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ABSTRACT

Mobile phone sensing is a critical underpinning of pervasive mobile computing, and is one of the key factors for improv-
ing people’s quality of life in modern society via collective utilization of the on-board sensing capabilities of people’s
smartphones. The increasing demands for sensing services and ambient awareness in mobile environments highlight the
necessity of active participation of individual mobile users in sensing tasks. User incentives for such participation have
been continuously offered from an application-centric perspective, i.e., as payments from the sensing server, to compensate
users’ sensing costs. These payments, however, are manipulated to maximize the benefits of the sensing server, ignoring
the runtime flexibility and benefits of participating users. This paper presents a novel framework of user-centric incentive
design, and develops a universal sensing platform which translates heterogenous sensing tasks to a generic sensing plan
specifying the task-independent requirements of sensing performance. We use this sensing plan as input to reduce three
categories of sensing costs, which together cover the possible sources hindering users’ participation in sensing.

1. INTRODUCTION

Smartphones, which are nowadays the key device in mobile computing and communication architecture, are programmable
and equipped with a rich set of on-board sensors including GPS, accelerometer, gyroscope, microphone, camera, etc.
Collective utilization of these sensors enables monitoring of humans’ activities and surrounding environments, and opens
the door for sensing applications in various domains, including environmentalmonitoring,13, 16, 23, 28 social interaction,8, 14, 21

healthcare,4, 9, 22 and transportation.5, 15, 26

These mobile phone sensing applications rely on participation of individual smartphone users. Participating users
transmit their sensed data via 3G or WiFi communications to a sensing server residing in the remote cloud, in which
the sensed data is accumulated, processed, and published. Most designs of mobile phone sensing assume voluntary user
participation,3, 8, 13 which is unrealistic in practice. A sensing task incurs a heterogeneous variety of costs, which makes a
user unwilling to contribute her smartphone’s local resources. We classify such sensing costs into two categories: i) energy
consumption for generating, processing, and transmitting the sensed data, and ii) local storage occupied by the sensed data.
Users may exhibit various levels of tolerance to different categories of sensing costs according to the specific sensing task,
environmental context, and system resource conditions. Such heterogeneity hence makes it challenging to maximize user
benefits and reduce their reflectance against mobile sensing tasks via modeling, analyzing, and fulfilling users’ demands
and preferences.

A straightforward solution to user incentive design is to offer payments from an application-centric perspective that
compensate users’ sensing costs.11, 29 This method, however, does not prioritize the benefits of participating users, and is
incapable of effectively stimulating user participation in practice. The users’ only way of receiving payments is to submit
their sensing plans as bids to an auction, which is operated by the sensing server in a centralized fashion. The server takes
advantage of users’ competition for server’s payments, and receives the sensed data with the minimum amount of payments
to users. A participating user, however, is disallowed to change her sensing plan at runtime after having made a deal with
the server.

In this paper, we present a novel user-centric design of user incentives in participatory mobile sensing applications. In
response to the above challenges, the fundamental idea of this design is to enable a user to express her generic tolerance
to sensing costs by flexibly adjusting her preferred Level of Participation in Sensing (LoPS) at runtime, and further to
exploit reduction of sensing costs with respect to a user’s LoPS as the user’s incentive. The key insight behind this counter-
intuitive design is the selfish but rational nature of human beings. A user’s willingness to participate in sensing is negatively
proportional to her sensing costs, and a user consents to participate in a sensing task which is cost-free even if no incentive
is provided at all. The lower a user’s LoPS is, the more sensing costs are saved to retain the user’s participation in sensing.



Figure 1. User-centric incentive framework for participatory mobile phone sensing

Moreover, the sensing costs of a user are closely correlated with the sensing performance provided by the user. More
dedicated participation in sensing improves sensing performance, but also incurs higher sensing costs. For example, a user
consumes more energy to report her current GPS location at a high frequency for better accuracy of tracking her movement.
Our design will balance between a user’s sensing costs and the sensing performance provided by the user, based on the
user’s specified LoPS.

