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SUMMARY

Gelman and Loken (2014) draw attention to a “statistical crisis in science” and describe
how risks with multiple p-values can be present even in the analysis of a single data set.
There is indeed a crisis, as p-values are everywhere, in science, engineering, medicine,
social science, health care, and the media; and conflicting results are misrepresenting the
importance of p-values, and indeed of many disciplines themselves. We argue that risks
of misinterpretation are widespread, but that the crisis is really in the discipline of statis-
tics, and starts with mixed messages about the meaning and usage of p-values. These
mixed messages then have downstream effects that seriously misinform scientific endeav-
ours. What are these mixed messages concerning p-values? And should statistics continue
with such messages that compromise the discipline? We discuss this and offer recommen-
dations.
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function. significance function
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1 Introduction
This article is a response to Gelman and Loken (2014), who drew attention to a “statistical crisis in
science” and showed how multiple p-values can arise, in good faith, in the analysis of a single data
set. At about the same time, the Journal of Basic and Applied Social Psychology made headlines in
Nature (Woolston, 2015) by deciding to no longer publish papers containing p-values. This debate
continues, and there were several media reviews of news in December 2015 from CERN’s Large
Hadron Collider about a possible discovery of a new particle, and the associated “5-sigma” criterion
commonly applied in high-energy physics (Castelvecchi, 2015; Spiegelhalter, 2015).

There is a crisis as p-values are everywhere, in science, engineering, medicine, social science,
health care, and in the standard media phrase “19 times out of 20” commonly appearing in the
reporting of polls. Our view is that while the risks of misinterpretation of p-values are widespread,
the crisis is really in the discipline of statistics, in providing mixed messages about the meaning of
a p-value. These mixed messages have downstream effects that can seriously affect all applications.
We discuss this and offer recommendations.
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2 Multiple meanings

2.1 The p-value function

Suppose we observe a variable, say y, that measures an unknown θ of interest; thus y is accessible
through measurement, but θ is only indirectly accessible, through inference from y. If we had
unlimited time and resources we could collect a great many values of the variable y and obtain
the probability distribution of the variable y. This density indicates the stochastic behaviour of the
variable, and if we assume that the form of the density is known, but its location (for example) is
not, by identifying this via an unknown parameter θ we can view learning where the distribution is
located as learning the value of θ. This could be, and often is, formalized by having a hypothesis,
called a null hypothesis and designated H0, that the unknown true value θ is θ0; an example is
indicated in Figure 1.

Figure 1: An accumulation of observations of y when the null hypothesis H0 : θ = θ0 holds.

Given a single observed measurement y0, an investigator could then construct Figure 2, which
shows that a proportion 6.1% of the distribution θ = θ0 falls to the left of the observed measurement
y0, and 93.9% falls to the right. The observed p-value associated with H0 would then be p0 = 6.1%

and is thus presenting just the percentile or statistical position of the data y0 under H0, or recording
just a pure statement of factual information. As a definition this aligns with Fisher’s 1920 proposal,
later clarified in Fisher (1956).

This example is simplified to an extreme, but asymptotic arguments developed in Fraser (1990),
Fraser and Reid (1993), and Brazzale et al. (2007, Ch. 8) show in wide generality that there is in fact
such an approximating location model relevant to a single parameter of interest and that it can can
be calculated quite routinely with more complex and realistic models.

Common statistical custom and usage don’t usually stop with this percentile position, but pro-
ceed from the statistical position to scientific statements with potentially huge impact. For example,
in high-energy physics, θ0 could represent the mean value under background radiation, and then
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Figure 2: An observed data point y0 and proportions left and right of the data under the hypothesis H0.

larger values θ > θ0 could indicate a new particle, such as the Higgs boson. In what sense does the
p-value provide support for this new particle?

More informative than a single p-value, the p-value function p(θ), records the statistical position
of the observed data y0 for a range of values of θ: see Figure 3. This function presents the “statistical
position” of the observation. It does not single out particular alternatives to θ0, but leaves this choice
to appropriate judgement in an application context Fraser (2014).

The p-value function presents in one plot all possible confidence bounds: we could for example
solve 0.95 = p(θ; y0), the solution of which, θ̂L say, is a lower confidence bound at the conventional
95% limit. Under repeated observation of y from the model, the interval (θ̂L,∞) will include the
true value of θ 19 times out of 20, on average. The p-value function has also been called the
confidence distribution function, e.g. in Cox (1958), Efron (1993), Xie and Singh (2013), Hjort and
Schweder (2016). The p-value function or confidence distribution function has the added benefit
that the direction of departure is recorded, as well as the magnitude.

2.2 Decision theory

Calculating observed proportions such as 0.061 and 0.939 as above was historically often chal-
lenging, and reference values corresponding to one or several standard values such as 5%, 10%,
90%, and 95% were derived and recorded in tables. Then in an investigation a statement such as
“significant at the 10%” level, or “not significant at the 5% level”, would be offered for the data
point y0 in Figure 2.

With the development of the theory of hypothesis testing by Neyman and Pearson (1933), this
practice acquired a formal theoretical status. In due course the original concept of a p-value or
observed level of significance as the position of the data with respect to the model changed its pre-
sentation into a decision for or against the hypothesisH0, at some chosen fixed level of significance.
The observed value y0 then became a decision for, or against, some null value. Taking such de-
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Figure 3: The observed p-value function from data y0 as in Figure 3; height at θ0 is 6.1%.

cisions at face value is a substantial change from the notion of statistical position, and has had the
profound and unfortunate consequence of setting an arbitrary standard for determining the adequacy,
or even publishibility, of the results from an experiment.

When p-values are used only to make a decision, and a larger sample size is viewed as a route to
getting to the decision point faster, the results can be even more misleading.

Gelman and Loken express this concern for treating p-values from a decision theoretic view-
point: “By convention, a p-value below 0.05 is considered a meaningful refutation of the null hy-
pothesis: however, such conclusions are less solid than they appear”. They do not, however, dwell
further on this point. Many contemporary presentations of introductory statistics also overlook such
concerns.

The point was emphasized famously in Ioannidis (2005), but there is a much earlier literature
warning about this. Sterling (1959) wrote of “publication decisions and their possible effects on
inferences drawn from tests of significance”; in particular “. . . (where) a borderline between accep-
tance and rejection is taken (at a) fixed point (say) 0.05 . . . is interesting by itself . . . (and when) used
as a critical criterion for selecting reports for (publication) in professional journals (might result in)
unanticipated results.” Rozeboom (1960) wrote of “The fallacy of the null-hypothesis significance
test” and quoted a famous philosophical epigram that the “accept-reject” paradigm is the “glory of
science and the scandal of philosophy”, meaning the glory of statistics and the scandal of logic and
application.

2.3 Bayesian view of p-value

To this point we have assumed that the model for Figure 1 provides the full background information
for θ. Another approach is available if we have a function π(θ) allegedly describing a probability
density for potential values of θ. If the joint model is then accepted as valid, the application of the
basic rules of conditional probability enable calculation of a probability distribution for θ, given the
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observed measurement y0, as f(θ | y0) = cπ(θ)f(y; θ). We can then compute, for example, the
probability that θ is larger than θ0, having observed y0.

But where does such a probability density function π(θ) come from? Efron (2013) cites two
possibilities: there may indeed be a case in some applications where randomness for the source of the
true θ can be identified with a distribution π(θ): he calls this a genuine prior. If θ represents the rate
of defectives in a manufacturing process, there may be enough data from previous manufacturing
runs to identify such a distribution.

An alternative construction of a distribution π(θ) is by describing symmetries among various
θ values: Efron (2013) calls these Laplace priors, as they received special support from Laplace
(1812). In that case the construction of f(θ | y0) can be regarded as a completely formal exercise,
not embodying any probability interpretation. In this setting the best we could argue is that these
probabilities have a meaning in as much as they lead to identical conclusions as the p-value function.
Then the probability interpretation of the result is vacuous, but not misleading.

This is the case, for example, in a simple location model with a uniform prior for θ. The fre-
quency calculation and the Bayes posterior probability calculation are computational reflections of
each other; thus s0(θ0) =

∫
θ0
f(θ | y0)dθ attaches the same value, 6.1%, to the statement that θ is

larger than θ0 as the argument above attaches to the probability under the model f(y; θ0) that y is
less than y0: the Bayes posterior bound is in fact exactly a confidence bound: see Figure 4.

In our view the two ingredients π(θ) and f(y; θ), even if π(θ) is a genuine prior, should be
left separate, rather than being combined into a joint model π(θ)f(y; θ) describing the pair (y, θ).
This makes available the full background information, and leaves to the concerned user the option
to combine them if desired. This point is discussed from a slightly different point of view in Cox
(2006, Ch. 5) and Cox and Reid (2015),where it is argued that “personalistic” priors have a different
logical status from probability density functions.

Figure 4: The Bayes calculation with the Laplace noninformative prior can with location symmetry duplicate
the frequency calculation, thus giving a confidence result.
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3 Responsibility and Risks

We have discussed three different interpretations for “p-value” or “level of significance”: (i) The
frequency view: The statistical position of the observed data with respect to a θ0 value being tested;
(ii) The decision theory view: The conventional level at which the data is just significant with respect
to a θ0 value being tested; and (iii) The Bayes view: The Bayes survivor calculation at a θ0 value
using some prior distribution for θ.

It is our view that the discipline of statistics should acknowledge responsibility for the conse-
quences of the confusion, in many areas of application, caused by these multiple meanings. Fraser
(2014) highlights three historically prominent cases where responsibility for statistical steps seems
overwhelming, even in legal senses. The launch of the space-shuttle Challenger failed on January
28, 1986, causing seven deaths: statistical data available before the flight indicated a concern with
the effect of low temperatures on critical O-rings, but the statistical warnings were by-passed (Dalal
et al., 1989). The pain relief drug Vioxx was approved by the US Food and Drug Administration in
1999, but withdrawn by the pharmaceutical company in 2004 after evidence for an elevated risk of
heart attacks became overwhelming, although statistical assessments as early as 2000 had indicated
heightened risk of such serious events (Abraham, 2005). An estimated 40,000 people died and a five
billion dollar settlement with the pharmaceutical company was obtained for those injured or the sur-
vivors (ONeil, 2012). Before the L’Aquila earthquake on April 5, 2009 an official committee with
statistical expertise underemphasized in public statements the risk of an imminent major earthquake;
some 300 died in that earthquake, and seven committee members were convicted of manslaughter
(Marshall, 2012; Prats, 2012), a conviction that was overturned on appeal for six of the members
(Abbott and Nosengo, 2014).

These examples emphasize that a misleading use of statistics can have serious consequences in
lives lost and in billions of dollars in costs. These consequences can start with conflicting messages
from statistics, and in particular the message that “statistical significance” is treated as an absolute, a
decision, and that the goal of the statistical analysis of an observed set of data is to reach that elusive
bar: a theme very common to applied work, especially among those new to the research process.

Gelman and Loken (2014) focus their discussion on the decision theoretic interpretation and ad-
dress the consequences from this approach, emphasizing in particular the problem that for a given
scientific or social scientific problem, the translation of “interesting science” to “statistical hypothe-
sis” can, and often does, involve several hypotheses, and hence the calculation of several p-values,
with a particular data set. They write “It would take a highly unscrupulous researcher to perform
test after test in a search for statistical significance . . . at the 0.05 level . . . The difficult challenge lies
elsewhere”. They further note “it is reasonable for scientists to refine their hypotheses in light of
the data”. Their assessment of the risks emphasizes that the formulation of an hypothesis in science
or social science is not as straightforward as identifying a single θ0, and as a result multiple testing
is implicit in a great many analyses, and more subtle than carrying out several tests in search of
“p < 0.05”.

We agree with them that the risks of using arbitrary p-values to define ‘significance’, and us-
ing these as decisions is very serious when multiple formulations of hypotheses lead explicitly or
implicitly to large numbers of p-values. Among their recommended strategies of pre-registration,
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authentic replication, and analysis of “all data”, they include a claim “that p-values should not nec-
essarily be taken at face value”. This last we disagree with! It is the conventional but unwarranted
attribution of decision, and the use of p-values for journal management, that are at the heart of the
problem.

The p-value and p-value function is simply recording the statistical position of data relative to
an hypothesis; it is elemental and provides an appropriate starting point for inference conclusions.
It can guide the judgments about scientific conclusions, but cannot replace them. The consensus
judgment in high-energy physics is that a ‘discovery’ is claimed when the p-value is less than 1 in
3.5 million: it is called “5-sigma” as this is the probability that a normal variable is greater than five
standard deviations from the mean, the normal here being an approximation to the Poisson count of
number of observed particles. Another physics example that received wide publicity in the popular
media of the time was Eddington’s verification of Einstein’s theory of general relativity. The orbit
of Mercury had been known in the 18-hundreds to precess at a rate different from that predicted
by Newtonian mechanics, and Einstein’s general relativity provided an adequate explanation. But
further corroboration seemed appropriate to the physics community. General relativity also predicts
the bending of light rays as they pass near a large mass; this provided, then, an appropriate variable
to measure, and in May 1919 Eddington was able to carefully measure the apparent position of stars
in the sky as indicted by light from the stars after it had passed adjacent to the sun during a solar
eclipse.

Suppose, as viewed, the star light was passing on the right side of the hidden sun where general
relativity would indicate that its apparent position in the sky was displaced to the right. Then if
a 5-sigma event had been observed, the statistical position of the observed data would have been
p = 0.999, 999, 7, indicating the large departure to the right; this value is the complement of
0.000, 000, 3, in turn the reciprocal of 1 in 3.5 million. This p value records that data value was
large, near 1; it is in the right tail of the null distribution under the standard theory of the time. The
statistical position version of the p-value is appropriate and indicates the magnitude of the departure
as well as the type of departure.

We believe the discussion is more urgent now, in the era of Big Data. As a reviewer has em-
phasized, the use of false discovery rates has been developed as a method of protecting against
multiple hypothesis tests. In applications of many similar tests to a single set of data, for example
in genome-wide association studies, this has provided some protection against claims of discoveries
that could not subsequently be validated. Indeed the conventional, if somewhat arbitrary, 5-sigma
rule of high energy physics is an ad hoc correction for multiple testing to protect exactly against
false discoveries. This seems not to solve the issue, but rather to move the decision boundary.

