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Abstract— LinkedIn is among the largest social networking sites 
in the world. As the company has grown, our core data sets and 
request processing requirements have grown as well. In this 
paper, we describe a few selected data infrastructure projects at 
LinkedIn that have helped us accommodate this increasing scale. 
Most of those projects build on existing open source projects and 
are themselves available as open source. The projects covered in 
this paper include: (1) Voldemort: a scalable and fault tolerant 
key-value store; (2) Databus: a framework for delivering 
database changes to downstream applications; (3) Espresso: a 
distributed data store that supports flexible schemas and 
secondary indexing; (4) Kafka: a scalable and efficient messaging 
system for collecting various user activity events and log data. 

I. INTRODUCTION 

LinkedIn logically divides into three fairly traditional tiers 

of services: a data tier that maintains persistent state including 

all user data, a service tier that implements an API layer 

capturing the logical operations of the website, and a display 

tier responsible for translating APIs into user interfaces 

including web pages and other user-facing applications such 

as “sharing” widgets on external sites or mobile application 

content. These tiers physically run on separate hardware and 

communicate via RPC. 

The service tier and display tier are both largely stateless—

all data and state comes only from transient caches and 

underlying data systems. As a result the request capacity of 

these stateless services can be increased by randomly 

balancing the load over an increased hardware pool. Likewise 

failures are handled trivially by removing the failed machines 

from the live pool. The key is that since there is no state in 

these tiers, all machines are interchangeable. 

This is a common strategy for simplifying the design of a 

large website: state is pushed down into a small number of 

general data systems which allows the harder problem of 

scaling stateful systems to be solved in as few places as 

possible. The details of these systems differ, but they share 

some common characteristics. Data volume generally requires 

partitioning data over multiple machines, and requests must be 

intelligently routed to the machine where the data resides. 

Availability requirements require replicating data onto 

multiple machines to allow fail-over without data loss. 

Replicated state requires reasoning about the consistency of 

data across these machines. Expansion requires redistributing 

data over new machines without downtime or interruption.  

LinkedIn’s core data systems are (a) live storage, (b) stream 

systems, (c) search, (d) social graph, (e) recommendations, 

and (f) batch computing. A high level architecture of those 

systems is shown in Figure I.1. We will give a brief overview 

of each of these areas, and provide details on a few selected 

systems. 

A. LinkedIn’s Site Architecture 

 
Figure I.1 A very high-level overview of LinkedIn’s 

architecture, focusing on the core data systems. 

 

Live storage systems are simply variations on traditional 

OLTP databases, though high request load and large data 

volume have forced a trade-off to disallow more complex 

queries to enable horizontal scalability. Live storage systems 

are the workhorse of web applications, serving the majority of 

data requests that make up the user experience. We describe 

two storage systems in the later sections, one aimed at 

providing primary data storage with rich query capabilities 

and a timeline consistency model (Espresso) and one aimed at 

providing simple, fast, eventually consistent key-value access 

(Voldemort). 

Batch processing consists of large-scale offline data 

processing jobs that run on a fixed schedule, say, hourly, daily, 

or weekly. Much of the most complex algorithmic data 

processing work is offloaded to this setting. LinkedIn’s batch 
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processing workloads divide into two major categories. The 

first is production batch processing jobs whose purpose is to 

generate data sets that will be served to users on our website. 

The second is analytical processing aimed at business 

intelligence or producing internal reports. LinkedIn’s 

production batch processing runs entirely on Hadoop. It uses a 

workflow containing both Pig and MapReduce jobs and run 

through a central scheduler. LinkedIn’s analytical batch 

processing runs on a combination of traditional relational data 

warehouse and the Hadoop system. Analytical Hadoop access 

is primarily Hive and Pig queries. 

Recommendation systems and social search systems are 

both closely related. These systems are concerned with 

matching rich structured data to users in a highly personalized 

way. The search system powers people search, which is a core 

feature for LinkedIn, but also handles search over all other 

LinkedIn content (including verticals for jobs, groups, and 

companies). The recommendation system matches relevant 

jobs, job candidates, connections, ads, news articles, and other 

content to users. The queries to these systems are orders of 

magnitude more complex than traditional systems since they 

involve ranking against complex models as well as integration 

of activity data and social features. 

The social graph powers the social features on the site from 

a partitioned graph of LinkedIn members and their attribute 

data (such as companies or groups). Its purpose is to serve 

low-latency social graph queries. Example queries include 

showing paths between users, calculating minimum distances 

between users, counting or intersecting connection lists and 

other social functionality. This is one of the backbones of the 

site, processing hundreds of thousandss graph queries per 

second and acting as one of the key determinants of 

performance and availability for the site as a whole. 

Stream systems provide feeds of data to applications and 

many of the other data systems mentioned above. These feeds 

can be used either for processing or notification purposes. 

Stream systems enable near real-time processing of data as is 

needed for email, newsfeed systems, and other core parts of 

the site that do their work asynchronously from user actions. 

In addition, the very presence of these use-case specific data 

systems puts special emphasis on the stream-oriented systems; 

they serve as a central replication layer that transports updates 

to all relevant subscriber systems. For example, the social 

graph, search, and recommendation systems subscribe to the 

feed of profile changes, and our newsfeed features are built on 

top of member activity and status feeds. Such feeds are also 

pulled into the batch systems for offline processing. In this 

paper we describe LinkedIn’s two stream systems: Databus 

which handles database stream replication and Kafka, which 

handles general pub/sub, user activity events and log data. 

For brevity we detail only the stream and storage systems 

in the remaining sections. 

II. VOLDEMORT 

Project Voldemort is a highly available, low-latency 

distributed data store. It was initially developed at LinkedIn in 

2008 in order to provide key-value based storage for read-

write data products like “Who viewed my profile”, thereby 

acting an alternative to our primary storage Oracle system. 

Over time it has also been adapted to serve static read-only 

data produced in offline bulk systems like Hadoop. Voldemort 

was open-sourced in January 2009 and has seen widespread 

adoption by various other companies for applications that 

require high availability and low latency. At LinkedIn, 

Voldemort powers various components of our real time 

recommendation products, network updates, and rate limiting 

system. We currently house roughly ten clusters, spanning 

more than a hundred nodes, holding several hundred stores 

(database tables). Recent additions to Voldemort allow it to 

span nodes located in multiple datacenters. This, along with 

the ability to add nodes without downtime, has helped us scale 

Voldemort to handle tens of thousands of requests a second.  

