
On Investigating Social Dynamics in Tactical Opportunistic Mobile
Networks

Wei Gao and Yong Li
Department of Electrical Engineering and Computer Science

University of Tennessee at Knoxville
{weigao, yli118}@utk.edu

ABSTRACT

The efficiency of military mobile network operations at the tactical edge is challenging due to the practical Disconnected,
Intermittent, and Limited (DIL) environments at the tactical edge which make it hard to maintain persistent end-to-end
wireless network connectivity. Opportunistic mobile networks are hence devised to depict such tactical networking sce-
narios. Social relations among warfighters in tactical opportunistic mobile networks are implicitly represented by their
opportunistic contacts via short-range radios, but were inappropriately considered as stationary over time by the conven-
tional wisdom. In this paper, we develop analytical models to probabilistically investigate the temporal dynamics of this
social relationship, which is critical to efficient mobile communication in the battlespace. We propose to formulate such
dynamics by developing various sociological metrics, including centrality and community, with respect to the opportunistic
mobile network contexts. These metrics investigate social dynamics based on the experimentally validated skewness of
users’ transient contact distributions over time.

1. INTRODUCTION

While mobile networking at the tactical edge have received much attention, such as the Army’s Warfighter Information
Network - Tactical (WIN-T)2 and DARPA’s Content-Based Mobile Edge Networking (CBMEN) program,1 they are based
on the traditional Mobile Ad-Hoc Networks (MANETs) and assume end-to-end wireless connectivity between warfighters.
Such connectivity, however, is usually not the case in practical Disconnected, Intermittent, and Limited (DIL) environments
at the tactical edge.37, 38 The environmental dynamics and warfighter mobility in such environments lead to opportunistic
and intermittent network disconnection, and warfighters can only communicate when they move into the communication
range of others’ wireless radios, referred to as contact. The delay for MANET reconfiguration against these disconnections
would be seriously amplified and MANET routing protocols would even fail due to the unavailability of end-to-end routes.

Opportunistic Mobile Networks, also known as Delay/Disruption Tolerant Networks (DTNs),16 consist of mobile de-
vices which are connected only intermittently when they opportunistically contact each other, i.e., move into the commu-
nication range of their short-range radios (e.g., Bluetooth, WiFi). Such intermittent network connectivity can be a result of
mobility, device sparsity or power outage. Opportunistic mobile networks, therefore, reflect the actual DIL network sce-
narios of military operations at the tactical edge.37, 38 To deal with the lack of end-to-end network connectivity, researchers
adopt the idea of “carry-and-forward”:33 a node carries data when no route to the destination exists, and later forwards
data to another node (relay) upon contacts. However, they are limited to fixed relay selection strategies according to the
offline network configurations. When warfighters in the theater encounter dynamic situational changes, they fail to adapt
accordingly and impair the situational awareness.

The key to realize such adaptability is that the mobile communication networks and human social networks in DIL
environments are closely coupled, and the network communication opportunities and network design choices are deter-
mined by the warfighters’ behavior patterns, i.e., their contact processes. Such patterns need to be timely and precisely
investigated, so as to predict warfighters’ communication needs in the future and adapt accordingly. Traditional solutions
have been myopic in that they predict warfighters’ contacts from their physical mobility patterns, which are random and
inaccurate. They have minimal explorations into the social behavior patterns of warfighters, which are more accurate and
essential to understanding their contact processes. A social-aware perspective of mobile networking at the tactical edge,
therefore, is much more than simply eliminating the randomness of warfighters’ physical mobility, but to fundamentally
improve our understanding about how we could adapt the military communication strategies to better support the tactical
operations.



In this paper, we propose to consider the social relationship between warfighters as dynamic and implicitly represented
by their contact processes, and develop algorithms investigating and exploiting the characteristics of such social dynamics
among warfighters in opportunistic mobile networks. More specifically, we investigate such social dynamics via formu-
lation and calculation of various sociological metrics in mobile network scenarios. These concepts include: i) centrality:
the social importance of users’ facilitating communication among other users; ii) community: users are formed into groups
according to their social relations.

The rest of this paper is organized as follows. Section 2 briefly reviews the related work. Section 3 presents our
experimental investigation results of the transient contact patterns among mobile users during different short time periods.
Section 4 and 5 then present details about our proposed approach to investigation of social dynamics among mobile users.
Section 6 concludes the paper.

