, respecitvely, since higher transmit RF power
is required to maintain the same goodput.
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Fig. 23. Impact of communication distance

D. Performance with Multiple Tags

We further evaluate RAScatter’s performance of power
adaptation when a reader communicates with multiple bat-
teryless tags. We follow the EPC Gen 2 RFID standard [2],
and let the reader sequentially communicate with each tag. In
this setting, nearby inactive tags could affect the backscatter
communication on active tags, since they could be considered
as metal objects that create extra interference.

In our experiments, we place different number of tags
covering near and medium range from the reader. The goodput
objective is set to be 90%. As shown in Figure 24, the
reader’s energy efficiency in RAScatter is at least 50% higher
than that in BLINK and MobiRate. In partciular, when the
reader communicates with 15 tags, the advantage of RAScatter
enlarges to >100%, because RAScatter can promptly adapt to
the complicated channel condition due to mutual interference
among co-located tags. At the same time, when the number
of tags increases, the increase of data transmission delay is
always within 10%.
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Fig. 24. Impact of multiple tags

E. Impact of Device Mobility
In practical scenarios, the batteryless device is usually

attached to other bigger objects (e.g. human bodies, boxes,
tiny robots, etc) and continuously move. Due to its limited
throughput, most of its application scenarios only involve
moderate mobility such as sleep monitoring [13] and livestock
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tracking [9]. To evaluate such impact of device mobility, as
shown in Figure 25, we move the tag following different
mobility patterns at 0.2m/s. As shown in Figure 26, RAScatter
achieves 3.5× higher energy efficiency over MobiRate, and
retains similar performance over different mobility patterns.
Figure 27(a) further shows that the error of RAScatter’s power
adaptation can be reliably restrained within 7% in different
mobility patterns. These results demonstrate that RAScatter
can do timely and precise power adaptation under highly
dynamic channel conditions.

Furthermore, we investigate the goodput variation in such
highly dynamic backscatter channel conditions. As shown in
Figure 27(b), when the tag continuously moves, RAScatter
exhibits much smaller goodput variation compared to BLINK
and MobiRate. When the tag stops moving, power adaptation
in RAScatter also ensures that goodput objective could be
quickly met. Compared to BLINK and MobiRate, RAScatter
reduces such stabilization delay by more than 50%.
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Different mobility patterns may also impact the performance
of online model refinement. Being similar to Section VIII-B,
we switch RAScatter to an untrained environment and evaluate
the accuracy of power adaptation after online refinement with
different mobility patterns. As shown in Figure 28(a), overall
70% of such refinements can converge within 25 seconds, and
such latency could be further significantly reduced in high-
throughput backscatter systems such as Passive WiFi [18].
Further, Figure 28(b) shows that our online learning scheme
is robust to different mobility patterns. Slightly higher errors
are observed in circular and zig-zag tag movements, because

of frequent changes of the tag’s orientation to the reader9.
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Fig. 28. Online model refinement on a mobile tag

F. Impact of Surrounding Objects

The surrounding objects can absorb or reflect the RF signal,
hence affecting backscatter communication. To investigate
such impact, we consider two different scenarios: 1) placing
a metal object very close to the tag (Metal Nearby), and 2)
blocking the line of sight between the tag and the reader
with a thin metal panel (NLOS). The goodput objective is
also set to 90%. As shown in Figure 29, RAScatter achieves
over 2× higher energy efficiency than BLINK and 1.5×
higher than MobiRate, while resulting in <1% delay increase.
Compared to the line-of-sight case, such difference is enlarged
by the interference from surroundings, which demonstrates the
RAScatter’s robustness of power adaptation.
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Fig. 29. Impact of different surrounding objects

IX. RELATED WORK

Backscatter Communication. RAScatter builds on prior
work of backscatter communication. Traditional systems (e.g.

9The tag’s orientation affects the signal strength and power-up delay.
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RFIDs) use dedicated devices to communicate with batteryless
tags, but are limited to very short communication range and
low goodput. Recent research efforts, instead, use commod-
ity wireless devices or infrastructure such as smartphones
[17], TV stations [21], FM stations [30], and significantly
improve their goodput and communication range [8], [27].
These efforts, however, aim to improve the communication
performance and ignore reader’s energy efficiency.