Voldemort can best be categorized as a distributed hash 

table (DHT). Unlike previous DHT work (like Chord 

[SMK+01]), it has been designed to have relatively low node 

membership churn, i.e. few changes in cluster topology. 

Instead it has been designed for frequent transient and short-

term failures [FLP+10], which are very prevalent in 

production datacenters. This lets us store the complete 

topology metadata on every node instead of partial “finger 

tables” as in Chord, thereby decreasing lookups from O(log N) 

to O(1). Overall, Voldemort’s design and architecture has 

been heavily inspired by Amazon's Dynamo [DHJ+07], a 

highly available and eventually consistent key-value store that 

powers Amazon’s shopping cart. 

B. Architecture 

 
     Figure II.1 Pluggable architecture of Voldemort 

 

We start by defining key terms we use to describe 

Voldemort. A Voldemort cluster can contain multiple nodes, 

each with a unique id. Stores correspond to database tables.  

Each store maps to a single cluster, with the store partitioned 

over all nodes in the cluster. Every store has its set of 

configurations, including - replication factor (N), required 

number of nodes which should participate in read (R) and 

writes (W) and finally a schema (key and value serialization 
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formats). Keys for the same store are hashed to a hash ring - a 

representation of the key space split into equal sized logical 

partitions. Every node in a cluster is then responsible for a 

certain set of partitions.  

 Figure II.1 shows the pluggable architecture of Voldemort. 

Most of the modules have functionality similar to those 

described in Amazon's Dynamo paper. Every module in the 

architecture implements the same code interface thereby 

making it easy to (a) interchange modules (e.g., Voldemort 

supports both server and client side routing by moving the 

routing and associated modules) and (b) test code easily by 

mocking modules.  
 

Client API and Conflict Resolution: Starting from the top 

of the architecture our client has the API described in Figure 

II.2. As a Dynamo implementation, Voldemort differs from 

conventional master-slave replicated systems in that any 

replica of a given partition is able to accept a write. As a result, 

it is possible for divergent version histories to form on 

multiple nodes during failures / partitions. As shown in our 

API, we use vector clocks [LAM78] to version our tuples and 

delegate conflict resolution of concurrent versions to the 

application. Methods 3) and 4) of the API allow the user to 

run a transform on the value on the server side. For example, 

if the value is a list, we can run a transformed get to retrieve a 

sub-list or a transformed put to append an entity to a list, 

thereby saving a client round trip and network bandwidth.  

Vector clocks also allow us to support a form of optimistic 

locking on the client side. Two concurrent updates to the same 

key results in one of the clients failing due to an already 

written vector clock. This client receives a special error, 

which can trigger a retry with the updated vector clock. This 

retry logic can be encapsulated in the applyUpdate call and 

can be used in cases like counters where “read, modify, write 

if no change” loops are required.  

Repair mechanism: This module is responsible for 

reconciling the inconsistent versions of the same key. We 

adopted the two repair mechanisms highlighted in the 

Dynamo paper viz. read repair and hinted handoff. Read 

repair detects inconsistencies during gets while hinted handoff 

is triggered during puts.  
 

Failure Detector: Due to frequent transient errors, it is 

important that the routing module maintain an up-to-date 

status of each storage node’s availability. By using this 

knowledge during request routing, we can also prevent the 

client from doing excessive requests to a server that is 

currently overloaded. We support various failure detectors, 

but the most commonly used one marks a node as down when 

its “success ratio” i.e. ratio of successful operations to total, 

falls below a pre-configured threshold. Once marked down the 

node is considered online only when an asynchronous thread 

is able to contact it again.  
 

Routing: This module of Voldemort employs a simple 

implementation of consistent hashing to perform replication. 

A key is hashed to a logical partition, after which we jump the 

ring till we find N-1 other partitions on different nodes to 

store the replicas. This non-order preserving partitioning 

scheme prevents formation of hot spots.  

Since our routing layer is pluggable we also plugged in a 

variant of consistent hashing that supports routing in a 

multiple datacenter environment. We group co-located nodes 

into logical clusters called 'zones', which in turn are defined 

by a proximity list of distances from other zones. The routing 

algorithm now jumps the consistent hash ring with an extra 

constraint to satisfy number of zones required for the request.  
 

Storage Engine: Of the various storage engine 

implementations supported by Voldemort, the most 

commonly used ones are BerkeleyDB Java Edition (BDB) 

[OBS99] (for read-write traffic) and a custom read-only 

storage engine (for static offline data).  

The custom read-only storage engine was built for 

applications that require running various multi-stage complex 

algorithms, using offline systems like Hadoop to generate 

their final results. By offloading the index construction to the 

offline system we do not hurt the performance of the live 

indices. The storage engine data layout on Voldemort nodes 

consists of compact index and data files stored in versioned 

directories per store, with every new data deployment 

resulting in a new versioned directory. Storing multiple 

versions of the complete dataset allows the developers to do 

instantaneous rollbacks in case of data problems. The 

complete data pipeline to get this static data into Voldemort is 

co-ordinated by a controller. Figure II.3 shows the various 

1) VectorClock<V> get (K key) 

2) put (K key, VectorClock<V> value) 

3) VectorClock<V> get (K key, T transform)

4) put (K key, VectorClock<V> value, T transform) 

5) applyUpdate(UpdateAction action, int retries) 

 

 Figure II.2 Client API for Voldemort 

    Figure II.3 Three phases of the data cycle to get “read-

only” data into Voldemort from Hadoop 
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phases of the data pipeline and their order of execution -  (a) 

Build phase - We take the output of complex algorithms and 

generate partitioned sets of data and index files in Hadoop 

[WHI09]. These files are partitioned by destination nodes and 

stored in HDFS. An index file is a compact list of sorted MD5 

of key and offset to data into the data file. To generate these 

indices, we leverage Hadoop’s ability to sort its values in the 

reducers. Finally a search on the Voldemort side is done using 

binary search. (b) Pull phase – Voldemort gets notified of the 

location of the output of the build phase and starts a parallel 

fetch from HDFS into a new versioned directory for the store. 

(c) Swap phase – On completion of the pull the controller co-

ordinates an atomic swap across all the nodes by closing the 

current index files and memory mapping the new index files. 

Instead of building complex caching structures, memory 

mapping the files delegates the caching to the operating 

system’s page-cache.  
 