An approach more directly aligned with the presentation of the p-value function is a method
to correctly combine many such functions into a single summary p-value function. Methods of
combination motivated by developments in the theory of composite likelihood are in development
(Fraser and Reid, 2016).

For a great many settings where Big Data is available for analyses, the calculation of the di-
mensionality for possible hypotheses may be difficult or impossible, and the potential for making
incorrect decisions is enormous. Attributing significance or decision to a comparison selected from
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among millions of potential hypotheses suggests serious rethinking of the exploration process, the
evaluation process, and the decision process. The risks for misleading decisions seem large; we
could have mega p-values, mega decisions and mega wrong ‘answers’. Scientists and social scien-
tists are making serious efforts to address these issues; see for example the Science editorial McNutt
(2014), and Gelman and Loken (2014)’s suggestions around pre-registration. Perhaps Statistics
should stand up for its responsibilities before a Big Data Disaster.
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I agree with Fraser and Reid that the many abuses of p-values in the real world arise not so much
because applied researchers have ignored the lessons of statistics, but because in many ways they
have learned the lessons of statistics all too well. Thus, to the extent that education from statisticians
to practitioners is part of the solution, what is needed is not merely to shout existing messages even
louder, or to require scientists to take more of the usual sort of statistics courses, but rather for
we, the statistics profession, to think carefully about what messages we are sending and how these
messages can be encouraging statistics abuse.

Before going on, let me clarify that I think the real problem is not with p-values but with what
is called “null hypothesis significance testing” (NHST): the practice by which a researcher seeks to
reject a straw-man null hypothesis as evidence in favor of some favored alternative. This is rife in
the literature, indeed is the standard use of statistical analysis in psychology, medicine, and other
fields. Heres an example, one of many: Carney, Cuddy, and Yap (2010) presented evidence that
when subjects held their body in a certain posture called the power pose, they gained a feeling
of confidence and certain hormone levels increased, compared to a control position in which the
subjects held an alternative posture. Key comparisons in this paper had p-values of less than 0.05.
A few years later, Ranehill et al. (2014) did a larger-scale preregistered replication of the study and
failed to find an effect. What went wrong? The problem was with the logic of the significance test:
In their original paper, Carney, Cuddy, and Yap had the choice of many possible data analyses; as
a result, the probability of attaining statistical significance in some way would be much higher than
5%, even in the absence of any effect. Indeed, effects are small enough and variation is high enough
that it would be essentially impossible to untangle signal from noise in a study of that size. The
problem with the p-value here is that it is contingent on the choice of what analyses might have been
performed, had the data been different.

In the Cuddy, Carney, and Yap study, a similar problem would have arisen with the NHST logic
even had some other method than p-values been used. For example if likelihood ratios or Bayes
factors were used to determine statistical significance and were used to reject the null, one would
again have to be concerned about the many forking paths in this analysis.

Fraser and Reid discuss a Bayesian interpretation of the p-value that is similar to that presented
by Greenland and Poole (2013). In my discussion to that Greenland and Poole paper (Gelman,
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2013), I wrote that I see the mathematical connection between the (one-tailed) p-value and the
posterior probability Pr(θ > 0 | y) under a uniform prior distribution on θ — but I question that
uniform prior. The problems where NHST is causing the most problems are where effects are
small. For example, Gertler et al. presented a study of early childhood intervention in Jamaica,
reporting an effect of 42% on adult income. (It was a longitudinal study in which the children, first
observed before school age, were followed up into their twenties.) The estimate was statistically
significant; thus the 95% confidence interval on the treatment effect was something like [2%, 82%].
But I don’t believe this interval. I certainly don’t believe the 82% on the high end and, thinking
Bayesianly, my prior based on the literature of such interventions is that any effect will be small.
Perhaps a normal prior with mean 0 and standard deviation 10% would be reasonable, in which case
the resulting posterior inference would not nearly be so optimistic as implied by the uniform prior.
From a frequentist perspective, I do not think this interval has good coverage because of selection—
“researcher degrees of freedom”, in the words of Simmons, Nelson, and Simonsohn (2011)—in the
data processing and analysis.

The problem that I see in statistical education is that we present statistical methods as alchemy, a
way to convert randomness into a sort of certainty, as associated with words such as “confidence” and
“significance”. Look at statistics textbooks — including my own! — and you’ll see example after
example in which data are collected, analysis is done, and then inference is conveniently summarized
with statistically significant p-values and confidence intervals that comfortably exclude zero. It’s no
wonder that practitioners, trained from such books, go out into the world expecting to find such
clean summaries. The message we (implicitly) teach is that if you’re studying a real effect and you
have a good design and reasonable sample size, you’ll succeed in the sense of getting a low p-value
or a high posterior probability or a confidence interval that excludes zero.

Now consider this from the point of view of a researcher, Dr. X, analyzing some data. Dr.
X presumably thinks hes studying a real effect (otherwise why work on the problem at all) and
that he did a good design, and he might have even performed a power analysis to check that his
sample size is large enough. Such power analyses are typically wildly optimistic because published
effect size estimates tend to be way too large, biased as they are by the statistical significance filter:
big estimates are statistically significant and get published, while estimates near zero, being non-
significant, never appear. But this is a subtle point not mentioned in textbooks and not, we suspect,
recognized by most researchers. So here is Dr. X, sure he’s doing everything right and expecting to
see a positive result: it’s no wonder that he might jiggle his data a bit to get everything to line up.

So, to get researchers to stop chasing their tails with NHST, I think we need to revise our edu-
cation, to take away the message that statistical significance (or the Bayesian or confidence interval
equivalent) will come as a matter of course. Rather, researchers need to learn to live with uncertainty.
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We’d like to thank Andrew Gelman for the thoughtful discussion of our note, and for the article
that inspired our response. That paper (Gelman and Loken, 2014) expressed concerns for a crisis in
science; our response argued that the crisis was in statistics, with its wide-spread recommendation
that p-values be represented in terms of decisions, at the 5% level, or even the 5 sigma level or 1 in
3.5 million as recently used by High Energy Physicists.

The commentary agrees with our perspective on “NHST”, and provides insightful examples
from applications. Technical concerns aside, there are also issues of responsibility, professionalism,
and ethical behaviour that can’t be overlooked. It seems then that we are in full agreement on the
substance of the issues, with some differences of opinion on how the concerns should be weighted.

May Statistics rise to its challenges.
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SUMMARY

A spline mixed item response theory model that allows for three-level multivariate ordinal
outcomes and accommodates multiple random subject effects is proposed for analysis of
ordinal outcomes in longitudinal studies. Assuming cumulative logit model with propor-
tional odds, maximum marginal likelihood estimation for model parameters is proposed
utilizing Monte Carlo Metropolis Hastings Newton Raphson (MCMHNR) algorithm. An
iterative Fisher scoring solution, which provides standard errors for all model parameters,
is considered. The performance of the estimates of the model parameters in finite samples
has been looked into. A longitudinal orthodontic data set, where plaque content in teeth is
repeatedly measured over time, is used to illustrate application of the proposed model.

Keywords and phrases: ordinal response, proportional odds model, spline, Monte Carlo
EM, Metropolis-Hastings, orthodontic data.

1 Introduction

Many interesting problems in Biomedical, industrial and other experiments involve the study of how
an ordered response variable depends on a set of regressors. In psychometric and educational test-
ing literature, a large amount of research has been devoted to developing mixed-effects models for
subject-specific comparisons of multivariate ordinal responses. In longitudinal studies, information
from the same set of subjects is measured repeatedly over time. Multivariate data arise when differ-
ent item responses, related to a single underlying outcome, are measured to provide more complete
and reliable information. The aim of such studies is to estimate the mean or individual response at a
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certain time, to relate time-invariant or time-dependent covariates to repeatedly measured response
variables, or to relate the response variables to each other.

One way to model ordinal regression data is to assume that the observed response is the discrete
version of a continuous latent variable for which a linear regression model holds. Alternatively, an
index model of the discrete probabilities may be written for a given transformation, called link func-
tion as in the seminal paper of McCullagh (1980). It is well known that the latent variable approach
and the index model approach are essentially equivalent (see Greene, 2004 and Wooldridge, 2003).
Examples of such related models are obtained by assuming the logistic distribution for the errors in
the latent variable and the ordered logit model, or the normal distribution for the latent error and the
ordered probit model.

The restricted version of the generalized logit model is the standard ordered logit model dis-
cussed in most statistics textbooks and it is known in the statistical literature as the proportional
odds model (see McCullagh, 1980). Especially when the number of possible ordinal values is large,
the model may require many more parameters than the simple ordered logit model. This may be
justified for example when it is reasonable to assume that the threshold between adjacent categories
depends on subjective judgments, as for instance in the analysis of the determinants of health status,
happiness etc. As the ordered logit model may be seen as a properly constrained generalized logit
model, the effect of covariates on threshold parameters may be tested by imposing appropriate linear
constraints. When the dependence of threshold parameters on individual covariates is not justified
by the nature of the response variable, the rejection of the proportional odds assumption should
be taken as a warning that the latent model is not properly specified, like when, for instance, the
distribution of the error is heteroscedastic or the covariate is not exogenous.

Often in longitudinal studies it is required to characterize the temporal trends exhibited by some
real data. The mean trajectory appears to show curvature. In fact individual series shows more
curvature. In a situation where the primary focus of the analysis is to relate disease progression
at different time points to the subject’s habit/nature, it is of practical interest to develop an appro-
priate method that truly incorporates the temporal patterns as well as the covariate information.
Certainly, a less restrictive assumption on the time functions might be more desired than imposing
some parametric assumptions, which might be incorrect.There has been a tremendous advancement
in statistical research on non parametric function estimation. In many situations a semi parametric
generalized partially linear mixed model (GPLMM) is considered for handling the covariate effects
(time) non-parametrically. Such a model is essentially a compromise between the GLMM and a
fully nonparametric model. This kind of model is popular in longitudinal studies such as human
viral dynamics, pharmacokinetic analyses and studies of growth and decay. On the other hand the
inclusion of a nonparametric covariate in an otherwise GLMM raises the high dimension problem.
In order to avoid this, we consider a generalized partial ordinal longitudinal model (GPOLM) that
can be viewed as a compromise between GLMM and a fully nonparametric model.

Considerable studies have been done on partially linear models (see Hardle et al., 2000). In
order to analyze discrete outcomes, where the influential covariates and the outcome have definite
functional relationship (monotone), it is natural to extend the model to a partial semi parametric Gen-
eralized linear model. Previously, Severini and Staniswalis (1994), Hardle et al. (1998) and Muller
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(2001) have looked into the influential aspects of GPLM. Later Lin and Carroll (2001a), Wang et
al. (2005) and He et al. (2005) have considered the GPLMM in the context of clustered/longitudinal
data. Lin and Carroll (2001b) address that the conventional profile kernel-based approach is inca-
pable of producing a

√
n consistent estimator of the parameters unless the non-parametric function

is under-smoothed or working independence is assumed for the GEE methodology. These limita-
tions can be avoided if regression spline approximation is considered in GPLMM.To the best of
our knowledge, no literature has yet been published for the analysis of GPOLM. Our attempt is to
show that in the regression spline approximation under GPOLM, the spline approach results in the
optimal rate of convergence for estimating the unknown function and the parameters of interest. The
primary focus of our paper is to use a spline mixed regression model for analyzing ordinal longitudi-
nal data. Such a model accommodates longitudinal dependence and subject specific variation in the
data through random effects. We consider a data on oral hygiene where 220 individuals consisting
of students and staff members of medical schools in and around the city of Kolkata were selected
randomly irrespective of age, sex and oral hygiene status and their plaque scoring was recorded ac-
cording to Turesky et al. (1970). The reduction in the thickness of plaque for subjects are usually
recorded as belonging to four different categories, viz ‘no reduction’, ‘slight reduction’, ‘moderate
reduction’ and ‘vast reduction’ (to a great extent). In addition, auxiliary information on age, sex,
food habit, smoking habits etc were also observed for each subject. The purpose of the study is to
see whether the progression of the plaque reduction is truly effective with the use of a solution (kept
in mouth for 1 minute followed by a thorough rinse with water to remove any excess of disclosing
solution) and if so, to what extent such progression depends on the covariates taken.

The article is organized as follows. In Section 2 we introduce the spline mixed cumulative
logit model with proportional odds setup. In Section 3 we consider estimation of model parameters
using MCMHNR approach. In section 4 an asymptotic study is given. An exact sample study has
been carried out in Section 5, to see the performance of the estimator under the proposed approach.
Data arising from an orthodontic study have been analyzed in Section 6. Finally, conclusion and
discussion are made in Section 7.

