
Available online at www.sciencedirect.com
www.elsevier.com/locate/jss

The Journal of Systems and Software 81 (2008) 1663–1680
Specification, decomposition and agent synthesis for
situation-aware service-based systems

S.S. Yau *, H. Gong, D. Huang, W. Gao, L. Zhu

Arizona State University, Tempe, AZ 85287-8809, USA

Available online 29 February 2008
Abstract

Service-based systems are distributed computing systems with the major advantage of enabling rapid composition of distributed appli-
cations, such as collaborative research and development, e-business, health care, military applications and homeland security, regardless
of the programming languages and platforms used in developing and running various components of the applications. In dynamic ser-
vice-oriented computing environment, situation awareness (SAW) is needed for system monitoring, adaptive service coordination and
flexible security policy enforcement. To greatly reduce the development effort of SAW capability in service-based systems and effectively
support runtime system adaptation, it is necessary to automate the development of reusable and autonomous software components,
called SAW agents, for situation-aware service-based systems. In this paper, a logic-based approach to declaratively specifying SAW
requirements, decomposing SAW specifications for efficient distributed situation analysis, and automated synthesis of SAW agents is
presented. This approach is based on AS3 calculus and logic, and our declarative model for SAW. Evaluation results of our approach
are also presented.
� 2008 Elsevier Inc. All rights reserved.

Keywords: Service-based systems; Situation awareness; Decomposition; Agent synthesis; AS3 calculus and logic
1. Introduction

Service-based systems (SBS) are distributed computing
systems with the major advantage of enabling rapid compo-
sition of distributed applications, regardless of the pro-
gramming languages and platforms used in developing
and running different components of the applications
(Booth et al., 2004).. SBS have been applied in many areas,
such as collaborative research and development, e-business,
health care, military applications and homeland security. In
SBS, a service is a self-contained, loosely-coupled software
entity with discoverable and invocable interface, providing
certain functionality over networks using well-defined and
standard protocols, such as HTTP and SOAP. However,
in a dynamic environment, services may be unavailable or
0164-1212/$ - see front matter � 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2008.02.035

* Corresponding author.
E-mail addresses: yau@asu.edu (S.S. Yau), haishan.gong@asu.edu

(H. Gong), dazhi.huang@asu.edu (D. Huang), w.gao@asu.edu (W. Gao),
luping.zhu@asu.edu (L. Zhu).
unable to provide desirable QoS due to distributed denial-
of-service attacks, system failures, or system overloads. It
is desirable that SBS can adapt itself for satisfying users’
needs under various situations. Situation awareness
(SAW) is the capability of being aware of situations and
adapting the system’s behavior based on situation changes
(Yau et al., 2004, 2006b). SAW is often needed for system
monitoring, adaptive service coordination and flexible secu-
rity policy enforcement (Yau and Yao, in press). A situation

is a set of contexts in a system over a period of time that
affects the future system behavior for specific applications,
and a context is any instantaneous, detectable property of
the environment, the system, or the users relevant to the sys-
tem behavior (Yau et al., 2002a,b).

A large-scale SBS usually support various applications
simultaneously. These applications often need to share
and reuse situation information in the system for providing
better QoS. Hence, it is necessary to provide reusable soft-
ware components providing SAW capability in SBS. To
greatly reduce the development effort of situation-aware

mailto:yau@asu.edu
mailto:haishan.gong@asu.edu
mailto:dazhi.huang@asu.edu
mailto:w.gao@asu.edu
mailto:luping.zhu@asu.edu

1664 S.S. Yau et al. / The Journal of Systems and Software 81 (2008) 1663–1680
application software in SBS as well as supporting runtime
system adaptation, it is necessary to automate the develop-
ment of reusable and autonomous software components,
called SAW agents, for performing various tasks in runtime
to achieve SAW capability. These tasks include acquisition
of relevant contexts, analysis of situation changes, and
decision making on triggering proper actions in response
to situation changes.

Due to efficiency and dependability considerations, such
tasks should not be performed by a centralized SAW agent
in a large-scale SBS since an SBS often involves a large
number of contexts, situations, and services distributed
over networks. On the other hand, performing these tasks
on distributed SAW agents in a large-scale SBS requires
proper coordination of the SAW agents so that the entire
system can have a consistent and complete view of situa-
tion changes in the system. Communication overhead
incurred from such coordination may have significant
impact on system performance. Hence, it is necessary to
properly decompose the tasks for achieving SAW capabil-
ity to distributed SAW agents in SBS. Such decomposition
can be achieved by partitioning the set of situations to be
analyzed to multiple subsets of situations and assigning dif-
ferent SAW agents to analyze individual subsets of situa-
tions. However, to perform such decomposition process
manually is time-consuming and error-prone. Hence, it is
desirable that the decomposition can be automatically
done in such a way that the SAW agents can perform dis-
tributed situation analysis efficiently.

In this paper, we will present an approach to logic-based
specification, automated decomposition and agent synthe-
sis for situation-aware SBS. Our approach is based on
our declarative SAW model (Yau et al., 2005a), and AS3

calculus and logic for rapid development of Adaptable Sit-
uation-Aware Secure Service-Based (AS3) systems (Yau
et al., 2007a,b). SAW requirements are analyzed and
graphically specified using our SAW model and a Graphic
User Interface (GUI) tool, and automatically translated to
declarative AS3 logic specifications. An algorithm is pre-
sented for partitioning the generated AS3 logic specifica-
tions to appropriate subsets based on the distribution of
context sources, system and network status, as well as the
composition relations among situations. For each subset
of AS3 logic specifications, an SAW agent described in
AS3 calculus terms will be automatically synthesized to per-
form the necessary tasks to meet the corresponding subset
of SAW requirements. Experimental evaluation results for
our specification tool, decomposition and agent synthesis
algorithms will also be presented.

2. Current state of the art

Substantial research has been done on SAW in artificial
intelligence, human–computer interactions and data fusion
community. Existing approaches may be divided in two
categories: One focuses on modeling and reasoning SAW
(McCarthy and Hayes, 1969; Pinto, 1994; Kifer et al.,
1995; Reiter, 2001; Chen et al., 2003; Matheus et al.,
2003), and the other on providing toolkit, framework or
middleware for development and runtime support for
SAW (Dey and Abowd, 2001; Roman et al., 2002; Chan
and Chuang, 2003; Ranganathan and Campbell, 2003;
Yau et al., 2004, 2006b).

In the first category, Situation Calculus (McCarthy and
Hayes, 1969) and its variants (Pinto, 1994; Reiter, 2001) are
used to represent dynamic domains, but the definitions of
‘‘situation” used in Situation Calculus and its variants are
quite different. McCarthy and Hayes (1969) considers a sit-
uation as a complete state of the world, while Reiter (2001)
considers a situation as a state of the world resulting from a
finite sequence of actions. McCarthy’s definition leads to
the Frame problem (McCarthy and Hayes, 1969) because
a situation cannot be fully described. Reiter’s definition
makes a situation totally determined by executed actions.
GOLOG (Levesque et al., 1997) is a logic programming
language, and allows programs to reason about the state
of the world and to consider the effects of various possible
courses of action before committing to a particular behav-
ior. However, it only works with completely known initial
situations. Frame Logic (abbr., F-Logic) (Kifer et al., 1995)
was developed by Kifer et al., and has the modeling capa-
bilities of object-oriented concepts. It can be used for spec-
ifying and reasoning SAW requirements. Matheus et al.
presented a core ontology for SAW (Matheus et al.,
2003) to provide a basis for building situations. A situation
here is considered as a collection of situation objects,
including objects, relations and other situations. Temporal
and spatial relationships of situations can be specified using
it. CoBrA Ontology (Chen et al., 2003) is intended for
modeling context knowledge and enabling knowledge shar-
ing in intelligent spaces. It defines a set of vocabularies for
describing people, agents, places, etc. in an intelligent meet-
ing room system. However, these ontologies are limited to
representing and reasoning SAW requirements. Yau et al.
presented a declarative SAW model (Yau et al., 2005a,
2006b), which provide graphical representations of SAW
requirements that can be automatically translated to for-
mal specifications based on AS3 logic (Yau et al., 2005b,
2007b). This declarative SAW model and AS3 logic are
used in our approach, and will be outlined in Section 3.

In the second category, Context Toolkit (Dey and
Abowd, 2001) provides a set of ready-to-use context pro-
cessing components (called widgets) and a distributed infra-
structure that hosts the widgets for developing context-
aware applications. GAIA (Roman et al., 2002; Rangana-
than and Campbell, 2003), which is a distributed middle-
ware infrastructure, provides development and runtime
support for context-aware applications in ubiquitous com-
puting environment. It manages the resources and services
that are used by applications, provides a component-based
application framework for constructing, running or adapt-
ing applications. MobiPADS (Chan and Chuang, 2003) is
a reflective middleware designed to support dynamic adap-
tation of context-aware services based on application’s

S.S. Yau et al. / The Journal of Systems and Software 81 (2008) 1663–1680 1665
runtime reconfiguration. Services are configured and
chained together to provide augmented services to mobile
applications. RCSM (Yau et al., 2004, 2006b) provides the
capabilities of context acquisition, situation analysis and
situation-aware communication management, and a mid-
dleware-based situation-aware application software devel-
opment framework. However, no existing approaches can
have automated decomposition of SAW requirements and
automated synthesis of reusable and autonomous software
components for achieving SAW capability in service-ori-
ented computing environment.
Logical
Operator

Is a
Is a

Service
invocation

trigger

compose

Situation

(L3)

(L2)

precondition do change

Logical
Composite
Situation

Temporal

Temporal
Situation

compose
compose

Atomic
Situation

Is a
3. Background

In this section, we will highlight the architecture of our
AS3 systems (Yau et al., 2007a,b), where SAW agents are
used to provide runtime support for context acquisition
and situation analysis (Yau et al., 2005a). We will also
summarize the key concepts of our declarative SAW model
(Yau et al., 2005a), and AS3 calculus and logic (Yau et al.,
2005b, 2007b), which are used in the development of our
agent synthesis approach.

