The Evils of Redundancy

- **Redundancy** is at the root of several problems associated with relational schemas:
 - redundant storage, insert/delete/update anomalies
- Integrity constraints, in particular **functional dependencies**, can be used to identify schemas with such problems and to suggest refinements.
- Main refinement technique: **decomposition** (replacing ABCD with, say, AB and BCD, or ACD and ABD).
- Decomposition should be used judiciously:
 - Is there reason to decompose a relation?
 - What problems (if any) does the decomposition cause?
Example
❖ Consider the relation schema:

\[
\text{Lending-schema} = (\text{branch-name, branch-city, assets, customer-name, loan-number, amount})
\]

<table>
<thead>
<tr>
<th>branch-name</th>
<th>branch-city</th>
<th>assets</th>
<th>customer-name</th>
<th>loan-number</th>
<th>amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downtown</td>
<td>Brooklyn</td>
<td>900000</td>
<td>Jones</td>
<td>L-17</td>
<td>1000</td>
</tr>
<tr>
<td>Redwood</td>
<td>Palo Alto</td>
<td>210000</td>
<td>Smith</td>
<td>L-23</td>
<td>2000</td>
</tr>
<tr>
<td>Perryridge</td>
<td>Horseneck</td>
<td>170000</td>
<td>Hayes</td>
<td>L-15</td>
<td>1500</td>
</tr>
<tr>
<td>Downtown</td>
<td>Brooklyn</td>
<td>900000</td>
<td>Jackson</td>
<td>L-14</td>
<td>1500</td>
</tr>
</tbody>
</table>

❖ Redundancy:
- Data for branch-name, branch-city, assets are repeated for each loan that a branch makes
- Wastes space
- Complicates updating, introducing possibility of inconsistency of assets value
❖ Null values
- Cannot store information about a branch if no loans exist
- Can use null values, but they are difficult to handle.

Decomposition of a Relation Scheme
❖ Suppose that relation R contains attributes A1 \ldots An. A decomposition of R consists of replacing R by two or more relations such that:
- Each new relation scheme contains a subset of the attributes of R (and no attributes that do not appear in R), and
- Every attribute of R appears as an attribute of one of the new relations.
❖ Intuitively, decomposing R means we will store instances of the relation schemes produced by the decomposition, instead of instances of R.
❖ E.g., Can decompose SNLRWH into SNLRH and RW.
Lossless Join Decompositions

- Decomposition of R into X and Y is lossless-join w.r.t. a set of FDs F if, for every instance r that satisfies F:
 - \(\pi_X(r) \bowtie \pi_Y(r) = r \)
- It is always true that \(r \subseteq \pi_X(r) \bowtie \pi_Y(r) \)
 - In general, the other direction does not hold! If it does, the decomposition is lossless-join.
- Definition extended to decomposition into 3 or more relations in a straightforward way.
- It is essential that all decompositions used to deal with redundancy be lossless!

Functional Dependencies (FDs)

- A functional dependency \(X \rightarrow Y \) holds over relation R if, for every allowable instance r of R:
 - \(t1 \in r, t2 \in r, \pi_X(t1) = \pi_X(t2) \) implies \(\pi_Y(t1) = \pi_Y(t2) \)
 - i.e., given two tuples in r, if the X values agree, then the Y values must also agree. (X and Y are sets of attributes.)
- An FD is a statement about all allowable relations.
 - Must be identified based on semantics of application.
 - Given some allowable instance \(r1 \) of R, we cannot check if it violates some FD \(f \), but we cannot tell if \(f \) holds over R!
- K is a candidate key for R means that \(K \rightarrow R \)
 - However, \(K \rightarrow R \) does not require K to be minimal!
Example

- Consider relation Hourly_Emps:
 - Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)
- Notation: We will denote this relation schema by listing the attributes: SNLRWH
 - This is really the set of attributes [S,N,L,R,W,H].
 - Sometimes, we will refer to all attributes of a relation by using the relation name. (e.g., Hourly_Emps for SNLRWH)

- Some FDs on Hourly_Emps:
 - ssn is the key: S → SNLRWH
 - rating determines hrly_wages: R → W

Example (Contd.)