The rest of this paper is organized as follows. Section 2 briefly describes the related work. Section 3 describes our
design at a high level. Section 4 and 5 present the details of our proposed universal sensing platform and sensing incentive
design. Section 6 concludes the paper.

2. RELATEDWORK

A large variety of mobile systems have been developed to implement sensing functionality for environmental monitor-
ing,16, 28 social interaction,14, 21 healthcare,9, 22 and transportation.26, 30 The sensed data was initially used to monitor the
noise level16 or city traffic conditions.26 Later studies further employ classification and supervised learning techniques to
infer from raw sensed data the users’ contexts and behavior patterns,10, 17 which are used to facilitate users’ social inter-
action.14, 21 Mobile phone sensing also aims to improve the health status of human beings.9, 18, 22 However, each scheme
is limited to improve the accuracy, timeliness, and reliability of its specific sensing application. A generic framework for
application-independent sensing is missing, but important. Most schemes assume unlimited local resources and voluntary
user participation, which are unrealistic in practice, either.

The universal sensing platform, the key component of our user-centric incentive design, is partially inspired by existing
work on application-independentprogramming andmonitoring framework for mobile phone sensing.3, 10, 12 Kang et al. in10

realized generality among sensing tasks via interaction with the remote cloud, and Das et al.3 facilitated the development
of sensing applications by encapsulating sensing software components as generic executable binaries. However, most
schemes aim to improve the sensing performance or reduce the overhead of sensing system development and execution.
None of them focuses on user incentive design nor considers runtime support of user flexibility in sensing tasks.

Our incentive framework is closely related to the few prior work on incentive design for mobile phone sensing.11, 29

In,11 Lee and Hoh designed a reverse auction based incentive mechanism, where users sell their sensed data to the sensing
server with users’ claimed bid prices. Yang et al.29 improved this design by ensuring the auction truthfulness. However,
both schemes aim to maximize the benefits of the sensing server, ignoring users’ benefits and flexibility when participating
in sensing. A user’s participation in sensing was also over-simplified as his/her sensing time, which is insufficient to depict
the practical user behaviors in heterogeneous sensing tasks.

3. OVERVIEW

Our new design is demonstrated by the following example. In Figure 1, each user independently determines her LoPS
after having received the sensing task. User 𝐴 has her smartphone fully charged, and is hence willing to provide sensed
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Figure 2. The architecture of user-centric incentive framework

data with high quality. In this example, our design controls the energy consumption of 𝐴’s within 30%, which retains 𝐴’s
further participation in sensing. In contrast, user 𝐵 stored a large amount of personal documents on her smartphone. 𝐵
only has 50% of local storage available for caching sensed data, and expects a merely 60% chance of preventing her private
personal information from being leaked in sensing tasks. 𝐵 hence opts for a low LoPS. Our design reduces the sensing
costs, say, to be below 20% to ensure 𝐵’s normal use of her smartphone, and 𝐵 is able to stop participating in sensing at
any time to avoid depletion of her local resources or risk of privacy breach.

4. UNIVERSAL SENSING PLATFORM

Our incentive framework, as illustrated in Figure 2, is deployed as a middleware between the OS and sensing applications
at a user’s smartphone, and fundamentally alters the way sensing applications are operated. Instead of directly receiving
instructions from the sensing server via the smartphone radio,8, 14, 16, 21 sensing applications follow the instructions from
our incentive framework, which realizes users’ runtime flexibility of maximizing their own benefits in sensing tasks.

The universal sensing platform, a key component of such framework, takes as input the requirements of a sensing
task and a user’s LoPS, and outputs a task-independent sensing plan to balance between sensing costs and performance.
This sensing plan enforces a user’s runtime flexibility in a sensing task by denoting the reduced requirement of sensing
performance to be satisfied in practice, which is determined based on the smartphone’s resource conditions and user’s
LoPS. It is then used as a unified instruction to reduce various categories of sensing costs.

