OLAP and Data Warehousing

Advanced Topics in Database Management (INFSCI 2711)

Some materials are from INFSCI2710’ a Database Management Systems, R. Ramakrishnan and J. Gehrke and from https://www.kimballgroup.com/

Vladimir Zadorozhny, DINS, University of Pittsburgh
Increasingly, organizations are analyzing current and historical data to identify useful patterns and support business strategies.

Emphasis is on complex, interactive, exploratory analysis of very large datasets created by integrating data from across all parts of an enterprise; data is fairly static.

- Contrast such **On-Line Analytic Processing (OLAP)** with traditional **On-line Transaction Processing (OLTP)**: mostly long queries, instead of short update Xacts.
Three Complementary Trends

- **Data Warehousing:** Consolidate data from many sources in one large repository.
 - Loading, periodic synchronization of replicas.
 - Semantic integration.

- **OLAP:**
 - Complex SQL queries and views.
 - Queries based on spreadsheet-style operations and “multidimensional” view of data.
 - Interactive and “online” queries.

- **Data Mining:** Exploratory search for interesting trends and anomalies (not considered in this class)
Data Warehousing

- Integrated data spanning long time periods, often augmented with summary information.
- Several gigabytes to terabytes common.
- Interactive response times expected for complex queries; ad-hoc updates uncommon.

EXTERNAL DATA SOURCES

EXTRACT
TRANSFORM
LOAD
REFRESH

DATA WAREHOUSE

Metadata Repository

SUPPORTS

DATA MINING

OLAP
Warehousing Issues

- **Semantic Integration**: When getting data from multiple sources, must eliminate mismatches, e.g., different currencies, schemas.
- **Heterogeneous Sources**: Must access data from a variety of source formats and repositories.
 - Replication capabilities can be exploited here.
- **Load, Refresh, Purge**: Must load data, periodically refresh it, and purge too-old data.
- **Metadata Management**: Must keep track of source, loading time, and other information for all data in the warehouse.
Multidimensional Data Model

- Collection of numeric measures, which depend on a set of dimensions.
 - E.g., measure Sales, dimensions Product (key: pid), Location (locid), and Time (timeid).

Slice locid=1 is shown:

<table>
<thead>
<tr>
<th>pid</th>
<th>timeid</th>
<th>locid</th>
<th>sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>2</td>
<td>35</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Multidimensional data can be stored physically in a (disk-resident, persistent) array; called **MOLAP** systems. Alternatively, can store as a relation; called **ROLAP** systems.

The main relation, which relates dimensions to a measure, is called the **fact table**. Each dimension can have additional attributes and an associated **dimension table**.

- E.g., `Products(pid, pname, category, price)`
- Fact tables are much larger than dimensional tables.
For each dimension, the set of values can be organized in a hierarchy:
Fact table is large, updates are frequent; dimension tables are small, updates are rare.

This kind of schema is very common in OLAP applications, and is called a **star schema**; computing the join of all these relations is called a **star join**.
OLAP Queries

- Influenced by SQL and by spreadsheets.
- A common operation is to aggregate a measure over one or more dimensions.
 - Find total sales.
 - Find total sales for each city, or for each state.
 - Find top five products ranked by total sales.
- Roll-up: Aggregating at different levels of a dimension hierarchy.
 - E.g., Given total sales by city, we can roll-up to get sales by state.
- Drill-down: The inverse of roll-up.
 - E.g., Given total sales by state, can drill-down to get total sales by city.
 - E.g., Can also drill-down on different dimension to get total sales by product for each state.
More on Drilling Down

- Drilling down means adding a row header (a grouping column) to an existing SELECT statement.
- E.g., if you’re analyzing the sales of products at a manufacturer level, the select list of the query reads SELECT MANUFACTURER, SUM(SALES).
- If you wish to drill down on the list of manufacturers to show the brands sold, you add the BRAND row header: SELECT MANUFACTURER, BRAND, SUM(SALES).
- The GROUP BY clause in the second query reads GROUP BY MANUFACTURER, BRAND. Row headers and grouping columns are the same thing.
- Now each manufacturer row expands into multiple rows listing all the brands sold.
- This example is particularly simple because in a star schema, both the manufacturer attribute and the brand attribute exist in the same product dimension table.
Drill Down Paths

- Drilling down has nothing to do with descending a predetermined hierarchy: you can drill down using any attribute drawn from any dimension (e.g., the weekday from the time dimension).

- A good data warehouse designer should always be thinking of additional drill-down paths to add to an existing environment.

- Example: adding an audit dimension to a fact table. The audit dimension contains indicators of data quality in the fact table, such as “data element out of bounds.”

- You can devise a standard report to drill down to issues of data quality, including the proportion of questionable data.