Admin Service: In addition to the above stack, every node 

also runs an administrative service, which allows the 

execution of privileged commands without downtime. This 

includes the ability to add / delete store and rebalance the 

cluster without downtime. Rebalancing (dynamic cluster 

membership) is done by changing ownership of partitions to 

different nodes. We maintain consistency during rebalancing 

by redirecting requests of moving partitions to their new 

destination.  

C. Usage at LinkedIn 
At LinkedIn we have ten Voldemort clusters – nine of 

which serve BDB backed read-write traffic (six of which are 

running across two datacenters) while one serves custom read-

only storage engine backed traffic. Our largest read-write 

cluster has about 60% reads and 40% writes. This cluster 

serves around 10K queries per second at peak with average 

latency of 3 ms. Similarly the read-only cluster serves about 

9K reads per second with an average latency of less than 1 ms. 

Voldemort also successfully handles varying data sizes for the 

stores – our smallest store is around 8 KB while the largest 

one is around 2.8 TB for read-only and 1.4 TB for the read-

write cluster.   

We now highlight two applications in LinkedIn that use 

Voldemort. The first example is that of read-write stores used 

to run “Company Follow” – a feature on LinkedIn that allows 

the user to get a feed of company updates by following it. This 

uses two stores to maintain a cache-like interface on top of our 

primary storage Oracle – the first one stores member id to list 

of company ids followed by the user and the second one stores 

company id to a list of member ids that follow it. Both stores 

are fed by a Databus (described in Section III) relay and are 

populated whenever a user follows a new company. Since it is 

used as cache, having inconsistent values across stores is not a 

problem. Both the stores have a Zipfian distribution for their 

data size, but still manage to retrieve large values with an 

average latency of 4 ms.   

The second example is a link prediction problem used to 

generate “People You May Know” on LinkedIn. This 

application is powered by a single store backed by the custom 

read-only storage engine. The store saves, for every member 

id, a list of recommended member ids, along with a score. Due 

to continuous iterations on the prediction algorithm and the 

rapidly changing social graph, most of the scores change 

between runs. Some of the optimizations we run on the read-

only cluster include (a) throttling the pulls and (b) pulling the 

index files after all the data files to achieve cache-locality 

post-swap. This has helped us achieve an average latency in 

sub-milliseconds for this store.  

Our future work includes faster rebalancing, an update 

stream to which consumers can listen and new index formats 

to optimize read-only store performance.  

III. DATABUS 

A.  Motivation 
Modern Internet-based systems are increasingly facing the 

difficult challenge of performing complex processing over 

large amounts of valuable data with strict upper bounds on 

latency. For example, at LinkedIn, we have to continuously 

maintain indexes and statistical models over many aspects of 

the online professional identity of our constantly increasing 

user base of 135+ million. These indexes and models facilitate 

the discovery of new opportunities for our members. Other 

use cases include database replication for read scalability, data 

standardization, and query result pre-computation and caching. 

At LinkedIn, we have built Databus, a system for change 

data capture (CDC), that is being used to enable complex 

online and near-line computations under strict latency bounds. 

It provides a common pipeline for transporting CDC events 

from LinkedIn primary databases to various applications. 

Among these applications are the Social Graph Index, the 

People Search Index, Read Replicas, and near-line processors 

like the Company Name and Position Standardization. 

Databus contains adapters written for Oracle and MySQL, 

two of the primary database technologies at use at LinkedIn, 

and a subscription API that allows applications to subscribe to 

changes from one or more data sources. It is extremely easy to 

extend it to add support for other kinds of data sources 

(transaction log providers).  

 

Figure III.1 Databus at LinkedIn 

B. Problem Definition 
Next, we discuss what the important requirements for 

Databus are. 

Strong timeline consistency: To avoid having the 

subscribers see partial and/or inconsistent data we need to 

capture: 

• Transaction boundaries: A single user’s action can 

trigger atomic updates to multiple rows across 

13731373



stores/tables, e.g. an insert into a member’s mailbox 

and update on the member’s mailbox unread count. 

• The commit order of the primary database 

• All changes 
 

User-space processing: By “user-space processing”, we 

refer to the ability to perform the computation triggered by the 

data change outside the database server. This is in contrast to 

traditional database triggers that are run in the database server. 

Moving the computation to user space has the following 

benefits: 

• Reduces the load on the database server 

• Decouples the subscriber implementation from the 

specifics of the database server implementation 

• Enables independent scaling of the subscribers 

Support for long look-back queries: Typically, 

subscribers are interested only in recent changes that they 

have not processed yet. Yet, there are occasions when 

subscribers may want to read older changes. 

• If they have suffered a performance hiccup or they have 

been taken down for maintenance;  

• New subscribers are added to increase capacity might 

need to initialize their state and get a recent snapshot of 

the database;  

• All clients need to re-initialize their state because of the 

need to reprocess the whole data set, e.g. processing 

algorithm changes 
 

Data source / subscriber isolation: Subscribers often 

perform complex computations that may not allow a single 

instance to keep up with the data change rate. In those cases, a 

standard solution is to distribute the computation among 

multiple instances along some partitioning axis. 

Therefore, the pipeline should 

• Allow multiple subscribers to process the changes as a 

group; i.e. support partitioning; 

• Support different types of partitioning for computation 

tasks with different scalability requirements; 

• Isolate the source database from the number of 

subscribers so that increasing the number of the latter 

should not impact the performance of the former; 

• Isolate the source database from slow or failing 

subscribers that should not negatively impact the 

database performance; 

• Isolate subscribers from the operational aspects of the 

source database: database system choice, partitioning, 

schema evolution, etc.   

Low latency of the pipeline: Any overhead introduced by 

the pipeline may introduce risk of inconsistencies, negatively 

affect performance, or decrease the available time for the 

asynchronous computations. For example, any latency in 

updating a secondary index structures (like the previously 

mentioned LinkedIn social graph index) increases the risk of 

serving stale or inconsistent data. In the case of replication for 

read scaling, pipeline latency can lead to higher front-end 

latencies since more traffic will go to the master for the 

freshest results.  

Databus addresses the above requirements with features 

like:  

• Data-source independence: Oracle, MySQL, etc.  

• Portable change event serialization and versioning 

• Consumption from arbitrary point in the stream of 

events (uses compressed deltas to avoid storing all 

events) 

Databus guarantees: 

• Timeline consistency with the data source with 

transactional semantics and at-least-once delivery 

• No loss in durability (relies on bootstrap and primary 

store on failure) 

• High availability (replicated availability) 

• Low latency (low milliseconds) 

C. Architecture 
This section dives deeper into the architecture of Databus 

and covers how it addresses the requirements from the 

previous sub-section. 