AS3 systems are collections of services, users, processes
and resources, which act to achieve users’ goals under
dynamic situations without violating their security policies.
Fig. 1 shows the architecture of an AS3 system, in which
organizations publish their capabilities as services. Each
service provides a set of methods as ‘‘actions” in the AS3

system. SAW Agents collect context data periodically, ana-
lyze situations based on context data and execution results
of actions in the system, trigger appropriate actions in the
system based on the situations, and provide situational
information to other agents for situation analysis, service
coordination, and security policy enforcement. Security

Agents enforce relevant security policies in a distributed
manner based on the current situation. Mission Planning

Service and Workflow Scheduling Service generate and
schedule workflows to achieve users’ goals based on secu-
rity policies, situations and available resources. Workflow
Security
Agents

Mission Planning
Services

Mission
Goal

Workflow
Scheduling

Services

Directories

Situation-
Awareness

Agents

Services

Various
Capabilities

Discovery
Services

Workflow

Workflow
Agents

Fig. 1. The architecture of an AS3 system.
Agents coordinate the execution of workflows based on sit-
uational information.

3.1. A declarative situation awareness (SAW) model

In our declarative SAW model, an ontology, shown in
Fig. 2, is defined for the essential entities for representing
SAW and the relations among these entities (Yau et al.,
2005a, 2006b). The advantages of the ontology are that it
describes an abstract and application-independent view of
SAW, and can be easily shared or extended to model
SAW requirements in different application domains. The
ontology contains the following entities:

� A context has a unique context name, a context type and
a context value at a time.
� A context comparator is a binary operator returning a

Boolean value.
� A service has a unique service name, and is on a host.
� A service invocation is provided by a service, and has a

unique method name, accepts inputs as arguments and
returns outputs as context values.
� An argument can be a constant in the context value

domain, or a context variable whose value is obtained
through service invocations at runtime.
� An atomic constraint is used for comparing two argu-

ments using a context comparator.
� A situation can be an atomic situation, a logical compos-

ite situation or a temporal situation. The value of a situ-
ation is a Boolean value.
Context

has

has has

Context
Name

Context
Type

Context
Value

hasValue
@ time t

in

define

compose Argument

Context Value
Domain

(L1)

value of

Atomic
Constraint

has

Context
Comparator

compose

output

on

Service
invocation

constant

provides

in

Operator
compose

compose

service

host

method
name

on

input

value of

service
name

has

Fig. 2. An ontology for SAW in service-based systems.

<<Argument>>

<<Atomic Constraint>>

compose

define

<<Service
Invocation>>

<<Argument>>

compose

<<Logical Composite
Situation>> <<Atomic Situation>>

<<Logical Operator>>

compose compose

<<Logical Composite Situation>>

define
relation

Fig. 3. Partial graphical representation of SAW requirements.

1666 S.S. Yau et al. / The Journal of Systems and Software 81 (2008) 1663–1680
� An atomic situation is a situation defined using a set of
service invocations and an atomic constraint, and can-
not be decomposed into any other atomic situations.
� A temporal operator is either P (had been true over a

period time in the past), or H (was true sometime in
the past) defined over a period of time in the past.
� A logical composite situation is a situation recursively

composed of atomic situations or other logical composite
situations or temporal situations using logical operators,
such as ^ (conjunction), _ (disjunction), :(negation).
� A temporal situation is a situation defined by applying a

temporal operator on a situation over a period of time.
The situation used to define a temporal situation can
be either an atomic situation or a logical composite situ-
ation, which is not composed by any temporal situations.

Three basic relations, precondition, do, and trigger, are
defined among situations and service invocations. Relation
precondition describes a situation as a precondition of a ser-
vice invocation. Relation do describes the effect of a service
invocation. Relation trigger represents a reactive behavior
of the system. In SBS, we assume that context data can
be retrieved by invoking one or more services provided
by the system platform or developed by various service
providers.

Based on our SAW model, developers can analyze the
SAW requirements of an application as follows:

(i) Based on the functionality of the application required
by users and the specifications of the services avail-
able in SBS, developers identify the services to be
used in the application.

(ii) Developers identify the contexts and all the methods
(service invocations) provided by the services found
in (i), as well as constants and context comparators
used in the application.

(iii) Following the basic relations in our SAW model,
developers identify the situations relevant to the ser-
vice invocations identified in (ii), and identify the
relations among these situations and the service
invocations.

(iv) From the situations obtained in (iii), developers iden-
tify atomic situations if the situations contain any
temporal or logical operators.

(v) For each identified atomic situation, developers use
service invocations, contexts, constants, and context
comparators identified in (ii) to specify the atomic sit-
uation. Developers then use the specified atomic situ-
ations, and temporal or logical operators to further
specify the situations identified in (iii).

Our SAW model is language-independent and can be
translated to specifications written in various formal lan-
guages, such as F-Logic and AS3 logic. To facilitate the
specification of SAW requirements, we have developed a
graphical representation for the constructs in our SAW
model. Fig. 3 illustrates the graphical representation of
some constructs in our SAW model. The boxes represent
the entities in the model. The type of an entity is quoted
by ‘‘�” and ‘‘�”. A solid line with a solid arrowhead from
one entity to another entity represents that the starting
entity is used by or composes the terminating entity. A solid
line with a non-solid arrowhead represents that its starting
entity is used to define the terminating entity. A dotted line
with a relation encircled by an ellipse is used to connect a
situation and a service invocation with the relation between
them. The attributes associated with entities, such as con-
text types and termination conditions of situation analysis,
are not represented in Fig. 3. These attributes are required
for synthesizing SAW agents. A GUI tool was developed
using Java and a third-party software package JGraph to
implement the above graphical representation. It contains
two major parts: a drawing area and a tab area. Developers
can drag and drop the boxes, lines and arrows onto the
drawing area to graphically specify SAW requirements.
The tab area consists of a set of tabs for developers to input
detail information for each entity.
3.2. AS3 calculus and logic

Process calculi have been used as programming models
for concurrent (May and Shepherd, 1984) and distributed
systems (Caromel and Henrio, 2005). AS3 calculus (Yau
et al., 2005b, 2006a, 2007b) is based on classical process
calculus (Milner, 1999; Cardelli and Gordon, 2000). It pro-
vides a formal programming model for SBS, which has
well-defined operational semantics involving interactions
of external actions and internal computations for assessing
the current situation and reacting to it. The external actions
include communication among processes, logging in and
out of groups/domains. The internal computations involve
invocation of services as well as internal control flow.

For the sake of completeness, we summarize part of the
syntax of AS3 calculus in Table 1 and part of the syntax of
AS3 logic in Table 2 which are used in this paper. Similar to
classical process calculus, a system in AS3 calculus can be
the parallel composition of two other systems, or a recursive

Table 1
Part of the syntax of AS3 calculus

P:: = //Processes E::¼ //External actions
zero (inactive process) ch(x) (input from a named channel)
P par P (parallel composition of processes) chhxi (output to a named channel)
I(x1, . . .,xn) (process identifier with parameters)
E.P (external action) C::¼ //Internal computations

C.P (internal computation) let x = D instantiate P (beta reduction)
P1 plus P2 (nondeterministic choice) if exp then P else P0 (conditional evaluation)
time t.P (timeout)

D::¼I:li(y)̂cont (method invocation)

Table 2
Part of the syntax of AS3 logic

U1,/2::= Formula E(/1u/2) Until
T True E(/1s/2) Since
U Nominal k(u; /) Knowledge of u

pred(x1, . . .,xn) Atomic formula serv(x; u; r; /) Invocation of service r using input x by / and returning u

x � c Atomic constraint2

// � :: = > | < | 6 | P |=, $t/ Existential quantification on time
c is a natural number hui/ Behavior after sending message

/1 _ /2 Disjunction /1 ^ /2 Conjunction
e/ Negation

[2] The constraints in AS3 logic are restricted to a subset of linear arithmetic constraints as shown in Table 2, so that AS3 logic is decidable.

S.S. Yau et al. / The Journal of Systems and Software 81 (2008) 1663–1680 1667
or non-recursive process. A recursive or non-recursive pro-
cess can be an inactive process, a nominal identifying a pro-
cess, a process performing external actions, a process
performing internal computations, a service exporting a
set of methods, or the parallel composition of two other
processes. time t.P denotes a process that will start execu-
tion after a timeout of t units. The methods are defined by
the preconditions describing the constraints on the inputs
accepted by the methods and post-conditions describing
the constraints on the outputs provided by the methods.
Continuation passing (Appel, 1992) is used to provide
semantics of asynchronous service invocations. In Table
1, I:li(y)̂cont denotes the invocation of the method li
exported by I with parameter y and continuation cont.
The continuation cont is an explicit form for passing control
between a method being invoked and the process invoking
the method. External actions involve input and output
actions on named channels with types as in the ambient cal-
culus (Huth and Ryan, 2004). Internal computation
involves beta reduction, conditional evaluation for logic
control, and invocation of public methods exported by a
named service or private methods exported by the process
itself. AS3 logic (Yau et al., 2005b, 2006a, 2007b) is a hybrid
normal modal logic1 (Blackburn et al., 2003) for specifying
SBS. The logic has both temporal modalities for expressing
situation information as well as modalities for expressing
1 Blackburn et al. define hybrid logics as the logics ‘‘use one sort of
atoms called nominals to refer to states which are regarded as first class
citizens”. A normal modal logic is ‘‘a set of formulas that contains all
tautologies, h(u ? r), (hu ? r), and eu M :h:u, and is closed under
uniform substitution, modus ponens, and generalization” (Blackburn
et al., 2003).
communication, knowledge and service invocation. It pro-
vides atomic formulas for expressing relations among
variables and nominals for identifying agents. The AS3 logic
supports developers to declaratively specify situation
awareness requirements. Models for the logic are processes
in the AS3 calculus. These processes provide constructive
interpretations for the logic. Following a Curry–Howard
style isomorphism (Sorensen and Urzyczyn, 2006), in which
proofs are interpreted as processes, a novel proof system of
AS3 logic can support the synthesis of AS3 calculus terms
from declarative AS3 logic specifications.

In Table 2, we assume that every variable x has a type.
Intuitively, the nominals act as identifiers to processes. The
knowledge formula intuitively states that after a process
receives the item named u from another process, the pro-
cess satisfies /. The modality serv(x; u; r; /) indicates that
a process / invoking service r with parameter x receives u

as the result. The formula hui/ describes the behavior of a
process after sending out u. The AS3 logic is a hybrid nor-
mal modal logic in the sense that nominals, which refer to
processes, form primitive formulas (Blackburn et al., 2003).