2. RELATEDWORK

The research on data forwarding in opportunistic mobile networks originates from Epidemic routing42 which floods the
entire network. Later studies develop data forwarding strategies to approach the performance of Epidemic routing with
lower forwarding cost, which is measured by the number of data copies created in the network. While the most conservative
approach40 always keeps a single data copy and Spray-and-Wait41 holds a fixed number of data copies, most schemes leave
such numbers as dynamic and make data forwarding decision by comparing the nodes’ utility functions. Representative
strategies include Compare-and-Forward,11, 13 Delegation14 and Spray-and-Focus,39 which were exploited when studying
forwarding redundancy in this paper.

The utility functions of mobile nodes, which measure the nodes’ contact capabilities, are generally independent from
the data forwarding strategies mentioned above. Various utility functions can be applied to the same forwarding strategy
for different performance requirements. Some schemes predict node contact capability by estimating their co-location
probabilities in different ways, such as the Kalman filter8 and semi-Markov chains.43 In some other schemes, node contact
pattern is exploited as abstraction of node mobility pattern for better prediction accuracy, based on the experimental5, 23

and theoretical4 analysis on the node contact characteristics. The nodes’ capability of contacting others in the future can
be predicted based on their cumulative contact records in the past. MaxProp3 estimates the node contact likelihood based
on the contact counts in the past, and PodNet25 forwards data to nodes based on their received data queries in the past.

Social properties of human mobility including centrality and community structures are also exploited for forwarding
messages.18, 21 SimBet9 uses ego-centric betweenness as relay selection metric, and BUBBLE Rap21 considers node cen-
trality hierarchically in social community structures. Gao et al.18 exploited both centrality and social communities for
multicasting, and proposed Cumulative Contact Probability (CCP) as the utility function for data forwarding based on the
cumulative node contact rates and the assumption of exponential distribution of pairwise node inter-contact time. Such
CCP metric was also used in this paper.17 furthermore extends CCP to the multi-hop network scope.

Social community structure in opportunistic mobile networks, on the other hand, is usually used to determine the
network scope for evaluating node centrality, and can be detected in a fully distributed manner in various ways.22 𝑘-clique-
based32 method enables the detection of overlapping communities, and modularity-based method29 works on weighted
network contact graph. Based on such community detection techniques, BUBBLE Rap21 exploited social community
structures for data forwarding in opportunistic mobile networks based on the cumulative node contact characteristics.
Node centrality is evaluated at various network scopes according to the community boundary of the destination, and data
is hence forwarded in a hierarchical manner.

3. TRANSIENT CONTACT PATTERNS

Our investigation of social dynamics in opportunistic mobile networks is mainly motivated by the temporal heterogeneity
of user contact patterns over time. Conventional wisdom suggests that user contacts are homogeneously distributed over
time and the contact characteristics can be depicted by the cumulative distribution of pairwise inter-contact times (ICTs),
which is either exponential or power-law.4, 5, 23, 44 A user could simply predict its contacts with another user in the future
by estimating their next ICT, based on their maintained contact history in the past.

However, our studies over realistic opportunistic mobile network traces collected at university campus (MIT Reality,12

UCSD28) and conference site (Infocom5) observe that the characteristics of user contacts are practically heterogeneous
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Figure 1. Transient user contact patterns

over time and differentiated by their occurrence time and location. For example, as shown by Figure 1(a), over 50% of user
contacts in the MIT Reality trace happen between 12PM to 4PM at a daily basis, while only 7% of contacts are observed
between 10PM to 7AM.

The accuracy of contact prediction builds on appropriate formulation of transient user contact patterns. We formulate
users’ daily contact processes as alternative appearance of “on-periods” and “off-periods”. As shown in Figure 1(b) where
each arrow indicates a contact and 𝐿on,𝑖(𝐿off,𝑖) denotes the length of the 𝑖-th on-period (off-period), on-periods and off-
periods are divided based a ICT threshold (𝑇on), and an ICT longer than 𝑇on indicates the beginning of an off-period. This
formulation considers that most of contacts happens during on-periods with short ICTs, and only few contacts can be found
during off-periods at random. We experimentally verified that the lengths of on-periods and off-periods follow Gaussian
distribution, and are able to update the parameters of these distributions online.