- By drilling down on data quality, each row of the original report would appear as multiple rows, each with a different data quality indicator.
 aggregate navigator

The data warehouse must support drilling down at the user interface level with the most atomic data possible because the most atomic data is the most dimensional.

The atomic data must be in the same schema format as any aggregated form of the data.

An aggregated fact table (materialized view) is a mechanically derived table of summary records.

Aggregated fact tables (materialized views) offer immense performance advantages compared to using the large, atomic fact tables. But you get this performance boost only when the user asks for an aggregated result.

A modern data warehouse environment uses a query-rewrite facility called an aggregate navigator to choose a prebuilt aggregate table whenever possible.

Each time the end user asks for a new drill-down path, the aggregate navigator decides in real time which aggregate fact table will support the query most efficiently.

Whenever the user asks for a sufficiently precise and unexpected drill down, the aggregate navigator gracefully defaults to the atomic data layer.
OLAP Queries

- **Pivoting**: Aggregation on selected dimensions.
 - E.g., Pivoting on Location and Time yields this **cross-tabulation**:

<table>
<thead>
<tr>
<th></th>
<th>WI</th>
<th>CA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>63</td>
<td>81</td>
<td>144</td>
</tr>
<tr>
<td>1996</td>
<td>38</td>
<td>107</td>
<td>145</td>
</tr>
<tr>
<td>1997</td>
<td>75</td>
<td>35</td>
<td>110</td>
</tr>
<tr>
<td>Total</td>
<td>176</td>
<td>223</td>
<td>339</td>
</tr>
</tbody>
</table>

- **Slicing and Dicing**: Equality and range selections on one or more dimensions.
The cross-tabulation obtained by pivoting can also be computed using a collection of SQL queries:

- \[
\text{SELECT SUM(S.sales)} \\
\text{FROM Sales S, Times T, Locations L} \\
\text{WHERE S.timeid=T.timeid AND S.timeid=L.timeid} \\
\text{GROUP BY T.year, L.state}
\]

- \[
\text{SELECT SUM(S.sales)} \\
\text{FROM Sales S, Times T} \\
\text{WHERE S.timeid=T.timeid} \\
\text{GROUP BY T.year}
\]

- \[
\text{SELECT SUM(S.sales)} \\
\text{FROM Sales S, Location L} \\
\text{WHERE S.timeid=L.timeid} \\
\text{GROUP BY L.state}
\]
The CUBE Operator

- Generalizing the previous example, if there are k dimensions, we have 2^k possible SQL GROUP BY queries that can be generated through pivoting on a subset of dimensions.
- CUBE pid, locid, timeid BY SUM Sales
 - Equivalent to rolling up Sales on all eight subsets of the set \{pid, locid, timeid\}; each roll-up corresponds to an SQL query of the form:

```
SELECT SUM(S.sales)
FROM   Sales S
GROUP BY grouping-list
```
OLAP queries are typically aggregate queries.

- Precomputation is essential for interactive response times.
- The CUBE is in fact a collection of aggregate queries, and precomputation is especially important: lots of work on what is best to precompute given a limited amount of space to store precomputed results.

Warehouses can be thought of as a collection of asynchronously replicated tables and periodically maintained views.

- Has renewed interest in view maintenance!
CREATE VIEW RegionalSales (category, sales, state) AS
SELECT P.category, S.sales, L.state
FROM Products P, Sales S, Locations L
WHERE P.pid=S.pid AND S.locid=L.locid

SELECT R.category, R.state, SUM(R.sales)
FROM RegionalSales AS R
GROUP BY R.category, R.state

SELECT R.category, R.state, SUM(R.sales)
FROM (SELECT P.category, S.sales, L.state
FROM Products P, Sales S, Locations L
WHERE P.pid=S.pid AND S.locid=L.locid) AS R
GROUP BY R.category, R.state
View Materialization (Precomputation)

- Suppose we precompute RegionalSales and store it.
- Then, previous query can be answered more efficiently (modified query will not be generated).
Issues in View Materialization

- What views should we materialize, and what indexes should we build on the precomputed results?
- Given a query and a set of materialized views, can we use the materialized views to answer the query?
- How frequently should we refresh materialized views to make them consistent with the underlying tables? (And how can we do this incrementally?)
Decision support is an emerging, rapidly growing subarea of databases.

Involves the creation of large, consolidated data repositories called data warehouses.

Warehouses exploited using sophisticated analysis techniques: complex SQL queries and OLAP “multidimensional” queries (influenced by both SQL and spreadsheets).

New techniques for database design, indexing, view maintenance, and interactive querying need to be supported.

Commonly requires integrating DISTRIBUTED HETEROGENEOUS DATA