The following modalities, which will be used in this
paper, can be defined in terms of the primitive connectives
and modalities defined in Table 2:

� Eventually: diam (u): = E(T U/).
� Universal quantification on time: "tu: = :$t:u.
4. Overview of our approach

As mentioned before, the tasks for achieving SAW capabil-
ity in an SBS include relevant context acquisition, distributed
situation analysis and triggering proper actions in response to

1668 S.S. Yau et al. / The Journal of Systems and Software 81 (2008) 1663–1680
situation changes at runtime. To develop SAW capability in
SBS, the following major issues need to be addressed:

(1) Specifying SAW requirements. SAW requirements
from users are described in natural languages and
cannot be processed algorithmically. Such descrip-
tions are normally ambiguous. Hence, developers
need to have effective tools to support generation of
precise specification of the SAW requirements, which
is machine-processable.

(2) Partitioning the set of specified situations. The set
of specified situations need to be properly
partitioned to decompose the tasks to distributed
SAW agents so that they can efficiently achieve
SAW capability.

(3) Synthesizing SAW agents. To greatly reduce the
development effort and support runtime system adap-
tation, SAW agents need to be automatically
synthesized.

In this section, we will present an overview of our approach
to logic-based specification, automated partition of the set of
specified situations and agent synthesis for situation-aware
SBS. In Section 5, we will present the specification of SAW
requirements in AS3 logic. Automated partition of the set of
specified situations and synthesis of SAW agents will be pre-
sented in Sections 6 and 7, respectively.
4.1. Architecture of our approach

The architecture of our approach is depicted in Fig. 4.
The development of SAW capability in SBS consists of
the three steps described in the three boxes in the middle
of the figure, each with the corresponding technique(s)
identified in the dashed boxes on the left-hand side. The
parallelograms and the dotted-line box on the right-hand
side contain the outputs of these steps.
SAW require
in natural lan

2. Partitioning t
specified situ

1. Specifying
requireme

3. Synthesizing S

End

A declarative model
and AS3 Logic

A partitioning
algorithm

Agent synthesis
algorithms

Fig. 4. Architecture
Step (1) Specifying SAW requirements. SAW require-
ments are first represented graphically using
our GUI tool, and then translated to formal
specifications in AS3 logic. Using the GUI tool,
developers can easily generate AS3 logic specifi-
cations without any knowledge of the AS3 logic.
We assume that the consistency and redun-
dancy of the specifications have been checked
by developers or some automated tools.

Step (2) Partitioning the set of specified situations. Given
consistent and concise SAW specifications, the
set of situations need to be partitioned into mul-
tiple subsets, each of which is assigned to an
SAW agent for collecting contexts, analyzing
the situations in the subset and triggering sys-
tem’s reactive behavior under these situations.
We have developed an algorithm to perform
the partitioning based on multiple inputs, includ-
ing SAW requirement specifications, and the sys-
tem-specific knowledge of network topology and
the communication bandwidth between each
pair of hosts in the system (see Section 6). Our
algorithm will find a proper way to partition
the set of situations specified in Step (1) so that
the communication cost among the SAW agents
for analyzing these situations and the cost for re-
synthesizing SAW agents due to runtime changes
of SAW requirements can be greatly reduced.

Step (3) Synthesizing SAW agents. From the results of
Step (2), SAW agents are automatically synthe-
sized with AS3 calculus terms using our agent
synthesis algorithm (see Section 7). We have
developed an AS3 calculus to Java compiler to
compile the AS3 calculus terms to Java codes,
which can be compiled to executable codes
using a Java compiler. The executable SAW
agents will run on a distributed agent execution
platform, e.g. the Secure Infrastructure for
ments
guage

he set of
ations

 SAW
nts

AW agents

Agent-based platform

SAW
agents
SAW
agents

Security
agents

Other
agents

SAW
specifications

Multiple
subsets of
situations

of our approach.

S.S. Yau et al. / The Journal of Systems and Software 81 (2008) 1663–1680 1669
Networked Systems (SINS) (Bharadwaj, 2003),
to provide SAW capability for SBS. These
SAW agents can also work with other agents,
such as security agents for flexible security pol-
icy enforcement and workflow agents for adap-
tive workflow coordination.

In our approach, a special system service was developed
to facilitate the analysis of temporal situations by SAW
agents. The special system service has the following four
methods:

� appendHistory(SituName, SituData, Timestamp) stores
situational information SituData for situation SituName
and removes outdated data.
� chkSituP(SituName, x, e) checks whether the situation

was true sometime within [CurrentTime � x, Current-

Time � x + e], where CurrentTime is the present time,
x is an offset from CurrentTime, and e is the length of
the time period to be checked.
� chkSituH(SituName, x, e) checks whether the situation

was always true within [CurrentTime � x, CurrentTime
� x + e].
� retrieveRelatedData(SituName, x, e, Type) retrieves

related data of the situation, where Type is an integer
used to describe which type of data with timestamps
within [CurrentTime � x, CurrentTime � x + e] should
be retrieved. If Type is zero, the latest data that makes
the situation true will be retrieved. If Type is one, the lat-
est data that makes the situation false will be retrieved.
If Type is two or three, all the data that makes the situ-
ation true or false will be retrieved, respectively.

At runtime, the contextual and situational information
of temporal situations and the situations used to define
temporal situations will be periodically retrieved from
and recorded by invoking the above four methods. For
the simplicity of prototype implementation, this system ser-
vice currently stores data in a centralized repository, which
is subject to the single point of failure. However, such a
problem can be solved utilizing existing techniques for dis-
tributed data management (Thuraisingham, 1996).

4.2. An illustrative example

Consider an SBS, which has access to a set of services,
including a rescue center, rescue ships, helicopters and
medical ships, for various sea rescue operations. The fol-
lowing ‘‘sea rescue” example will show our approach in
how situational information is used for coordinating execu-
tion of a service-based system:

(1) The rescue center (rc) receives an SOS message from a
ship (bs) indicating that bs has a serious accident and
some of its passengers are seriously injured.

(2) Upon detecting such a situation, rc is responsible for
locating proper services to rescue the injured passengers.
(3) If there are injured passengers in a ‘critical’ status, the
weather is safe for a helicopter to perform rescue
operation, and bs is within a helicopter’s flight range,
rc will notify a helicopter heli (by triggering dis-

patch_heli method) to pick up the injured passengers
and take them to a nearby hospital.

(4) Otherwise, rc will notify a nearby medical ship mShip

to go to bs to provide emergency medical treatment
for injured passengers. Also, if heli is already dis-
patched and the weather changes to unsafe for heli,

heli will return to its base if it is on the way to bs.

In this example, a precondition of dispatch_heli action is
that the wind velocity near bs has been lower than 18
meters per second (m/s) for 15 time units. Developers can
analyze the SAW requirements using our SAW require-
ment analysis steps identified in Section 3.1. Due to limited
space, we only illustrate the analysis of partial SAW
requirements in this example as follows:

(i) Identify the following services used in the application:
rc, bs, heli, and mShip.

(ii) In order to invoke dispatch_heli method provided by
heli service, the following contexts, constants and
context comparator should be considered:
(a) Contexts: location of bs, wind velocity near bs,

and passenger injury status (collected by invoking
get_injuryStatus method of rc service).

(b) Constants: 15, 18, and ‘critical’.
(c) Context comparator: = and <.

(iii) Method dispatch_heli should be triggered by rc under
a situation (called readyToDispatchHeli situation),
which means that there are passengers in critical sta-
tus (called criticalInjuryFound situation), and that heli

is able to perform the rescue operation on bs (called
canUseHeli situation). Situation canUseHeli is true
when bs is within heli’s flight range (called within-

Range situation) and wind velocity near bs has been
lower than 18 m/s (called lowWindVelocity situation)
for over 15 time units (called lowWindVelocityForA-

While situation).
(iv) Extract atomic situations criticalInjuryFound, within-

Range, and lowWindVelocity from the situations
identified in (iii).

(v) Construct the atomic situation criticalInjuryFound

using get_injuryStatus method of rc service, context
of injury status, constant ‘critical’ and context com-
parator ‘<’.

5. Specifying SAW requirements

After requirement analysis, developers can construct the
graphical representations of these SAW requirements, and
generate AS3 logic specifications from the graphical repre-
sentations using our GUI tool without any knowledge of
AS3 logic (see Section 3.2). The generation of AS3 logic

Table 3
Specifying SAW requirements in AS3 logic

Specification Syntax

Service invocation m(a; b; r)? serv(x; u; r)
Atomic situation serv(x1; u1; r1), . . ., serv(xn; un; rn), arg1 opc arg2

? diam(k([u1, . . .,un,], s, monitor_until(f, cond)))
Logical composite situation k([u1, . . .,uk,],s1) ^ k([uk+1, . . .,un],s2) | k([u1, . . .,uk],s1) _ k([uk+1, . . .,un],s2) | :k([u1, . . .,uk],s1)

?diam(k([u1, . . .,un], s, monitor_until(f, cond)))
Temporal situation " Time currentTime � x 6 Time 6 currentTime � x + e, s0 |

$ Time currentTime � x 6 Time 6 currentTime � x + e, s0

?diam(k([x1, . . .,xn], s, monitor_until(f, cond)))
Relation among situations and service invocations Trigger(m, s)

Precondition(m, s)
Do(m, s1, s2)

1670 S.S. Yau et al. / The Journal of Systems and Software 81 (2008) 1663–1680
specifications for SAW requirements can be easily done fol-
lowing a mapping between our model constructs and AS3

logic formulas shown in Table 3. In the following, we will
discuss various specifications of SBS.

� Specifying services

A method m of service r with input a and output b is
denoted by method signature m(a; b; r), and the invocation
of service r with input x returns u as output is denoted by the
modality serv(x; u; r), where a, b, x and u are typed vari-
ables. In particular, a and b are of platform-specific data
types, while x and u are of platform-independent context
type. Hence, a service specification provides a mapping
between high-level platform-independent service implemen-
tation to low-level platform-specific service implementation.
For example, the following specification describes a method
of service rc for collecting a context of ‘‘injStat” type:

get injuryStatusð½intðALocÞ�; ½stringðIStatusÞ�; rcÞ
! servð½locðALocÞ�; ½injuryStatusðIStatusÞ�; rcÞ

In the above service specification, the variables ALoc and
IStatus used in the modality serv are typed using context
types loc and injuryStatus, whereas the same variables used
in the method signature of get_injuryStatus are typed using
the data types int and string. This allows developers to map
the context types, which are platform-independent and only
are used for high-level reasoning on SAW, to the actual
data types supported by the low-level execution platform.

