
Data Infrastructure at LinkedIn
Aditya Auradkar, Chavdar Botev, Shirshanka Das, Dave DeMaagd, Alex Feinberg, Phanindra Ganti, Lei Gao,

Bhaskar Ghosh, Kishore Gopalakrishna, Brendan Harris, Joel Koshy, Kevin Krawez, Jay Kreps, Shi Lu, Sunil

Nagaraj, Neha Narkhede, Sasha Pachev, Igor Perisic, Lin Qiao, Tom Quiggle, Jun Rao, Bob Schulman, Abraham

Sebastian, Oliver Seeliger, Adam Silberstein, Boris Shkolnik, Chinmay Soman, Roshan Sumbaly, Kapil Surlaker,

Sajid Topiwala, Cuong Tran, Balaji Varadarajan, Jemiah Westerman, Zach White, David Zhang, and Jason Zhang

LinkedIn

Abstract— LinkedIn is among the largest social networking sites
in the world. As the company has grown, our core data sets and
request processing requirements have grown as well. In this
paper, we describe a few selected data infrastructure projects at
LinkedIn that have helped us accommodate this increasing scale.
Most of those projects build on existing open source projects and
are themselves available as open source. The projects covered in
this paper include: (1) Voldemort: a scalable and fault tolerant
key-value store; (2) Databus: a framework for delivering
database changes to downstream applications; (3) Espresso: a
distributed data store that supports flexible schemas and
secondary indexing; (4) Kafka: a scalable and efficient messaging
system for collecting various user activity events and log data.

I. INTRODUCTION

LinkedIn logically divides into three fairly traditional tiers

of services: a data tier that maintains persistent state including

all user data, a service tier that implements an API layer

capturing the logical operations of the website, and a display

tier responsible for translating APIs into user interfaces

including web pages and other user-facing applications such

as “sharing” widgets on external sites or mobile application

content. These tiers physically run on separate hardware and

communicate via RPC.

The service tier and display tier are both largely stateless—

all data and state comes only from transient caches and

underlying data systems. As a result the request capacity of

these stateless services can be increased by randomly

balancing the load over an increased hardware pool. Likewise

failures are handled trivially by removing the failed machines

from the live pool. The key is that since there is no state in

these tiers, all machines are interchangeable.

This is a common strategy for simplifying the design of a

large website: state is pushed down into a small number of

general data systems which allows the harder problem of

scaling stateful systems to be solved in as few places as

possible. The details of these systems differ, but they share

some common characteristics. Data volume generally requires

partitioning data over multiple machines, and requests must be

intelligently routed to the machine where the data resides.

Availability requirements require replicating data onto

multiple machines to allow fail-over without data loss.

Replicated state requires reasoning about the consistency of

data across these machines. Expansion requires redistributing

data over new machines without downtime or interruption.

LinkedIn’s core data systems are (a) live storage, (b) stream

systems, (c) search, (d) social graph, (e) recommendations,

and (f) batch computing. A high level architecture of those

systems is shown in Figure I.1. We will give a brief overview

of each of these areas, and provide details on a few selected

systems.

A. LinkedIn’s Site Architecture

Figure I.1 A very high-level overview of LinkedIn’s

architecture, focusing on the core data systems.

Live storage systems are simply variations on traditional

OLTP databases, though high request load and large data

volume have forced a trade-off to disallow more complex

queries to enable horizontal scalability. Live storage systems

are the workhorse of web applications, serving the majority of

data requests that make up the user experience. We describe

two storage systems in the later sections, one aimed at

providing primary data storage with rich query capabilities

and a timeline consistency model (Espresso) and one aimed at

providing simple, fast, eventually consistent key-value access

(Voldemort).

Batch processing consists of large-scale offline data

processing jobs that run on a fixed schedule, say, hourly, daily,

or weekly. Much of the most complex algorithmic data

processing work is offloaded to this setting. LinkedIn’s batch

2012 IEEE 28th International Conference on Data Engineering

1084-4627/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDE.2012.147

1370

2012 IEEE 28th International Conference on Data Engineering

1084-4627/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDE.2012.147

1370

processing workloads divide into two major categories. The

first is production batch processing jobs whose purpose is to

generate data sets that will be served to users on our website.

The second is analytical processing aimed at business

intelligence or producing internal reports. LinkedIn’s

production batch processing runs entirely on Hadoop. It uses a

workflow containing both Pig and MapReduce jobs and run

through a central scheduler. LinkedIn’s analytical batch

processing runs on a combination of traditional relational data

warehouse and the Hadoop system. Analytical Hadoop access

is primarily Hive and Pig queries.

Recommendation systems and social search systems are

both closely related. These systems are concerned with

matching rich structured data to users in a highly personalized

way. The search system powers people search, which is a core

feature for LinkedIn, but also handles search over all other

LinkedIn content (including verticals for jobs, groups, and

companies). The recommendation system matches relevant

jobs, job candidates, connections, ads, news articles, and other

content to users. The queries to these systems are orders of

magnitude more complex than traditional systems since they

involve ranking against complex models as well as integration

of activity data and social features.