2 The Model and Likelihood

Consider a trial involving n individuals in which each individual is to be examined at K assessment
times. Let yijk denote the ordinal response that hasL+1 distinct levels, 0, . . . , L (say) for individual
i within the cluster j at the assessment time (k, i = 1, . . . , n; j = 1, . . . , r; k = 1, . . . ,K). This
gives rise to a hierarchical data structure where the assessment times (level 1) are nested within the
clusters (level 2) which in turn are nested within the individuals (level 3). Further suppose, associated
with the ordinal response, xijk denote the covariate vector for individual i in cluster j at time k. The
covariates are completely known and may be assumed to be fixed across the entire observation times.
Let uij denote the subject and cluster specific random component vector corresponding to individual
i in the cluster j. The random component reflects the unobserved heterogeneity in the data. Dummy
variables are often used to represent categorical variables in estimation of parameters. Let us denote
Yijk as a vector of L + 1 indicator variables, given by, Yijk = (Y 0

ijk, . . . , Y
L
ijk)′ with Y lijk = 1, if
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yijk = 1 and 0, otherwise (l = 0, . . . , L). Further suppose, the vector of probabilities and cumulative
probabilities are respectively denoted by πijk = (π0

ijk, . . . , π
L
ijk)′ and ηijk = (η0ijk, . . . , η

L
ijk)′,

where πlijk and ηlijk are given by,

π1
ijk = P

(
Y 1
ijk = 1 | xijk, uij

)
= P (yijk = l | xijk, uij) , (2.1)

η1ijk = P (yijk ≤ l | xijk, uij) =

1∑
i0

π1
ijk. (2.2)

Corresponding to the individual i, the multivariate ordinal data can be represented as (yi11 =

c11, . . . , yijk = cjk, . . . , yirK = crK)′, where cjk (j = 1, . . . , r; k = 1, . . . ,K) can take the ordinal
scores 0, . . . , L. Conditional on the subject and cluster specific random components uij and given
the covariates, the associated probability follows from (2.1) and can be written as,

Pij =

K∏
k=1

L∏
l=0

{P (yijk ≤ l | uij , xijk)− P (yijk ≤ l − 1 | uij , xijk)}l(yijk=l)

=

K∏
k=1

L∏
l=0

(η′ijk − ηl−1ijk )l(yijk=l), (2.3)

where I(yijk = l) = 1, if yijk = l and 0 otherwise, η−1ijk = 0 and ηLijk = 1. To model the
dependence of the response on the covariates and the random component we use cumulative logit
model with proportional odds assumptions. Typically such a model is written as,

log it(η′ijk) = log

(
η′ijk

1− η′ijk

)
= λl + x′ijkβ + z′ijkuij + f0(tijk), (2.4)

where λl (l = 0, . . . , L−1) is the intercept in the lth logit model which satisfy the relationship λ0 ≤
λ1 ≤ λ2 ≤ · · · ≤ λL−1 and β denotes the p dimensional vector of covariate effects corresponding to
xijk. The random component vector uij is a subject and cluster specific random effect of dimension
q associated with the completely specified design vector zijk. For subject i in cluster j, we write the
random component vector uij as, uij = (u1ij , . . . , u

q
ij)
′ and assume that uij ∼ Nq(0, Iq). Let us

further write ui = (u′i1, . . . , u
′
ir)
′, where

ui ∼ Nrq(0, Iq ⊗ Σ), Σ = σ2[(1− ρ)Ir + ρ11′]. (2.5)

In model (2.5), σ2 and ρ denotes the intra cluster variability and correlation coefficient respectively.
They are treated as nuisance parameters and are estimated along with the other regression parame-
ters. In model (4), tijk may be simply time or in general any time dependent covariate and f0(.) is
an unknown smooth function.

We use the basis of cubic B-splines with q preselected knots to approximate the unspecified
smooth function f0 in which the rth knot corresponds to the r/(q + 1)th sample quantile of the
distinct values of tijk(i = 1, . . . , n; j = 1, . . . , r; k = 1, . . . ,K). Let B1(t), . . . , Bq+4(t) be the
cubicB-spline basis for the space of cubic splines with q preselected knots. For details on computing
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of B-splines and their mathematical properties we refer to Boor (2001). The cubic B-splines space
includes a constant function, and the constant is given in the parametric component of the model
(4), so to model f0() one of the (q + 4) B-spline basis functions needs to be dropped so that the
resulting parameterization is of full rank. Any one of them can be dropped, but for convenience
Li (2011) models f0 as a linear combination of the first q + 3 fixed-knot cubic B-spline basis
functions. In this paper in order to approximate f0 by a regression spline, we consider a set of knots
on [0, 1] with 0 = s0 < s1 < · · · < skn = 1 and generate N = kn + l normalized B-spline
basis functions of degree l + 1 that span the linear space. We then express f0(t) ≈ v′(t)γ, where,
v(t) = (B1(t), . . . , BN (t))′ is the vector of basis functions and γ ∈ RN is the spline coefficient
vector. Let us denote the vector of parameters by (θ′, φ′)′ where, θ = (λ0, . . . , λL1, β

′, γ′)′ and
φ′ = (σ2, ρ)′. Then in view of (3) and (5), the likelihood for subject i can be written as,

Li(θ, φ) =

∫ r∏
j=1

K∏
k=1

L∏
l=1

[
η′ijk − ηl−1ijk

]I(yijk=l)
g(ui)dui, (2.6)

where g(ui) denotes the density function of ui given in (2.5). Here our primary focus lies in esti-
mating and making inference on the parameter vector θ although the vector of nuisance parameter
φ is also estimated in the study simultaneously.

The critical issue for getting a rigorous model selection criterion can be based on estimating the
relative expected Kullback-Leibler (K − L) information. Akaike (1973) found that the maximized
log likelihood value was a biased estimate of K − L information but this bias was approximately
equal to ‘p’, the number of estimable parameters in the approximating model. Thus an approxi-
mately unbiased estimator of K − L information for large samples and good models is given by
Akaike’s Information Criterion (AIC), where

AIC = 2 logL(θ̂, φ̂) + 2p. (2.7)

In (2.7) above, (θ̂, φ̂) is the maximum likelihood estimator of the parameter vector arising in model
(2.6) and L(·) denotes the likelihood function given the data vector. Minimizing the AIC over a set
of possible models can thus be seen as minimizing the average distance of an approximating model
to the underlying truth.

3 Parameter Estimation
The likelihood function given in (2.6) is difficult to maximize because of the multidimensional
integral over ui which is the consequence of a mixed effects modelling. Numerical integration
techniques like Gauss Hermite quadrature or adaptive Gaussian quadrature (Pinheiro and Bates,
1995) can be used to approximate the above integral to any practical degree of accuracy. Diverse
methodologies in both Bayesian and Classical paradigm are available in the literature for fitting
GLMM. In Bayesian perspective Markov Chain Monte Carlo (MCMC) method is implemented
via Gibbs sampling techniques (Zeger and Karim, 1991) to generate repeated samples from the
posterior distribution of the random effects. In the classical approach Breslow and Clayton (1993)
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proposed the penalized quasi likelihood (PQL) for approximating the high dimensional integration
using Laplace approximation. However, as reported by several authors PQL estimates are biased
downwards for some variance components. Later Breslow and Lin (1995) and Lin and Breslow
(1996) gave bias corrected PQL. McCulloch (1994) investigated GLMM with a probit link using
Monte Carlo EM (MCEM). He extended MCEM to the logit model and introduced the Monte Carlo
Newton Raphson (MCNR) and simulated maximum likelihood methods. For simple models it was
found that the MCNR estimates inherits the properties of the exact ML estimates. Natarajan et al.
(2000) and Zhou and Liu (2008) used the Monte Carlo version of EM to calculate ML estimates of
parameters. Meza et al. (2009) and Davier and Sinharay (2010) proposed an alternative to MCEM
via the Stochastic Approximation EM (SAEM) of Deylon et al. (1999). We could have considered
any one of the three stochastic versions (SEM, SAEM and MCEM) to analyze our data. Since all
three lead to similar conclusions (Celeux et al., 1995), we preferred to work with MCEM method
here.

In this paper we adopt the MCNR approach to calculate the fully parametric Maximum likeli-
hood estimates based on the likelihood (6). The Monte Carlo approach calls for generating random
observations from the posterior distribution of the random effects which however is not in a closed
form. To circumvent this difficulty Metropolis Hastings algorithm (see Chib and Greenberg, 1995)
is used to generate data from the posterior distribution of the random effects which does not require
the exact form of the conditional distribution. Moreover a good starting solution is needed for the
MCNR method. In our analysis moment estimates are used. McCulloch (1997) pointed out that
although this approach is computationally intensive it provides feasible solutions for a variety of
data configurations. In presence of influential points in the data this method can be extended to the
Robust Monte Carlo Newton Raphson method of Sinha (2004).

3.1 The MCMHNR Approach

To set up the EM algorithm, we consider the random effects to be missing. We write the observed
data for individual i (i = 1, . . . , n), as D0i = {yijk, xijk, tijk; j = 1, . . . , r; k = 1, . . . ,K} and
the complete data is denoted by Dci = {yijk, xijk, tijk; j = 1, . . . , r, k = 1, . . . ,K}. Further
suppose f(Doi | ui) denotes the conditional distribution of the observed data given the random
component. Then using (3) and (5) the complete data log likelihood for all the subjects is given by,

lc(θ, φ) =

n∑
i=1

log(f(D0i | ui; θ)) +

n∑
i=1

log(g(ui;φ))

=

n∑
i=1

r∑
j=1

K∑
k=1

L∑
l=1

I(yijk = l) log
[
ηlijk − ηl1ijk

]
+

n∑
i=1

log(g(ui;φ))

= lc1(θ) + lc2(φ). (3.1)

From (3.1) it is to be noted that since θ enters only the first term so the M step of EM algorithm
with respect to θ uses only Lc1(θ). The second term in (8) involves only the distribution of ui which
is assumed to be normal and so maximizing the likelihood lc2(φ) gives the standard maximum
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likelihood estimates of φ after replacing ui’s with their conditional expected values. Writing D0 =

{D0i, i = 1, . . . , n} and u = (u′1, . . . , u
′
n)′, the score functions for θ and φ can be expressed as:

ξθ(θ) = Eu

[
∂lc1(θ)

∂θ

∣∣∣D0

]
= 0; ξφ(φ) = Eu

[
∂lc2(φ)

∂φ

∣∣∣D0

]
= 0. (3.2)

In order to solve for θ and φ from equation (3.2), we propose a Monte Carlo Newton Raphson
(MCNR) algorithm. Using MCNR, the updated estimate of θ and φ at (t+ 1)th step is given by,

θ(t+1) = θ(t) − Λ
−1(t)
1 ξθ(θ

(t)), φ(t+1) = φ(t) − Λ
−1(t)
2 ξφ(φ(t)) (3.3)

where Λ
(t)
1 = ∂ξθ(θ)/∂θ|θ(t) and Λ

(t)
2 = ∂ξθ(φ)/∂φ|φ(t) . The expressions for first and second

order derivatives are given in Appendix A1. The MCNR approach gives an iterative computational
scheme, where the maximization step becomes automatic. However the conditional expectations
in (3.2) cannot be computed in a closed form. This is because the conditional distribution of u
involves the marginal distribution of the data which in fact is the likelihood in equation (2.6) that
we are trying to avoid calculating directly. To circumvent this difficulty we use Metropolis Hastings
algorithm (Smith and Roberts, 1993) to produce random draws from the conditional distribution of
u | D0. Then we can approximate the required expectation in (3.2) by Monte Carlo approach.

To implement the Metropolis algorithm, we first specify the candidate distribution h(u) from
which potential new values are drawn and then compute the acceptance function that gives the
probability of accepting the new value (as opposed to keeping the previous value). In our case,
the target density can be expressed as proportional to the product of the density g(u;φ) that can be
sampled and the conditional density f(D0 | u, θ) that is uniformly bounded. Thus following Chib
and Greenberg (1995) we set the proposal density to be equal to g(.) (as in the independence chain)
to draw candidates. In this case the acceptance probability takes a simplified form and requires the
computation of f(D0 | u, θ) only. Let u0 denote the previous draw and ucan is a new value from
the candidate distribution. Then we accept ucan as a potential observation from the conditional
distribution of with probability of acceptance given by,

A(u0, ucom) = min

{
f(D0 | ucom, θ)
f(D0 | u0, θ)

, 1

}
. (3.4)

Incorporating the Metropolis step in MCNR method results in MCMHNR algorithm which can now
be stated as follows:

Step 1: Choose starting values θ0, φ0. Set t = 0.

Step 2: GenerateR values u(1), u(2), . . . , u(R) from the conditional distribution f(u | D0, θ, φ)

using the Metropolis Hastings algorithm and use them to form the Monte Carlo estimates of
the expectations.

Step 3: Compute:

θ(t+1) = θ(t) − Λ̂
−1(t)
1 ξ̂θ(θ

(t))

φ(t+1) = φ(t) − Λ̂
−1(t)
1 ξ̂φ(φ(t)).
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Replacing the expectations in (3.2) by Monte Carlo estimates and using (3.1),it follows that,

ξ̂θ(θ) =
1

R

R∑
r=1

∂

∂θ
log f(D0 | u(r); θ); ξ̂φ(φ) =

1

R

R∑
r=1

∂

∂φ
log g(u(r);φ)

Λ̂1 =
∂

∂θ
ξ̂θ(θ); Λ̂2 =

∂

∂φ
ξ̂φ(φ)

Set t = t+ 1.

Step 4: If convergence is achieved, declare θ(i+1) and φ(i+1) as the maximum likelihood
estimates of θ and φ respectively. Otherwise return to Step 2.

3.2 Knot Selection

An important aspect of spline smoothing is knot selection. Since we are mainly concerned with the
efficiency of the covariate effect estimates, we opt for convenient choices of knot placements. For
the Knot selection we have applied a data adaptive scheme which is briefed below:

Step 1: We at first consider Q1 = 10 largest local maxima and Q2 = 10 smallest local
minima.

Step 2: We have identified the time points corresponding to theseQ = Q1+Q2 points. These
Q points have been chosen as the initial knots. Let q = Q + k + 1, for cubic spline k = 3.

These k points are determined based on the quantiles.

Step 3: We removed the ith knot and evaluated the residual sum of squares (RSSi), for
i = 1, 2, . . .

Step 4: We have chosen that model for which RSSi is minimum and set q = q − 1.

Step 5: We have continued Steps 2-4 till q = k + 1.

4 Asymptotics
In this section, to ensure consistency of the proposed estimates, the asymptotic properties of the
solution to score equations in (3.2) have been investigated. The asymptotic distribution of the esti-
mators of θ and φ would be separately looked into as in view of (3.1), lc1 involves only θ and lc2
involves only φ. Essentially, here this section, we would consider only the asymptotic distribution
of θ̂ as that of φ̂ is straightforward. We consider a sequence of consistent estimators θ̂n(= θ̂ say) in
the sense that as

n→∞, sup
t∈[0,r]

| v′(t)γ̂ − f0(t) | P→ 0, λ̂− λ0 P→ 0 and β̂ − β0 P→ 0,

where λ0 and β0 are true unknown values of λ and β respectively. The required basic assumptions
are given below.
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A.1 The distinct values of tijk, 0 ≤ tijk ≤ τ form a quasi-uniform sequence that grows dense
on [0, 1].

A.2 For every i,Max{‖Xi‖} ≤ B0 for some non-random constantB0,whereXi = ((xijk)) i =

1, . . . , n; j = 1, .., r; k = 1, . . . ,K.

A.3 | f (s)0 (.) |< A0, for some non-random value A0 for s ≥ 2.