� Specifying atomic situations

In atomic situation specifications, each atomic situation
s consists of a set of service invocations serv(x1; u1; r1),. . .,
serv(xn; un; rn) for collecting context values u1, . . .un and an
atomic constraint arg1 opc arg2 for comparing arguments
arg1 and arg2 using context comparator opc. Argument
arg1 is always a context variable, whose value is one of
u1, . . .un. Argument arg2 can either be one of u1, . . .,un or
be a constant in the context value domain. The atomic con-
straint determines the value of situation s. Attribute f
denotes that situation s should be analyzed every f time
units. Attribute cond is the termination condition of s. It
means that whenever cond becomes true, stop analyzing
s. For example, an atomic situation criticalInjuryFound

with the meaning of ‘‘an injured passenger is in critical
status” should be analyzed every 10 time units until the sit-
uation rescueSuccess becomes true. The AS3 logic specifica-
tion for this atomic situation becomes:

servð½locðALocÞ�; ½injuryStatusðIStatusÞ�; rcÞ;
IStatus ¼ ‘critical’! diamðkð½locðALocÞ;
injuryStatusðIStatusÞ�; criticalInjuryFound;

monitor untilð10; rescueSuccessÞÞÞ

In the above specification, the modality serv(loc(ALoc);

injuryStatus(IStatus);rc) corresponds to a service invoca-
tion get_injuryStatus, which returns the injury status of a
passenger in the accident, given the accident location ALoc.
Atomic constraint IStatus = ‘critical’ is used for comparing
a context variable IStatus with a constant ‘critical’ using
context comparator‘=’.

� Specifying temporal situations

In AS3 logic, temporal operators P (sometimes in the
past) and H (had been true over a period of time in the
past) are defined using $ (existential) and " (universal)
quantifications over a time range. The time range is defined
as [CurrentTime � x, CurrentTime � x + e], where x is an
offset from the present time CurrentTime, and e is the
length of the time period to be checked. For example, a
temporal situation lowWindForAWhile with the meaning
of ‘‘wind velocity in the accident location had always been
low in the past 15 time units” is specified as follows:

8TimeCurrentTime� 15 6 Time 6 CurrentTime; kð½intðTimeÞ;
windVelðVelÞ�; lowWindVelocityÞ ! diamðkð½windVelðVelÞ�;
lowWindForAWhile;monitor untilð10; rescueSuccessÞÞÞ

A temporal situation cannot be used to define another
temporal situation because the conflict or overlap of two
time ranges can make the defined situation meaningless.

� Specifying logical composite situations

In logical composite situation specifications, each logical
composite situation s is composed of atomic situations, tem-

Table 4
Partial SAW specifications in the example

/* service specifications */

SERV1) get_windVelocity([int(ALoc), int(Time)]; [int(Vel)]; rc)
? serv([loc(ALoc), int(Time)]; [windVel(Vel)]; rc)

SERV2) withinFlightRange([int(ALoc)]; [bool(Result)]; heli)
? serv([loc(ALoc)]; [bool(Result)]; heli)

SERV3) backToBase([]; []; heli; SAW_heliAgent) ? serv([]; []; heli)
SERV4) detect_accident([]; [int(ALoc)]; rc) ? serv([]; [loc(ALoc)]; rc)

/* atomic situation specifications */

AS1) serv([loc(ALoc), int(Time)]; [windVel(Vel)]; rc) ^ Vel <18
? diam(k([loc(ALoc), windVel(Vel)], lowWindVelocity, monitor_until(10, rescueSuccess)))

AS2) serv([loc(ALoc)]; [bool(Result)]; heli) ^ Result = true
? diam(k([], withinRange, monitor_until(50, rescueSuccess)))

AS3) serv([]; [loc(ALoc)]), ALoc >0
? diam(k([loc(ALoc)], accident_detected, monitor_until(50, rescueSuccess)))

/* temporal situation specifications*/

TS) "Time CurrentTime-15 < Time < CurrentTime
^ k([loc(ALoc), windVel(Vel)], lowWindVelocity)
? diam(k([loc(ALoc), windVel(Vel)], lowWindForAWhile, monitor_until(10, rescueSuccess)))
/* logical composite situation specifications*/

CS1) k([loc(ALoc), windVel(Vel)], lowWindForAWhile]) ^ k([], withinRange))
? diam(k([int(ALoc), windVel(Vel)], canUseHeli, monitor_until(10, rescueSuccess)))

CS2) k([loc(ALoc), windVel(Vel)], canUseHeli)
^ k([loc(ALoc), injuryStatus(IStatus)], criticalInjuryFound)
? diam(k([loc(ALoc), windVel(Vel), injuryStatus(IStatus)], readyToDispatchHeli, monitor_until(10, rescueSuccess)))

RB1) /* reactive behavior specifications */

trigger(k([int(ALoc), windVel(Vel)], not(canUseHeli)), serv([];[]; heli)

S.S. Yau et al. / The Journal of Systems and Software 81 (2008) 1663–1680 1671
poral situations and/or other logical composite situations
using logical operators^,_, and/or:. For example, a logical
composite situation canUseHeli with the meaning of ‘‘a heli-
copter can be used only when the accident location is within
its reachable range and there has been low wind velocity in
the accident location for a while” should be analyzed every
10 time units until the situation rescueSuccess becomes true.
AS3 logic specification for this situation is given below:

kð½windVelðVelÞ�; lowWindForAWhileÞ ^ kð½�;withinRangeÞ
! diamðkð½locðALocÞ;windVelðVelÞ�; canUseHeli;

monitor untilð10; rescueSuccessÞÞÞ
� Specifying relations among situations and service invoca-

tions

The ‘‘trigger” relation in our SAW model represents the
reactive behavior of the system. Specification of a trigger
relation in AS3 logic is a simple formula in the format trig-

ger(m, s), where method m is triggered when situation s is
true. Similarly, ‘‘precondition” relation is represented as
precondition(m, s), where situation s is the precondition
of method m. ‘‘do” relation is represented as ‘‘do(m, s1,
s2)”, which means that invoking m under situation s1 will
cause situation s2 becomes true. Table 4 shows partial
SAW specifications in the ‘‘sea rescue” example.

6. Automated partition of the set of specified situations

The analysis of a situation can be done by a single SAW
agent or multiple SAW agents distributed on multiple hosts
collaboratively. A host h is considered the sink point of a
situation s if the final value of s is calculated on h. Due
to various system sizes and network bandwidths among
hosts, different selections of sink points for situations in
SBS will have different impacts on the performance of sit-
uation analysis. Furthermore, reconfiguration of SAW
requirements in runtime will require re-synthesis of affected
SAW agents. In particular, changes in the specification of a
situation s most likely affect the situations used to define s

or the situations defined using s. Hence, to reduce the effort
of re-synthesizing SAW agents, it is desirable to let an
SAW agent process as many related situations as possible.
Hence, the purpose of our automated partition of the set of
specified situations is to determine the appropriate sink

point for each situation and group the related situations
together for SAW agents to perform situation analysis
efficiently.
6.1. System-specific knowledge and decision factors for

automated partition of the set of specified situations

The automated partition requires system-specific knowl-
edge of network topology and communication bandwidth
between each pair of hosts in the system. The network
topology specification describes which service is on which
host. In AS3 logic, network topology and communication
bandwidth are specified as follows:

� serviceHost(s, h): Service s is deployed on host h.
� bw(h1, h2, b): The bandwidth between host h1 and host h2

is b. When h1 = h2, b =1.

1672 S.S. Yau et al. / The Journal of Systems and Software 81 (2008) 1663–1680
Generally, system-specific knowledge specifications are
provided by domain experts. Based on the SAW require-
ment specifications and system-specific knowledge specifi-
cations, the automated partition in our approach depends
on the following two factors:
6.1.1. Factor (1) communication cost

The communication cost for analyzing situation s when
host hk is selected as the sink point is denoted as cost(s, hk),
which is given by
costðs; hkÞ ¼

0; H ¼ fhkg
Pn

i¼1;i–k
ðnumx þ numyÞ � 1

bwðhk ;hiÞ ; n > 1; s R TS; s TS

1
fr�bwðhk ;hsysÞ þ

Pn
i¼1;i–k

ðnumx þ numyÞ � 1
bwðhk ;hiÞ ; n > 1; s R TS; s TS

1
bwðhk ;hsysÞ þ

Pn
i¼1;i–k

ny � 1
bwðhk ;hiÞ ; n > 1; s 2 TS

8>>>>>>>>>><
>>>>>>>>>>:
where H denotes a set of unique hosts related to situation s

by providing either the contextual or situational informa-
tion for analyzing s, or the service invocations which
should be triggered under s; TS denotes a set of temporal
situations for the system; hsys is the host, where the system
special service locates; s . TS denotes that s is used to
define a temporal situation in TS; and s TS denotes that
s is not used to define any temporal situation in TS. The
communication cost cost(s, hk) is calculated in the follow-
ing four cases:

(1) H contains only one element, which is hk. In this case,
situation s will be assigned to hk with no choice.
Hence, cost(s, hk) = 0.

(2) s R TS and s TS, i.e. s is not a temporal situation
and not used to define any temporal situation. If s
is an atomic situation, then numx is the number of
interactions between hk and hi for collecting context
values for s from hi. If s is a logical composite situa-
tion, then numx is the number of interactions between
hk and hi for collecting situational information for s

from hi. Regardless of the type of s, numy is the num-
ber of interactions between hk and hi for triggering
service invocations, which are provided by services
on hi.

(3) s R TS and s . TS, i.e. s is not a temporal situation,
but is used to define a temporal situation. In this case,
the communication cost for analyzing s is calculated
in the same way as (2). In addition, the communica-
tion cost for recording the information of s in the sys-
tem special service is 1

fr�bwðhk ;hsysÞ, where fr denotes the

frequency of analyzing s, and hsys is the host, where
the system special service locates.

(4) s 2 TS. In this case, situation s is a temporal situa-
tion. The communication cost has two parts: (a)
1
bwðhk ;hsysÞ, the communication cost for retrieving situa-
tional information from the system special service,
(b)

Pn
i¼1;i–kny � 1

bwðhk ;hiÞ, the communication cost for
triggering service invocations for s.