The social graph powers the social features on the site from

a partitioned graph of LinkedIn members and their attribute

data (such as companies or groups). Its purpose is to serve

low-latency social graph queries. Example queries include

showing paths between users, calculating minimum distances

between users, counting or intersecting connection lists and

other social functionality. This is one of the backbones of the

site, processing hundreds of thousandss graph queries per

second and acting as one of the key determinants of

performance and availability for the site as a whole.

Stream systems provide feeds of data to applications and

many of the other data systems mentioned above. These feeds

can be used either for processing or notification purposes.

Stream systems enable near real-time processing of data as is

needed for email, newsfeed systems, and other core parts of

the site that do their work asynchronously from user actions.

In addition, the very presence of these use-case specific data

systems puts special emphasis on the stream-oriented systems;

they serve as a central replication layer that transports updates

to all relevant subscriber systems. For example, the social

graph, search, and recommendation systems subscribe to the

feed of profile changes, and our newsfeed features are built on

top of member activity and status feeds. Such feeds are also

pulled into the batch systems for offline processing. In this

paper we describe LinkedIn’s two stream systems: Databus

which handles database stream replication and Kafka, which

handles general pub/sub, user activity events and log data.

For brevity we detail only the stream and storage systems

in the remaining sections.

II. VOLDEMORT

Project Voldemort is a highly available, low-latency

distributed data store. It was initially developed at LinkedIn in

2008 in order to provide key-value based storage for read-

write data products like “Who viewed my profile”, thereby

acting an alternative to our primary storage Oracle system.

Over time it has also been adapted to serve static read-only

data produced in offline bulk systems like Hadoop. Voldemort

was open-sourced in January 2009 and has seen widespread

adoption by various other companies for applications that

require high availability and low latency. At LinkedIn,

Voldemort powers various components of our real time

recommendation products, network updates, and rate limiting

system. We currently house roughly ten clusters, spanning

more than a hundred nodes, holding several hundred stores

(database tables). Recent additions to Voldemort allow it to

span nodes located in multiple datacenters. This, along with

the ability to add nodes without downtime, has helped us scale

Voldemort to handle tens of thousands of requests a second.

Voldemort can best be categorized as a distributed hash

table (DHT). Unlike previous DHT work (like Chord

[SMK+01]), it has been designed to have relatively low node

membership churn, i.e. few changes in cluster topology.

Instead it has been designed for frequent transient and short-

term failures [FLP+10], which are very prevalent in

production datacenters. This lets us store the complete

topology metadata on every node instead of partial “finger

tables” as in Chord, thereby decreasing lookups from O(log N)

to O(1). Overall, Voldemort’s design and architecture has

been heavily inspired by Amazon's Dynamo [DHJ+07], a

highly available and eventually consistent key-value store that

powers Amazon’s shopping cart.

B. Architecture

 Figure II.1 Pluggable architecture of Voldemort

We start by defining key terms we use to describe

Voldemort. A Voldemort cluster can contain multiple nodes,

each with a unique id. Stores correspond to database tables.

Each store maps to a single cluster, with the store partitioned

over all nodes in the cluster. Every store has its set of

configurations, including - replication factor (N), required

number of nodes which should participate in read (R) and

writes (W) and finally a schema (key and value serialization

13711371

formats). Keys for the same store are hashed to a hash ring - a

representation of the key space split into equal sized logical

partitions. Every node in a cluster is then responsible for a

certain set of partitions.

 Figure II.1 shows the pluggable architecture of Voldemort.

Most of the modules have functionality similar to those

described in Amazon's Dynamo paper. Every module in the

architecture implements the same code interface thereby

making it easy to (a) interchange modules (e.g., Voldemort

supports both server and client side routing by moving the

routing and associated modules) and (b) test code easily by

mocking modules.

Client API and Conflict Resolution: Starting from the top

of the architecture our client has the API described in Figure

II.2. As a Dynamo implementation, Voldemort differs from

conventional master-slave replicated systems in that any

replica of a given partition is able to accept a write. As a result,

it is possible for divergent version histories to form on

multiple nodes during failures / partitions. As shown in our

API, we use vector clocks [LAM78] to version our tuples and

delegate conflict resolution of concurrent versions to the

application. Methods 3) and 4) of the API allow the user to

run a transform on the value on the server side. For example,

if the value is a list, we can run a transformed get to retrieve a

sub-list or a transformed put to append an entity to a list,

thereby saving a client round trip and network bandwidth.

Vector clocks also allow us to support a form of optimistic

locking on the client side. Two concurrent updates to the same

key results in one of the clients failing due to an already

written vector clock. This client receives a special error,

which can trigger a retry with the updated vector clock. This

retry logic can be encapsulated in the applyUpdate call and

can be used in cases like counters where “read, modify, write

if no change” loops are required.

Repair mechanism: This module is responsible for

reconciling the inconsistent versions of the same key. We

adopted the two repair mechanisms highlighted in the

Dynamo paper viz. read repair and hinted handoff. Read

repair detects inconsistencies during gets while hinted handoff

is triggered during puts.