The Databus pipeline consists of three main components: 

the Relay, the Bootstrap Server, and the Databus Client 

Library. The Relay captures changes in the source database, 

serializes them to a common binary format and buffers those. 

Each change is represented by a Databus CDC event which 

contains a sequence number in the commit order of the source 

database, metadata, and payload with the serialized change. 

Relays serve Databus events to both clients and the Bootstrap 

servers. Bootstrap servers provide clients with arbitrary long 

look-back queries in Databus event stream and isolate the 

source database from having to handle these queries.  

 

Figure III.2 Detailed Databus Architecture 

Next, we will describe the three main components in 

greater detail. 

Relay: As mentioned above, the first task of the relay is to 

capture changes from the source database. At LinkedIn, we 

employ two capture approaches, triggers or consuming from 

the database replication log. 

Once captured, the changes are serialized to a data source-

independent binary format. We chose Avro because it is an 

open format with multiple language bindings. Further, unlike 
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other formats like Protocol Buffers, Avro allows serialization 

in the relay without generation of source-schema specific code. 

The serialized events are stored in a circular in-memory 

buffer that is used to serve events to the Databus clients. We 

typically run multiple shared-nothing relays that are either 

connected directly to the database, or to other relays to 

provide replicated availability of the change stream. 

 The relay with the in-memory circular buffer provides: 

• Default serving path with very low latency (<1 ms) 

• Efficient buffering of tens of GB of data with 

hundreds of millions of Databus events 

• Index structures to efficiently serve to Databus clients 

events from a given sequence number S 

• Server-side filtering for support of multiple 

partitioning schemes to the clients 

• Support of hundreds of consumers per relay with no 

additional impact on the source database 

              Figure III.3 Bootstrap server design 

Bootstrap server: The main task of the bootstrap server is to 

listen to the stream of Databus events and provide long-term 

storage for them. It serves all requests from clients that cannot 

be processed by the relay because of its limited memory. Thus, 

the bootstrap server isolates the primary database from having 

to serve those clients. 
There are two types of queries supported: 

• Consolidated delta since sequence number (say T) 

• Consistent snapshot at sequence number (say U) 

The first query is used from clients that have some state but 

have fallen behind the time span of events stored in the relay. 

Instead of replaying all changes since T, the bootstrap server 

will return what we refer to as consolidated delta: only the last 

of multiple updates to the same row/key are returned. This has 

the effect of “fast playback” of time and allows the client to 

return faster to consumption from the relay. 

The second type of query is used when the client does not 

have any state (e.g. a new client). In that case, the bootstrap 

server will serve a recent consistent snapshot of the database 

and a sequence number U that is the sequence number of the 

last transaction applied in the snapshot. The client can then 

use the number U to continue consumption from the relay. 

The main challenge is the ability to provide consistent 

results for the above query types without interruption of the 

events from the relay. We achieve this by using two separate 

storages: a log and snapshot storage. 

The Log writer listens for Databus events from the relay 

and adds those to an append-only Log storage. The Log 
applier monitors for new rows in the Log storage and applies 

those to the Snapshot storage where only the last event for a 

given row/key is stored. On requests, the Server determines 

the optimal path. For clients whose request sequence number 

T is recent, it will serve directly from the Log storage. The 

append-only nature of the Log storage guarantees that the 

result is consistent. All other requests are first served from the 

Snapshot storage. This may return inconsistent results, as 

some of the rows may be modified during the snapshot 

serving (which can take a long time). To guarantee 

consistency, the Server replays all changes that have happened 

since the start of the snapshot phase. 

Like the relay, the Bootstrap server also supports server-

side filters that are pushed down to the storage if possible. 

Databus client library: The Databus client library is the glue 

between the Relays and Bootstrap servers and the business 

logic of the Databus consumers. It provides: 
• Tracking of progress in the Databus event stream with 

automatic switchover between the Relays and 

Bootstrap servers when necessary; 

• Push (callbacks) or pull interface 

• Local buffering and flow control to ensure continuous 

stream of Databus events to the consumers 

• Support for multi-thread processing 

• Retry logic if consumers fail to process some events 

D. Related Systems 
The related systems can be classified in three 

categories:  generic pub/sub systems, database replication 

systems, and other CDC systems. Generic pub/sub systems 

like JMS implementations, Kafka and Hedwig generally 

provide message-level or, at best, topic-level 

semantics.  Topic-level lets clients serialize messages on a 

particular topic.  These semantics do not suffice for 

transaction log replication. Providing transaction-level 

semantics requires implementing a transaction envelope on 

top of the vanilla messaging API with transaction boundaries 

provided by the producers and bubbled up to the consumers. 

Distributed messaging systems let producers write to them 

and are designed to provide persistence and ordering within a 

topic.  In order to provide fault-tolerance and high-availability, 

they must implement fairly complex protocols that write each 

message to multiple locations before acknowledging the 

producer.  As a benefit, the producer need not track or persist 

its outgoing messages; consumers need only request and re-

request messages from the messaging system. This complexity 

however comes at a cost in terms of development, operations, 

sometimes reduced performance and corner cases around node 

failures that can result in message loss.  

Two assumptions about the data source and consumer state 

greatly simplify the messaging system requirements. The first 

13751375



assumption is that the data source is the source of truth, and 

generates a commit sequence number with each transaction. 

The transaction log generated is then replay-able from any 

commit sequence number. The second assumption is that 

consumers define their state relative to the source in terms of 

sequence number, and persist their current state; this means a 

consumer always knows which messages it has applied and 

which it has not.  These assumptions simplify the messaging 

tier from worrying about persistence and delivery guarantees, 

and focus just on scalable transport and replicated availability. 

The Databus relay cluster therefore is a much simpler system 

which pulls from a database, is stateless across restarts, and 

can be replicated very simply since it relies on the source 

database to provide the transaction log and drive ordering. 

Finally, generic pub/sub systems provide only log storage 

(typically limited by data size) and do not support snapshots 

and consolidated deltas.  

Database replication systems are often database vendor 

specific (with some exceptions like Tungsten Replicator) and 

have limited capabilities for user-space processing. Many of 

the CDC systems are also database vendor specific and to the 

best of our knowledge do not have support for consistent 

snapshot or consolidated deltas. 