To achieve efficient distributed situation analysis, the
final selection of sink point for situation s should be the
host that requires the minimum communication cost
among all possible hosts.
6.1.2. Factor (2) Situation composition tree

A situation composition tree is a tree that reflects the
composition relation of a set of situations used in defining
another situation. Leaf nodes correspond to atomic situa-
tions. The edge between a parent node and its child node
represents the definition or composition relation. For a log-
ical composite situation csi, its child nodes are the situa-
tions used to compose csi. For a temporal situation tsi,
its child node is the situation used to define tsi. Every situ-
ation belongs to a situation composition tree. If the situa-
tion is the root of the tree, it means that the situation is
not used to define any other situation. Otherwise, the situ-
ation is used to define other situations. Situations on the
same tree are more likely to be affected by the SAW
requirement reconfiguration in runtime. Hence, situations
on the same tree should be grouped together as much as
possible, in order to reduce the effort of re-synthesizing
SAW agents.

6.2. Partitioning algorithm

Partitioning the set of specified situations is conducted
in the following three steps: (1) find related hosts for each
situation, (2) determine the sink point for each situation,
and (3) further partition a set of situations with the same
sink point to multiple subsets based on their situation com-
position trees. Situation composition trees can be easily
constructed based on situation definitions. Our Partitioning
algorithm uses FindRelatedHosts algorithm and FindParti-
tion algorithm. These algorithms are shown as follows:

Partitioning algorithm:
Require: a list of situations sList, a list of hosts hList, a

list of situation composition trees treeList, SAW specifica-
tions and network topology specifications, the system spe-
cial service is provided by hostsys

S.S. Yau et al. / The Journal of Systems and Software 81 (2008) 1663–1680 1673
1: L = {}
2: for each situation si in sList do

3: relatedHostListi = FindRelatedHosts(si)
4: costResultListi = {}
5: for each host hk in relatedHostListi do

6: ci = cost(si,hk), and insert ck in costResultListi

7: end for

8: Get host hk forsi, where ci = cost(si,hk) and
ci = get_minimum(costResultListi). If there are multi-
ple such hosts, choose the one that has minimum
number of situations assigned currently

9: Insert sinkPoint(si, hk) in L

10: end for

11: agentList = FindPartition(sList)

FindRelatedHosts(si) algorithm:

Require: a situation si in sList, a list L recording the lat-
est analysis results of sink points, SAW specifications, and
network topology specifications

1: hostListi = {}
2: if si is an atomic situation then
3: for each service invocation mi in si do

4: Get host hp which provides mi or provides input
parameters to mi

5: Insert hp in hostListi if hp R hostListi, and record
the number of hp in hostListi

6: end for

7: else if si is a logical composite situation then

8: for each situation sx in si’definition do
9: Get sinkPoint(sx, hx) from L

10: Insert hx in hostListi if hx R hostListi, and record
the number of hx in hostListi

11: end for

12: else if si is a temporal situation defined by a situation
sy then

13: Get sinkPoint(sy,hy) from L

14: Insert hy in hostListi if hy R hostListi, and record
the number of hy in hostListi

15: end if

16: Find all trigger(si, a) and host(a, hk) from SAW and
network topology specifications

17: Insert hk in hostListi, if hk R hostListi, and record the
number of hk in hostListi

FindPartition(sList) algorithm:
Require: sList, hList, treeList, L

1: agentList = {}
2: for each host hi in hList do //16 i6 n, n is the count of

hList

3: agentListOnHosti = {}
4: for each treek in treeList

5: agentListik = {}
6: Insert agentListik in agentListOnHosti

7: end for

8: end for
9: for each situation sx in sList, where sinkPoint(sx,hi) 2
L do

10: If sx2 tree1\ . . .treek,. . . \ treem, where treek2 tre-

eList, 1 6 k 6 m then

11: Find agentListik, where agentListik 2 agentLis-

tOnHosti, and agentListik has the minimum number
of situations currently

12: Insert sx in agentListik if sxR agentListik

13: end if

14: end for

15: agentList = agentListOnHost1 [. . .agentListOnHosti

. . . [agentListOnHostn, where agentListOnHosti– {}

In our Partitioning algorithm, finding related hosts for a
situation is done using FindRelatedHosts algorithm in Line
3, and determining the sink points for the situations is done
in Lines 4–8. After analyzing all the specified situations,
partitioning the set of specified situations is done using
FindPartition algorithm in Line 11.

Let us use the ‘‘sea rescue” example to illustrate this
algorithm. Suppose that services rc and heli are provided
by host hostrc, and hostheli, respectively. The bandwidth
between hostrc and hostheli, denoted by bw(hostrc, hostheli),
is assumed to be 30Mbps.

First, we initialize an empty list L (Line 1 of Partitioning
algorithm). For atomic situation lowWindVelocity (AS1 in
Table 4), initialize an empty host list hostListlwv (Line 1 of
FindRelatedHosts algorithm). From the specifications in
Table 4, we know that situation lowWindVelocity is deter-
mined by comparing the context value of Vel and a constant
18. The valueof Vel is returned by method get_windVelocity

of service rc on host hostrc. Hence, we insert hostrc into host-

Listlwv, and initialize the count of hostrc in hostListlwv to be 1
(Lines 2–6 of FindRelatedHosts algorithm). Because the
context value of ALoc used by method get_windVelocity is
provided by service rc on hostrc, we increase the count of
hostrc in hostListlwv to 2 (Lines 2–6 of FindRelatedHosts
algorithm). No service invocation should be triggered under
situation lowWindVelocity. Line 16 of FindRelatedHosts
algorithm. The sink point of situation lowWindVelocity is
hostrc because hostListlwv only contains hostListrc. We insert
sinkPoint(lowWindVelocity, hostrc) in L (Lines 8–9 of Parti-
tioning algorithm). Similarly, the sink point for atomic situ-
ation accidentDetected (AS3 in Table 4) is hostrc, the sink

point for situation withinRange is hostheli. For temporal situ-
ation lowWindForAWhile (CS1 in Table 4), we initialize an
empty list hostListfaw. We get sinkPoint(lowWindVelocity,

hostrc) from L and insert hostrc into hostListfaw (Lines 12–
14 of FindRelatedHosts algorithm). Because no service invo-
cation should be triggered under lowWindForAWhile, host-

Listfaw only contains hostrc. Hence, the sink point of
situation lowWindForAWhile is also hostrc. We insert sink-

Point(lowWindForAWhile, hostrc) in L. In Table 4, logical
composite situation canUseHeli is composed of withinRange
and lowWindForAWhile. No service invocation should be
trigger under canUseHeli. Hence, we can have that the host
list for canUseHeli contains hostrc with count of 1, and

1674 S.S. Yau et al. / The Journal of Systems and Software 81 (2008) 1663–1680
hostheli also with count of 1 (Lines 7–11 and Lines 16–17 of
FindRelatedHosts algorithm). The communication cost for
choosing hostr as the sink point for situation canUseHeli

and the communication cost for choosing hostheli as the sink

point for situation canUseHlei are calculated as follows:

costðcanUseHeli; hostrcÞ ¼ 1 	 1=bwðhostrc; hostheliÞ
¼ 1=30
 0:033

costðcanUseHeli; hostheliÞ ¼ 1 	 1=bwðhostrc; hostheliÞ
¼ 1=30
 0:033

Because hostrc has more situations than hostheli, the sink

point for situation canUseHeli is hostheli (Line 8 of Partition-
ing algorithm). We insert sinkPoint(canUseHeli, hostheli) in
L (Line 9 of Partitioning algorithm). Choosing sink points
for other situations can be done in the same way. Then,
we partition the set of situations with the same sink point

based on their situation composition trees using FindParti-
tion algorithm (Line 11 of Partitioning algorithm). In this
example, agentList is first initialized as an empty list (Line
1 of FindPartition algorithm). For each host, a list of lists,
each of which corresponds to a situation composition tree,
are initialized and inserted into agentList (Lines 2–7 of
FindPartition algorithm). We have already known that situ-
ations accidentDetected, lowWindVelocity andlowWindFo-

rAWhile have the same sink point, which is hostrc. Based
on their definitions, the situations lowWindVelocity andlow-

WindForAWhile belong to the same situation composition
tree. Hence these two situations are grouped together and
inserted into the same list (Lines 9–14 of FindPartition algo-
rithm), which contains a sub-set of situations that all have
hostrc as the sink point and will be analyzed by the same
SAW agent. Similarly, situation accidentDetected will be
inserted into a different list and be analyzed by a different
SAW agent. Finally, each element of agentList is a list of sit-
uations having the same sink point in the same situation
composition tree (Line 15 of FindPartition algorithm).

6.3. Complexity analysis of the Partitioning algorithm

To analyze the complexity of our Partitioning algorithm,
we first give the following two definitions: The length of an

atomic situation (LAS) is the number of service invocations
used to collect context values for analyzing the atomic sit-
uation. Thelength of a logical composite situation (LLCS) is
the number of situations used to compose the logical com-
posite situation.

Theorem 1 (complexity of the Partitioning algorithm). Given
s services, h hosts, and p situations. The complexity of the

Partitioning algorithm is O(3p2+2s � p + p � h2 + p � h

� k2), where k is the number of situation composition trees in

the system.
Proof. Assume that p situations include x atomic situations,
y logical composite situations and z temporal situations. In
addition, assume that the maximum LAS is las, the maxi-
mum LLCS is llcs, each situation has at most f related hosts,
the maximum number of trigger relations for a situation is r

and the maximum number of input parameters for a situa-
tion is e. In the network topology specifications, we know
that there should be s serviceHost formulas describing the
deployment of s services, and h � (h � 1)/2 bw formulas
describing bandwidths among h hosts. h
(1) The complexity of FindRelatedHosts algorithm is
analyzed as follows: for each service invocation in

an atomic situation, it takes at most s steps to find
the service name from service specifications and at
most s steps to find the host providing the service
from network topology specifications. Hence, for an
atomic situation with at most las service invocations,
it takes at most (las + e) � s steps to find related ser-
vice names and (las+e) � s steps to find related hosts.
For a logical composite situation, it takes at
mostlcs � (s + p) steps. For a temporal situation, it
takes at most p steps because a temporal situation
is defined by one situation and at most p steps are
needed to find the related host from L. Since at most
r service invocations can be triggered under the situ-
ation, it takes at mostr � s � p steps to find related
hosts. Hence, for x atomic situations, y logical com-
posite situations and z temporal situations, the com-
plexity of finding related hosts is O(x � (las � (s +
s)) + y � (lcs � (s + p)) + z � p + r � s � p).