Failure Detector: Due to frequent transient errors, it is

important that the routing module maintain an up-to-date

status of each storage node’s availability. By using this

knowledge during request routing, we can also prevent the

client from doing excessive requests to a server that is

currently overloaded. We support various failure detectors,

but the most commonly used one marks a node as down when

its “success ratio” i.e. ratio of successful operations to total,

falls below a pre-configured threshold. Once marked down the

node is considered online only when an asynchronous thread

is able to contact it again.

Routing: This module of Voldemort employs a simple

implementation of consistent hashing to perform replication.

A key is hashed to a logical partition, after which we jump the

ring till we find N-1 other partitions on different nodes to

store the replicas. This non-order preserving partitioning

scheme prevents formation of hot spots.

Since our routing layer is pluggable we also plugged in a

variant of consistent hashing that supports routing in a

multiple datacenter environment. We group co-located nodes

into logical clusters called 'zones', which in turn are defined

by a proximity list of distances from other zones. The routing

algorithm now jumps the consistent hash ring with an extra

constraint to satisfy number of zones required for the request.

Storage Engine: Of the various storage engine

implementations supported by Voldemort, the most

commonly used ones are BerkeleyDB Java Edition (BDB)

[OBS99] (for read-write traffic) and a custom read-only

storage engine (for static offline data).

The custom read-only storage engine was built for

applications that require running various multi-stage complex

algorithms, using offline systems like Hadoop to generate

their final results. By offloading the index construction to the

offline system we do not hurt the performance of the live

indices. The storage engine data layout on Voldemort nodes

consists of compact index and data files stored in versioned

directories per store, with every new data deployment

resulting in a new versioned directory. Storing multiple

versions of the complete dataset allows the developers to do

instantaneous rollbacks in case of data problems. The

complete data pipeline to get this static data into Voldemort is

co-ordinated by a controller. Figure II.3 shows the various

1) VectorClock<V> get (K key)

2) put (K key, VectorClock<V> value)

3) VectorClock<V> get (K key, T transform)

4) put (K key, VectorClock<V> value, T transform)

5) applyUpdate(UpdateAction action, int retries)

 Figure II.2 Client API for Voldemort

 Figure II.3 Three phases of the data cycle to get “read-

only” data into Voldemort from Hadoop

13721372

phases of the data pipeline and their order of execution - (a)

Build phase - We take the output of complex algorithms and

generate partitioned sets of data and index files in Hadoop

[WHI09]. These files are partitioned by destination nodes and

stored in HDFS. An index file is a compact list of sorted MD5

of key and offset to data into the data file. To generate these

indices, we leverage Hadoop’s ability to sort its values in the

reducers. Finally a search on the Voldemort side is done using

binary search. (b) Pull phase – Voldemort gets notified of the

location of the output of the build phase and starts a parallel

fetch from HDFS into a new versioned directory for the store.

(c) Swap phase – On completion of the pull the controller co-

ordinates an atomic swap across all the nodes by closing the

current index files and memory mapping the new index files.

Instead of building complex caching structures, memory

mapping the files delegates the caching to the operating

system’s page-cache.

Admin Service: In addition to the above stack, every node

also runs an administrative service, which allows the

execution of privileged commands without downtime. This

includes the ability to add / delete store and rebalance the

cluster without downtime. Rebalancing (dynamic cluster

membership) is done by changing ownership of partitions to

different nodes. We maintain consistency during rebalancing

by redirecting requests of moving partitions to their new

destination.

C. Usage at LinkedIn
At LinkedIn we have ten Voldemort clusters – nine of

which serve BDB backed read-write traffic (six of which are

running across two datacenters) while one serves custom read-

only storage engine backed traffic. Our largest read-write

cluster has about 60% reads and 40% writes. This cluster

serves around 10K queries per second at peak with average

latency of 3 ms. Similarly the read-only cluster serves about

9K reads per second with an average latency of less than 1 ms.

Voldemort also successfully handles varying data sizes for the

stores – our smallest store is around 8 KB while the largest

one is around 2.8 TB for read-only and 1.4 TB for the read-

write cluster.

We now highlight two applications in LinkedIn that use

Voldemort. The first example is that of read-write stores used

to run “Company Follow” – a feature on LinkedIn that allows

the user to get a feed of company updates by following it. This

uses two stores to maintain a cache-like interface on top of our

primary storage Oracle – the first one stores member id to list

of company ids followed by the user and the second one stores

company id to a list of member ids that follow it. Both stores

are fed by a Databus (described in Section III) relay and are

populated whenever a user follows a new company. Since it is

used as cache, having inconsistent values across stores is not a

problem. Both the stores have a Zipfian distribution for their

data size, but still manage to retrieve large values with an

average latency of 4 ms.

The second example is a link prediction problem used to

generate “People You May Know” on LinkedIn. This

application is powered by a single store backed by the custom

read-only storage engine. The store saves, for every member

id, a list of recommended member ids, along with a score. Due

to continuous iterations on the prediction algorithm and the

rapidly changing social graph, most of the scores change

between runs. Some of the optimizations we run on the read-

only cluster include (a) throttling the pulls and (b) pulling the

index files after all the data files to achieve cache-locality

post-swap. This has helped us achieve an average latency in

sub-milliseconds for this store.