E. Usage at LinkedIn 
Databus has been a foundational piece of LinkedIn’s 

architecture since early 2005. It started off as the way to keep 

LinkedIn’s social graph and search index consistent and up-to-

date with the changes happening in the databases. Over time, 

it started to get used as a pure replication system for 

populating read replicas, invalidating and keeping caches 

consistent as well as supporting near-line processing 

requirements. In 2010, we added the bootstrapping capability 

and reworked the in-memory data structures at the relay to 

provide high throughput and very low latency while scaling to 

very large memory sizes without any performance penalties. 

In terms of operational scale, Databus provides change 

capture for close to a hundred data sources with tens of relays 

at low millisecond latencies. Databus is the native replication 

tier for our next-gen distributed data store ESPRESSO, 

described next. Future work includes releasing the source 

code back to the open source community, supporting 

declarative data transformations and multi-tenancy.  

IV. ESPRESSO 

Espresso is a distributed, timeline consistent, scalable, 

document store that supports local secondary indexing and 

local transactions.  ESPRESSO relies on Databus for internal 

replication and therefore provides a Change Data Capture 

pipeline to downstream consumers. 

The development of Espresso was motivated by our desire 

to migrate LinkedIn’s online serving infrastructure from 

monolithic, commercial, RDBMS systems running on high 

cost specialized hardware to elastic clusters of commodity 

servers running free software; and to improve agility by 

enabling rapid development by simplifying the programming 

model, separating scalability, routing, caching from business 

logic. Espresso bridges the semantic gap between a simple 

Key Value store like Voldemort and a full RDBMS. 

A. Data Model and API 
Espresso is a document-oriented data store that provides 

hierarchical ordering of documents and local secondary 

indexing.  Documents in Espresso are identified by URIs in 

the following form: 
 

http://<host>[:<port>]/<database>/<table>/<resource_
id>[/<subresource_id>…] 
 

The resource specified by a resource_id may be a 

singleton resource that references an individual document, or 

a collection resource that references a set of related 

documents. In the latter case, one or more 

subresource_ids identify individual documents within 

the collection. 

In Espresso, a database is a container of tables. A table is a 

container of documents. 

Each database, table, and document has an associated 

schema.  Schemas are represented in JSON in the format 

specified by Avro [Avro]. A database schema defines how the 

database is partitioned.  At present, the only supported 

partitioning strategies are hash-based partitioning or un-

partitioned (all documents are stored on all nodes).  We 

anticipate adding range based partitioning in the future. 

A table schema defines how documents within the table are 

referenced.  When defining the URI schema for a table, the 

resource_id may designate a single document or a 

collection of related documents that are identified by further 

elements of the URI path.  For example, the Music database 

Artists table might contain profiles for recording artists by 

artist name: 
 

  /Music/Artist/Rolling_Stones 
  /Music/Artist/The_Beatles 
 

whereas the Albums table might contain Albums by Artist 
 

  /Music/Album/Cher/Greatest_Hits 
  /Music/Album/Elton_John/Greatest_Hits 
 

and the Song table might contain songs by artist by album 
 

  /Music/Song/Doris_Day/Move_Over_Darling/At_Last 
  /Music/Song/Etta_James/Gold/At_Last 
  /Music/Song/Etta_James/Her_Best/At_Last 
 

Each of these tables is defined by a table schema that 

describes the elements of the URI path. 

The document schema defines the structure of the 

documents stored within a table.  Document schemas are 

freely evolvable.  To evolve a document schema, one simply 

posts a new version to the schema URI. New document 

schemas must be compatible according to the Avro schema 

resolution rules to insure that existing documents can be 

promoted to the new schema. For each document, the system 

stores a binary serialized version of the document along with 

the schema version needed to deserialize the stored document. 

Fields within the document schema may be annotated with 

indexing constraints, indicating that documents should be 

indexed for retrieval via the field’s value.  HTTP query 

parameters allow retrieval of documents via these secondary 
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indexes.  For example, if the Songs document schema 

contained a field lyrics with a free text index constraint, a 

GET for the URI: 
 

/Music/Song/The_Beatles?query=lyrics:”Lucy in the 
sky” 
 

would return 
 

/Music/Song/The_Beatles/Sgt._Pepper/Lucy_in_the_Sky_
with_Diamonds 
/Music/Song/The_Beatles/Magical_Mystery_Tour/I_am_th
e_Walrus 

 

   At present, indexed access is limited to collection resources 

accessed via a common resource_id in the URI path. 

Future enhancements will implement global secondary 

indexes maintained via a listener to the update stream. 

Within a database, tables with a common resource_id 

schema may be updated transactionally. Espresso guarantees 

that all tables within a single database indexed by the same 

resource_id path element will partition identically, thus 

allowing their transactional update.  In our example, the 

Artist, Album and Song tables all share the artist name as 

resource_id. One could post a new album for an artist to 

the Album table and each of the album’s songs to the Song 

table in a single transaction.  Transactional updates are 

performed by a POST to a database with a wildcard table 

name in the URI, where the entity-body contains the 

individual document updates. Espresso guarantees either all 

updates commit successfully or none commit. 

B. System Architecture 
The Espresso system consists of four major components: 

routers, storage nodes, relays and cluster managers.   
 

 

Figure IV.1 Espresso Architecture 

Router: The router accepts HTTP requests, inspects the 

URI and forwards the request to the appropriate storage node.  

For a given request, the router examines the database 

component of the path and retrieves the routing function from 

the corresponding database schema.  It then applies the 

routing function to the resource_id element of the request 

URI to compute a partition id.  Next it consults the routing 

table maintained by the cluster manager to determine which 

storage node is the master for the partition.  Finally, the router 

forwards the HTTP request to the selected storage node. 
 

Storage Node: Requests for a document are routed to the 

storage node that is the master for the containing partition.  

The storage node maintains a consistent view of each 

document in a local data store and optionally indexes each 

document in a local secondary index based on the index 

constraints specified in the document schema.  The initial 

implementation stores documents in MySQL as the local data 

store and Lucene for the local secondary index, though the 

design allows for alternate implementations via a plugin 

model.  Each document is stored as a serialized byte stream 

indexed by the URL resource_id and any 

subresource_id. In our Song table example, the 

underlying MySQL table contains: 

 
+-----------------+--------------+------+-----+ 
| Field           | Type         | Null | Key | 
+-----------------+--------------+------+-----+ 
| artist          | varchar      | NO   | PRI | 
| album           | varchar      | NO   | PRI | 
| song            | varchar      | NO   | PRI | 
| timestamp       | bigint(20)   | NO   |     | 
| etag            | varchar(10)  | NO   |     | 
| val             | blob         | YES  |     | 
| schema_version  | smallint(6)  | NO   |     | 
+-----------------+--------------+------+-----+ 

Table IV.1 Database Schema 

The timestamp and etag fields are used to implement 

conditional HTTP requests. Requests for specific resources 

can be satisfied via direct lookup in the local data store.  