A.4 Conditional on data and for every i, supi≥1 E‖Sic‖2+δ < ∞, for some δ > 0, where
Sic = ∂

∂θ lic(θ) and lic(θ) =
∑r
i=1

∑K
k=1

∑L
l=1I(yijk = l) log[η′ijk − ηl−1ijk ]. In fact,

EDEu|D

(
∂2

∂θ∂θ′ lic(θ)
)

= Bi, with sup
i≥1
‖Bi‖ <∞ and D stands for the whole data set.

A.5 True parameter vector θ0 = (λ0l, β0l, γ0l)′ satisfies ‖θ0‖ ≤M0 for some known constant
M0(> 0).

Assumption A.1 essentially indicates that we have only local dependence in the sample. Assumption
A.2 is the compact support for covariates. The smoothness condition on f0 given in assumption A.3
determines the rate of convergence of the spline estimate f̂ = v′(t)γ̂. Both the assumptions A.2 and
A.4 are natural and are easy to check. Assumption A.5 is basically a technical condition required to
justify consistency.

It is true that, in our model, the covariates xijk may be time dependent and hence must depend
on tijk. Such dependence can be taken into account through some relationship (either linear or non-
linear). For example, we can express covariates as,

Xijku = Ψu(tijk) + εijku; i = 1, . . . , n; j = 1, . . . , r; k = 1, . . . ,K;u = 1, . . . , p. (4.1)

where Φu(·) are p functions for each of which sth derivative is bounded and εijku’s are independent
random variables with mean zero and also independent of yijk’s. In view of the fact that γ is the
nuisance parameter vector, for clear representation we modify equation (3.3) as,

θ̂ = θ̂0 −
[
Λ∗−11 ξ∗θ (θ)

]
θ=θ̂0

(4.2)

where

A∗1 = E

[
∂

∂θ′
(X∗′WY0) | D

]
, ξ∗θ = E [X∗′WY0 | D] , X∗ = (I −H)X,

H = P (P ′P )−1P ′, P = 1L ⊗ v′(tijk),

Y0 = (yijkl, i = 1, . . . , n; j = 1, . . . , r; k = 1, . . . ,K; l = 0, . . . , L− 1)′,

Rn = (X∗′X∗),W = Diag (. . . , 1− η′ijk − ηl−1ijk , . . .) and

X =


1L ⊗ 1′L x′111 v′111

1L ⊗ 1′L x′112 v′112
...

...
...

1L ⊗ 1′L x′nrk v′nrk


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For the existence of Fisher Information, the following assumptions are further made,

A.6 (i) lim
n→∞

kn
n

(P ′P ) = Q, (ii) lim
n→∞

Rn = R.

In assumption, A.6 (i), kn is the number of knots, Q and Rare positive definite matrices with all
eigen values bounded. Assumption A.6 (i) is a very standard property of B-spline basis functions
and holds true under general design conditions (He and Shi, 1996). A.6 (ii) is a prerequisite for the
existence of asymptotic distribution of the proposed estimator. The asymptotic distribution of β̂n
then follows from the following theorem:

Theorem 1. Under assumptions A.1-A.6, the MLE θ̂ of θ0 is consistent i.e. ‖θ̂−θ0‖ P→0 as n→∞.
Specifically as n→∞,

(
β̂ − β0

)
P→0, sup

t∈[0,r]
| v′(t)γ̂ − f0(t) |→ 0. (4.3)

The sketch of the proof is given in Appendix A2.

5 Simulation Study

In the simulation study we focus on a setting where L = 4,K = 4, r = 4 and n = 100.We simulate
the clustered longitudinal ordinal response from a model with,

logit(η′ijk) = λl + βxi + uij + sin(πtijk), (5.1)

where the monotone difference intercepts (λ0, λ1, λ2) are assigned the value (−2.0,−1.5,−1.0) and
the regression parameter β is chosen to be 0.5. The time dependent covariate tijk is simulated from
Uniform (−1, 1) while the baseline covariate xi is generated from N(0, 1). The random component
ui = (ui1, . . . , uir)

′ is generated from a r-variate normal distribution with mean zero and variance-
covariance matrix given by σ2

u [(1− ρ)Ir + ρ11′] , where the true values of σ2
u and p are taken to

be 1.0 and 0.6 respectively. During the estimation process the function sin(πtijk) is approximated
by the normalized cubic B spline basis function. The data adaptive scheme outlined in Section
3.2 is applied and the number of internal knots is chosen to be 4. The knot points are taken as
the 20th, 40th, 60th and 80th percentile values of tijk; i = 1, . . . , n; j = 1, . . . , r; k = 1, . . . ,K.

Metropolis Hastings (MH) algorithm is employed for generating observations from the conditional
distribution of ui given the data. For simplicity and time saving purpose, the MH sample size R
is chosen to be 500. The number of iterations needed in the Newton Raphson method within the
Metropolis algorithm is predetermined to be 30. This resulted in about two-decimal accuracy in
the simulation study. The simulation is repeated 100 times. For each parameter θi associated with
the outcome model the goodness of fit measures namely bias and mean square error (MSE) are
computed. Suppose θ̂u′ denote the estimate of θi in the t′th simulated data. Then Bias and MSE are
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given by,

Biasi =
1

100

100∑
u=1

(θ̂u − θi);MSEi =
1

100

100∑
u=1

(θ̂u − θi)2. (5.2)

The first measure assesses the accuracy of θ̂i and the second measure assesses the precision. We
also compared the efficiency of the proposed model with the naı̈ve model. For a naı̈ve model the
ordinal responses are generated using (5.1), but we fit a model after replacing the nonlinear function
of time by tijk simply. The estimated values of the parameters along with the bias and MSE of the
estimates of the parameters are presented in Table 1 for the naı̈ve model as well as for the proposed
model which accounts for the longitudinal effect through spline function. The program has been
implemented in R 2.14.1.

Table 1: Parameter estimates, simulated biases and mean square error of the parameter estimates for
the proposed model and naive model.

Parameters True Naive Model Proposed Model

values Estimates Bias MSE Estimates Bias MSE

λ0 -2.0 -1.8059 0.1933 0.3802 -2.0319 0.0319 0.0435

λ1 -1.5 -1.419 0.1065 0.3334 -1.507 -0.0906 0.0227

λ2 -1.0 -1.155 -0.1563 0.3866 -1.003 -0.0032 0.0161

β 0.5 0.5178 0.0178 0.0152 0.4968 -0.0131 0.0097

σ2
u 1.0 0.9137 -0.0232 0.0128 0.9677 -0.0962 0.0020

ρ 0.6 0.6000 0.0000 .0000 0.6000 0.0000 0.0000

Table 1 shows that the monotone difference estimates and the regression coefficients are biased
under the naı̈ve model, whereas the proposed model recovers the estimates well. However the
estimates of the parameters associated with the distribution of the random component remains robust
under model misspecification. In the naı̈ve model we have 6 parameters while the proposed model
involves 13 parameters. The AIC factor under naı̈ve model comes out to be 3642.622 while that
under the proposed model is 3552.039. During the estimation process under the proposed model the
spline coefficients γ = (γ1, . . . , γN ) are also estimated along with the other parameters of interest.
The fitted function is then given by,

f̂0(t) =

N∑
m=1

γ̂mBm(t), (5.3)

where γ̂m is the estimated value of γm and Bm(t) denotes the B-spline basis function. The calcu-
lation of basis functions for the cubic B-spline is done using the {splines} package in R. With four
internal knot points and spline of order 3 and intercept =False the bs(.) function in R returns N = 7



26 Das, Roy, and Chattopadhyay

basis functions. Figure 1 displays the graph of the fitted function given by (5.3) and the true function
given by sin(πt)against the different values of tijk. The graph reveals that the cubic B-spline basis
function approximates the true function sin(πt) well.

Figure 1: Plot of true function and estimated function against the time- dependent covariate.

For justification of the working of MCMHNR algorithm a simpler set up is chosen. Here we
assume that in model (16), ρ = 0. This leads to uncorrelated random components and hence the
multidimensional integration over ui = (ui1, ui2, ui3, ui4)′ is reduced to one dimensional integrals.
The score equations now involve integrals over the random component ui,which are evaluated using
Gauss Hermite quadrature. Alternatively we apply MCMHNR algorithm as outlined in Section 3
under this simple set up. The likelihood estimates of the parameters are computed for each case.
The AIC for the exact approach comes out as 2641.332, while that on application of EM algorithm
is 2599.236. This shows that the MCMHNR method approximates the exact likelihood approach
well.

6 Data Analysis

In this section we motivate the proposed model through an analysis of orthodontic data. Oral hygiene
is of severe concern as a significant proportion of world population is highly susceptible to some
destructive periodontal diseases. The data are the result of a study of 220 individuals consisting of
staff members and students of medical schools in and around the city of Kolkata. These individuals
have been selected at random irrespective of age, gender and oral hygiene status. A detailed history
of each subject was recorded a week prior to the beginning of the study to collect information
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like age, gender, occupation, food habits and smoking habits. Plaque scoring was done according
to Tureskey et al. (1970). The teeth selected for scoring of plaque were the maxillary right first
permanent molar, maxillary left permanent central incisor, maxillary left first premolar, mandibular
left first permanent molar, mandibular right central incisor and mandibular right first premolar which
we shall denote as teeth 1-6. Ordinal score of 0-2 was assigned as: 0 (No plaque), 1 (A thin band of
plaque up to 1 mm at the cervical margin of the crown of the tooth.), 2 (A band of plaque wider than
1 mm of the crown of the tooth).

The categories ‘moderate reduction’ and ‘vast reduction’ were assigned the ordinal scores 1 and
2 respectively while the categories ‘no reduction’ and ‘slight reduction’ were combined and given
the ordinal score 0.The plaque scoring on individual teeth was measured on four occasions separated
at an interval of 1 month. Figure 2 shows the average response (plaque score) over time for each
of the six teeth. The graph reveals a non-linear pattern in plaque deposit over time. The main
focus of this orthodontic study is to see whether plaque reduction is truly effective with the use of a
solution (kept in mouth for 1 minute followed by a thorough rinse with water to remove any excess
of disclosing solution) and if so, to what extent such progression (i.e. plaque reduction) depends on
the covariates taken. We consider the following model:

ηlijk = λl + βAxAi + βGxGi + βFxFi + βSxSi + uij + f0(tK). (6.1)

In equation (6.1) above, the baseline covariates xAi, xGi, xFi, xSi (i = 1, . . . , 220) correspond
to age, gender, food habit and smoking habit respectively. The binary covariates xGi, xFi and xSi
takes the value 1 if the person is a male , non-vegetarian and a smoker. The non-linear behavior of
the response over time is captured by the smooth unknown function f0(tk)(k = 1, . . . , 4), where
tk = k. In the analysis, the unknown function is approximated by a smoothing spline of order 1
with 4 internal knot points. Table 2 provides the estimated values of the parameters along with their
standard errors for both the naive model and the proposed model. The naive model replaces the
non-linear function by tk. The results reveal that the smokers will have on an average less value of
the response i.e. plaque reduction. Moreover food habit is not a significant factor in determining the
effect of the solution (treatment) on plaque reduction.In this study ‘age’ does not play a significant
role. The reason for this may be that the subjects considered belonged to almost the same age group.
Finally it can be concluded from the results that the particular treatment applied on plaque reduction
had better effect on males. The fitted function f̂0(t) =

∑N
m=1γ̂mBm(t) is computed for N = 3.

Here γ̂m denotes the estimated value of the spline coefficients corresponding to the basis spline
function Bm(t) for different time points (t). The function shows a non-linear decreasing trend over
time. Thus it can be inferred that in general the application of the solution helps in reducing plaque
deposit over time.

7 Conclusion
In many longitudinal set up where responses are ordinal in nature, one faces the stiff challenge in
expressing the dependence of such responses over time. In our present orthodontic study, it is evident
from Figure 2 that average response (plaque reduction) varies nonlinearly over time. The variation
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Figure 2: The average response (plaque score) over time for each of the six teeth.

also changes over the six teeth. To account for such unknown variability, we have proposed a
GPOLM that can be viewed as a compromise between GLMM and a fully nonparametric model. We
have approximated the non-parametric function in the GPOLM by a regression spline. A MCMHNR
method has been proposed to estimate the model parameters. Simulation study indicates that the
model which ignores the non-linear effect of time produces biased estimates of the intercepts and
the regression coefficients. Result from the orthodontic study reveals that smoking has a negative
effect in plaque reduction. However in general the application of the solution helps in reducing
plaque deposit over time.
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Appendix A1

First order derivatives:

∂lc1(θ)

∂θ
=

n∑
i=1

r∑
j=1

K∑
k=1

L∑
l=1

I (yijk = l)(
ηlijk − η

l−1
ijk

) (∂ηlijk
∂θ
−
∂ηl−1ijk

∂θ

)
, (A1.1)
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Table 2: Estimated values of the covariate effects along with their standard errors.

Parameters Naive Model Proposed Model

Estimates Standard Error Estimates Standard Error

λ0 -3.091 0.2211 -3.0624 0.2186

λ1 0.4670 0.1237 0.6944 0.1172

βFOOD 0.0956 0.2082 0.0095 0.1602

βAGE -0.0030 0.1102 -0.0004 0.0080

βGENDER 0.3095 0.2113 0.3744 0.1865

βSMOKE -0.1651 0.1619 -0.3023 0.1510

σ2
u 0.9077 0.1153 0.9513 0.0629

ρ 0.6002 0.0014 0.6000 0.0014

where I(x) is an indicator function, η′ijk = logit (λ1+x′ijkβ+z′ijkuij+v
′(tijk)γ), θ = (λ0, . . . , λL−1, β

′, γ′)′,

and

∂η′ijk
∂λl

= η′ijk(1− η′ijk), l = 0, . . . , L− 1,
∂η′ijk
∂β′ = η′ijk(1− η′ijk)x′ijk
∂η′ijk
∂γ′ = η′ijk(1− η′ijk)v′(tijk)

 (A1.2)

Substituting (A1.2) in (A1.1) we get,

∂lc1(θ)

∂θ
=

n∑
i=1

r∑
j=1

K∑
k=1

L∑
l=1

I (yijk = l)
(

1− η′ijk − ηl−1ijk

)
X̃ijk, (A1.3)

where X̃ijk = (1′x′ijkv
′(tijk))′.