Our future work includes faster rebalancing, an update

stream to which consumers can listen and new index formats

to optimize read-only store performance.

III. DATABUS

A. Motivation
Modern Internet-based systems are increasingly facing the

difficult challenge of performing complex processing over

large amounts of valuable data with strict upper bounds on

latency. For example, at LinkedIn, we have to continuously

maintain indexes and statistical models over many aspects of

the online professional identity of our constantly increasing

user base of 135+ million. These indexes and models facilitate

the discovery of new opportunities for our members. Other

use cases include database replication for read scalability, data

standardization, and query result pre-computation and caching.

At LinkedIn, we have built Databus, a system for change

data capture (CDC), that is being used to enable complex

online and near-line computations under strict latency bounds.

It provides a common pipeline for transporting CDC events

from LinkedIn primary databases to various applications.

Among these applications are the Social Graph Index, the

People Search Index, Read Replicas, and near-line processors

like the Company Name and Position Standardization.

Databus contains adapters written for Oracle and MySQL,

two of the primary database technologies at use at LinkedIn,

and a subscription API that allows applications to subscribe to

changes from one or more data sources. It is extremely easy to

extend it to add support for other kinds of data sources

(transaction log providers).

Figure III.1 Databus at LinkedIn

B. Problem Definition
Next, we discuss what the important requirements for

Databus are.

Strong timeline consistency: To avoid having the

subscribers see partial and/or inconsistent data we need to

capture:

• Transaction boundaries: A single user’s action can

trigger atomic updates to multiple rows across

13731373

stores/tables, e.g. an insert into a member’s mailbox

and update on the member’s mailbox unread count.

• The commit order of the primary database

• All changes

User-space processing: By “user-space processing”, we

refer to the ability to perform the computation triggered by the

data change outside the database server. This is in contrast to

traditional database triggers that are run in the database server.

Moving the computation to user space has the following

benefits:

• Reduces the load on the database server

• Decouples the subscriber implementation from the

specifics of the database server implementation

• Enables independent scaling of the subscribers

Support for long look-back queries: Typically,

subscribers are interested only in recent changes that they

have not processed yet. Yet, there are occasions when

subscribers may want to read older changes.

• If they have suffered a performance hiccup or they have

been taken down for maintenance;

• New subscribers are added to increase capacity might

need to initialize their state and get a recent snapshot of

the database;

• All clients need to re-initialize their state because of the

need to reprocess the whole data set, e.g. processing

algorithm changes

Data source / subscriber isolation: Subscribers often

perform complex computations that may not allow a single

instance to keep up with the data change rate. In those cases, a

standard solution is to distribute the computation among

multiple instances along some partitioning axis.

Therefore, the pipeline should

• Allow multiple subscribers to process the changes as a

group; i.e. support partitioning;

• Support different types of partitioning for computation

tasks with different scalability requirements;

• Isolate the source database from the number of

subscribers so that increasing the number of the latter

should not impact the performance of the former;

• Isolate the source database from slow or failing

subscribers that should not negatively impact the

database performance;

• Isolate subscribers from the operational aspects of the

source database: database system choice, partitioning,

schema evolution, etc.

Low latency of the pipeline: Any overhead introduced by

the pipeline may introduce risk of inconsistencies, negatively

affect performance, or decrease the available time for the

asynchronous computations. For example, any latency in

updating a secondary index structures (like the previously

mentioned LinkedIn social graph index) increases the risk of

serving stale or inconsistent data. In the case of replication for

read scaling, pipeline latency can lead to higher front-end

latencies since more traffic will go to the master for the

freshest results.

Databus addresses the above requirements with features

like:

• Data-source independence: Oracle, MySQL, etc.

• Portable change event serialization and versioning

• Consumption from arbitrary point in the stream of

events (uses compressed deltas to avoid storing all

events)

Databus guarantees:

• Timeline consistency with the data source with

transactional semantics and at-least-once delivery

• No loss in durability (relies on bootstrap and primary

store on failure)

• High availability (replicated availability)

• Low latency (low milliseconds)

C. Architecture
This section dives deeper into the architecture of Databus

and covers how it addresses the requirements from the

previous sub-section.

The Databus pipeline consists of three main components:

the Relay, the Bootstrap Server, and the Databus Client

Library. The Relay captures changes in the source database,

serializes them to a common binary format and buffers those.

Each change is represented by a Databus CDC event which

contains a sequence number in the commit order of the source

database, metadata, and payload with the serialized change.

Relays serve Databus events to both clients and the Bootstrap

servers. Bootstrap servers provide clients with arbitrary long

look-back queries in Databus event stream and isolate the

source database from having to handle these queries.

Figure III.2 Detailed Databus Architecture

Next, we will describe the three main components in

greater detail.

Relay: As mentioned above, the first task of the relay is to

capture changes from the source database. At LinkedIn, we

employ two capture approaches, triggers or consuming from

the database replication log.