Queries first consult a local secondary index then return the 

matching documents from the local data store. 

Each partition is replicated n ways within the cluster. The 

replication factor is specified in the schema for the database.  

Each storage node is master for a set of partitions and slave 

for a disjoint set of partitions. 

Consider the application view of the Albums table 

described above as shown in Figure IV.2. 

 

 

Figure IV.2 Album Table – Application View 

Espresso partitions tables according to the resource_id 

component of the URL - the Artist in this example.  

Different values for Artist hash to different partitions. The 

above table might partition as shown in Figure IV.3. 

               Relay: Espresso replication lays the foundation for 

Espresso’s fault-tolerant and elastic solution.  It is designed to 

be timeline consistent, efficient, and robust.  

Timeline consistency: Changes are applied on a slave 

partition in the same order as on its master partition, i.e. in 
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transaction commit order. This feature provides the basis for 

implementing failover and rebalancing in Espresso. Changes 

are captured, transferred and populated in the following 

manner. First, on a storage node, all changes are tagged with 

their transaction sequence number and captured in the MySQL 

binlog. Second, the MySQL binlog is shipped to a Databus 

relay node via MySQL Replication.  Third, a storage node 

pulls changes from Databus relay and applies them to the 

slave partitions.  All these steps follow the transaction commit 

order so that timeline consistency is guaranteed.  

 

Figure IV.3 Album Table – Partition Layout 

Efficiency: Replication uses minimal resources on the 

storage nodes so the impact on user query performance is 

minimized. We achieve such efficiency by 1) maintaining a 

single replication log on each storage node, and 2) pushing 

work to the Databus relay nodes. On a storage node, we run 

one MySQL instance and changes to all master partitions are 

logged in a single MySQL binlog to preserve sequential I/O 

pattern. However, each slave partition subscribes to changes 

only from its master partition, so binlog sharding is required. 

We use MySQL replication to publish the binlog of all master 

partitions on a storage node to the Databus relay, where the 

binlog is sharded into separate event buffers, one per partition.  

A slave partition consumes events from the corresponding 

Databus event buffer.  

Robustness: Changes made by a transaction are durable 

under failures. Each change is written to two places before 

being committed -- the local MySQL binlog and the Databus 

relay. If a storage node fails, the committed changes can still 

be found in the Databus relay and propagated to other storage 

nodes. We use the semi-synchronous feature of MySQL 

replication to achieve this goal. As described in Section III, 

the Databus relay is fault-tolerant and can sustain a certain 

degree of failure. So the end-to-end replication is robust with 

these features provided.  

Espresso provides faults-tolerance and elasticity through its 

replication tier. When a master partition fails, a slave partition 

is selected to take over. The slave partition first consumes all 

outstanding changes to the partition from the Databus relay, 

and then becomes a master partition. It continues to replicate 

changes to the Databus relay. When adding new nodes to an 

existing Espresso cluster, certain master and slave partitions 

are selected to migrate to a new node. For each migrated 

partition, we first bootstrap the new partition from a snapshot 

taken from the original master partition, and then apply any 

changes since the snapshot from the Databus Relay.  Once 

caught up, the new partition is a slave. We then hand off 

mastership to selected slaves.  
 

Cluster Manager: The cluster manager, Helix, is a generic 

platform for managing a cluster of nodes, including Espresso 

storage nodes and Databus relay nodes.  There are various 
scenarios, such as node failures and partition migration, where 
the system must react appropriately to satisfy the requirements 
of a fault tolerant system. Helix manages the various 
components in the cluster. It provides the following features: 

Robust hosted services: It provides control flow for fault 

tolerance and optimized rebalancing during cluster expansion 

for partitioned and replication resources.  

Load balancing: It performs smart allocation of resources 

to servers (nodes) based on server capacity and resource 

profile (size of partition, access pattern etc.).  

Service discovery: It manages cluster configuration in a 

centralized fashion, and provides automatic service discovery 

to route requests. 

Server lifecycle management: It manages entire operational 

lifecycle of server -- addition, deletion, start, stop, enable and 

disable without downtime.  

Health check: It monitors cluster health and provides alerts 

on SLA violations.  

To build such a system, we need a mechanism to co-

ordinate between different nodes or components in the system. 

This mechanism can be achieved with software that observes 

any changes in the cluster and generates a set of tasks needed 

to bring the cluster to a stable state. The tasks are assigned to 

one or more nodes in the cluster. Helix is modelled as state 

machine. Helix implements a state machine that contains the 

following states: 

• The IDEALSTATE for the cluster, representing the state 
when all configured nodes are up and running. 

• The CURRENTSTATE representing the current state of 

the nodes in the cluster.   The CURRENTSTATE differs 
from the IDEALSTATE when one or more nodes are 

unavailable due to system failure, maintenance, etc. 

• The BESTPOSSIBLESTATE is the state closest to the 

IDEALSTATE given the set of available nodes. 

 

   We omit the details of how we compute these states. Helix 

generates tasks to transform the CURRENTSTATE of the cluster 

to the BESTPOSSIBLESTATE. When all nodes are available, the 

BESTPOSSIBLESTATE will converge to the IDEALSTATE. Tasks 

are assigned to nodes to perform state changes. Helix uses 

Zookeeper as a distributed store to maintain the state of the 

cluster and a notification system to notify if there are any 

changes in the cluster state.  

 

C. Related Work 
Espresso draws inspiration from a number of prominent large-

scale data serving systems. Many such systems also store 

records as documents. Microsoft’s Azure [Azure] and 
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Google’s Megastore [BBJ+11], in particular, support record 

hierarchies, similar to our resources and subresources. Like us, 

Yahoo’s PNUTS [CRS+08] uses MySQL as its storage engine, 

and replicates writes asynchronously through a separate 

transport layer (Databus in our case).  
 

D. Espresso Deployment at LinkedIn 

Espresso was first deployed at LinkedIn in September 2011 

to serve read traffic for company profiles, products and 

reviews. Test deployments for users’ inbox content are 

underway. Future deployments are under development. 