Second order derivatives:
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∂2(θ)

∂λ2l
=

n∑
i=1

r∑
j=1

K∑
k=1

L∑
l=1

I (yijk = l) b′ijk; l = 0, . . . , L− 1

∂2lc1(θ)

∂β∂β′
=

n∑
i=1

r∑
j=1

K∑
k=1

L∑
l=1

I (yijk = l) b′ijkxijkx
′
ijk

∂2lc1(θ)

∂γ∂γ′
=

n∑
i=1

r∑
j=1

K∑
k=1

L∑
l=1

I (yijk = l) b′ijkv(tijk)v′(tijk)

∂2lc1(θ)

∂βT∂λl
=

n∑
i=1

r∑
j=1

K∑
k=1

L∑
l=1

I (yijk = l) b′ijkx
′
ijk

∂2lc1(θ)

∂γ′∂λl
=

n∑
i=1

r∑
j=1

K∑
k=1

L∑
l=1

I (yijk = l) b′ijkv
′(tijk)

∂2lc1(θ)

∂β′∂γ
=

n∑
i=1

r∑
j=1

K∑
k=1

L∑
l=1

I (yijk = l) b′ijkxijkv
′(tijk)

where b′ijk = −η′ijk(1− η′ijk)− ηl−1ijk (1− ηl−1ijk )

Appendix A2
Proof of Theorem 1 : We give an outline of the proof as it is essentially based on the result of Stone
(1985). Equation (4.3) can be proved following Lemma 8 and 9 in Stone (1985). In fact, it can be
shown that if the number of knots kn ∼= O

(
n

1
(2m+1)

)
then for m ≥ 2,

1

nrK

n∑
i=1

r∑
j=1

K∑
k=1

(v′(tijk)γ̂ − f0(tijk))
2

= OP
(
n
−2m

(2m+1)
)

(A2.1)

Expression (A2.1), in view of Stone (1985) can be expressed as,∫ {
f̂(t)− f0(t)

}2
dt = OP

(
n
−2m

(2m+1)
)

(A2.2)

The proof of equations (4.3) are rather straightforward application of Zeng and Cai (2005). Under
assumptions A.1–A.6 a solution to equation (3.2) exists and with probability unity, θ̂ → θ0.
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SUMMARY

A bivariate version of the hyper-Poisson distribution is introduced here through its prob-
ability generating function (pgf ). we study some of its important aspects by deriving its
probability mass function, factorial moments, marginal and conditional distributions and
obtain certain recurrence relations for its probabilities, raw moments and factorial mo-
ments. Further, the method of maximum likelihood is discussed and the procedures are
illustrated using a real life data set.
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1 Introduction
Bivariate discrete distributions have received a great deal of attention in the literature. For details see
Kumar (2008), Kocherlakota and Kocherlakota (1992) and references therein. Bardwell and Crow
(1964) studied the hyper-Poisson distribution (HP distribution), which they defined as follows. A
random variable X is said to follow an HP distribution if it has the following probability mass
function (pmf ) , for x = 0, 1, . . .

g(x) = P (X = x) =
θx Γ(λ)

φ(1;λ; θ) Γ(λ+ x)
, (1.1)

in which λ, θ are positive real numbers and φ(1;λ; θ) is the confluent hypergeometric series (for
details see Mathai and Saxena, 1973 or Slater, 1960). The probability generating function (pgf ) of
the HP distribution with pmf (1.1) is the following

G(t) =
φ(1;λ; θt)

φ(1;λ; θ)
, (1.2)

c© Institute of Statistical Research and Training (ISRT), University of Dhaka, Dhaka 1000, Bangladesh.
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which reduces to Poisson distribution when λ = 1 and when λ is a positive integer, the distribution
is known as the displaced Poisson distribution studied by Staff (1964). Bardwell and Crow (1964)
termed the distribution as sub-Poisson when λ < 1 and super-Poisson when λ > 1. Bardwell
and Crow (1964) and Crow and Bardwell (1965) considered various methods of estimation of the
parameters of the distribution. Some queuing theory with hyper-Poisson arrivals has been developed
by Nisida (1962) and certain results on moments of hyper-Poisson distribution has been studied
in Ahmad (1979). Roohi and Ahmad (2003a) discussed the estimation of the parameters of the
hyper-Poisson distribution using negative moments. Roohi and Ahmad (2003b) obtained certain
recurrence relations for negative moments and ascending factorial moments of the HP distribution.
Kemp (2002) developed q-analogue of the HP distribution and Ahmad (2007) introduced and studied
Conway-Maxwell hyper-Poisson distribution. Kumar and Nair (2011, 2012a, 2012b) introduced
modified versions of the HP distribution and discussed some of their applications.

Ahmad (1981) introduced a bivariate version of the HP distribution through the following pgf

Q(t1, t2) = (φ1φ2)−1 exp[θ(t1 − 1)(t2 − 1)]φ1[1;λ1; θ1t1]φ2[1;λ2; θ2t2], (1.3)

in which φi = φ(1;λi; θi). For r ≥ 0, s ≥ 0, the pmf q(r, s) = P (Z1 = r, Z2 = s) ofZ = (Z1, Z2)

with pgf (1.3) is the following

q(r, s) =
eθΓ(λ1)Γ(λ2)

φ1 φ2

min(r,s)∑
i=0

r−i∑
j=0

s−i∑
k=0

(−1)j+kθr−i−j1 θs−i2 θi+j+k

Γ(λ1 + r − i− j)Γ(λ2 + s− i− k)i!j!k!
, (1.4)

where λ1 > 0, λ2 > 0 and 0 < θ ≤ min(θ1/λ1, θ2/λ2).

Through the present paper we introduce another bivariate version of the HP distribution, which
we named as ‘the bivariate hyper-Poisson distribution (BHPD)’and obtain its important properties.
In section 2, it is shown that the BHPD possess a random sum structure. Further we obtain its
conditional probability distribution, probability mass function and factorial moments in section 2.
In section 3, we develop certain recursion formulae for probabilities, raw moments and factorial
moments of theBHPD and in section 4 we discuss the estimation of the parameters of theBHPD
by the method of maximum likelihood and the distribution has been fitted to a well-known data set
and it is observed that the BHPD gives better fit than the bivariate Poisson distribution and the
bivariate hyper-Poisson distribution of Ahmad (1981).

Note that the bivariate version of HP distribution introduced in this paper is relatively simple in
terms of its pmf and pgf compared to the bivariate version due to Ahmad(1981), and further this
bivariate form possess a bivariate random sum structure as given in section 2. The random sum
structure arises in several areas of research such as ecology, biology, genetics, physics, operation
research etc. For details, see Johnson et al. (2005).

2 The BHP distribution
Consider a non-negative integer valued random variable X following HP distribution with pgf (1.2),
in which θ = θ1 + θ2 + θ3, θ1 > 0, θ2 > 0 and θ3 ≥ 0. Define αj = θj/θ, for j = 1, 2, 3 and let
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{Yn = (Y1n, Y2n), n = 1, 2, . . .} be a sequence of independent and identically distributed bivariate
Bernoulli random vectors, each with pgf

P (t1, t2) = α1t1 + α2t2 + α3t1t2.

Assume that X,Y1, Y2, . . . are independent. Let T0 = (T10, T20) = (0, 0) and define

TX = (T1X , T2X) =

(
X∑
x=1

Y1x,

X∑
x=1

Y2x

)
.

Then the pgf of TX is the following, in which Λ = φ−1(1;λ; θ1 + θ2 + θ3).

H(t1, t2) = G{P (t1, t2)} = Λφ(1;λ; θ1t1 + θ2t2 + θ3t1t2) (2.1)

We call a distribution with pgf as given in (2.1) as ‘the bivariate hyper-Poisson distribution’or in
short, ‘the BHPD’. Clearly the BHPD with λ = 1 is the bivariate Poisson distribution discussed
in Kocherlakotta and Kocherlakotta (1992, pp 90) and when λ is a positive integer the BHPD with
pgf (2.1) reduces to the pgf of a bivariate version of the displaced Poisson distribution.

Let (X1, X2) be a random variable having the BHPD with pgf (2.1). Then the marginal pgf of
X1 and X2 are respectively

HX1
(t) = H(t, 1) = Λφ[1;λ; (θ1 + θ3)t+ θ2] and

HX2
(t) = H(1, t) = Λφ[1;λ; (θ2 + θ3)t+ θ1].

The pgf of X1 +X2 is

HX1+X2(t) = H(t, t) = Λφ[1;λ; (θ1 + θ2)t+ θ3t
2],

which is the pgf of a modified version of the HP distribution studied in Kumar and Nair (2011).
Let x be a non-negative integer such that P (X2 = x) > 0. On differentiating (2.1) with respect

to t2x times and putting t1 = t and t2 = 0 , we get

H(0,x)(t, 0) = (θ2 + θ3t)
x

( x−1∏
j=0

Dj

)
Λδx(θ1t) (2.2)

where Dj = (1 + j)/(λ+ j) and δj(t) = φ(1 + j;λ+ j; t) for j = 0, 1, 2, . . ..
Now applying the formula for the pgf of the conditional distribution in terms of partial deriva-

tives of the joint pgf, developed by Subrahmaniam (1966), we obtain the conditional pgf ofX1 given
X2 = x as

HX1|X2=x (t) =

(
θ2 + θ3t

θ2 + θ3

)x
φ(1 + x;λ+ x; θ1t)

φ(1 + x;λ+ x; θ1)
= H1(t)H2(t), (2.3)

where H1(t) is the pgf of a binomial random variable with parameters x and p = θ3(θ2 + θ3)−1

and H2(t) is the pgf of a random variable following the HPD with parameters 1 + x, λ + x and
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θ1. Note that, when θ3 = 0 and/or when x = 0, H1(t) reduces to the pgf of a random variable
degenerate at zero. Thus the conditional distribution X1 given X2 = x given in (2.4) can be viewed
as the distribution of the sum of independent random variables V1 with pgf H1(t) and V2 with pgf
H2(t). Consequently from (2.4) we obtain the following

E(X1 |X2 = x ) =
xθ3

(θ2 + θ3)
+
θ1Dxδx+1(θ1)

δx(θ1)
(2.4)

Var(X1 |X2 = x) =
xθ2θ3

(θ2 + θ3)2
+

θ1Dx

δ2
x(θ1)

{Dx+1δx(θ1)δx+2(θ1)θ1

+ δx(θ1)δx+1(θ1)−Dx[δx+1(θ1)]2θ1}. (2.5)

In a similar approach, for a non-negative integer x with P (X1 = x) > 0, we can obtain the
conditional pgf of X2 given X1 = x by interchanging θ1 and θ2 in (2.3). Therefore it is evident
that comments similar to those in case of the conditional distribution of X1 given X2 = x are valid
regarding conditional distribution of X2 given X1 = x and explicit expressions for E(X2 |X1 = x )

and V ar(X2 |X1 = x) can be obtained by interchanging θ1 and θ2 in the right hand side expressions
of (2.5) and (2.6) respectively.

In order to obtain the probability mass function pmf of the BHPD, we need the following
partial derivatives of H(t1, t2), in which r is a non-negative integer.

H(r,0)(t1, t2) = (

r−1∏
i=0

Di)(θ1 + θ3t2)rΛ∆r(t1, t2), (2.6)

where

∆j(t1, t2) = φ(1 + j;λ+ j; θ1t1 + θ2t2 + θ3t1t2), j = 0, 1, 2, . . .

The following derivatives are needed in the sequel, in which 0 ≤ i ≤ r and j ≥ 1.

∂i(θ1 + θ3t2)r

∂ti2
=

r!θi3
(r − i)!

(θ1 + θ3t2)r−i (2.7)

∂j∆r(t1, t2)

∂tj2
=

r+j−1∏
i=r

Di(θ2 + θ3t1)j∆r+j(t1, t2). (2.8)

Differentiating both sides of (2.7) s-times with respect to t2 and applying (2.8) and (2.9), we get the
following

H(r,s)(t1, t2) = (

r−1∏
i=0

Di)Λ

s∑
m=0

(
s

m

)
∂m(θ1 + θ3t2)r

∂tm2

∂s−m∆r(t1, t2)

∂ts−m2

= (

r−1∏
i=0

Di)Λ

min(r,s)∑
m=0

(
s

m

)
r!

(r −m)!
θm3 (θ1 + θ3t2)r−m

×
r+s−m−1∏

i=r

Di(θ2 + θ3t1)s−m∆r+s−m(t1, t2) (2.9)
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Now, by putting (t1, t2) = (0, 0) in (2.10) and by dividing r!s!, we get the pmf of the BHPD as

h(r, s) = Λθr1θ
s
2

min(r,s)∑
m=0

D∗

m!(r −m)!(s−m)!
(
θ3

θ1θ2
)m, (2.10)

where

D∗ =

r+s−m−1∏
j=0

Dj and
k∏
j=0

Dj = 1, for any k < 0.

By putting (t1, t2) = (1, 1) in (2.10) we get the (r, s)th factorial moment µ[r,s] of the BHPD
as

µ[r,s] = Λr!s!(θ1 + θ3)r(θ2 + θ3)s
min(r,s)∑
m=0

D∗ξr+s−m
m!(r −m)!(s−m)!

βm (2.11)

where ξj = φ(1 + j;λ+ j; θ1 + θ2 + θ3), for j = 0, 1, . . . and β = θ3(θ1 + θ3)−1(θ2 + θ3)−1.
From (2.12) we have the following, in which ψj = Λξj , for j = 1, 2, . . .

E(X1) = µ[1,0] = D0ψ1(θ1 + θ3) (2.12)

E(X2) = µ[0,1] = D0ψ1(θ2 + θ3) (2.13)

Cov(X1, X2) = D0(D1ψ2 −D0ψ
2
1)(θ1 + θ3)(θ2 + θ3) +D0ψ1θ3 (2.14)

where D0 and D1 are as given in (2.2).

3 Recurrence relations

Let (X1, X2) be a random vector following the BHPD with pgf (2.1). For j=0, 1, 2, ..., define
λ∗ + j = (1 + j, λ+ j) and λ(j) = (1 + j)(λ+ j)−1 Now, the pmf h(r, s) of the BHPD given in
(2.11) we denote by h(r, s;λ∗). Then we have the following result in the light of relations:

H(t1, t2) =

∞∑
r=0

∞∑
s=0

h(r, s;λ∗)tr1t
s
2 = Λφ(1;λ; θ1t1 + θ2t2 + θ3t1t2) (3.1)

and

ξ1

∞∑
r=0

∞∑
s=0

h(r, s;λ∗ + 1)tr1t
s
2 = φ(2;λ+ 1; θ1t1 + θ2t2 + θ3t1t2), (3.2)

in which ξ1 is as given in (2.12).