(2) The complexity of FindPartition algorithm is
analyzed as follows: Initialization (Lines 2–8) takes
h � k steps. For one situation, it takes at most p steps
to find its sink point form L, at most p steps to find
which situation composition trees it belongs to, and
at most k � h � k steps to iterate h � k lists in agent-

List to identify the situation composition tree that
has the least number of elements since the situation
can belong to at most k trees. Hence, the complexity
of FindPartition algorithm is O(h � k + p � (p +
p + k � h � k)).

(3) The complexity of Partitioning algorithm is analyzed
as follows: For p situations, it takes at most
x � (2(las + e) � s) + y � (lcs � (s + p)) + z � p + r�
s � p steps to find related hosts, and at most
p � h � (h � 1)/2 steps to find the bandwidths form
network topology specifications and at most p � f

steps to calculate the communication costs between
each two different related hosts, and at most p � f

steps to choose the sink point of the situation based
on cost calculation results. To partition p situations,
it takes at most h � k + p � (p + p + k � h � k)
steps. Hence, the complexity of Partitioning algo-
rithm is O(x � (2(las + e) � s) + y � (lcs � (s + p)) +
z � p + r � s � p + p � h � (h � 1)/2 + 2p � f + h �
k + p � (p + p + k � h � k)). Because las, llcs, f and r
are usually small numbers, the final complexity of
Partitioning algorithm is O(3p2 + 2s � p + p � h2 +
p � h � k2).

S.S. Yau et al. / The Journal of Systems and Software 81 (2008) 1663–1680 1675
7. Automated synthesis of SAW agents

7.1. Representing SAW agents using AS3 calculus

Instead of directly synthesizing SAW agents in platform-
dependent programming languages, such as C++, Java
and C#, our automated agent synthesis approach first syn-
thesizes the AS3 calculus terms, which define SAW agents.
The main advantage of using AS3 calculus is to provide
platform-independent models of the agents, which capture
the essential processes of context acquisition, situation
analysis and action triggering. These models can later be
used to verify the synthesized agents by a model checker.
Platform-specific compilers can be developed to compile
AS3 calculus terms to executable code on different plat-
forms. Here, we will focus on the synthesis algorithms of
SAW agents in AS3 calculus terms.

Before presenting our SAW agent synthesis algorithms,
we first need to examine how SAW agents are defined using
AS3 calculus. Fig. 5 depicts the specifications of the SAW
agent, saw_heliAgent, in our ‘‘sea rescue” example. The
saw_heliAgent monitors three situations withinRange (AS2
in Table 4),canUseHeli (CS1 in Table 4), and readyToDis-

patchHeli (CS2 in Table 4). The main process of saw_heli-

Agent is defined by L16-L18 in Table 4. L17 instantiates
three sub-processes, withinRange_Agent, canUseHeli_Agent

and readyToDispatchHeli_agent, in parallel to analyze AS2,
CS1 and CS2, respectively. An input action for collecting
the information of accidentDetected situation is performed
in L17 before instantiating winthinRange_Agent. L18 recur-
sively executes the saw_heliAgent.

The sub-process canUseHeli_Agent is defined by L8-
L14. It first collects information on situations lowWindFo-

rAWhile (S1) and withinRange (S2) in L9. Then, the result
of analyzing situation canUseHeli is generated based on the
truth value of S1 and S2 (L10–L12). In addition, method
backToBase is triggered in L12.
L1
L2
L3
L4
L5
L6
L7

L8
L9
L10
L11
L12
L13
L14

L15

L16
L17

L18

fix withinRange_Agent(integer ALoc) =
let bool Result = heli:withinRange(integer AL

if Result = true
then ch withinRange<true>
else ch withinRange<false>.

(time 50. withinRange_Agent(integer ALoc)
plus ch rescueSuccess(string Status) . zero)

||
fix canUseHeli_Agent =

ch lowWindForAWhile(bool S1) par ch withi
if S0=true && S1 = true && S2 = true

then ch canUseHeli<integer ALoc, integer
 else {ch canUseHeli<integer ALoc, integer

 { time 10.canUseHeli_Agent(integer ALoc, b
plus ch rescueSuccess(string Status) . zero }

||
fix readyToDispatchHeli_Agent =
 ... …
||
fix saw_heliAgent =

{ch accidentDetected(integer ALoc, bool S0)
canUseHeli_Agent par readyToDispatchHeli.

saw_heliAgent

Fig. 5. An example SAW
This example illustrates the following important aspects
of defining SAW agents using AS3 calculus:

(a) The input and output actions in AS3 calculus are used
to represent communications among SAW agents.
When an SAW agent determines the value of a situa-
tion s, it sends all the related contexts and the value of
s through a communication channel also named s. All
other agents interested in s will receive the informa-
tion from channel s. Hence, SAW agents can be easily
reused since new applications can obtain situational
information based on the same names of situations.

(b) The parallel composition and non-deterministic
choice (see Table 1) in AS3 calculus are used when
multiple input actions need to be performed by an
SAW agent without predefined execution orders.
Which operator should be used is determined by
our agent synthesis algorithms.

(c) The method invocation and atomic constraint evalu-
ation in AS3 calculus are used to represent operations
on contexts.

(d) The timeout and recursive processes in AS3 calculus
are used to represent periodical context acquisition
and situation analysis.

7.2. The SAW agent synthesis algorithms

Given a set of SAW specifications, the SAW agent can
be synthesized by the following process:

(1) For each specified situation s, if s is an atomic situa-
tion, synthesize a sub-process for s using SynAtom
algorithm. If s is a logical composite situation, syn-
thesize a sub-process for s using SynComp algorithm.
If s is a temporal situation, synthesize a sub-process
for s using SynTemporal algorithm.
oc) instantiate

nRange(bool S2).

Vel, true>
Vel, false> . heli:backToBase()}.
ool S0)

. withinRange_Agent(integer ALoc) } par

agent in AS3 calculus.

1676 S.S. Yau et al. / The Journal of Systems and Software 81 (2008) 1663–1680
(2) For each SAW agent, synthesize its main process to
initialize the sub-processes for all the situations pro-
cessed by the SAW agent using SynMain algorithm.

These algorithms are given below:
SynAtom algorithm:
Require specification of an atomic situation aSi in the

format of
Defi? k([x0, . . .,xn] aSi, monitor_until(fi, condi))

1: Initialize an empty list aLi to store the operations for
analyzing aSi, and two empty lists reqLi and acqLi to
store the required and acquired variables of aSi.

2: for each atomic formula Tj in Defi do
3: if Tj is serv(Ij;Oj;Sj) then

4: Find the method signature Mj from the specifica-
tion of service Sj by matching Ij and Oj, and add Mj

to aLi. Append Ij and Oj to reqLi and acqLi,
respectively.

5: else if Tj is K(Oj;SMj), where SMj is a service name
concatenated with a method name then

6: Add a an input action to aLi, and append Oj to
acqLi

7: else if Tj is an atomic constraint then

8: Generate an If-then-else statement, in which the con-
dition is a constraint evaluation for Tj, an output
action ch aSi(x0, . . .,xn, true) is in the then branch,
an output action ch aSi(x0, . . .,xn, false) in the ‘‘else”

branch
9: Iterate reactive behavior specifications to find

actions to be triggered in aSi or :aSi, and add the
method invocations to the ‘‘then” or ‘‘else” branch,
and append it to aLi

10: end if

11: end for

12: Get input perimeters for instantiating this sub-pro-
cess by removing all variables in acqLi from reqLi

13: Append (time fi.aSi_agent(reqi) for recursion to aLi

14: if aLi is used to define a temporal situation then

15: Get system’s current time Now and append .appen-

dHistory(aSi, SituData, Now) to aLi, where SituData

contains x0, . . .,xn and aSi’s value
16: end if

17: Append plus ch condi(bool Status). zero) to the end
of aLi

SynComp algorithm:

Require specification of an logical composite situation
cSi in the format of:

Defi ? k([x0, . . .,xn], cSi, monitor_until(fi, condi))

1: for each formula k([c0, . . .,cj],Sj) in Defi do

2: Generate an input action ch Sj (x0, . . ., xn, Sj_re-

sult) to get the information of Sj

3: if Sj is the name of a situation then

4: Generate a condition expression in the format of
(Sj_result = true)
5: else if Sj is in the form not(Sj’), where Sj’ is the
name of a situation then

6: Generate a condition expression in the format of
(Sj_result = false)

7: end if

8: end for
9: if a conjunction (^) in Defi is used then

10: The corresponding input actions are concatenated
using ‘‘par”, and the condition expressions are con-
catenated using ‘‘and”

11: else if a disjunction (_) in Defi is used then

12: The corresponding input actions are concatenated
using ‘‘plus”, and the condition expressions are con-
catenated using ‘‘or”

13: end if

14: Generate if-then-else statements with the generated
conditional evaluations, and placed them after all
the input actions as Line 8 in SynAtom

15: Output actions for sending the situation analysis
result and actions to be triggered are added on proper
branches as Line 9 in SynAtom

16: Generate statement for recursion and termination as
Lines 13–17 in SynAtom

SynTemporal algorithm:

Require specification of a temporal situation tSi in the
format of

8T ðor9T Þ;CurrentTime� - < T < CurrentTime � -

þ e; kð½c0; . . . ; cj�; SjÞ ! kð½x0; . . . ; xn�;
tSi;monitor untilðfi; condiÞÞ
1: Generate statement for invoking service chkSituP(Sj,
x,e) or chkSituH(Sj,x, e)
2: Generate statement for invoking service retrieveRe-

latedData(Sj,x,e)
3: Generate if-then-else statements with the generated

conditional evaluations, and placed them after all
the input actions as Line 8 in SynAtom

4: Output actions for sending the situation analysis
result and actions to be triggered are added on proper
branches as Line 9 in SynAtom

5: Generate statement (time fi. tSi_agent(reqi) plus ch

condi(bool Status). zero)

SynMain algorithm:

Require a list of situations L for agent agenti

1: for each situation s in L

2: if s needs input perimeters p1, . . ., pn for instantiat-
ing its corresponding sub-process then

3: Find a set of situations S = {sk, . . ., sj} from sit-
uation specifications, such that they provide {p1, . . .,
pn} as outputs

4: for each s’ in S
5: Generate an output action ch s’(contextType

pi, . . ., contextType pm, bool S0)

S.S. Yau et al. / The Journal of Systems and Software 81 (2008) 1663–1680 1677
6: end for

7: Concatenate output actions using ‘‘par”

8: Generate a statement of. s_agent(contextType
p1, . . ., contextType pn)

9: else

10: Generate s_agent
11: end if

12: end for

13: Concatenate statements using par

14: Generate a statement of. agenti for recursion

We will again use the ‘‘sea rescue” example to illustrate
the above process. Based on the partition results, saw_heli-

Agent monitors three situations withinRange (AS2 in Table
4),canUseHeli (CS1 in Table 4), and readyToDispatchHeli

(CS2 in Table 4). Hence, sub-process withinRange_Agent

for analyzing situation winthinRange is synthesized using
SynAtom.