V. KAFKA 

There is a large amount of event data generated at any 

sizable internet company. This data typically includes (1) user 

activity events corresponding to logins, page-views, clicks, 

“likes”, sharing, comments, and search queries; (2) 

operational metrics such as various service metrics and call 

stack. Event data has long been a component of offline 

analysis for tracking user engagement and system utilization. 

However, an increasing number of applications require online 

consumption of this data. These include (1) search relevance, 

(2) recommendations which may be driven by item popularity 

or co-occurrence in the activity stream, (3) security 

applications that protect against abusive behaviours such as 

spam or unauthorized data scraping, (4) newsfeed features that 

aggregate user status updates or actions for their “friends” or 

“connections” to read, and (5) real time dashboards of various 

service metrics. 

We developed a system called Kafka [KNR11] for 

collecting and delivering event data. Kafka adopts a 

messaging API to support both real time and offline 

consumption of this data. Since event data is 2-3 orders 

magnitude larger than data handled in traditional messaging 

systems, we made a few unconventional yet practical design 

choices to make our system simple, efficient and scalable. 

A. Kafka API and Architecture 
We first introduce the basic concepts in Kafka. A stream of 

messages of a particular type is defined by a topic. A producer 

publishes messages to a topic. The published messages are 

stored at a set of servers called brokers. A consumer  

subscribes to one or more topics, and consumes the subscribed 

messages by pulling data from the brokers. 

Messaging is conceptually simple, and we have tried to 

make the Kafka API equally simple to reflect this. Instead of 

showing the exact API, we present some sample code to show 

how the API is used. The sample code of the producer is given 

below. A message is defined to contain just a payload of bytes. 

A user can choose her favorite serialization method to encode 

a message. For efficiency, the producer can send a set of 

messages in a single publish request. 

To subscribe to a topic, a consumer first creates one or 

more message streams for the topic. The messages published 

to that topic will be evenly distributed into these sub-streams. 

The details about how Kafka distributes the messages are 

described later in Section V.C. Each message stream provides 

an iterator interface over the continual stream of messages 

being produced. The consumer then iterates over every 

message in the stream and processes the payload of the 

message. Unlike traditional iterators, the message stream 

iterator never terminates. If there are currently no more 

messages to consume, the iterator blocks until new messages 

are published to the topic. We support both the point-to-point 

delivery model in which multiple consumers jointly consume 

a single copy of all messages in a topic, as well as the 

publish/subscribe model in which multiple consumers each 

retrieve its own copy of a topic.  

The overall architecture of Kafka is shown in Figure V.1. 

Since Kafka is distributed in nature, a Kafka cluster typically 

consists of multiple brokers. To balance load, a topic is 

divided into multiple partitions and each broker stores one or 

more of those partitions. Multiple producers and consumers 

can publish and retrieve messages at the same time. 

B. Efficiency 
In this section, we describe the layout of a single partition 

on a broker and a few design choices that we made to access a 

partition efficiently. 

Simple storage: Kafka has a very simple storage layout. 

Each partition of a topic corresponds to a logical log. 

Physically, a log is implemented as a set of segment files of 

approximately the same size (e.g., 1 GB). Every time a 

producer publishes a message to a partition, the broker simply 

appends the message to the last segment file. For better 

performance, we flush the segment files to disk only after a 

 Sample producer code: 

  producer = new Producer(…);

  message = new Message(“test msg str”.getBytes()); 

  set = new MessageSet(message); 

  producer.send(“topic1”, set); 

 Sample consumer code:  

  streams[] = Consumer.createMessageStreams(“topic1”, 1) 

  for (message : streams[0]) { 

    bytes = message.payload(); 

    // do something with the bytes  

  }

producer producer p p

consumer consumer consumer umer

Figure V.1 Architecture 
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configurable number of messages have been published or a 

certain amount of time has elapsed. A message is only 

exposed to the consumers after it is flushed. 

Unlike typical messaging systems, a message stored in 

Kafka doesn’t have an explicit message id. Instead, each 

message is addressed by its logical offset in the log. This 

avoids the overhead of maintaining auxiliary index structures 

that map the message ids to the actual message locations. Note 

that our message ids are increasing but not consecutive. To 

compute the id of the next message, we have to add the length 

of the current message to its id. 

Many traditional messaging systems support out of order 

delivery of messages. This tends to increase the complexity of 

the system and is not necessary for our purpose. Instead, in 

Kafka, a consumer always consumes messages from a 

partition sequentially. If the consumer acknowledges a 

particular message offset, it implies that the consumer has 

received all messages prior to that offset in the partition. 

Under the covers, the consumer is issuing asynchronous pull 

requests to the broker to have a buffer of data ready for the 

application to consume. Each pull request contains the offset 

of the message from which the consumption begins and a 

maximum number of bytes to fetch. For every partition in a 

topic, a broker keeps in memory the initial offset of each 

segment file. The broker locates the segment file where the 

requested message resides by searching the offset list, and 

sends the data back to the consumer. 
 

Efficient transfer: We are very careful about transferring 

data in and out of Kafka. Earlier, we have shown that the 

producer can submit a set of messages in a single send request. 

Although the ultimate consumer API iterates one message at a 

time, under the covers, each pull request from a consumer also 

retrieves multiple messages up to a certain size, typically 

hundreds of kilobytes. 

Another unconventional choice that we made is to avoid 

explicitly caching messages in memory at the Kafka layer. 

Instead, we rely on the underlying file system page cache. 

This has the main benefit of avoiding double buffering---

messages are only cached in the page cache. This has the 

additional benefit of retaining warm cache even when a broker 

process is restarted. Since Kafka doesn’t cache messages in 

process at all, it has very little overhead in garbage collecting 

its memory, making efficient implementation in a VM-based 

language feasible. Finally, since both the producer and the 

consumer access the segment files sequentially, with the 

consumer often lagging the producer by a small amount, 

normal operating system caching heuristics are very effective 

(e.g., write-through caching and read-ahead) for performance. 

In addition, we optimize the network access for consumers. 

A typical approach to sending bytes from a local file to a 

remote socket involves the following steps: (1) read data from 

the storage media to the page cache in an OS, (2) copy data in 

the page cache to an application buffer, (3) copy application 

buffer to another kernel buffer, (4) send the kernel buffer to 

the socket. This includes 4 data copying and 2 system calls. 