- Problems due to R→W:
 - Update anomaly: Can we change W in just the 1st tuple of SNLRWH?
 - Insertion anomaly: What if we want to insert an employee and don’t know the hourly wage for his rating?
 - Deletion anomaly: If we delete all employees with rating 5, we lose the information about the wage for rating 5!
Reasoning About FDs

- Given some FDs, we can usually infer additional FDs:
 - \(ssn \rightarrow did, \ did \rightarrow lot \) implies \(ssn \rightarrow lot \)
- An FD \(f \) is **implied by** a set of FDs \(F \) if \(f \) holds whenever all FDs in \(F \) hold.
 - \(F^* = \text{closure of } F \) is the set of all FDs that are implied by \(F \).
- Armstrong’s Axioms (\(X, Y, Z \) are sets of attributes):
 - **Reflexivity:** If \(Y \subseteq X \), then \(X \rightarrow Y \)
 - **Augmentation:** If \(X \rightarrow Y \), then \(XZ \rightarrow YZ \) for any \(Z \)
 - **Transitivity:** If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \)
- These are **sound and complete** inference rules for FDs!

Reasoning About FDs (Contd.)

- Couple of additional rules (that follow from AA):
 - **Union:** If \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)
 - **Decomposition:** If \(X \rightarrow YZ \), then \(X \rightarrow Y \) and \(X \rightarrow Z \)
- Example: \(\text{Contracts}(cid,sid,jid,did,pid,qty,value) \), and:
 - \(C \) is the key: \(C \rightarrow CSJDPQV \)
 - Project purchases each part using single contract: \(JP \rightarrow C \)
 - Dept purchases at most one part from a supplier: \(SD \rightarrow P \)
- \(JP \rightarrow C, \ C \rightarrow CSJDPQV \) imply \(JP \rightarrow CSJDPQV \)
- \(SD \rightarrow P \) implies \(SDJ \rightarrow JP \)
- \(SDJ \rightarrow JP, \ JP \rightarrow CSJDPQV \) imply \(SDJ \rightarrow CSJDPQV \)
Reasoning About FDs (Contd.)

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # attrs!)

- Typically, we just want to check if a given FD $X \rightarrow Y$ is in the closure of a set of FDs F. An efficient check:
 - Compute attribute closure of X (denoted X^+) wrt F:
 - Set of all attributes A such that $X \rightarrow A$ is in F^+
 - There is a linear time algorithm to compute this.
 - Check if Y is in X^+

- Does $F = \{A \rightarrow B, \ B \rightarrow C, \ C \rightarrow D \rightarrow E\}$ imply $A \rightarrow E$?
- i.e., is $A \rightarrow E$ in the closure F^+? Equivalently, is E in A^+?

More on Lossless Join

- The decomposition of R into X and Y is lossless-join wrt F if and only if the closure of F contains:
 - $X \cap Y \rightarrow X$, or
 - $X \cap Y \rightarrow Y$

- In particular, the decomposition of R into UV and $R - V$ is lossless-join if $U \rightarrow V$ holds over R.
Normalization Using Functional Dependencies

- When we decompose a relation schema R with a set of functional dependencies F into R_1, R_2, \ldots, R_n we want
 - **Lossless-join decomposition**: Otherwise decomposition would result in information loss.
 - **No redundancy**: The relations R_i preferably should be in either Boyce-Codd Normal Form or Third Normal Form.
 - **Dependency preservation**: We will talk about it a little later.

Normal Forms

- Returning to the issue of schema refinement, the first question to ask is whether any refinement is needed!
- If a relation is in a certain normal form (BCNF, 3NF etc.), it is known that certain kinds of problems are avoided/minimized. This can be used to help us decide whether decomposing the relation will help.
- Role of FDs in detecting redundancy:
 - Consider a relation R with 3 attributes, ABC.
 - **No FDs hold**: There is no redundancy here.
 - **Given A \rightarrow B**: Several tuples could have the same A value, and if so, they’ll all have the same B value!
Boyce-Codd Normal Form (BCNF)

- Reln R with FDs F is in BCNF if, for all $X \rightarrow A$ in F^+
 - $A \subseteq X$ (called a trivial FD), or
 - X contains a key for R.
- In other words, R is in BCNF if the only non-trivial FDs that hold over R are key constraints.
 - No redundancy in R that can be detected using FDs alone.
 - If we are shown two tuples that agree upon the X value, we cannot infer the A value in one tuple from the A value in the other.
 - If example relation is in BCNF, the 2 tuples must be identical (since X is a key).