Result 3.1. The probability mass function h(r, s;λ∗) of the BHPD satisfies the following recur-
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rence relations.

h(r + 1, 0;λ∗) =
D0ψ1θ1

(r + 1)
h(r, 0;λ∗ + 1), r ≥ 0 (3.3)

h(r + 1, s;λ∗) =
D0ψ1

(r + 1)
[θ1h(r, s;λ∗ + 1) + θ3h(r, s− 1;λ∗ + 1], r ≥ 0, s ≥ 1 (3.4)

h(0, s+ 1;λ∗) =
D0ψ1θ2

(s+ 1)
h(0, s;λ∗ + 1), s ≥ 0 (3.5)

h(r, s+ 1;λ∗) =
D0ψ1

(s+ 1)
[θ2h(r, s;λ∗ + 1) + θ3h(r − 1, s;λ∗ + 1], r ≥ 1, s ≥ 0 (3.6)

Proof. Relation (2.7) with r = 1 gives

H(1,0)(t1, t2) = D0(θ1 + θ3t2)Λ∆1(t1, t2) (3.7)

On differentiating both sides of (3.1) with respect to t1, we have

H(1,0)(t1, t2) =

∞∑
r=0

∞∑
s=0

(r + 1)h(r + 1, s;λ∗)tr1t
s
2 (3.8)

By using (3.2) and (3.8) in (3.7) we get the following, in which ψ1 is as given in (2.13).
∞∑
r=0

∞∑
s=0

(r + 1)h(r + 1, s;λ∗)tr1t
s
2 = D0ψ1[θ1

∞∑
r=0

∞∑
s=0

h(r, s;λ∗ + 1)

tr1t
s
2 + θ3

∞∑
r=0

∞∑
s=0

h(r, s;λ∗ + 1)tr1t
s+1
2 ] (3.9)

On equating the coefficient of tr1t
0
2 on both sides of (3.9) we get the relation (3.3) and on equating

the coefficient of tr1t
s
2 on both sides of (3.9) we get the relation (3.4). We omit the proof of relations

(3.5) and (3.6) as it is similar to that of relations (3.3) and (3.4).

Result 3.2. For r, s ≥ 0, simple recurrence relations for factorial moments µ[r,s](λ
∗) of order (r, s)

of the BHPD are the following.

µ[r+1,s](λ
∗) = D0ψ1(θ1 + θ3)µ[r,s](λ

∗ + 1) +D0ψ1θ3sµ[r,s−1](λ
∗ + 1) (3.10)

µ[r,s+1](λ
∗) = D0ψ1(θ2 + θ3)µ[r,s](λ

∗ + 1) +D0ψ1θ3rµ[r−1,s](λ
∗ + 1), (3.11)

in which µ[0,0](λ
∗) = 1.

Proof. Let (X1, X2) be a random vector having the BHPD with pgf H(t1, t2) as given in (2.1).
Then the factorial moment generating function F (t1, t2) of the BHPD is

F (t1, t2) = H(1 + t1, 1 + t2)

=

∞∑
r=0

∞∑
s=0

µ[r,s](λ
∗)
tr1t

s
2

r!s!

= Λφ[1;λ; θ1 + θ2 + θ3 + (θ1 + θ3)t1 + (θ2 + θ3)t2 + θ3t1t2] (3.12)
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Differentiate (3.12) with respect to t1 to get

∂F (t1, t2)

∂t1
= [(θ1 + θ3) + θ3t2)]D0Λ

× φ[2;λ+ 1; θ1 + θ2 + θ3 + (θ1 + θ3)t1 + (θ2 + θ3)t2 + θ3t1t2] (3.13)

Based on the similar argument as in the proof of Result 3.1., by using (3.12) with λ∗ replaced by
λ∗ + 1, one can obtain the following from (3.13).

∞∑
r=0

∞∑
s=0

µ[r+1,s](λ
∗)
tr1t

s
2

r!s!
= D0ψ1{(θ1 + θ3)

∞∑
r=0

∞∑
s=0

µ[r,s](λ
∗ + 1)

tr1t
s
2

r!s!

+ θ3

∞∑
r=0

∞∑
s=0

µ[r,s](λ
∗ + 1)

tr1t
s+1
2

r!s!
} (3.14)

Now on equating the coefficients of (r!s!)−1tr1t
s
2 on both sides of (3.14) we obtain the relation (3.10).

A similar procedure implies (3.11).

Result 3.3. Two recurrence relations for the (r, s)th raw moments µr,s(λ∗) of the BHPD are:

µr+1,s(λ
∗) = D0ψ1θ1

r∑
j=0

(
r

j

)
µr−j,s(λ

∗ + 1) +D0ψ1θ3

r∑
j=0

s∑
k=0

(
r

j

)(
s

k

)
µr−j,s−k(λ∗ + 1)

(3.15)
and

µr,s+1(λ∗) = D0ψ1θ2

s∑
k=0

(
s

k

)
µr,s−k(λ∗ + 1) +D0ψ1θ3

r∑
j=0

s∑
k=0

(
r

j

)(
s

k

)
µr−j,s−k(λ∗ + 1)

(3.16)

Proof. The characteristic function A(t1, t2) of the BHPD with pgf (2.1) is the following. For
(t1, t2) in R2,

A(t1, t2) = H(eit1 , eit2) = Λφ[1;λ∗;λ(t1, t2; θ)] =

∞∑
r=0

∞∑
s=0

µr,s(λ
∗)

(it1)r(it2)s

r!s!
, (3.17)

where λ(t1, t2; θ) = θ1e
it1 +θ2e

it2 +θ3e
i(t1+t2), θ = (θ1, θ2, θ3) and i =

√
−1. On differentiating

(3.17) with respect to t1, we obtain

D0Λφ[2;λ∗ + 1;λ(t1, t2; θ)]{i(θ1 + θ3e
it2)eit1} =

∞∑
r=0

∞∑
s=0

iµr,s(λ
∗)

(it1)r−1(it2)s

(r − 1)!s!
.
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By using (3.17) with λ∗ replaced by λ∗ + 1; and on expanding the exponential functions, we obtain
the following, in the light of some standard properties of double sum

∞∑
r=0

∞∑
s=0

µr+1,s(λ
∗)(it1)r(it2)s

r!s!

= D0ψ1

∞∑
r=0

∞∑
s=0

(it1)r(it2)s

r!s!
{θ1

r∑
j=0

(
r

j

)
µr−j,s(λ

∗ + 1) + θ3

r∑
j=0

s∑
k=0

(
r

j

)(
s

k

)
µr−j,s−k(λ∗ + 1)}

(3.18)

Now equate the coefficients of (r!s!)−1(it1)r(it2)s on both sides of (3.18) to get the relation (3.15).
A similar procedure gives (3.16).

4 Estimation of parameters

Here we obtain the estimators of the BHPD by the method of maximum likelihood. Let a(r, s)

be the observed frequency of the (r, s)th cell of the bivariate data. Let y be the highest value of r
observed and z be the highest value of s observed. Then by using (2.11) the likelihood function of
the sample is the following.

L =

y∏
r=0

z∏
s=0

[h(r, s)]

a(r,s)

⇒ logL =

y∑
r=0

z∑
s=0

a(r, s) log h(r, s).

Let θ̂1, θ̂2, θ̂3 and λ̂ denotes the likelihood estimators of θ1, θ2, θ3 and λ respectively. Now θ̂1 , θ̂2,
θ̂3 and λ̂ are obtained by solving the likelihood equations (4.1), (4.2), (4.3)and (4.4) given below.

∂ logL

∂θ1
= 0

Equivalently,

y∑
r=0

z∑
s=0

a(r, s)

{
−1

λ

φ(2;λ+ 1; θ1 + θ2 + θ3)

φ(1;λ; θ1 + θ2 + θ3)
+

min(r,s)∑
m=0

D∗θr−m−1
1 θs−m

2 θm3
(r−m−1)!(s−m)!m!

ξ(r, s)

}
= 0. (4.1)

∂ logL

∂θ2
= 0

Equivalently,

y∑
r=0

z∑
s=0

a(r, s)

{
−1

λ

φ(2;λ+ 1; θ1 + θ2 + θ3)

φ(1;λ; θ1 + θ2 + θ3)
+

min(r,s)∑
m=0

D∗θr−m
1 θs−m−1

2 θm3
(r−m)!(s−m−1)!m!

ξ(r, s)

}
= 0. (4.2)
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∂ logL

∂θ3
= 0

Equivalently,

y∑
r=0

z∑
s=0

a(r, s)

{
−1

λ

φ(2;λ+ 1; θ1 + θ2 + θ3)

φ(1;λ; θ1 + θ2 + θ3)
+

min(r,s)∑
m=0

D∗θr−m
1 θs−m

2 θm−1
3

(r−m)!(s−m)!(m−1)!

ξ(r, s)

}
= 0. (4.3)

∂ logL

∂λ
= 0

Equivalently,

y∑
r=0

z∑
s=0

a(r, s)

{
−1

φ(1;λ; θ1 + θ2 + θ3)

∞∑
x=0

(θ1 + θ2 + θ3)xη(x)+

1

ξ(r, s)

min(r,s)∑
m=0

η(r + s−m)
(r + s−m)!θr−m1 θs−m2 θm3

(r −m)!(s−m)!m!

}
= 0, (4.4)

in which ξ(r, s) =
min(r,s)∑
m=0

D∗θr−m
1 θs−m

2 θm3
(r−m)!(s−m)!m! and η(u) = Γ(λ)

Γ(λ+u) [ψ(λ)− ψ(λ+ u)].

5 An application
Here we illustrate the method of maximum likelihood estimation using a real life data set taken from
Patrat (1993). The description of data is as follows: The North Atlantic coastal states in USA can be
affected by tropical cyclones. They divided the states into three geographical zones: Zone 1 (Texas,
Louisina, The Mississipi, Alabama), Zone 2 (Florida), and Zone 3 (Other states)

Now the interest is in the study of the joint distribution of the pair (X1, X2), where X1 and X2

are the yearly frequency of hurricanes affecting respectively zone 1 and zone 3. The observed values
of (X1, X2) during 93 years from 1899 to 1991 are as given in Table 1. We obtain the corresponding
expected frequencies by fitting the bivariate Poisson distribution (BPD), the bivariate hyper-Poisson
distribution of Ahmad (1981) (BHPDA) and the bivariate hyper-Poisson distribution (BHPD)
introduced in this paper using method of maximum likelihood in Table 1. The estimated values of
the parameters of the BPD, the BHPDA and the BHPD and the chi-square values in respective
cases are listed in Table 2. From Table 2, it can be observed that the BHPD gives a better fit to this
data compared to the existing models- the BPD and the BHPDA.
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Table 1: Comparison of observed and theoretical frequencies Hurricanes (1899-1991) having af-
fected Zone 1 and Zone 3, using method of maximum likelihood.

Zone 1 0 1 2 3 Total

Zone 3

OBS 27 9 3 2 41

0 BPD 28.24 12.71 2.86 0.48 44.29

BHPDA 28.31 12.49 2.95 0.48 44.23

BHPD 25.64 14.31 2.50 0.26 42.71

OBS 24 13 1 0 38

1 BPD 20.30 9.79 2.35 0.42 32.86

BHPDA 20.46 9.56 2.37 0.40 32.79

BHPD 23.23 10.88 2.23 0.27 36.61

OBS 8 2 1 0 11

2 BPD 7.29 3.75 0.96 0.19 12.19

BHPDA 7.39 3.65 0.95 0.17 12.16

BHPD 6.60 3.62 0.88 0.12 11.22

OBS 1 0 2 0 3

3 BPD 2.12 1.16 0.32 0.06 3.66

BHPDA 1.78 0.93 0.25 0.05 3.01

BHPD 1.11 0.72 0.21 0.14 1.07

OBS 60 24 7 2 93

Total BPD 57.95 27.41 6.49 1.15 93

BHPDA 57.94 26.63 6.52 1.1 92

BHPD 56.58 29.53 5.82 0.79 93
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Table 2: Estimated values of the parameters of the BPD, the BHPDA and the BHPD by the
method of maximum likelihood estimation and corresponding chi-square values.

Distributions Estimation of parameters Chi−square values

BPD θ̂1 = 0.683, θ̂2 = 0.450, θ̂3 = 0.021 2.524

BHPDA θ̂1 = 0.780, θ̂2 = 0.324, θ̂3 = 0.021 2.452

λ̂1 = 1.075, λ̂2 = 0.619

BHPD θ̂1 = 0.414, θ̂2 = 0.255, θ̂3 = 0.049 0.463

λ̂ = 0.457
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SUMMARY

For a scalar or vector parameter of interest with a regular statistical model, we determine
the definitive null density for testing a particular value of the interest parameter: continuity
gives uniqueness without reference to sufficiency but the use of full available information is
presumed. We start with an exponential family model, that may be either the original model
or an approximation to it obtained by ancillary conditioning. If the parameter of interest
is linear in the canonical parameter, then the null density is third order equivalent to the
conditional density given the nuisance parameter score; and when the parameter of interest
is also scalar then this conditional density is the familiar density used to construct unbiased
tests. More generally but with scalar parameter of interest, linear or curved, this null density
has distribution function that is third order equivalent to the familiar higher-order p-value
Φ(r∗). Connections to the bootstrap are described: the continuity-based ancillary of the
null density is the natural invariant of the bootstrap procedure. Also ancillarity provides
a widely available general replacement for the sufficiency reduction. Illustrative examples
are recorded and various further examples are available in Davison et al. (2014) and Fraser
et al. (2016).