On Linux and other Unix operating systems, there exists a 

sendfile API [ZC] that can directly transfer bytes from a file 

channel to a socket channel. This typically avoids 2 of the 

copies and 1 system call introduced in steps (2) and (3). Kafka 

exploits the sendfile API to efficiently deliver bytes in a log 

segment file from a broker to a consumer. 

Finally, to enable efficient data transfer especially across 

datacenters, we support compression in Kafka. Each producer 

can compress a set of messages and send it to the broker. The 

compressed data is stored in the broker and is eventually 

delivered to the consumer, where it is uncompressed. In 

practice, we save about 2/3 of the network bandwidth with 

compression enabled. 
 

Distributed Consumer State: Unlike most other 

messaging systems, in Kafka, the information about how 

much each consumer has consumed is not maintained by the 

broker, but by the consumer itself. Such a design reduces a lot 

of the complexity and the overhead on the broker. However, 

this makes it tricky to delete a message, since a broker doesn’t 

know whether all subscribers have consumed the message. 

Kafka solves this problem by using a simple time-based SLA 

for the retention policy. A message is automatically deleted if 

it has been retained in the broker longer than a certain period 

(e.g., 7 days). This solution works well in practice. Most 

consumers, including the offline ones, finish consuming either 

daily, hourly, or in real-time. 

There is an important side benefit of this design. A 

consumer can deliberately rewind back to an old offset and re-

consume data. This violates the common contract of a queue, 

but proves to be an essential feature for many consumers. For 

example, when there is an error in application logic, the 

application can re-play certain messages after the error is 

fixed. As another example, the consumed data may be flushed 

to a persistent store periodically (e.g., a text indexer). If the 

consumer crashes, the unflushed data is lost. In this case, the 

consumer can checkpoint the smallest offset of the unflushed 

messages and re-consume from that offset when it’s restarted. 

C. Distributed Coordination 
We now describe how the producers and the consumers 

behave in a distributed setting. Each producer can publish a 

message to either a randomly selected partition or a partition 

semantically determined by a partitioning key and a 

partitioning function. We will focus on how the consumers 

interact with the brokers. 

Kafka has the concept of consumer groups. Each consumer 

group consists of one or more consumers that jointly consume 

a set of subscribed topics, i.e., each message is delivered to 

only one of the consumers within the group. Different 

consumer groups each independently consume the full set of 

subscribed messages and no coordination is needed across 

consumer groups. The consumers within the same group can 

be in different processes or on different machines. 

Our goal is to divide the messages stored in the brokers 

evenly among the consumers, without introducing too much 

coordination overhead. In Kafka, the smallest unit of 

parallelism for consumption is a partition within a topic. This 

means that at any given time, all messages from one partition 

are consumed only by a single consumer within each 

consumer group. Had we allowed multiple consumers to 

simultaneously consume a single partition, they would have to 
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coordinate who consumes what messages, which necessitates 

locking and state maintenance overhead. In contrast, in our 

design consuming processes only need coordination when the 

load has to be rebalanced among them, an infrequent event. 

For better load balancing, we require many more partitions in 

a topic than the consumers in each group. We can achieve this 

by over partitioning a topic. 

To facilitate the coordination, we employ a highly available 

consensus service Zookeeper [Zoo]. Kafka uses Zookeeper for 

the following tasks: (1) detecting the addition and the removal 

of brokers and consumers, (2) triggering a rebalance process 

in each consumer when the above events happen, and (3) 

maintaining the consumption relationship and keeping track of 

the consumed offset of each partition. When a rebalance is 

triggered, each consumer reads the current information in 

Zookeeper and selects a subset of partitions to consume from. 

D. Kafka Deployment at LinkedIn 
 We have been using Kafka in production since Aug. 2010. 

At LinkedIn, we have one Kafka cluster co-located with each 

datacenter where our user-facing services run. The frontend 

services generate various kinds of event data and publish it to 

the local Kafka brokers in batches. The online consumers of 

Kafka run in services within the same datacenter. They 

include: (1) processing news postings from each member and 

feed the processed data to a real-time search index; (2) 

aggregating discussions across groups/forums within the same 

industry; (3) a security application that limits the usage of 

accounts with irregularly high activity.   

We also deploy a cluster of Kafka in a separate datacenter 

for offline analysis, located geographically close to our 

Hadoop cluster and other data warehouse infrastructure. This 

instance of Kafka runs a set of embedded consumers to pull 

data from the Kafka instances in the live datacenters. We then 

run data load jobs to pull data from this replica cluster of 

Kafka into Hadoop and our data warehouse, where we run 

various reporting jobs and analytical process on the data. We 

also use this Kafka cluster for prototyping and have the ability 

to run simple scripts against the raw event streams for ad hoc 

querying. Without too much tuning, the end-to-end latency for 

the complete pipeline is about 10 seconds on average, good 

enough for our requirements. 

Currently, we collect hundreds of GB of compressed 

activity events per day, with a peak rate of more than 50K 

messages per second produced. We have also started 

collecting our service call events. We expect the peak rate to 

be more than 200K messages per second when this effort is 

fully ramped up. 

Our tracking also includes an auditing system to verify that 

there is no data loss along the whole pipeline. To facilitate that, 

each message carries the timestamp and the server name when 

they are generated. We instrument each producer such that it 

periodically generates a monitoring event, which records the 

number of messages published by that producer for each topic 

within a fixed time window. The producer publishes the 

monitoring events to Kafka in a separate topic. The consumers 

can then count the number of messages that they have 

received from a given topic and validate those counts with the 

monitoring events to validate the correctness of data. 

Kafka has been an Apache incubator project [KA] since 

July 2011. Since then, we have seen more and more 

companies outside of LinkedIn adopting Kafka. One of the 

most important features that we plan to add in the future is 

intra-cluster replication. 

VI. CONCLUSIONS 

We have described a few of the key building blocks of the 

data infrastructure for a modern social web site. Each of these 

systems faces related problems around partitioning, routing, 

availability, expansion, management, and monitoring. 

However, the constraints imposed by the application 

requirements, as well as the fundamental difficulties of a 

distributed system result in the need to build specialized 

systems. To reduce the complexity of these solutions, we are 

working on the following two most important areas: (1) 

understanding the smallest most general set of infrastructure 

that can serve our current and future application needs; (2) 

building and leverage key lower-level distributed systems 

components such as Avro, Zookeeper or Helix that can be 

shared across and ease the development of these systems. 
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