Initially, the list aL2 for storing the operations for ana-
lyzing (AS2) is empty. Since the first atomic formula
serv([loc(Aloc)]; [bool(Result)]; heli) in (AS2) matches
the case in Line 4 of SynAtom, the corresponding method
signature shown in (SERV2) is found and appended to
aL2. The list reqL2 for storing the required contexts for
analyzing (AS2) and the list acqL2 for storing the contexts
collected by saw_heliAgent are also updated. Now, we have
reqL2 = [loc(Aloc)], acqL2 = [bool(Result)], aL2 =
[withinFlightRange([int(ALoc)]; [bool(Result)]; heli)].

Since the second atomic formula Result = true in (AS2)
matches the case in Line 7 of SynAtom, an if-then-else state-
ment is generated following Lines 8–9. Now, aL2 = [within-

Range([int(ALoc)]; [bool (Result)]; heli), if Result=true

then ch withinRangehtruei else ch withinRangehfalsei].
Since there is no more atomic formula in (AS2), the loop

from Lines 2–10 ends. Since reqL2 contains variable ALoc,
which is not in acqL2, an input parameter is declared for
withinRange_Agent (L1 in Fig. 5).

Next, AS3 calculus terms for the operations currently in
aL2 need to be generated and properly ordered. The calcu-
lus term for withinRange([int(ALoc)]; [bool(Result)];

heli) is the following beta reduction in AS3 calculus:

letboolResult ¼ heli

: withinFlightRangeðintegerALocÞinstantiateP ;

where P denotes a process of subsequent operations.
In this example, the subsequent operation is the if-then-

else statement in aL2 since variable Result used in the
if-then-else statement is the output from method withinF-

lightRange. Hence, P is replaced by the if-then-else state-
ment, and L2–L5 in Fig. 5 are generated. Finally, since
monitor_until(50, rescueSuccess) is specified in (AS2),
L6-L7 in Fig. 5 are generated following Lines 13–17 of
SynAtom.

For logical composite situation ‘‘canUseHeli” (CS1 in
Table 4), a sub-process is generated using SynComp algo-
rithm. By scanning CS1, the following formulas are found:
� k([], withinRange)

� k([loc(ALoc), windVel(Vel)], lowWindForAWhile)

Hence, the corresponding input actions and condition
expressions, which are generated following Lines 3–4 of
SynComp, are given below:
Input actions
 Condition expression

ch lowWindForAWhile(bool S1)
 S1 = true

ch withinRange(bool S2)
 S2 = true
As shown in L9–L12 in Fig. 5, following Lines 1–13 of Syn-
Comp, the input actions are concatenated using par, and
the subsequent condition evaluation is generated. Finally,
L13–L14 in Fig. 5 are generated since monitor_until(10,

rescueSuccess) is specified in (CS1). Similarly, readyToDis-

patchHeli_agent can be synthesized.
After the generation of withinRange_Agent for (AS2),

canUseHeli_Agent for (CS1) and readyToDispatchHe-

li_agent for (CS2), the main process of saw_heliAgent is
synthesized using SynMain.

In SynMain, if a situation monitored by an SAW agent
depends on the context data collected by other SAW
agents, proper input actions will be generated by SynMain,
and the data retrieved by input actions will be used to
instantiate the sub-process for monitoring the situation.
The input actions and subsequent instantiation statement
of sub-processes are concatenated using par.

For (AS2), its required input list reqL2 contains variable
ALoc. By searching the situation specifications, situation
accidentDetected provides the value of ALoc. Hence, an
input action in L17 in Fig. 5 is synthesized to collect ALoc.
Then, the sub-process for analyzing situation withinRange
(AS2) is instantiated with an input parameter (ALoc) in
Fig. 5. Similarly, we can also generate the instantiation state-
ment for the sub-process that monitors situation canUseHeli

(CS1) and the sub-process that monitors situation readyTo-

DispatchHeli. Finally, the instantiation statements for the
sub-processes are composed using par in L17 in Fig. 5. A
recursion statement is added at the end of saw_heliAgent.

7.3. Complexity analysis of the SAW agent synthesis

algorithms
Theorem 2 (complexity of agent synthesis). Given p situa-

tions, and s services, the complexity of agent synthesis is

O((p + 2s) � p).

Proof. Assume that there are x atomic situations, y logical
composite situations, z temporal situations, the maximum
LAS is las, the maximum LLCS is llcs, the maximum num-
ber of trigger relations for a situation is g, and the maxi-
mum number of input parameters for a situation is e.
For synthesizing sub-processes for x atomic situations, it
takes O(x � (las + g) � s) steps. For synthesizing sub-pro-
cesses for y composite situations, it takes O(y � (llcs + g
� s)) steps. For synthesizing sub-processes for z temporal
situations, it takes O(z � g � s) steps. To synthesize the

1678 S.S. Yau et al. / The Journal of Systems and Software 81 (2008) 1663–1680
main processes, it takes p � (e � p + g � s) steps. Since las,
llcs, g, e are usually small numbers, the total complexity is
O(x � (las + g) � s) + y � (llcs + g � s) + z � g � s + p

� (e � p + g � s) = O((p + 2s) � p). h
8. Evaluations

8.1. Evaluating our GUI tool

Experiments have been conducted to evaluate our over-
all approach. Evaluating the usability of our GUI tool is
based on case studies. We asked a novice user and an
expert user to use our SAW tool. They are required to
model the SAW requirements of a situation-aware appli-
cation. The average time spent for modeling different
types of SAW requirements by the two users is shown
in Table 5.

The time needed for modeling an atomic situation
increases as LAS increases. The time needed for modeling
a logical composite situation increases as LLCS increases.
However, LAS is usually smaller than 20 because defining
an atomic situation generally does not involve many service
invocations. Developers can often keep LLCS small by
reusing situations previously defined in the specifications
of new situations.
8.2. Evaluating our partitioning and SAW agent synthesis

algorithms

Our partitioning and SAW agent synthesis algorithms
were implemented using Prolog. A test generation tool,
Table 5
Average time for modeling different types of SAW requirements

Service Atomic situation Logical composite

1 min/service 2 min/situation 1 min/situation

Fig. 6. Partitioning and agent synth
which randomly generates AS3 logic specifications for
SAW, was developed using Java. The inputs of the tool
are the numbers of situations, services, methods, contexts
and relations. The outputs are specifications of services, sit-
uations and relations in AS3 logic. These randomly gener-
ated specifications are for evaluation purpose only and
without real meanings. Programs were run on a desktop
with Pentium D CPU 3.00 GHz and 2 G RAM.

Fig. 6 shows the time comparison of partitioning and
synthesizing SAW agents for 10–1000 situations (LAS =
LLCS = 3, 6 and 10, respectively) with 20% logical compos-
ite situations and 80% atomic and temporal situations. It
takes about 1.56 and 2.47 and 4.2 s to partition and synthe-
size 100 situations when LAS and LLCS are set to 3, 6 and
10, respectively. It takes about 14.3, 24.9 and 38.8 min to
partition and synthesize 1000 situations when LAS and
LLCS are set to 3, 6 and 10, respectively. The time needed
for partitioning and synthesizing situations with bigger
numbers of LAS and LLCS can be estimated following
the trend captured in our experiments.

Fig. 7 shows the partitioning and agent synthesis time for
80 situations containing 1/3 logical composite situations
with LLCS = 3, and 2/3 temporal situations and atomic sit-
uations with LAS = [1, 15]. It takes about 2.5 s to partition
and synthesize 80 situations with 1/3 situations being logical
composite situations and LAS = 15. Fig. 8 shows the pari-
tioning and agent synthesis time for 80 situations containing
1/3 logical composite situations with LLCS = [2, 15], and 2/
3 temporal situations and atomic situations with LAS = 2.
It takes about 1.5 s to partition and synthesize 80 situations
with 1/3 situations being logical composite situations and
LLCS = 15.
situation Temporal situation Relation

0.7 min/situation 0.5 min/relation

esis time for 10–1000 situations.

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Length of Atomic Situation (LAS)

Ti
m

e
(s

ec
on

ds
)

Fig. 7. Partitioning and agent synthesis time for 80 situations with different LAS.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1.2

1.0

1.4

1.6

Length of Logical Composite Situation (LLCS)

Ti
m

e
(s

ec
on

ds
)

Fig. 8. Partitioning and agent synthesis time for 80 situations with different LLCS.

S.S. Yau et al. / The Journal of Systems and Software 81 (2008) 1663–1680 1679
The above evaluation results show that our partitioning
and agent synthesis algorithms are quite efficient. This is
especially important for runtime system adaptation. When
a host or some SAW agents on the host are not available or
the user’s QoS requirements are changed, SAW agents can
be re-synthesized in a timely manner using our approach to
replace the original ones.
9. Conclusions and future work

In this paper, we have presented a logic-based approach
for specification, decomposition, and agent synthesis for
situation-aware SBS. Our approach is based on our SAW
model and AS3 calculus and logic. SAW requirements
can be analyzed and represented graphically using our
SAW model and GUI tool. The graphical representation
of SAW requirements can be automatically translated to
declarative AS3 logic specifications. An algorithm for par-
titioning the set of specified situations to decompose the sit-
uation analysis tasks to distributed SAW agents has been
developed based on network topology, communication
bandwidths among various hosts, and composition rela-
tions among situations. Algorithms for automated SAW
agent synthesis were also presented. Our experimental
results show that our GUI tool has good usability, and
the partitioning and agent synthesis algorithms are effi-
cient. However, so far, the SAW agents are only capable
of analyzing truth-value based situations. Preliminary algo-
rithms for automated consistency and redundancy check-
ing of SAW specifications have been developed and are
under evaluation. The special system service is centralized
and subjects to single-point failure. Future work includes
consistency and redundancy checking on SAW specifica-
tions, development of decentralized system services for
analyzing temporal situations, finding an optimized
approach to partitioning the set of specified situations,
extensions for handling fuzzy situations, semantic-based
context discovery, and privacy protection in SAW.