RAScatter is related to early research efforts on backscatter
power scaling [23], [31] , which are however, limited to
traditional NFC and RFID systems but cannot be applied to
new backscatter devices and readers (e.g., smartphones). In
addition, these schemes either calibrate the reader’s power for
fixed channel conditions offline, or exhaustively search the
optimal power at runtime with high costs. They, hence, have
limited applicability in practical scenarios.

RAScatter also relates to prior work on rate adaptation
in backscatter systems [35], [12], which improves goodput
with the given transmit RF power by choosing the optimal
data rate. These existing techniques, however, are incapable
of reducing the reader’s power consumption. Their accuracy
could be easily affected by backscatter channel dynamics due
to the numerical channel metrics they use (e.g., SNR [33]).

AI-assisted Communication Systems. Our design is inspired
by prior work on using neural networks to improve the
performance of communication systems. For example, neural
networks have been widely adopted for uplink throughput
prediction [19] and congestion control [26]. However, these
schemes are all based on general neural network models
whose designs and structures are independent from any do-
main knowledge. Instead, RAScatter uses a modular neural
network that allows designing the neural network structure
based on special characteristics of backscatter communication.
This domain-specific design hence, ensures accurate power
adaptation even with highly dynamic backscatter channel and
limited amounts of training data.

X. DISCUSSIONS

Throughput vs. goodput. Most existing backscatter systems
aim to enhance the communication throughput, without con-
sidering individual data losses and possible retransmissions.
Such data losses and retransmissions, however, are crucial in
many practical application scenarios that are time-sensitive.
For example, losses of timely temperature readings may result
in device overheat and severe damage. Instead, RAScatter
defines the objective of power adaptation as goodput, so as
to minimize possible data losses.
Low-speed backscatter systems. In this paper, we use the
WISP batteryless tag as experimentation platform. However,
since RAScatter requires no extra computation nor hardware
change on the batteryless device, it can be applied to most
types of batteryless devices, and our design of modular neural
network can then be used to address the challenge of limited
training data on low-speed devices such as LoRa Backscatter
(18bps-37.5kbps) [27], WiFi Backscatter (<1kbps) [17] and
Ambient Backscatter (<1kbps) [21].

Impact of device & environment heterogeneity. RAScatter’s
accuracy of power adaptation relies on precise measurements
of backscatter channel, which may be affected by the bat-
teryless device’s hardware properties (e.g. antenna sensitivity,
buffer capacity, etc) and the environment’s multipath patterns.
These factors can be generally resolved with additional train-
ing for different device models and environments. Another
solution is to adopt transfer learning or semi-supervised learn-
ing to ensure that the trained model can well adapt to such
heterogeneity. This will be our future work.

Practical deployment. As shown in Section VII, RAScatter
involves the minimum hardware changes on backscatter read-
ers, and it can hence be easily deployed to commodity reader
devices. When being deployed to reader devices with severe
power constraints (e.g., future mini-scale robots), RAScatter
can leverage the emerging hardware, such as low-power AI
chips [1] with power consumption of <1 mW, for more effi-
cient neural network computations with the minimum latency
and power consumption.

XI. CONCLUSION

In this paper, we present RAScatter, a new backscatter sys-
tem that enhances the energy efficiency of backscatter readers
by adapting the reader’s transmit RF power to the required
goodput. We ensure accurate power adaptation by learning
the correlation between backscatter channel condition, transmit
RF power and goodput with a modular neural network, and
enhance the reader’s energy efficiency by >3.5×.
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APPENDIX
With certain channel condition, the maximum backscatter

goodput is a discounted Shannon’s ceiling by duty cycle D:

G = D ·W log(1 + S/N), (2)

where W , S, N are channel bandwidth, backscatter signal
power, and noise level respectively. Since the batteryless
device’s live time is usually much smaller than power-up delay,
we have D ≈ Td, and Eq. (2) can be rewritten as

G = k · log(1 + S/N)/Td.

Td, on the other hand, can be elaborated based on the capacitor
charging formula as

Td = τ · ln(1 + (Vmax − Vmin)/(Vc − Vmax)),

where Vc is the batteryless device’s harvested voltage in
the current cycle, and Vmax and Vmin are the maximum and
minimum harvested voltage, respectively. Since Vmax ≈ Vmin

in practice for good cycle rates, Td can be approximated10 by
(Vmax − Vmin)/(Vc − Vmax). Eq. (1) can then be proved by
considering that the transmit power P ∝ V 2

c and P ∝ S.

10ln(1 + x) ≈ x if |x| � 1
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