Therefore, as shown in Figure 1(c), the next contact between two mobile users could only happen before the delay
constraint 𝑡𝑒 of data dissemination in one of the following two cases: a) the current time 𝑡𝑐 is within an ongoing on-period,
and b) 𝑡𝑐 is within an ongoing off-period but the next on-period will start before 𝑡𝑒. The contact probability during the
transient time period [𝑡𝑐, 𝑡𝑒) can then be computed based on the distributions of the on-period and off-period lengths, which
are described by their Probability Density Functions (PDFs) 𝑓on(𝑡) and 𝑓off(𝑡), as follows:

ℙ(𝑡𝑛 ≤ 𝑡𝑒) =

∫ 𝑇

0

𝑝𝑡(𝑡)𝑓on(𝑡+ 𝑡𝑐 − 𝑡𝑙𝑠)𝑑𝑡+

∫ 𝑇

0

𝑝𝑡(𝑇 − 𝑡)𝑓off(𝑡+ 𝑡𝑐 − 𝑡𝑙)𝑑𝑡, (1)

where 𝑡𝑛 is the time when the next contact happens, 𝑝𝑡(𝑡) is the transient PDF of the ICT distribution during on-periods,
and 𝑡𝑙𝑠 and 𝑡𝑙 are the starting and ending times of the last on-period before 𝑡𝑐. The two terms in Eq. (1) correspond to the
two cases of user contacts shown in Figure 1(c), respectively.

4. TRANSIENT CENTRALITY

Built on the above method of transient contact prediction, we first develop analytical centrality metrics which vary over
time and describe the importance of a specific mobile user in facilitating communication among other users.

4.1 Problem Formulation

We formulate opportunistic contacts as a network contact graph (NCG) 𝐺 = (𝑉,𝐸), where the stochastic contact process
between any two warfighters 𝑖, 𝑗 ∈ 𝑉 is modeled as an edge 𝑒𝑖𝑗 ∈ 𝐸, named an opportunistic link. We define warfighters
𝑖, 𝑗 as 𝑘-hop contacted neighbors if the length of the shortest path between 𝑖 and 𝑗 on NCG is 𝐿(𝑖, 𝑗) = 𝑘, and the 𝑘-hop
contacted neighborhood of a warfighter 𝑖 on NCG as 𝒩 (𝑘)

𝑖 = {𝑗∣𝐿(𝑖, 𝑗) ≤ 𝑘}. Note that, any user 𝑖 ∈ 𝑉 can only obtain

information about contacts within 𝒩 (1)
𝑖 via its own short-range radios, but can obtain such information in a larger scope

by exchanging information with other users upon contacts.



4.2 Multi-hop Opportunistic Connectivity

We first formulate the multi-hop opportunistic communication between the contacted neighbors of a warfighter, by ag-
gregating his contact characteristics over multiple opportunistic links. Existing research has been focused on formally
exploring the topological features of NCG,6, 34, 36 but has not explicitly investigated multi-hop communication through
opportunistic links.

We defined a 𝑘-hop path on the NCG as an “opportunistic path”, and the weight of a 𝑘-hop opportunistic path 𝑃𝐴𝐵

connecting users 𝐴 and 𝐵 with linkwise contact rates {𝜆1, 𝜆2, ..., 𝜆𝑘} as the probability that data is transmitted from 𝐴to
𝐵 via 𝑃𝐴𝐵 within time 𝑇 . By assuming the ICTs on all opportunistic links as exponentially distributed, we computed such
weight in19 from the PDF convolutions of random variables indicating linkwise ICTs as

𝑝𝐴𝐵(𝑇 ) =

∫ 𝑇

0

∑𝑘

𝑖=1
𝑎
(𝑘)
𝑖 𝑝𝑖(𝑥)𝑑𝑥 =

∑𝑘

𝑖=1
𝑎
(𝑘)
𝑖 ⋅ (1− 𝑒−𝜆𝑖𝑇 ), (2)

where 𝑝𝑖(𝑥) = 𝜆𝑖𝑒
−𝜆𝑖𝑥 is the exponential PDF, and 𝑎(𝑘)𝑖 =

∏𝑘
𝑗=1,𝑗 ∕=𝑖

𝜆𝑗

𝜆𝑗−𝜆𝑖
.

We further take the transient user contact patterns into account. Intuitively, the temporal heterogeneity of contact pat-
terns reduces an opportunistic path’s communication capability, because data can only be transmitted through consecutive
opportunistic links during the overlapping part of their on-periods. The more their on-periods overlap, the more likely the
weight of an opportunistic path can still be evaluated using Eq. (2).