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y₁</td>
<td>a</td>
</tr>
<tr>
<td>x</td>
<td>y₂</td>
<td>?</td>
</tr>
</tbody>
</table>

Decomposition into BCNF

- Consider relation R with FDs F. If $X \rightarrow Y$ violates BCNF, decompose R into $R - Y$ and XY.
 - Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.
 - e.g., CSJDPQV, key C, JP \rightarrow C, SD \rightarrow P, J \rightarrow S
 - To deal with SD \rightarrow P, decompose into SDP, CSJDQV.
 - To deal with J \rightarrow S, decompose CSJDQV into JS and CJDQV
- In general, several dependencies may cause violation of BCNF. The order in which we `deal with’’ them could lead to very different sets of relations!
Example of BCNF Decomposition

\[R = (\text{branch-name, branch-city, assets, customer-name, loan-number, amount}) \]

\[F = \{\text{branch-name} \rightarrow \text{assets branch-city} \]
\[\quad \text{loan-number} \rightarrow \text{amount branch-name}\} \]

Key = \{\text{loan-number, customer-name}\}

Decomposition
- \(R_1 = (\text{branch-name, branch-city, assets}) \)
- \(R_2 = (\text{branch-name, customer-name, loan-number, amount}) \)
- \(R_3 = (\text{branch-name, loan-number, amount}) \)
- \(R_4 = (\text{customer-name, loan-number}) \)

Final decomposition \(R_1, R_3, R_4 \)

Dependency Preserving Decomposition

- Consider CSJDPQV, C is key, JP \(\rightarrow \) C and SD \(\rightarrow \) P.
 - BCNF decomposition: CSJDQV and SDP
 - Problem: Checking JP \(\rightarrow \) C requires a join!

- **Dependency preserving decomposition:**
 - If R is decomposed into X, Y and Z, and we enforce the FDs that hold on X, on Y and on Z, then all FDs that were given to hold on R must also hold.
 - I.e., we should be able to check all functional dependencies on individual tables without doing joins
BCNF and Dependency Preservation

❖ In general, there may not be a dependency preserving decomposition into BCNF.
 - e.g., CSZ, CS → Z, Z → C
 - Can’t decompose while preserving 1st FD; not in BCNF.
❖ Similarly, decomposition of CSJDPQV into SDP, JS and CJDQV is not dependency preserving (w.r.t. the FDs JP → C, SD → P and J → S).
 - However, it is a lossless join decomposition.
 - In this case, adding JPC to the collection of relations gives us a dependency preserving decomposition.
 ♦ JPC tuples stored only for checking FD! (Redundancy!)

Third Normal Form (3NF)

❖ Reln R with FDs F is in 3NF if, for all X → A in F^+
 - A ∈ X (called a trivial FD), or
 - X contains a key for R, or
 - A is part of some key for R.
❖ Minimality of a key is crucial in third condition above!
❖ If R is in BCNF, obviously in 3NF.
❖ If R is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no “good” decomp, or performance considerations).
 - Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible.
Summary of Schema Refinement

❖ If a relation is in BCNF, it is free of redundancies that can be detected using FDs. Thus, trying to ensure that all relations are in BCNF is a good heuristic.

❖ If a relation is not in BCNF, we can try to decompose it into a collection of BCNF relations.
 - Must consider whether all FDs are preserved. If a lossless-join, dependency preserving decomposition into BCNF is not possible (or unsuitable, given typical queries), should consider decomposition into 3NF.
 - Decompositions should be carried out and/or re-examined while keeping performance requirements in mind.