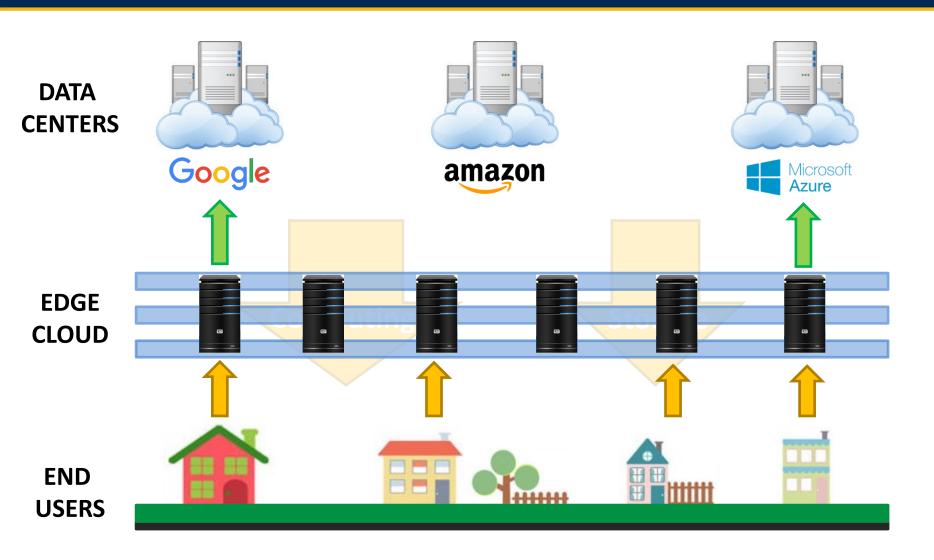
Edge Computing Overview

Wei Gao

Course Information


- Class time: 2:30pm 5:00pm Tuesdays
- Instructor: Wei Gao, weigao@pitt.edu
 - Office: 1205 Benedum
- Schedule and course materials will be posted at the instructor's website
 - http://www.pitt.edu/~weigao/ece2195/spring2022/sched ule.html
- CourseWeb is used for posting announcements, grades and project feedback

The limits of Cloud Computing

- Network communication latency of MCC
 - Can be up to 400 ms

Round trip cities	Max(ms)	Mean(ms)	Min(ms)
Berkeley-Canberra	174.0	174.7	176.0
Berkeley-Troudheim	197.0	197.0	197.0
Pittsburgh-Hong Kong	217.0	223.1	393.0
Pittsburgh-Seatle	83.0	83.9	84.0
Pittsburgh-Dublin	115.0	115.7	116.0

Edge Cloud

Edge Cloud for Mobile Computing

- Reduced response latency
 - Delay-sensitive mobile applications

 Higher efficiency of resource utilization

> Distributed processing

Course Organization

- Goal: learn the basic concepts, methodology and technical solutions to edge computing
- Classroom lectures
 - Cover different aspects of edge computing research
 - Hardware support
 - Software systems
 - Edge computing and AI
 - Edge computing and 5G

Course Organization

- Research paper presentations (40%)
 - 2 papers presented in each class
 - 45-min presentation + 15-20 min discussions
 - The next week's presenters will be announced in the previous work's class
 - One-week time for preparation

- Individual course project (60%)
 - Your projects are expected to focus on one of the perspectives covered in course lectures
 - Keep your progress on track

Project Expectation

- Perform a system project
 - An innovative idea in emerging edge computing application paradigms
 - Could focus on either hardware or software
 - Hardware prototyping
 - Software programming, debugging and testing
 - Wide coverage of subsystems: computation, communication, sensing and control
 - Demo to the class

- Among those emerging edge computing application paradigms
 - How can they be better?

- Innovations from daily lives
 - Current technologies, tech news, Sci-Fi fictions and movies

- Imagine big, design small
 - Your design could be the key enabler of...

And in this course your prototype will be ...

What is an appropriate project scope?