Acknowledgement

This work was supported by the DoD/ONR under the
Multidisciplinary Research Program of the University Re-
search Initiative, Contract No. N00014-04-1-0723.

References

Appel, A., 1992. Compiling with Continuations. Cambridge University
Press.

Bharadwaj, R., 2003. Secure middleware for situation-aware Naval C2
and combat systems. In: Proceedings of the Nineth International

1680 S.S. Yau et al. / The Journal of Systems and Software 81 (2008) 1663–1680
Workshop on Future Trends of Distributed Computing System
(FTDCS 2003), pp. 233–240.

Blackburn, P., deRijke, M., Venema, Y., 2003. Modal Logic. Cambridge
University Press.

Booth, D., Haas, H., McCabe, F., Newcomer, E. et al., 2004. Web services
architecture. Available at: <http://www.w3.org/TR/2004/NOTE-ws-
arch-20040211/>.

Cardelli, L., Gordon, A.D., 2000. Mobile ambients. Theoretical Computer
Science 240 (1), 177–213.

Caromel, D., Henrio, L., 2005. A Theory of Distributed Objects. Springer-
Verlag.

Chan, A.T.S., Chuang, S.N., 2003. MobiPADS: a reflective middleware
for context-aware computing. IEEE Transactions on Software Engi-
neering 29 (12), 1072–1085.

Chen, H., Finin, T., Joshi, A., 2003. An ontology for context-aware
pervasive computing environments. Special Issue on Ontologies for
Distributed Systems, Knowledge Engineering Review 18, 197–207.

Dey, A.K., Abowd, G.D., 2001. A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications.
Human–Computer Interaction 16 (2–4), 97–166.

Huth, M., Ryan, M., 2004. Logic in Computer Science: Modeling and
Reasoning About Systems. Cambridge University Press.

Kifer, M., Lausen, G., Wu, J., 1995. Logical foundations of object-
oriented and frame-based languages’. JACM 42 (4), 741–843.

Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R., 1997.
GOLOG: a logic programming language for dynamic domains.
Journal of Logic Programming 31 (1–3), 59–84.

Matheus, C.J., Kokar, M.M., Baclawski, K., 2003. A core ontology for
situation awareness. In: Proceedings of the Sixth International
Conference on Information Fusion, pp. 545 –552.

May, D., Shepherd, R., 1984. The transputer implementation of occam.
In: Proceedings of the International Conference on Fifth Generation
Computer Systems, pp. 533–541.

McCarthy, J., Hayes, P.J., 1969. Some philosophical problems from the
standpoint of artificial intelligence. Machine Intelligence 4, 463–
502.

Milner, R., 1999. Communicating and Mobile Systems: The p-Calculus.
Cambridge University Press.

Pinto, J.A., 1994. Temporal reasoning in the situation calculus. Ph.D.
Thesis, University of Toronto, Toronto.

Ranganathan, A., Campbell, R.H., 2003. A Middleware for Context-
aware Agents in Ubiquitous Computing Environments. In: Proceed-
ings of ACM International Middleware Conference, pp. 143–161.

Reiter, R., 2001. Knowledge in Action: Logical Foundations for Speci-
fying and Implementing Dynamical Systems. MIT Press.

Roman, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R.H.,
Nahrstedt, K., 2002. A middleware infrastructure for active spaces.
IEEE Pervasive Computing 1 (4), 74–83.

Sorensen, M.H., Urzyczyn, P., 2006. Lectures on the Curry–Howard
Isomorphism. Elsevier.

Thuraisingham, B.M., 1996. Data management Systems: Evolution and
Interoperation. CRC Press.

Yau, S.S., Karim, F., Wang, Y., Wang, B., Gupta, S.K.S., 2002a.
Reconfigurable context-sensitive middleware for pervasive computing.
IEEE Pervasive Computing 1 (3), 33–40.

Yau, S.S., Wang, Y., Karim, F., 2002. Development of situation-aware
application software for ubiquitous computing environments. In:
Proceedings of 26th IEEE International Computer Software and
Application Conference, pp. 233–238.

Yau, S.S., Huang, D., Gong, H., Seth, S., 2004. Development and runtime
support for situation-aware application software in ubiquitous com-
puting environments. In: Proceedings of the 28th Annual International
Computer Software and Application Conference (COMPSAC 2004),
Hong Kong, pp. 452–457.

Yau, S.S., Huang, D., Gong H., Davulcu, H., 2005a. Situation-awareness
for adaptable service coordination in service-based systems. In:
Proceedings of the 29th Annual International Computer Soft
ware and Application Conference (COMPSAC 2005), pp. 107–112.
Yau, S.S., Mukhopadhyay, S., Huang, D., Gong, H., Davulcu, H., Zhu,
L., 2005b. Automated agent synthesis for situation-aware service
coordination in service-based systems. Technical Report, ASU-
CSE-TR-05-008. <http://dpse.eas.asu.edu/AS3/papers/ASU-CSE-TR
-05-009.pdf>.

Yau, S.S., Gong, H., Huang, D., Zhu, L., 2006a. Automated agent
synthesis for situation awareness in service-based systems. In: Pro-
ceedings of the 30th Annual International Computer Software and
Application Conference (COMPSAC 2006), pp. 503–512.

Yau, S.S., Huang, D., Gong, H., Yao, Y., 2006b. Support for situation-
awareness in trustworthy ubiquitous computing application soft
ware. Journal of Software Practice and Engineering (JSPE), 893–921.

Yau, S.S., Davulcu, H., Mukhopadhyay, D., Huang, S., Yao, Y., Gong,
H., 2007a. Adaptable situation-aware secure service-based (AS3)
systems. In: Wang, C., King, S., Wachter, R., et al. (Eds.), Information
Security Research: New Methods for Protecting Against Cyber
Threats. Wiley Publishing Inc., pp. 585–596.

Yau, S.S., Mukhopadhyay, S., Davulcu, H., Huang, D., Gong, H., Singh,
P., Gelgi, F., 2007b. Automated situation-aware service composition in
service-oriented computing. International Journal of Web Services
Research (IJWSR) 4 (4), 59–82.

Yau, S.S., Yao, Y., in press. An adaptable distributed trust management
framework for development of secure service-based systems. Journal of
Autonomic and Trusted Computing (JoATC).

Stephen S. Yau is currently the director of Information Assurance Center
and a professor in the Department of Computer Science and Engineering
at Arizona State University, Tempe, Arizona, USA. He served as the chair
of the department from 1994 to 2001. He was previously with the Uni-
versity of Florida, Gainesville and Northwestern University, Evanston,
Illinois. He served as the president of the Computer Society of the Institute
of Electrical and Electronics Engineers (IEEE) and the editor-in-chief of
IEEE Computer magazine. His current research is in distributed and ser-
vice-oriented computing, adaptive middleware, software engineering and
trustworthy computing, and data privacy. He received the Ph.D. degree in
electrical engineering from the University of Illinois, Urbana. He is a life
fellow of the IEEE and a fellow of American Association for the
Advancement of Science. Contact him at yau@asu.edu.

Haishan Gong received the Ph.D. degree in computer science at Arizona
State University, Tempe, Arizona, USA in 2007. Her research interests
include situation-aware software development, and ubiquitous computing.
She received the BS degree in computer science from Zhejiang University,
China She is currently a software engineer at PayPal Inc. Contact her at
hgong@paypal.com.

Dazhi Huang is a Ph.D. student in the Department of Computer Science
and Engineering at Arizona State University, Tempe, Arizona, USA. His
research interests include middleware, mobile and ubiquitous computing,
and workflow scheduling in service-oriented computing environments. He
received the B.S. degree in computer science from Tsinghua University in
China. Contact him at Dazhi.Huang@asu.edu.

Wei Gao is a Ph.D. student in the Department of Computer Science and
Engineering at Arizona State University, Tempe, Arizona, USA. His
research interests include mobile and ubiquitous computing, wireless
network architecture, and network optimization. He received his B.E.
degree in electrical engineering from University of Science and Technol-
ogy, China. Contact him at W.Gao@asu.edu.

Luping Zhu is a Ph.D. candidate in the Computer Science and Engineering
Department at Arizona State University. His research interests include
distributed systems, software deployment. He received his B.S. degree
from Xian Jiaotong University, China, and the M.S. degree from Zhejiang
University, China, both in computer science. Contact him at
Luping.Zhu@asu.edu.

http://www.w3.org
http://dpse.eas.asu.edu/AS3/papers/ASU-CSE-TR-05-009.pdf
http://dpse.eas.asu.edu/AS3/papers/ASU-CSE-TR-05-009.pdf
http://yau@asu.edu
http://hgong@paypal.com
http://Dazhi.Huang@asu.edu
http://W.Gao@asu.edu
http://Luping.Zhu@asu.edu

	Specification, decomposition and agent synthesis for situation-aware service-based systems
	Introduction
	Current state of the art
	Background
	A declarative situation awareness (SAW) model
	AS3 calculus and logic

	Overview of our approach
	Architecture of our approach
	An illustrative example

	Specifying SAW requirements
	Automated partition of the set of specified situations
	System-specific knowledge and decision factors for automated partition of the set of specified situations
	Factor (1) communication cost
	Factor (2) Situation composition tree

	Partitioning algorithm
	Complexity analysis of the Partitioning algorithm

	Automated synthesis of SAW agents
	Representing SAW agents using AS3 calculus
	The SAW agent synthesis algorithms
	Complexity analysis of the SAW agent synthesis algorithms

	Evaluations
	Evaluating our GUI tool
	Evaluating our partitioning and SAW agent synthesis algorithms

	Conclusions and future work
	Acknowledgement
	References