Once captured, the changes are serialized to a data source-

independent binary format. We chose Avro because it is an

open format with multiple language bindings. Further, unlike

13741374

other formats like Protocol Buffers, Avro allows serialization

in the relay without generation of source-schema specific code.

The serialized events are stored in a circular in-memory

buffer that is used to serve events to the Databus clients. We

typically run multiple shared-nothing relays that are either

connected directly to the database, or to other relays to

provide replicated availability of the change stream.

 The relay with the in-memory circular buffer provides:

• Default serving path with very low latency (<1 ms)

• Efficient buffering of tens of GB of data with

hundreds of millions of Databus events

• Index structures to efficiently serve to Databus clients

events from a given sequence number S

• Server-side filtering for support of multiple

partitioning schemes to the clients

• Support of hundreds of consumers per relay with no

additional impact on the source database

 Figure III.3 Bootstrap server design

Bootstrap server: The main task of the bootstrap server is to

listen to the stream of Databus events and provide long-term

storage for them. It serves all requests from clients that cannot

be processed by the relay because of its limited memory. Thus,

the bootstrap server isolates the primary database from having

to serve those clients.
There are two types of queries supported:

• Consolidated delta since sequence number (say T)

• Consistent snapshot at sequence number (say U)

The first query is used from clients that have some state but

have fallen behind the time span of events stored in the relay.

Instead of replaying all changes since T, the bootstrap server

will return what we refer to as consolidated delta: only the last

of multiple updates to the same row/key are returned. This has

the effect of “fast playback” of time and allows the client to

return faster to consumption from the relay.

The second type of query is used when the client does not

have any state (e.g. a new client). In that case, the bootstrap

server will serve a recent consistent snapshot of the database

and a sequence number U that is the sequence number of the

last transaction applied in the snapshot. The client can then

use the number U to continue consumption from the relay.

The main challenge is the ability to provide consistent

results for the above query types without interruption of the

events from the relay. We achieve this by using two separate

storages: a log and snapshot storage.

The Log writer listens for Databus events from the relay

and adds those to an append-only Log storage. The Log
applier monitors for new rows in the Log storage and applies

those to the Snapshot storage where only the last event for a

given row/key is stored. On requests, the Server determines

the optimal path. For clients whose request sequence number

T is recent, it will serve directly from the Log storage. The

append-only nature of the Log storage guarantees that the

result is consistent. All other requests are first served from the

Snapshot storage. This may return inconsistent results, as

some of the rows may be modified during the snapshot

serving (which can take a long time). To guarantee

consistency, the Server replays all changes that have happened

since the start of the snapshot phase.

Like the relay, the Bootstrap server also supports server-

side filters that are pushed down to the storage if possible.

Databus client library: The Databus client library is the glue

between the Relays and Bootstrap servers and the business

logic of the Databus consumers. It provides:
• Tracking of progress in the Databus event stream with

automatic switchover between the Relays and

Bootstrap servers when necessary;

• Push (callbacks) or pull interface

• Local buffering and flow control to ensure continuous

stream of Databus events to the consumers

• Support for multi-thread processing

• Retry logic if consumers fail to process some events

D. Related Systems
The related systems can be classified in three

categories: generic pub/sub systems, database replication

systems, and other CDC systems. Generic pub/sub systems

like JMS implementations, Kafka and Hedwig generally

provide message-level or, at best, topic-level

semantics. Topic-level lets clients serialize messages on a

particular topic. These semantics do not suffice for

transaction log replication. Providing transaction-level

semantics requires implementing a transaction envelope on

top of the vanilla messaging API with transaction boundaries

provided by the producers and bubbled up to the consumers.

Distributed messaging systems let producers write to them

and are designed to provide persistence and ordering within a

topic. In order to provide fault-tolerance and high-availability,

they must implement fairly complex protocols that write each

message to multiple locations before acknowledging the

producer. As a benefit, the producer need not track or persist

its outgoing messages; consumers need only request and re-

request messages from the messaging system. This complexity

however comes at a cost in terms of development, operations,

sometimes reduced performance and corner cases around node

failures that can result in message loss.

Two assumptions about the data source and consumer state

greatly simplify the messaging system requirements. The first

13751375

assumption is that the data source is the source of truth, and

generates a commit sequence number with each transaction.

The transaction log generated is then replay-able from any

commit sequence number. The second assumption is that

consumers define their state relative to the source in terms of

sequence number, and persist their current state; this means a

consumer always knows which messages it has applied and

which it has not. These assumptions simplify the messaging

tier from worrying about persistence and delivery guarantees,

and focus just on scalable transport and replicated availability.

The Databus relay cluster therefore is a much simpler system

which pulls from a database, is stateless across restarts, and

can be replicated very simply since it relies on the source

database to provide the transaction log and drive ordering.

Finally, generic pub/sub systems provide only log storage

(typically limited by data size) and do not support snapshots

and consolidated deltas.

Database replication systems are often database vendor

specific (with some exceptions like Tungsten Replicator) and

have limited capabilities for user-space processing. Many of

the CDC systems are also database vendor specific and to the

best of our knowledge do not have support for consistent

snapshot or consolidated deltas.