Smart Building

- Occupancy sensing and monitoring
 - Camera, infrared, ultrasound, etc
 - Adjustment based on user needs
- Remote and intelligent control
 - Lighting, HVAC, sound
 - Custom and zonal control
- Information infrastructure
 - Ubiquitous display and feedback
 - Emergency evacuation

Honeywell's vision:

https://www.youtube.com/watch?v=kQ3CJdwP3fY

Smart Cities and Communities

- What is a smart city?
 - https://www.youtube.com/watch?v=vpSLICKnjPc
 - Public safety
 - Gunshot detection: <u>https://www.youtube.com/watch?v=f8jkApBTGd4</u>
 - City surveillance and planning
 - Traffic monitoring and control
 - Air quality and noise monitoring
 - Array of Things in Chicago: <u>https://www.youtube.com/watch?v=pFL5QNwgs6A</u>

Intelligent Transportation System

- Autonomous driving
 - Road sensing
 - Traffic detection, pedestrian detection
 - Al decision and control
 - Following and avoidance

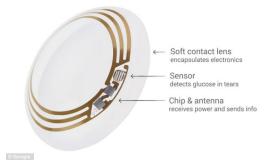
- Communication
 - Vehicle to road side
 - Vehicle to vehicle
 - Toyota's vision:

https://www.youtube.com/watch?v=uwLE3csyDAc

Virtual Reality

- Immersive experience
- Sensing is the key!
 - Headset
 - Gyroscope + accelerometer
 - Eye gaze tracking: https://www.youtube.com/watch?v=ImgfCFk8qy0
 - Emotion sensing: https://www.youtube.com/watch?v=2aXnfxH- anA
 - Hand controllers
 - Motion tracking with accelerometers
 - Google's Soli project: <u>https://www.youtube.com/watch?v=0QNiZfSsPc0</u>
 - More controllers...

Smart Health


Digital fitness tracking

Tele medicine and diagnostics

- Surgery assistance
 - Smart brain surgery system: https://www.youtube.com/watch?v=QOafVIkLgyk

Milestones

Project proposal (10%): Jan 25

- 3 Interim milestones (10% each)
 - Once every three weeks

Final presentation & report (20%): Apr 26

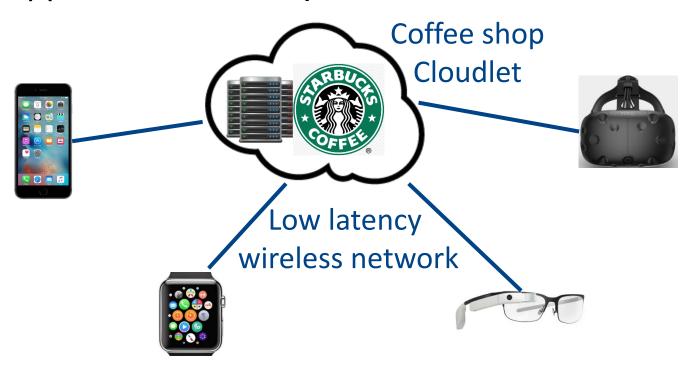
Project Proposal

- High-level overview of your project
 - Project idea: What are you doing in this project
 - Project background: Where do you start with?
 - Project approach: What are the major technical components / subsystems?
 - Better if you have some brief ideas about how to do them
 - Project plan: An outline of project plan
 - Final project objectives / deliverables
 - A list of project goals for each interim milestone

Project Proposal

- Grading criteria:
 - Design feasibility: 20%
 - Anticipated technical difficulty: 20%
 - Project planning: 40%
 - Presentation clarity: 20%

Interim Milestones

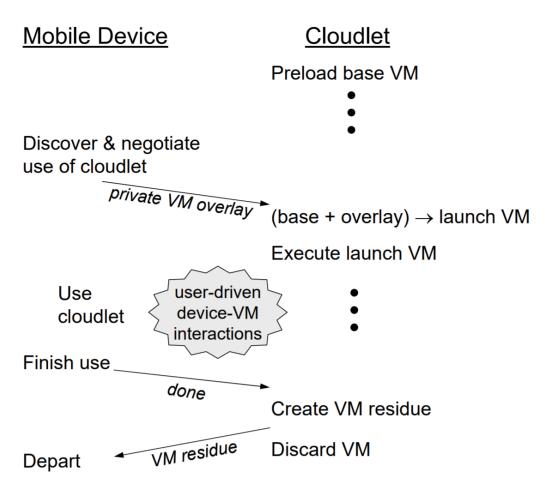

- Maintaining your progress on track!
 - Opportunities to received advices and revise your plan
- Grading criteria
 - Design feasibility: 25%
 - Technical difficulty and efforts: 25%
 - Development completeness: 30%
 - Presentation clarity: 20%