The main challenge of designing this platform is the generality of the sensing plan over heterogeneous sensing tasks.
Conventional wisdom2,22, 26, 28 focuses on system design for supporting specific sensing tasks. Some schemes suggest to
realize generality among sensing tasks via interaction with the remote cloud,10 or facilitate the development of sensing
applications by encapsulating sensing software components as generic executable binaries.3 However, users’ demands,
preferences, and benefits are generally ignored by these schemes, which are hence inapplicable to our framework.

We tackle this challenge via generic quantification of the requirements of sensing performance specified by heteroge-
neous sensing tasks. The sensing plan is then generated from such generic performance requirements without taking the
specifics of a sensing task into account. This sensing platform consists of the following components:

∙ User interface: It displays the current conditions of the smartphone’s local resources to the user, and receives user’s
input about her preferred LoPS.



∙ Task quantifier: It receives the specifications of a sensing task from the sensing server, and quantifies the task’s
requirements of sensing performance in a generic fashion.

∙ Resource monitor: It adaptively monitors the up-to-date conditions of the smartphone’s local resources correspond-
ing to various categories of sensing costs.

∙ Sensing planner: It produces the generic sensing plan based on inputs from the above three components.

The last three components form the core of the universal sensing platform. We will describe our design of these
components in more detail in the rest of this section.

4.1 Task Quantifier

Generic quantification of the requirements of sensing performance is challenging due to the heterogeneity of sensed data.
For numerical data such as GPS5, 26 or accelerometer4, 14 readings, sensing accuracy is ensured by a sufficiently high
sensing frequency. For rich-text data such as sound,13, 23 photo,28 or video clip,2 the quality of sensed data is determined
by the resolution of audio/video recording.

We tackle such heterogeneity via a dimensionless metric, which measures the relative quality of sensed data that sat-
isfies the requirement of sensing performance, compared to the maximum quality that the sensing device can provide. In
particular, the actual quality of sensed data improves in a non-linear manner when the requirement of sensing performance
increases, and such non-linear relationship is task-dependent. For example, the maximum sampling frequency of 3-D ac-
celerometer equipped by iPhone 4 is 100Hz, but a sampling frequency of 50Hz will be enough for accurate characterization
of the user movements in most cases. Therefore, we quantify the performance requirement of 50Hz as close to 1 instead
of 50Hz/100Hz=0.5. Similarly, the maximum resolution of the front camera of iPhone 4 is 5 megapixels, but a photo taken
with a resolution of 1 megapixels may be enough for recognizing the colors of clothes that people in the photo are wearing.

The key question is then how to analytically formulate such non-linear relationship. We formulate such non-linear
relationship as a 𝑘-order polynomial:

𝑚 = 𝑓(𝑝,d) =

𝑘∑

𝑖=0

𝑎𝑖(d)𝑝
𝑖, (1)

where 𝑚 is the dimensionless metric, 𝑝 indicates the original requirement of sensing performance, and d indicates the
sensed data. For numerical data, d is a scalar representing the current sensor reading. For rich-text data, d is a feature
vector representing data characteristics.

4.2 Resource Monitor

We then monitor the remaining percentage of smartphone battery as an indicator of energy consumption, and to take all
the storage media of smartphone into account when evaluating the percentage of local storage occupation. The major
challenge is that the smartphone OS only provides system APIs for such resource monitoring to user applications. For
example, the Android OS broadcasts system event notifications if the phone battery or local storage is depleted, and a
notification can be received by any user application via its broadcast receiver. However, such notification is difficult to
reach a middleware which is deployed within the Android application framework and is not executed as an instance of
the Davlik virtual machine providing the system APIs. To tackle this challenge, we develop efficient resource monitoring
algorithms at the OS level. These algorithms are implemented at the Android application framework and directly interact
with the Android runtime library. In contrast, Other mobile OS such as iOS or Windows mobile poses various limitations
on the system customizability. For example, iOS does not provide open accessability to the OS kernel, and forbids any
user application from running at background as system services.