To determine such overlap, we will take the distribution of starting times of on-periods into account. For a 𝑘-hop
opportunistic path with random variables 𝑡𝑖𝑠 and 𝐿𝑖 indicating the starting time and length of the on-period of its 𝑖-th
opportunistic link, the cumulative on-period over all the 𝑘 opportunistic links is [𝑋,𝑌 ], where 𝑋 = max𝑖{𝑡𝑖𝑠} and 𝑌 =

min𝑖{𝑡𝑖𝑠 + 𝐿𝑖}. The characteristics of 𝑋 and 𝑌 are described by their PDFs as 𝑓𝑋(𝑥) =
∏𝑘

𝑖=1 𝑓
(𝑖)
𝑠 (𝑥) and 𝑓𝑌 (𝑦) =

1 − ∏𝑘
𝑖=1(1 − 𝑓

(𝑖)
𝑠 (𝑥) ⊗ 𝑓

(𝑖)
𝐿 (𝑥)), where 𝑓 (𝑖)

𝑠 (𝑥) and 𝑓
(𝑖)
𝐿 (𝑥) are the PDFs of 𝑡𝑖𝑠 and 𝐿𝑖, and ⊗ indicates convolution

between functions. We then convert 𝑓𝑋(𝑥) and 𝑓𝑌 (𝑦) to truncated distributions10 within the given time period [𝑡𝑐, 𝑡𝑒) for
data access.

Next, we convert the linkwise contact rates of an opportunistic path with respect to [𝑋,𝑌 ], so as to compute a lower
bound of the communication capability provided by this path following Eq. (2). For an opportunistic link with an on-
period [𝑥𝑜, 𝑦𝑜] and contact rate 𝜆𝑜 within [𝑥𝑜, 𝑦𝑜], its converted contact rate 𝜆𝑐 is determined by the difference between
[𝑥𝑜, 𝑦𝑜] and [𝑋,𝑌 ]. This difference could be efficiently measured in various ways, for example, the Kullback-Leibler (KL)
divergence.24Since both 𝑥𝑜 and 𝑦𝑜 are random variables, we measure such difference using the Kullback-Leibler (KL)
divergence, i.e., 𝜆𝑐 = 𝜆𝑜 ⋅ exp(−(𝐷𝐾𝐿(𝑓𝑋(𝑥), 𝑓𝑥𝑜(𝑥)) +𝐷𝐾𝐿(𝑓𝑌 (𝑦), 𝑓𝑦𝑜(𝑦))), where 𝑓𝑥𝑜(𝑥) and 𝑓𝑦𝑜(𝑦) are the PDFs
of 𝑥𝑜 and 𝑦𝑜 respectively, and

𝐷𝐾𝐿(𝑓𝑋(𝑥), 𝑓𝑥𝑜(𝑥)) =

∫ ∞

−∞
ln

(
𝑓𝑋(𝑥)

𝑓𝑥𝑜(𝑥)

)
𝑓𝑋(𝑥)𝑑𝑥.

4.3 Centrality Metric Design

We develop a centrality metric in a probabilistic manner, such that the centrality value of a user 𝑖 at time 𝑡 is defined as

𝐶
(𝑘)
𝑖 (𝑡) =

∑
𝑗∈𝒩 (𝑘)

𝑖

𝑃𝑖𝑗(𝑡), (3)

where the user 𝑖 maintains the information about opportunistic paths to its 𝑘-hop contacted neighbors within 𝒩 (𝑘)
𝑖 , and

𝑃𝑖𝑗(𝑡) indicates the weight of the opportunistic path between 𝑖 and 𝑗. 𝐶(𝑘)
𝑖 (𝑡) hence indicates the expected number of

warfighters within 𝒩 (𝑘)
𝑖 whose communication would be facilitated by 𝑖 at time 𝑡.

To verify the advantage of our centrality metric design, we compare our proposed metric with two baselines: i) the
ego-centric betweenness metric,15 and ii) the CCP centrality metric developed in our previous work18 based on cumulative
contact patterns. The evaluation is conducted through experiments of opportunistic data forwarding between random
sources and destinations over the Infocom trace,5 using Compare-and-Forward11 as the relay selection strategy and different
centrality metrics to evaluate the relays’ utilities. Figure 2 shows that our proposed centrality metric significantly improves
the data delivery ratio.



Figure 2. Comparison of data forwarding performance using different centrality metric designs
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Figure 3. Transient community characterization: (a) local view of the NCG, (b) community characterization based on similarity of
on-periods.