E. Usage at LinkedIn
Databus has been a foundational piece of LinkedIn’s

architecture since early 2005. It started off as the way to keep

LinkedIn’s social graph and search index consistent and up-to-

date with the changes happening in the databases. Over time,

it started to get used as a pure replication system for

populating read replicas, invalidating and keeping caches

consistent as well as supporting near-line processing

requirements. In 2010, we added the bootstrapping capability

and reworked the in-memory data structures at the relay to

provide high throughput and very low latency while scaling to

very large memory sizes without any performance penalties.

In terms of operational scale, Databus provides change

capture for close to a hundred data sources with tens of relays

at low millisecond latencies. Databus is the native replication

tier for our next-gen distributed data store ESPRESSO,

described next. Future work includes releasing the source

code back to the open source community, supporting

declarative data transformations and multi-tenancy.

IV. ESPRESSO

Espresso is a distributed, timeline consistent, scalable,

document store that supports local secondary indexing and

local transactions. ESPRESSO relies on Databus for internal

replication and therefore provides a Change Data Capture

pipeline to downstream consumers.

The development of Espresso was motivated by our desire

to migrate LinkedIn’s online serving infrastructure from

monolithic, commercial, RDBMS systems running on high

cost specialized hardware to elastic clusters of commodity

servers running free software; and to improve agility by

enabling rapid development by simplifying the programming

model, separating scalability, routing, caching from business

logic. Espresso bridges the semantic gap between a simple

Key Value store like Voldemort and a full RDBMS.

A. Data Model and API
Espresso is a document-oriented data store that provides

hierarchical ordering of documents and local secondary

indexing. Documents in Espresso are identified by URIs in

the following form:

http://<host>[:<port>]/<database>/<table>/<resource_
id>[/<subresource_id>…]

The resource specified by a resource_id may be a

singleton resource that references an individual document, or

a collection resource that references a set of related

documents. In the latter case, one or more

subresource_ids identify individual documents within

the collection.

In Espresso, a database is a container of tables. A table is a

container of documents.

Each database, table, and document has an associated

schema. Schemas are represented in JSON in the format

specified by Avro [Avro]. A database schema defines how the

database is partitioned. At present, the only supported

partitioning strategies are hash-based partitioning or un-

partitioned (all documents are stored on all nodes). We

anticipate adding range based partitioning in the future.

A table schema defines how documents within the table are

referenced. When defining the URI schema for a table, the

resource_id may designate a single document or a

collection of related documents that are identified by further

elements of the URI path. For example, the Music database

Artists table might contain profiles for recording artists by

artist name:

 /Music/Artist/Rolling_Stones
 /Music/Artist/The_Beatles

whereas the Albums table might contain Albums by Artist

 /Music/Album/Cher/Greatest_Hits
 /Music/Album/Elton_John/Greatest_Hits

and the Song table might contain songs by artist by album

 /Music/Song/Doris_Day/Move_Over_Darling/At_Last
 /Music/Song/Etta_James/Gold/At_Last
 /Music/Song/Etta_James/Her_Best/At_Last

Each of these tables is defined by a table schema that

describes the elements of the URI path.

The document schema defines the structure of the

documents stored within a table. Document schemas are

freely evolvable. To evolve a document schema, one simply

posts a new version to the schema URI. New document

schemas must be compatible according to the Avro schema

resolution rules to insure that existing documents can be

promoted to the new schema. For each document, the system

stores a binary serialized version of the document along with

the schema version needed to deserialize the stored document.

Fields within the document schema may be annotated with

indexing constraints, indicating that documents should be

indexed for retrieval via the field’s value. HTTP query

parameters allow retrieval of documents via these secondary

13761376

indexes. For example, if the Songs document schema

contained a field lyrics with a free text index constraint, a

GET for the URI:

/Music/Song/The_Beatles?query=lyrics:”Lucy in the
sky”

would return

/Music/Song/The_Beatles/Sgt._Pepper/Lucy_in_the_Sky_
with_Diamonds
/Music/Song/The_Beatles/Magical_Mystery_Tour/I_am_th
e_Walrus

 At present, indexed access is limited to collection resources

accessed via a common resource_id in the URI path.

Future enhancements will implement global secondary

indexes maintained via a listener to the update stream.

Within a database, tables with a common resource_id

schema may be updated transactionally. Espresso guarantees

that all tables within a single database indexed by the same

resource_id path element will partition identically, thus

allowing their transactional update. In our example, the

Artist, Album and Song tables all share the artist name as

resource_id. One could post a new album for an artist to

the Album table and each of the album’s songs to the Song

table in a single transaction. Transactional updates are

performed by a POST to a database with a wildcard table

name in the URI, where the entity-body contains the

individual document updates. Espresso guarantees either all

updates commit successfully or none commit.

B. System Architecture
The Espresso system consists of four major components:

routers, storage nodes, relays and cluster managers.

Figure IV.1 Espresso Architecture

Router: The router accepts HTTP requests, inspects the

URI and forwards the request to the appropriate storage node.