4.3 Sensing Planner

A generic sensing plan specifies the requirement of sensing performance to be satisfied in practice with the dimensionless
metric described in Section 4.1, and is calculated by a function𝑚′ = 𝑓(𝑚, 𝑝, 𝑟)where𝑚 indicates the original requirement
of sensing specified by a sensing task, 𝑝 is the user’s LoPS, and 𝑟 indicates the current conditions of system resources.
Both 𝑚′ and 𝑚 are specified with the dimensionless metric. For example, suppose we have 𝑚 = 0.8 for a sensing



task which requires a user’s smartphone to report GPS readings every second. If 𝑟 = 80% and 𝑝 = 0.8, we may have
𝑚′ = 𝑓(𝑚, 𝑝, 𝑟) = 0.6, which is lower than the original performance requirement (𝑚) due to the reduced LoPS of user.

Having received such a sensing plan, the various cost reduction components, as illustrated in Figure 2, minimize the
different categories of sensing costs while satisfying the performance requirement specified by𝑚′.

We interpret the user’s LoPS as her tolerance to sensing costs. In particular, for a user’s LoPS 𝑝 ∈ [0, 1], 𝑝 = 1 indicates
that a user can tolerate the sensing costs corresponding to the original requirement (𝑚) of sensing performance, and 𝑝 = 0
indicates that a user does not allow any local resource to be consumed by a sensing task. Based on such interpretation, we
plan to further substantiate the design of sensing planner in our future work by addressing the following research issues:

∙ Sensing planning: We develop a probabilistic framework for determining a sensing plan. Our basic idea is to
generate𝑚′ as a random sample drawn from a population of one-sided truncatedGaussian distribution∗ 𝒩𝑡(𝜇, 𝜎

2;𝜇),
where 𝜇 = 𝑚 ⋅ 𝑝 and 𝜎2 = 𝑔(1 − 𝑟). When 𝑟 =100%, we have 𝑔(0) = 0, and the value of 𝑚′ is deterministically
set as𝑚 ⋅ 𝑝. Otherwise,𝑚′ is having a higher probability to be smaller than𝑚 ⋅ 𝑝 when 𝑟 is decreasing, and we plan
to further analyze the impact of different forms of the function 𝑔(⋅) on the effectiveness of sensing planning.

∙ Dynamic adaptation: The sensing plan needs to be adaptive to the dynamic changes of system resource conditions,
so as to avoid resource depletion. When 𝑟 quickly decreases, we enable the sensing planner to automatically reduce
𝑚′ before the user reacts and manually reduces her LoPS. Obviously, this adaptation can not be efficiently supported
by the above probabilistic framework, in which 𝑟 is only used to determine 𝜎2 in the probabilistic population drawing
𝑚′. Instead, we plan to devise optimization techniques which ensure that 𝑚′ is appropriately adjusted to mitigate
system resource consumption. When the value of 𝑟 is small, reduction of 𝑟 leads to more decrease of𝑚′.

5. SENSING INCENTIVES

Built on the above universal sensing platform, in this section we present our methods of exploiting the reduction of various
types of sensing costs as user incentives for participatory mobile sensing applications.

5.1 Energy Saving

A sensing task consumes the limited battery power of users’ smartphones. We take as input the generic sensing plan
generated by the universal sensing platform, and reduce the energy consumption of sensing with respect to the requirements
of sensing performance specified by the sensing plan.

The key insight behind energy saving is that users’ sensor readings are correlated in time and such correlation indicates
redundancy among sensed data. Some sensor readings are unnecessary and can be omitted to reduce the energy consump-
tion of sensing. For example, the current GPS location of a user is correlated with the user’s GPS locations in the past. We
exploit the temporal correlation between sensor readings of a user in different times, so as to adaptively reduce the user’s
sensing frequency. The requirement of sensing performance specified by the generic sensing plan is satisfied by controlling
the amount of redundancy being eliminated.