Keywords and phrases: Ancillary; Exponential model; Information; Likelihood asymp-
totics; Nuisance parameter; p-value; Profile likelihood; Score conditioning; Similar test

1 Introduction

We consider the problem of testing a value for a d-dimensional parameter of interest ψ in the pres-
ence of a (p− d)-dimensional nuisance parameter λ, in the context of a statistical model f(y;ψ;λ)

on Rn that we assume has the usual regularity conditions for deriving higher order approximations.
We show that continuity and ancillarity directly determine a density that is free of the nuisance pa-
rameters, a density that can be viewed as providing measurement of the parameter of interest. The
saddlepoint approximation then gives an expression for this density with error of O(n−3/2). If the
parameter of interest is scalar, inference based on this null density leads immediately to the familiar
r∗ approximation (Barndorff-Nielsen, 1991; Fraser, 1990; Brazzale et al., 2007). An associated av-
erage p-value can also be approximated to the same order by a parametric bootstrap, as initiated in

c© Institute of Statistical Research and Training (ISRT), University of Dhaka, Dhaka 1000, Bangladesh.
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Lee and Young (2005), Fraser and Rousseau (2008) and DiCiccio and Young (2008); computation
time and ease of use can however differ dramatically.

In §2 we present the model, in §3 develop the null density 3.4 for testing the interest parameter
ψ, and then in §4 specialize this to the linear interest parameter case obtaining the the null density
4.3; this is then shown to be equivalent to the familiar conditional distribution 4.5, which in the
scalar interest case is widely used to derive unbiased or similar tests. In §5, for ψ a scalar parameter,
we relate the null density to the higher-order likelihood based p-values obtained from the familiar r∗

approximation. For a vector ψ we propose the use of directional p-values, which can be obtained by
one-dimensional integration. Numerical examples of the latter application are given in Davison et
al. (2014) and Fraser et al. (2016). Intrinsic connections with the parametric bootstrap are addressed
in §6.

2 Exponential model

Suppose we have a statistical model f(y; θ) for a response y ∈ Rn with parameter θ ∈ Rp that takes
the exponential form

f(y; θ) = exp [ϕ(θ)τυ(y)− κ{ϕ(θ)}]h(y), (2.1)

where the canonical ϕ(θ) in Rp is one-to-one equivalent to θ, and the canonical υ(y) in Rp is the
usual variable directly affected by the parameter. The assumption of exponential form is more gen-
eral than it may appear, as this form arises widely with regular statistical models as the tangent
exponential approximation, tangent at the observed value y0 with tangent vectors V . The construc-
tion of the tangent exponential model is briefly outlined in Appendix A, together with references to
the literature.

Two key simplifications offered by 2.1 are that the distribution of υ provides all the information
about ϕ and that the density of υ can be approximated by the saddlepoint method. Thus our model
for inference can be written

g(υ;ϕ) = exp {ϕτυ − κ(ϕ)}g(υ) (2.2)

=
ek/n

(2π)p/2
exp {`(ϕ; υ)− `(ϕ̂; υ)}|ϕϕ(ϕ̂)|−1/2{1 +O(n−3/2)}, (2.3)

where `(ϕ; υ) = ϕτυ − κ(ϕ) is the log-likelihood function, ϕ̂ = ϕ̂(υ) is the maximum likelihood
estimator, ϕϕ(ϕ̂) = −∂`/∂ϕ∂Tϕ |ϕ̂ is the observed information array in the canonical parameteriza-
tion, and k/n is a generic normalizing constant (Daniels, 1954; Barndorff-Nielsen and Cox, 1979).
From some original regular model this approximation needs only the observed log-likelihood func-
tion `0(θ) from y0 and the observed gradient ϕ(θ) of the log-likelihood in the directions V , and then
effectively implements the integration for the original model or its approximation 2.1 to produce the
marginal density g(υ;ϕ) to third order from that of y.
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3 Curved interest and exponential model

In 2.2 and 2.3 we suppressed the dependence of ϕ on θ for convenience; and we now assume that
our parameter of interest is ψ(ϕ) ∈ Rd, and use 2.3 to obtain the density 3.4 for testing ψ(ϕ) = ψ0,
eliminating the nuisance parameter λ. Thus, we consider ψ(ϕ) to be fixed at ψ0 in 2.3, so the model
has a p-dimensional variable υ, and a (p− d)-dimensional unknown parameter λ. With ψ(ϕ) fixed
at ψ0, there is an approximate ancillary statistic S for λ, a function of υ with a marginal distribution
free of λ (Fraser et al., 2010), and the ancillary density is uniquely determined to O(n−3/2). Thus
the reference marginal density for inference about a value ψ based on this function of υ is also
unique.

To describe this density we define a plane L0 in the sample space by fixing the constrained
maximum likelihood estimator of λ at its observed value:

L0 = {υ ∈ Rp : λ̂ψ0
= λ̂0

ψ0
}

where λ̂ψ0
(υ) is obtained as the solution of the score equation ∂`(ϕ; υ)/∂λ = 0 with notation

λ̂ψ0(υ0) = λ̂0
ψ0

= λ̄0. The constrained estimate of the full parameter ϕ at (s, t0) is ϕ̄0. In some
generality the interest parameter ψ can be non-linear; in that case we define a new parameter χ =

χ(ϕ) linear in ϕ that is tangent to ψ(ϕ) at ϕ̄0; the right hand panel of Figure 1 shows the curve with
ψ fixed, the constrained maximum likelihood estimate ϕ̄0, and the linear approximation

χ(ϕ) = ψ(ϕ̄0) + ψ̄0
ϕ(ϕ− ϕ̄0), (3.1)

as well as the overall maximum likelihood estimate ϕ̂0; here ψ̄0
ϕ = (∂ψ/∂ϕ)|ϕ̄0 is the needed Jaco-

bian. The complementing parameter λ in the full parameter space is shown in Figure 1 as orthogonal
to χ, for convenience. The left panel of Figure 1 shows the sample space, using corresponding ro-
tated canonical variables s and t: in particular the profile plane L0 on the sample space corresponds
to a p − d dimensional variable t, fixed at its observed value t0. The d-dimensional variable s on
L0 indexes the ancillary contours where they intersect L0. In effect (s, t) plays the role of the full
canonical variable in an approximating exponential model, and χ is linear in the canonical parame-
ter.

On L0 the saddlepoint approximation to the joint density is, from 2.3

g(s, t0) =
ek/n

(2π)p/2
exp {`(ϕ̄; s, t0)− `(ϕ̂; s, t0)}|ϕϕ(ϕ̂)|−1/2, (3.2)

where ϕ̂ = ϕ̂(s, t0). The conditional density of t given the ancillary labelled by S = s has a p?

approximation at its maximum which when evaluated on L0 at ϕ̄ simplifies to

ek/n

(2π)(p−d)/2
|(λλ)(ϕ̄)|−1/2. (3.3)

The marginal density for the ancillary variable S as indexed by s on the observed L0 is then
obtained by dividing the joint density 3.2 at (s; t0) by the conditional density 3.3 of t given the
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ancillary S, with both evaluated at (s, t0) on L0:

gm(s;ψ0) =
ek/n

(2π)d/2
exp {`(ϕ̄; s, t0)− `(ϕ̂; s, t0)}|ϕϕ(ϕ̂)|−1/2|(λλ)(ϕ̄|1/2ds, (3.4)

to third order. In 3.4, the exponent `(ϕ̄) − `(ϕ̂) is the log-likelihood ratio statistic at (s, t0) for the
tested value ψ0, and the nuisance information determinant in the exponential parameterization (λ)

can be obtained from that in terms of λ by applying the Jacobian ϕλ,

|(λλ)(ψ0, λ̂
0
ψ0

)| = |λλ(ϕ̄0)| |ϕTλ (ϕ̄0)ϕλ(ϕ̄0)|−1, (3.5)

as described in Fraser and Reid (1993), Brazzale et al. (2007) or Davison et al. (2014). In the left
panel of Figure 1 we show the curve ψ(ϕ) = ψ0, and two different lines L0 and L00 corresponding
to two different points u0 and u00 on an ancillary contour for the particular ψ0 value.

Figure 1: Score space on left; canonical parameter space on right; ancillary contours through ob-
served u0 and through a nearby point u00 on same ancillary contour for ψ.

The ancillary distribution 3.4 for testing is recorded in terms of s on L0 but represents the result
of integrating along the ancillary contours relative to ψ(ϕ) = ψ0, not by integrating for fixed s;
accordingly the distribution appears to depend on t0, but this is an artifact of its presentation using
coordinates that do depend on t0 (Fraser and Reid, 1995; Fraser and Rousseau, 2008); see Example
4.1 in the next section. The ancillary distribution is developed above within an exponential model,
either the given model or a tangent approximation to it as described in Appendix A. The development
for a regular model from the point of view of approximate studentization is available in Fraser and
Rousseau (2008); the distribution has third order uniqueness even though the third order ancillary
itself is not unique.
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4 Linear interest and exponential model
Consider a special case of the exponential model 2.1 where the interest parameter ψ = χ is linear
and the full canonical parameter ϕ is just (ϕ, λ):

g(υ; θ) = exp {υT1 ψ + υT2 λ− κ(ψ, λ)}h(υ). (4.1)

It is helpful to centre υ at the observed value: letting s = υ1 − υ0
1 and t = υ2 − υ0

2 gives

g(s, t; θ) = exp {sTψ + tTλ+ `0(ψ, λ)}h(s, t). (4.2)

where `0(ψ, λ) is the negative cumulant generating function for the latent density h(s, t). The
marginal density 3.4 then simplifies to

gm(s;ψ) =
ek/n

(2π)d/2
exp {`(θ̂ψ)− `(θ̂)}|θθ(θ̂)|−1/2|λλ(θ̂ψ)|1/2ds, (4.3)

where θ̂ = θ̂(s, t0) and θ̂ψ = (ψ, λ̂0
ψ), all to third order.

The conditional density of s given t is more conventionally used for inference about ψ in this
linear setting. From 4.2 we have

gc(s|t;ψ) = exp{sTψ − κt(ψ)}ht(s), (4.4)

and its saddlepoint approximation is

gc(s|t;ψ) =
ek/n

(2π)d/2
exp {`P (ψ)− `P (ψ̂)}|P (ψ̂)|−1/2

{
|λλ(ψ, λ̂0

ψ)|
|λλ(ψ̂, λ̂)|

}1/2

, (4.5)

where `P (ψ) is the profile log-likelihood function `(ψ, λ̂ψ), and P (ψ) = −∂2`P (ψ)/∂ψ∂ψT is
the associated information function (Davison, 1988; Barndorff-Nielsen and Cox, 1979). The two
densities 4.3 and 4.5 are identical, as |θθ(θ̂)| = |P (ψ̂)||λλ(θ̂)|.

In the above we have not distinguished the tested value ψ0, because in the exponential model
with canonical interest parameter ψ, the planes L0 for different tested values of ψ are parallel, and
the distributions as recorded on each plane are equivalent, so the resulting marginal density 4.3 can
be used as the pivotal quantity to test any value of ψ and thereby provide confidence intervals or
regions.

Example 4.1. We illustrate this with a simple exponential model, for which the detailed calculations
are readily obtained. Take p = 2 and suppose that the joint density of s, t is of the form

g(s, t;ψ, λ) = φ(s− ψ)φ(t− ψ) exp {−aψλ2/(2n1/2)}h(s, t), (4.6)

where φ(.) is the standard normal density. The function h(s, t) can be explicitly obtained as

h(s, t) = 1 +
1

2
as(t2 − 1)n−1/2 +

1

8
a2(s2 − 1)(t4 − 6t2 + 3)n−1 +O(n−3/2), (4.7)
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and we can re-write the density as

g(s, t;ψ, λ) ={1− aψλ2/(2n1/2) + a2ψ2λ4/(8n)}φ(s− ψ)φ(t− ψ) (4.8)

× {1 + as(t2 − 1)/(2n1/2) + a2(s2 − 1)(t4 − 6t2 + 3)/(8n) +O(n−3/2)}.

The related marginal density is obtained by taking all terms in 4.8 to the exponent and completing
the square; this shows that, ignoring terms ofO(n−3/2), there is a pivotal function Zψ which follows
a standard normal distribution to third order:

Zψ = s{1 + a2(2t2 − 1)/4n} − ψ{1− a2(2t2 − 1)/4n} − a(t2 − 1)/2n1/2. (4.9)

From this we see that s has conditional bias a(t2−1)/2n1/2 +O(n−1), but this bias in the measure-
ment of ψ is of no consequence for inference, as it is removed as part of forming the pivot Zψ . If we
ignore terms of O(n−1) then s− a(t2 − 1)/(2n1/2) is standard normal to O(n−1), i.e. to this order
only a location adjustment is needed to obtain an approximately standard normal pivotal quantity.

5 Inference for ψ from the reference density
The base density gm(s;ψ) on Rd given at 3.4 is to third order the unique density for inference
about ψ, in the sense that it is a direct consequence of requiring model continuity to be retained in
the elimination of the nuisance parameter (Fraser et al., 2010). The density can be computed from
the distribution 2.2 or 2.3 for the canonical variable u or from the observed log-likelihood from
the original model `(ϕ; y0) = log {f(y0;ϕ)} together with the observed log-likelihood gradient
ϕ(θ) = `;V (θ; y0) in directions V ; see Appendix A.