For a given request, the router examines the database

component of the path and retrieves the routing function from

the corresponding database schema. It then applies the

routing function to the resource_id element of the request

URI to compute a partition id. Next it consults the routing

table maintained by the cluster manager to determine which

storage node is the master for the partition. Finally, the router

forwards the HTTP request to the selected storage node.

Storage Node: Requests for a document are routed to the

storage node that is the master for the containing partition.

The storage node maintains a consistent view of each

document in a local data store and optionally indexes each

document in a local secondary index based on the index

constraints specified in the document schema. The initial

implementation stores documents in MySQL as the local data

store and Lucene for the local secondary index, though the

design allows for alternate implementations via a plugin

model. Each document is stored as a serialized byte stream

indexed by the URL resource_id and any

subresource_id. In our Song table example, the

underlying MySQL table contains:

+-----------------+--------------+------+-----+
| Field | Type | Null | Key |
+-----------------+--------------+------+-----+
artist	varchar	NO	PRI
album	varchar	NO	PRI
song	varchar	NO	PRI
timestamp	bigint(20)	NO	
etag	varchar(10)	NO	
val	blob	YES	
schema_version	smallint(6)	NO	
+-----------------+--------------+------+-----+

Table IV.1 Database Schema

The timestamp and etag fields are used to implement

conditional HTTP requests. Requests for specific resources

can be satisfied via direct lookup in the local data store.

Queries first consult a local secondary index then return the

matching documents from the local data store.

Each partition is replicated n ways within the cluster. The

replication factor is specified in the schema for the database.

Each storage node is master for a set of partitions and slave

for a disjoint set of partitions.

Consider the application view of the Albums table

described above as shown in Figure IV.2.

Figure IV.2 Album Table – Application View

Espresso partitions tables according to the resource_id

component of the URL - the Artist in this example.

Different values for Artist hash to different partitions. The

above table might partition as shown in Figure IV.3.

 Relay: Espresso replication lays the foundation for

Espresso’s fault-tolerant and elastic solution. It is designed to

be timeline consistent, efficient, and robust.

Timeline consistency: Changes are applied on a slave

partition in the same order as on its master partition, i.e. in

RouterRouter

RouterDatabus Relay

Cluster
Manager

Cluster
Manager

Storage Node

MySQL
Lucene

Storage Node

MySQL
Lucene

Storage Node

MySQL
Lucene

...

Zoo
Keeper

Application

Artist Album Year

Akon Trouble 2004

Akon Stadium 2011

Babyface Lovers 1986

Babyface A Closer Look 1991

Babyface Face2Face 2001

Coolio Steal Hear 2008

...

Album Table - Client View

13771377

transaction commit order. This feature provides the basis for

implementing failover and rebalancing in Espresso. Changes

are captured, transferred and populated in the following

manner. First, on a storage node, all changes are tagged with

their transaction sequence number and captured in the MySQL

binlog. Second, the MySQL binlog is shipped to a Databus

relay node via MySQL Replication. Third, a storage node

pulls changes from Databus relay and applies them to the

slave partitions. All these steps follow the transaction commit

order so that timeline consistency is guaranteed.

Figure IV.3 Album Table – Partition Layout

Efficiency: Replication uses minimal resources on the

storage nodes so the impact on user query performance is

minimized. We achieve such efficiency by 1) maintaining a

single replication log on each storage node, and 2) pushing

work to the Databus relay nodes. On a storage node, we run

one MySQL instance and changes to all master partitions are

logged in a single MySQL binlog to preserve sequential I/O

pattern. However, each slave partition subscribes to changes

only from its master partition, so binlog sharding is required.

We use MySQL replication to publish the binlog of all master

partitions on a storage node to the Databus relay, where the

binlog is sharded into separate event buffers, one per partition.

A slave partition consumes events from the corresponding

Databus event buffer.

Robustness: Changes made by a transaction are durable

under failures. Each change is written to two places before

being committed -- the local MySQL binlog and the Databus

relay. If a storage node fails, the committed changes can still

be found in the Databus relay and propagated to other storage

nodes. We use the semi-synchronous feature of MySQL

replication to achieve this goal. As described in Section III,

the Databus relay is fault-tolerant and can sustain a certain

degree of failure. So the end-to-end replication is robust with

these features provided.

Espresso provides faults-tolerance and elasticity through its

replication tier. When a master partition fails, a slave partition

is selected to take over. The slave partition first consumes all

outstanding changes to the partition from the Databus relay,

and then becomes a master partition. It continues to replicate

changes to the Databus relay. When adding new nodes to an

existing Espresso cluster, certain master and slave partitions

are selected to migrate to a new node. For each migrated

partition, we first bootstrap the new partition from a snapshot

taken from the original master partition, and then apply any

changes since the snapshot from the Databus Relay. Once

caught up, the new partition is a slave. We then hand off

mastership to selected slaves.