Our approach to such energy saving is based on our previous work on Hidden Markov Model (HMM) formulations.6

We assume that a user obtains sensor readings 𝑠𝑡 in slotted time 𝑡. The temporal variation of 𝑐𝑡 = 𝑓(𝑠𝑡−1, 𝑠𝑡) will be
formulated based on HMMs. Being different from a normal Markov process which consists of a discrete state space
S = {𝑠1, 𝑠2, ..., 𝑠𝑁}, a state transition probability matrixA = {𝑎𝑖𝑗} ∈ ℝ

𝑁×𝑁 , and an initial state distributionΠ = {𝜋𝑖},
a HMM hides its states behind a set of observation PDFs B = {𝑏𝑖(𝑥)} where each 𝑏𝑖(𝑥) is associated with a state 𝑠𝑖. A
HMM ℋ = (S,A,B,Π) calculates the occurrence probability of an observation sequence O = 𝑜1𝑜2...𝑜𝐿 with the state
sequence I = 𝑖1𝑖2...𝑖𝐿 as ℙ(O∣I,ℋ) =

∏𝐿
𝑘=1 𝑏𝑖𝑘(𝑜𝑘).

We bridge the gap between continuous values of 𝑐𝑡 and discreteMarkovian states using the observation PDFs of HMMs,
and to represent the variation of 𝑐𝑡 using a number (𝑁 = ∣S∣) of “correlation stages”. The 𝑘-th correlation stage indicates a
specific value range of 𝑐𝑡 ∈ [(𝑘− 1)/𝑁, 𝑘/𝑁 ], and is associated to a Markovian state 𝑠𝑘 via the corresponding observation
PDF 𝑏𝑘(𝑥). Variations of 𝑐𝑡 are hence described in the form of transitions among Markovian states. We use Gaussian

∗Suppose 𝑋 ∼ 𝒩 (𝜇, 𝜎2) has a Gaussian distribution and lies within the interval (−∞, 𝑇 ], then 𝑋 conditional on 𝑋 ≤ 𝑇 has an
one-sided truncated Gaussian distribution𝒩𝑡(𝜇, 𝜎

2;𝑇 ).



Figure 3. Intentional caching based on Network Central Locations (NCLs)

distribution as the form of observation PDFs and characterize the variation of 𝑐𝑡 by adaptively re-estimating the parameters
of observation PDFs at runtime.

The reduction of sensing cost then builds on predictions of temporal correlation between sensor readings on both
steady-state and transient-state time scales, being supported by the above HMM formulation. First, steady-state prediction
estimates the cumulative correlation between sensor readings over a long period of time in the future as

𝑐𝑎𝑣𝑔 =

𝑁∑

𝑖=1

𝜓𝑖 ⋅ 𝜇𝑖, (2)

where𝜓𝑖 = ℙ(𝑠𝑖∣ℋ) is the stationary distribution of a HMMℋ = (S,A,B,Π), and 𝜇𝑖 is the mean value of the observation
PDF 𝑏𝑖(𝑥) ∈ B. Second, transient-state prediction estimates the correlation 𝑐𝑡+1 in the next time slot in the future.
Suppose the most recent sequence of observed correlations of ℋ is C = 𝑐1𝑐2...𝑐𝐿, we are able to find the best state
sequence I = 𝑖1𝑖2...𝑖𝐿 which maximizes ℙ(O∣I,ℋ), using the Viterbi algorithm.20 𝑐𝑡+1 is then estimated by a probabilistic
distribution as

𝑝𝑡+1(𝑥) =

𝑁∑

𝑗=1

ℙ(𝑞𝑡+1 = 𝑠𝑗 ∣𝑞𝑡 = 𝑖𝐿) ⋅ 𝑏𝑗(𝑥), (3)

where 𝑞𝑡 and 𝑞𝑡+1 indicate the current state ofℋ at time 𝑡 and 𝑡+ 1, respectively.

5.2 Local Storage Conversation

The next important category of sensing costs is the local storage space of users’ smartphones that is occupied to locally
cache the sensed data before sending the data to the sensing server. A large variety of sensing applications require peer-to-
peer collaboration among sensing users, who cooperatively access the sensed data being cached from each other for better
sensing efficiency12, 24 or more complicated sensing objectives such as environmental context inference.1, 2 Sensed data can
be pushed by the data source to its caching locations, from where the data can be pulled (queried) by other users with less
delay.