Scope of centrality calculation. Centrality calculation in a larger network scope increases the effectiveness of characteriz-
ing the warfighters’ social dynamics, at the cost of higher overhead of maintaining their contact information. As the future
work, we propose to analytically study such tradeoff, and hence provide the military network operators with the flexibility
to balance between them according to the specific network requirements. In particular, our proposed formal analysis will
build on the spectral graph theory.7 When the scope of centrality calculation increases from 𝑘 to 𝑘 + 1, let 𝑇𝑘 be the time
needed for the 𝑘-hop contacted neighbors of a warfighter 𝑖 to contact another (𝑘+1)-hop contacted neighbor of 𝑖, we have

ℙ(𝑇𝑘 ≤ 𝑡) ≥ (1− 𝑒𝑠ℎ𝐺𝑡), (4)

where 𝑠 = ∣𝒮∣ = ∣𝒩 (𝑘+1)
𝑖 ∖ 𝒩 (𝑘)

𝑖 ∣, and ℎ𝐺 is the edge expansion20 of 𝒮. We will further substantiate this analysis by
applying Eq. (4) to derive the lower bounds of centrality fluctuations and maintenance overhead when 𝑘 changes. The
tightness of these bounds will also be analytically investigated.

5. TRANSIENT COMMUNITY

Social dynamics among mobile users can also be characterized by their social communities, each of which consist of users
that frequently contact each other. In this section, we investigate the impact of transient contact patterns on the social
community structure among users, and further propose methods to analytically characterize such transient communities.

Conventional wisdom detected communities in weighted29 and unweighted networks,32, 35 and considers communities
as fixed over time. However, the communities in practical DIL environments is usually dynamic due to the heterogeneity of
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Figure 4. Evaluation of transient community characterization: (a) percentage of users involved in communities; (b) number of associated
communities for each user

users’ transient contact patterns, and a user may belong to different communities during different time periods. For exam-
ple, a user may switch between multiple squads when executing different tactical missions. Ignorance of such community
dynamics leads to false mixture and false separation of transient communities. First, two transient communities may be
incorrectly mixed when their cumulative contact patterns are similar. Second, a transient community may be incorrectly
divided if the NCG within the community is weakly connected. Recent research efforts30, 31 strive to capture the temporal
community changes in mobile environments, but are only based on unweighted network snapshots and did not associate
the community evolution with its time and location contexts. They are hence incapable of addressing the above problems.

Our developed approach, instead, aims to classify warfighters with the similar transient contact patterns together. For
two pairs of warfighters with on-periods 𝒯1 = [𝑡11, 𝑡

1
2] and 𝒯2 = [𝑡21, 𝑡

2
2] respectively, we define their similarity using Jaccard

index as

𝑆(𝒯1, 𝒯2) = ∣𝒯1
∩ 𝒯2∣

∣𝒯1
∪ 𝒯2∣ , (5)

where ∣𝒯 ∣ measures the length of a time period 𝒯 . Transient communities are then characterized by classifying pairs of
warfighters with the distance measure specified in Eq. (5). In practice, since the starting and ending times of on-periods are
random variables, it is non-trivial to calculate the similarity in Eq. (5). An intuitive calculation is to replace these random
variables with deterministic values of their means, and we propose to further develop analytical methods to compute such
similarity with respect to the probabilistic properties of 𝒯1 and 𝒯2. A viable approach is to study the probabilities of 𝑡 ∈ 𝒯1
and 𝑡 ∈ 𝒯2, where 𝑡 is a random sample drawn from a uniform population.
Figure 4 demonstrated that our proposed approach could efficiently address the problems of false mixture and false

separation. First, the two transient communities in Figure 4 could be correctly identified from their differences of transient
contact patterns. Second, although user 𝐵 is weakly connected to 𝐷 and 𝐸 only via 𝐶, our approach avoids the sepa-
ration of Community 1 into two parts. To further evaluate the effectiveness of transient community characterization, we
evaluate our approach against the existing community detection methods: 𝑘-clique32 and AFOCS.31 The results in Figure
4 show that our proposed method incorporates the majority of users into transient communities, and is also efficient to
detect overlapping communities. Therefore, warfighters’ transient associations to multiple communities can be precisely
characterized.

Based on these results, we plan to further improve the effectiveness of transient community characterization by adopting
the Bayesian non-parametric approach to the above classification algorithm, so as to address the over- and under-fitting
problems of traditional parametric unsupervised learning algorithms such as 𝑘-means26 or 𝑘-nearest-neighbor.27

6. CONCLUSIONS

In this paper, we present analytical algorithms andmethods investigating the social dynamics amongmobile users in tactical
opportunistic mobile networks, which are implicitly represented by the opportunistic contact patterns among mobile users.



We develop quantitatively metrics formulating various sociological metrics including centrality and community, and in
particular, their dynamic fluctuations over time. The effectiveness of such investigations has been validated via extensive
trace-driven experiments. In the future, we plan to further develop adaptive mobile networking techniques based on such
investigation and formulation of social dynamics in opportunistic mobile networks.
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