Project Final Report

- Recommended outline
- Introduction
- Related Work
- Overview: motivation, problem formulation, basic idea
- System design
- Experimentation: your system setup, evaluation plan, experimental data
- Discussions & conclusions

Current Solution: Cloudlet

- Small scale cloud servers at the edge
 - Reduce the network latency accessing data center
 - Support user mobility



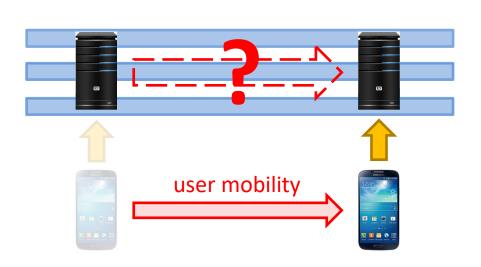
Advice

- Start early and work on it regularly!
- Discuss with me often for feedbacks and directions

System Implementation

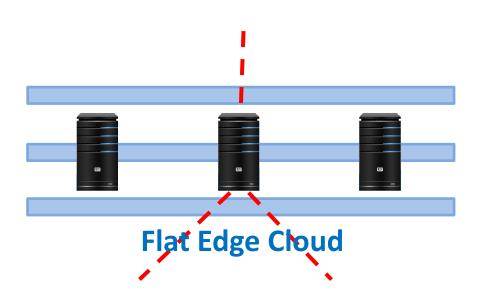
 Each user application being submitted to the cloudlet is encapsulated into a Virtual Machine (VM)

Challenges


- Adaptability
 - Optimized performance?
 - Minimized cost?

- the plan load
- User mobility
 - Minimized cost?

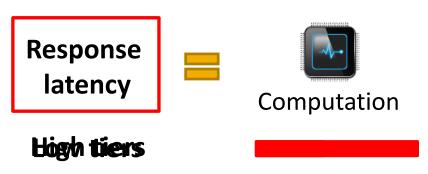
Complete nove of data ar agram

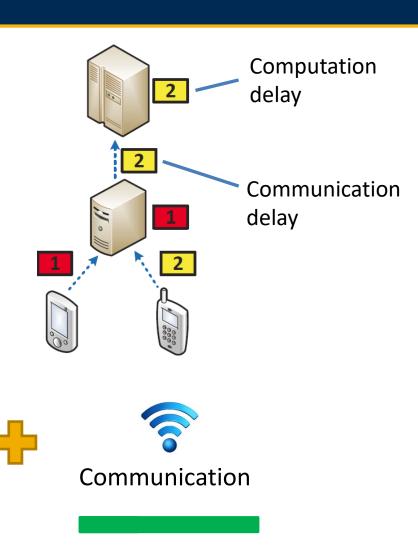




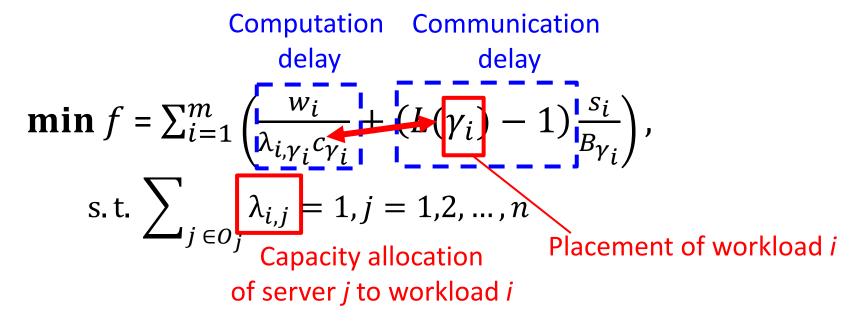
A Better Solution: Hierarchical Edge Cloud