The key insight behind conservation of smartphones’ local storage is that users involved in collaborative sensing exhibit
skewed patterns of accessing the sensed data cached by each other. Only a small portion of popular data is frequently
accessed, and can be intentionally cached to ensure timely response to user queries. For example, sensor readings are
exchanged among users for inferring their environmental contexts19, 24, 25, 27 or social relationship with each other.8, 12 In
these scenarios, the sensed data from few users, such as a user passing the points of interest in urban sensing or an active
participant in a social party, is likely to be more frequently accessed. We develop cooperative caching techniques which
build on such skewness of data access patterns, and to analytically answer the questions of i) where to cache, ii) how
many to cache.

We develop distributed methods which dynamically determine the most appropriate locations for caching sensed data,
so as to answer the above questions. Built on our previous work,7 our basic idea is to incorporate data popularity into NCL
selection as shown in Figure 3, so as to determine the caching locations for each data item according to its popularity. The
more popular a data item is, the more copies of this data item are cached at different NCLs to satisfy the requirements of
sensing performance.



Distributed caching framework: As a prerequisite, we develop a practical caching framework enabling distributed
NCL selection among users themselves with local network knowledge. Each user autonomously calculates her own cen-
trality and broadcasts this value to others. After a specific broadcasting period, each user autonomously selects the users
with the 𝐾 highest centrality values as the central users representing NCLs.

The key problem of distributed NCL selection is the possible inconsistency of NCLs selected by different users, due to
the uncertainty of opportunistic data transmission and the subsequent heterogeneity of local network knowledge available
at different users. Assuming that the information of a user 𝐶 with high centrality has a probability 𝑝 to be received by user
𝐴 but not 𝐵, there is a probability no larger than 1− (1− 2𝑝(1− 𝑝))𝐾 for 𝐴 and 𝐵 to have inconsistent NCL selections.

Data-specific caching locations: Instead of employing a fixed number (𝐾) of NCLs, we adaptively vary 𝐾 for each
data item according to its popularity, by developing a data-specific NCL selection metric and taking both data popularity
and users’ LoPS into account. First, we enable a central user to calculate the popularity of a data item as the probability that
this data item will be queried again in the future, based on the past 𝑘 queries to this data item it has received. Second, the
more popular a data item is, the more NCLs are selected for caching this data, and data with high popularity is prioritized
to be cached at users with high centrality.

In our design, users need to coordinate with each other in a fully distributed fashion, so as to estimate the current
amount of data copies being cached and make their own caching decisions. Such distributed coordination, however, is
challenging due to the opportunistic connectivity between caching users. We address this challenge by developing a
probabilistic framework. Our basic idea is to first assume homogeneous data access patterns in a global network scope, and
then develop statistical models to emulate the temporal and spatial randomness of such patterns. Based on such models,
each user independently estimates the number of data copies cached in the network. This estimation is further amended
every time who two caching users contact, during which the caching locations are adaptively adjusted.

Workload balancing: Central users may quickly consume their local storage and are hence unwilling to continue their
participation into sensing. First, such caching workload has been implicitly balanced among central users by our proposed
data-specific NCL selection, which decreases the centrality of a user with a low LoPS. Second, we adaptively migrate the
functionality of a central user to another user in the network. In practice, an existing central user 𝐶 is responsible for
selecting the new central user 𝐶′ when 𝐶 is low in storage. This migration will happen when 𝐶 contacts 𝐶 ′ and transfers
its cached data to 𝐶′.

6. CONCLUSIONS

This paper presents a design of an incentive framework for participatory mobile phone sensing from a user-centric perspec-
tive, which motivates users to participate in sensing tasks by granting users the runtime flexibility of maximizing their own
benefits. Such new design concept makes a fundamental shift from conventional payment-based user incentives offered
from an application-centric perspective, and completely removes the control of the sensing server over users. It attempts
to offer incentives as users’ runtime flexibility of adjusting their participation in sensing and reducing their sensing costs.
In the future, we plan to further perform extensive experiments evaluating the effectiveness of such user incentive design
in realistic mobile sensing applications with involvement of actual mobile users.
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