If d = 1, the one-dimensional density can be integrated numerically. It can also be shown to be
third-order equivalent to a standard normal density for the familiar pivot r∗ = r∗(ψ; y0), defined by

r∗(ψ; y0) = r − r−1 log
r

Q
, (5.1)

r = ±
(

2[`{ϕ(θ̂); y0} − `{ϕ(θ̂ψ); y0}]
)1/2

, (5.2)

Q = ±|χ(θ̂)− χ(θ̂ψ)|/σ̂χ, (5.3)

where σ̂2
χ = |(λλ){ϕ(θ̂ψ)}|/|ϕϕ{ϕ(θ̂)}| is a particular estimate of the variance of the numerator

of Q, and ± designates the sign of ψ̂0 − ψ. From the definition 3.1 of χ as tangent to ψ at ϕ(θ̂ψ),
we obtain an alternate expression for Q,

Q =
|ϕ(θ̂)− ϕ(θ̂ψ) ϕλ(θ̂ψ)|

|ϕθ(θ̂)|
|θθ(θ̂)|1/2

|λλ(θ̂ψ)|1/2
(5.4)

which can be more convenient for computation. Several examples of the use of r∗(ψ; y0) as a
standard normal pivotal for inference about a scalar parameter of interest are given in Fraser et
al. (1999) and Brazzale et al. (2007). For Example 4.1, straightforward calculations verify that
r∗(ψ; y0) = Zψ of 5.4 to O(n−3/2).
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Example 5.1. As an illustration of exact and approximate p-value contours, consider two exponen-
tial life variables y1, y2 with failure rates ϕ1, ϕ2 and with interest parameter chosen as the total fail-
ure rate ψ = ϕ1 +ϕ2; the model is ϕ1ϕ2 exp {−ϕ1y1 − ϕ2y2} with 0 < y1, y2 <∞. A rotation of
variable and of parameter through π/4 gives new variables s = (y1+y2)/21/2, t = (−y1+y2)/21/2

and new parameters χ = (ϕ1 + ϕ2)/21/2, λ = (−ϕ1 + ϕ2)/21/2 on equivalent rotated quadrants;
the model then becomes

f(s, t) = (χ2/2− λ2/2) exp (−χs− λ|t|),

with s > |t| > 0, χ > |λ| > 0 and parameter of interest ψ = 21/2χ. The exact conditional
density of s, given t, is f(s|t;χ) = χ exp {−χ(s− |t|)}, for s > |t|, i.e. the pivotal quantity
Zχ = χ(s − |t|) follows an exponential distribution with rate 1. The approximation 4.3 is an
O(n−3/2) approximation to this, equivalent to a standard normal distribution for the adjusted log-
likelihood root r∗χ.

In Figure 5 we illustrate three quantile contours, at levels 25%; 50%, 75%, for the exact condi-
tional distribution and for the normal approximation to the distribution of r∗, for testing the value
of ψ = 0.6931 or equivalently χ = 0.4901. The contours of the exact conditional density are
line segments, and the contours of the approximate normal distribution for r∗χ are smooth curves.
The conditional and marginal approaches are identical to third order: the difference that appears in
Figure 5 is due entirely to the approximation to the marginal density. From one point of view the
normal approximation to r∗χ replaces exact similarity of the test with similarity toO(n−3/2), and the
smoothed version is somewhat less sensitive to the exact value of t. Third-order similarity of tests
based on r∗ is established in Jensen (1992).

Example 5.2. As an illustration of an exponential model with a curved interest parameter suppose
in Example 5.1 that the parameter of interest is now taken to be ψ = ϕ1ϕ2; we let λ = ϕ2 be an
initial nuisance parameter. Then

ψ̂ = 1/(y1y2), λ̂ = 1/y1, λ̂2
ψ = ψ1/y2 = ψλ̂2/ψ̂.

The linear parameter χ(ϕ) is

χ(ϕ) = χ(ϕ̄) + ψϕ(ϕ̄)(ϕ− ϕ̄) = χ(ϕ̄)− 2ϕ̄1ϕ̄2 + ϕ̄2ϕ1 + ϕ̄1ϕ2

and s is the corresponding linear combination of y1 and y2. The information determinants |ϕϕ(ϕ̂)|
and |(λλ)(ϕ̄)| are ψ̂−2 and 2ψλ̂ψλ̂/(ψ̂(ψ2 + 1)), respectively; the latter is obtained using ϕλ =

(−ψ/λ2, 1). The marginal density of s is approximated by 3.4, from which it follows that r∗ψ is a
pivotal quantity following a standard normal distribution to O(n−3/2). The quantile curves will be
similar in shape to those in Example 4.1, but there is no exact conditional density for comparison.

When ψ is a vector, the marginal density on L0 does not immediately lead to a single p-value
function. A directional approach is available following Fraser and Massam (1985), Skovgaard
(1988), Fraser and Reid (2006) and references therein. On L0 the mean value under the fitted null
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Figure 2: The exact conditional contours and the third order approximate contours at quantile levels
25%, 50% and 75% for testing ψ = 0.6931 in the simple exponential life model.

parameter value ϕ̂0
ψ is sψ = −`0ψ(ψ, λ̂0

ψ) with corresponding data s = 0 in the standardized coordi-
nates. Then conditioning on the direction from expected sψ to observed s = 0 gives the directional
p-value

p(ψ) =

∫∞
1
gm{sψ + t(0− sψ)}td−1dt∫∞

0
gm{sψ + t(0− sψ)}td−1dt

;

which can easily be evaluated numerically. A number of examples based on familiar exponential
models where calculations are particularly accessible are presented in Davison et al. (2014) and
Fraser et al. (2016).

6 Bootstrap and higher order likelihood

For the exponential model 2.1, improved p-values for testing a scalar interest parameter ψ = ψ0

can also be obtained using bootstrap sampling from the estimated model f(y; θ̂0
ψ). In particular, this

bootstrap applied to the signed log-likelihood root rψ = ±[2{`(θ̂) − `(θ̂ψ)}]1/2 produces p-values
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that are uniformly distributed with accuracy O(n−3/2), and are asymptotically equivalent to this
order to p-values obtained from the normal approximation to r∗ψ . If however the estimated sampling
model is taken to be the traditional f(y; θ̂0) then the relative error drops to O(n−1) (DiCiccio et al
(2001); Lee & Young (2005)).

The bootstrap has an intrinsic connection with the ancillary distribution 3.3 for the marginal
variable S, as recorded in terms of s on the observed L0. Indeed, the bootstrap distribution f(y; θ̂0

ψ)

directly produces the preceding null distribution for the ancillary S; this follows by noting that the
distribution of S is free of λ and thus a particular choice λ = λ̂0

ψ in the re-sampling model just
generates the same marginal null distribution. Accordingly the distribution 3.3 can be viewed as an
invariant of the bootstrap procedure. It also follows that the bootstrap distribution of any statistic
that is a function of the ancillary S is also an invariant of the bootstrap distribution to third order.

More generally with an asymptotic model having full parameter dimension p, and null parameter
dimension p−d, the moderate deviations region can be presented as a product space with coordinates
(S, λ̂ψ) and a bootstrap step can be viewed as a projection along contours of the ancillary variable S
such that dependence on the conditional λ̂ψ is reduced by a factor O(n−1/2) (Fraser and Rousseau,
2008).

Meanwhile for the higher-order likelihood approach, the standard normal approximation to the
usual r∗ψ is accurate to O(n−3/2). This, with the preceding bootstrap result, shows that the higher-
order r∗ψ approximation can be implemented directly by bootstrap resampling of r∗ψ or equivalently
the bootstrap resampling of rψ which is known to be affinely equivalent to r∗ψ to third order, using of
course the estimated null model f(y; θ̂0

ψ); computation times however can be significantly different:
for a recent example calculations used 20 hours for the bootstrap calculation to achieve the same
accuracy as the higher order likelihood calculation achieved in 0.09 seconds.

For an exponential model with scalar linear interest parameter, DiCiccio & Young (2008) show
that the null model bootstrap distribution of r∗ψ directly approximates the conditional distribution of
r∗ψ even though the bootstrap is an unconditional simulation; this follows from 4.3 and 4.5 by noting
that the marginal and conditional distributions are identical to third order.

More generally with a regular model and conditioning based on tangent vectors V a bootstrap
step provides an average over the conditioning indexed by the vectors V and thus does not record
the precision information that is routinely available by the higher order approach and even certain
higher order Bayesian calculations. Thus we can say that the parametric bootstrap based on the
observed maximum likelihood estimate under the null reproduces an average of the higher order
r∗ψ evaluations rather than the individual precision-tuned p-values coming from the higher-order
method.

7 Conclusion

For general regular models with scalar or vector, linear or curved interest parameters, we have de-
termined the score space distribution that has nuisance parameter effects removed and has the full
information to provide r∗ tests for scalar parameters and directed tests for vector parameters. We
have thus extended available distribution theory for statistical inference, and integrated the direc-
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tional methodology with the higher order distribution theory. In particular for the vector parameter
case this can fine-tune the Bartlett-corrected l-dimensional numerical integration (Davison et al.,
2014).
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Appendix A

In the context of a regular statistical model with continuity suppose that the variable y has n indepen-
dent coordinates, with n > p, the dimension of the parameter θ. Let p = p(y; θ) be the vector with
ith coordinate pi = Fi(yi; θ), where Fi(.; θ) is the distribution function for the ith component of y.
By inverting p = p(y; θ) to solve for y we obtain the generalized quantile function y = y(p; θ). This
quantile function links change in the parameter with change in the variable y; the assumed model
continuity provides the inverse. The local effect of the continuity at the observed data y0 can then
described by the n× p matrix of gradient vectors, called ancillary directions,

V =
∂y(p; θ)

∂θ

∣∣∣∣
y0,θ̂0

(.1)

which link change in the coordinates of θ, at θ̂0, to change in the response, at y0, for fixed p. A
number of examples of the matrix V are given in Fraser et al. (2010, §3) and Brazzale et al. (2007,
§8.4). The column vectors of V are tangent to the flow of probability under θ-change near θ̂0; this
flow defines the continuity-based ancillary contours concerning θ. Fraser et al. (2010) show that
these vectors define a surface in the sample space that is ancillary to O(n−1).

Our continuity assumption, which we view as intrinsic to a general approach to inference using
approximate ancillarity, rules out unusual pivots as in the inverted Cauchy introduced in McCullagh
(1992); see Fraser et al. (2010, Example 5 ). A different, although related, approach is needed for
discrete responses y; see Davison et al. (2006) for discussion.

For vector parameters the approach builds on the presence of the quantile function presentation
of the model and with independent vector coordinates may leave arbitrariness that can be addressed
in other ways.

Given this matrix of ancillary directions V , a tangent exponential model with canonical param-
eter

ϕ(θ) = `;V (θ; y0),
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can be constructed, where

`;V (θ; y0) =
∂`(θ; y)

∂V

∣∣∣∣
θ̂0,y0

is shorthand for the set of directional derivatives of `(θ; y) in the sample space, each direction
determined by a row of V . The tangent exponential model is

fTEM (s; θ) = exp {ϕ(θ)T s+ `(θ; y0)}h(s), (.2)

where s ∈ Rp has the same dimension as the parameter ϕ, and can be thought of as the score
variable. The tangent exponential model was introduced in Fraser (1990); see also Reid and Fraser
(2010, §2) and the references therein. The model was introduced mainly as a tool to obtain an r∗

approximation for inference about a scalar component parameter, without the need to explicitly com-
pute an ancillary density. Here we are using the tangent model as a descriptive device for obtaining
a conditional density for inference about a scalar or vector parameter of interest, via saddlepoint
approximations.

Example .1. Suppose yi are independent observations from the curved exponential familyN(ψ; c2ψ2),
where c is fixed. The ith component of the quantile vector p is (yi − ψ)/(cψ), and the ith entry of
the n× 1 vector V is y0

i /ψ̂
0. Using this to define ϕ(θ) we have

ϕ(θ) = `;V (θ; y0) =

n∑
i=1

∂`(θ; y0)

∂yi
Vi =

1

c2ψ

∑
(y0
i /ψ̂

0)− 1

c2ψ2

∑
{(y0

i )2/ψ̂0},

a linear combination of 1/ψ and 1/ψ2. In terms of the sufficient statistic (
∑
yi,
∑
y2
i ) an exact

ancillary is
∑
y2
i /(
∑
yi)

2. The ancillary based on the Vi is consistent with this as both {y0
i } and

c{y0
i } on the linear space LV give the same value to

∑
y2
i /(
∑
yi)

2.

Appendix B
(i) From likelihood to density by Taylor expansion. Example 4.1 is motivated by the usual Taylor
series expansion of the log-likelihood function for a regular p-dimensional statistical model: the
leading term is the log-likelihood for a normal distribution, with higher order terms that drop off as
n1/2;n−1;n−3/2; see for example, DiCiccio et al. (1990) and Cakmak et al. (1998). To simplify
the calculations we introduce just one third derivative term: aλ2χ/(2n1/2), where a = ∂3`/∂λ2∂χ,
evaluated at the expansion point. The resulting likelihood function can be inverted to provide an
expression for the latent density h(s, t), to O(n−3/2), verifying 4.7:

g(s, t;χ, λ) =
1

2π
exp {−(s− χ)2/2− (t− λ)2/2− aχλ2/2n1/2}h(s, t) (.3)

=φ(s− χ)φ(t− λ){1− aχλ2/2n1/2 + a2χ2λ4/8n}h(s, t) +O(n−3/2)

=φ(s− χ)φ(t− λ){1− aχλ2/2n1/2 + a2χ2λ4/8n}
× {1 + as(t2 − 1)/2n1/2 + a2(s2 − 1)(t4 − 6t2 + 3)/8n}+O(n−3/2);
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the second equality uses exp (c/n1/2) = 1 + c/n1/2 + c2/2n + O(n−3/2), and the third equality
uses (1 − c/2n1/2 + c2/8n)−1 = 1 + c/2n1/2 + c2/8n + O(n−3/2) together with E(x2 − 1) =

θ2, E(x4 − 6x2 + 3) = θ4 when x follows a N(θ, 1) distribution.
(ii) From density to likelihood by Taylor expansion. The conditional model for s given t is

available as the t-section of the density 4.6 and gives 4.8, up to a normalizing constant as:

g(s|t;χ) =cφ(s− χ){1 + as(t2 − 1)/2n1/2 + a2(s2 − 1)(t4 − 6t2 + 3)/8n} (.4)

=φ(s− χ){1 + as(t2 − 1)/2n1/2 + a2(s2 − 1)(t4 − 6t2 + 3)/8n}
{1 + aχ(t2 − 1)/2n1/2 + a2χ2(t4 − 6t2 + 3)/8n}−1

=φ(s− χ){1 + as(t2 − 1)/2n1/2 + a2(s2 − 1)(t4 − 6t2 + 3)/8n}
{1− aχ(t2 − 1)/2n1/2 + a2χ2(t4 + 2t2 − 1)/8n}

=φ(s− χ){1 + as(t2 − 1)/2n1/2 + a2(s2 − 1)(t4 − 6t2 + 3)/8n}
exp {−aχ(t2 − 1)/2n1/2 + a2χ2(4t2 − 2)/8n}

The second equality comes by evaluating the constant c as the reciprocal of an integral with respect
to s and usesE(x) = θ andE(x2−1) = θ2 when x follows aN(θ, 1) distribution; the third equality
comes from calculating the reciprocal of the factor coming from the preceding integration; and the
fourth comes by taking the preceding to the exponent.
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