- Adaptability
 - Aggregation of peak load


- User mobility
 - Partial migration of data and program

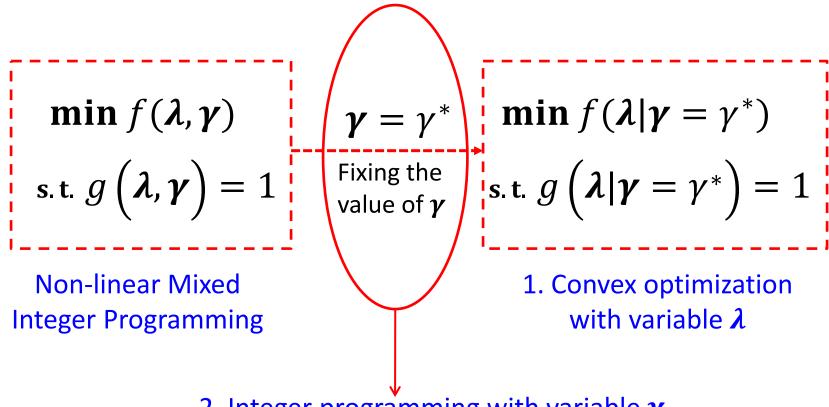


Optimal Workload Placement


- Our focus: minimized response latency
 - Where to place a workload
 - How much capacity for a workload
- Challenge
 - Delay tradeoff

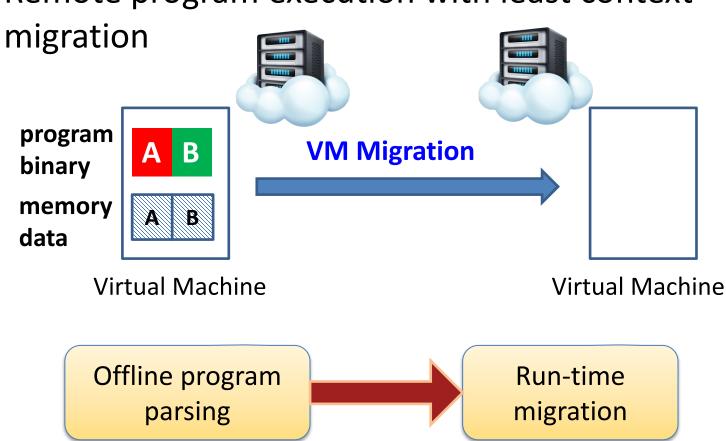
Optimal Workload Placement

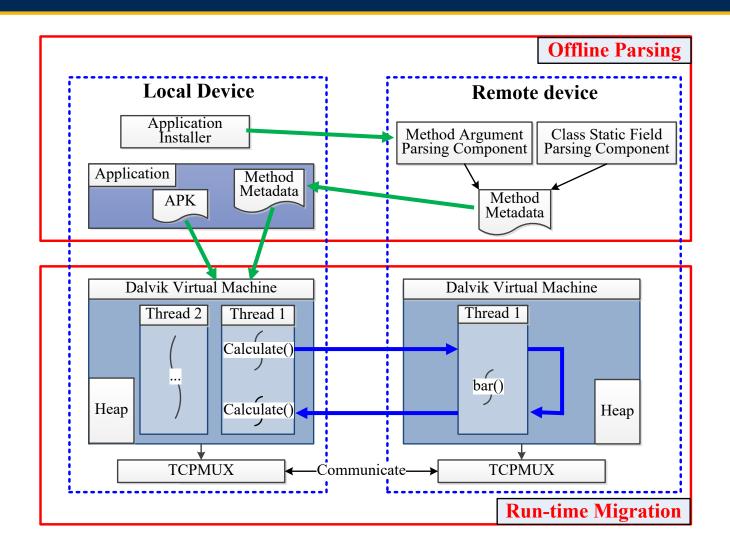
Distributed optimization



Non-linear mixed integer programming

Optimal Workload Placement


Problem transformation


2. Integer programming with variable γ

Supporting User Mobility

Remote program execution with least context

Supporting User Mobility