Cluster Manager: The cluster manager, Helix, is a generic

platform for managing a cluster of nodes, including Espresso

storage nodes and Databus relay nodes. There are various
scenarios, such as node failures and partition migration, where
the system must react appropriately to satisfy the requirements
of a fault tolerant system. Helix manages the various
components in the cluster. It provides the following features:

Robust hosted services: It provides control flow for fault

tolerance and optimized rebalancing during cluster expansion

for partitioned and replication resources.

Load balancing: It performs smart allocation of resources

to servers (nodes) based on server capacity and resource

profile (size of partition, access pattern etc.).

Service discovery: It manages cluster configuration in a

centralized fashion, and provides automatic service discovery

to route requests.

Server lifecycle management: It manages entire operational

lifecycle of server -- addition, deletion, start, stop, enable and

disable without downtime.

Health check: It monitors cluster health and provides alerts

on SLA violations.

To build such a system, we need a mechanism to co-

ordinate between different nodes or components in the system.

This mechanism can be achieved with software that observes

any changes in the cluster and generates a set of tasks needed

to bring the cluster to a stable state. The tasks are assigned to

one or more nodes in the cluster. Helix is modelled as state

machine. Helix implements a state machine that contains the

following states:

• The IDEALSTATE for the cluster, representing the state
when all configured nodes are up and running.

• The CURRENTSTATE representing the current state of

the nodes in the cluster. The CURRENTSTATE differs
from the IDEALSTATE when one or more nodes are

unavailable due to system failure, maintenance, etc.

• The BESTPOSSIBLESTATE is the state closest to the

IDEALSTATE given the set of available nodes.

 We omit the details of how we compute these states. Helix

generates tasks to transform the CURRENTSTATE of the cluster

to the BESTPOSSIBLESTATE. When all nodes are available, the

BESTPOSSIBLESTATE will converge to the IDEALSTATE. Tasks

are assigned to nodes to perform state changes. Helix uses

Zookeeper as a distributed store to maintain the state of the

cluster and a notification system to notify if there are any

changes in the cluster state.

C. Related Work
Espresso draws inspiration from a number of prominent large-

scale data serving systems. Many such systems also store

records as documents. Microsoft’s Azure [Azure] and

Node 1

Artist Album Year

Akon Trouble 2004

Akon Stadium 2011

...

Partition 1 Master

Node 2

Node N

Artist Album Year

Coolio Steal Hear 2008

...

Partition N Master

Album Table - Partition Distribution

Artist Album Year

Babyface Lovers 1986

Babyface A Closer Look 1991

Babyface Face2Face 2001

...

Partition 2 Master

Artist Album Year

Babyface Lovers 1986

Babyface A Closer Look 1991

Babyface Face2Face 2001

...

Partition 2 Slave

Artist Album Year

Coolio Steal Hear 2008

...

Partition N Slave

Artist Album Year

Akon Trouble 2004

Akon Stadium 2011

...

Partition 1 Slave

Artist Album YearYY

Babyface Lovers 1986

Babyface A Closer LookA 1991

Babyface Face2Face 2001

...

Artist Album YearYY

Akon Trouble 2004

Akon Stadium 2011

...

Artist Album YearYY

Coolio Steal Hear 2008

...

13781378

Google’s Megastore [BBJ+11], in particular, support record

hierarchies, similar to our resources and subresources. Like us,

Yahoo’s PNUTS [CRS+08] uses MySQL as its storage engine,

and replicates writes asynchronously through a separate

transport layer (Databus in our case).

D. Espresso Deployment at LinkedIn

Espresso was first deployed at LinkedIn in September 2011

to serve read traffic for company profiles, products and

reviews. Test deployments for users’ inbox content are

underway. Future deployments are under development.

V. KAFKA

There is a large amount of event data generated at any

sizable internet company. This data typically includes (1) user

activity events corresponding to logins, page-views, clicks,

“likes”, sharing, comments, and search queries; (2)

operational metrics such as various service metrics and call

stack. Event data has long been a component of offline

analysis for tracking user engagement and system utilization.

However, an increasing number of applications require online

consumption of this data. These include (1) search relevance,

(2) recommendations which may be driven by item popularity

or co-occurrence in the activity stream, (3) security

applications that protect against abusive behaviours such as

spam or unauthorized data scraping, (4) newsfeed features that

aggregate user status updates or actions for their “friends” or

“connections” to read, and (5) real time dashboards of various

service metrics.

We developed a system called Kafka [KNR11] for

collecting and delivering event data. Kafka adopts a

messaging API to support both real time and offline

consumption of this data. Since event data is 2-3 orders

magnitude larger than data handled in traditional messaging

systems, we made a few unconventional yet practical design

choices to make our system simple, efficient and scalable.

A. Kafka API and Architecture
We first introduce the basic concepts in Kafka. A stream of

messages of a particular type is defined by a topic. A producer

publishes messages to a topic. The published messages are

stored at a set of servers called brokers. A consumer

subscribes to one or more topics, and consumes the subscribed

messages by pulling data from the brokers.

Messaging is conceptually simple, and we have tried to

make the Kafka API equally simple to reflect this. Instead of

showing the exact API, we present some sample code to show

how the API is used. The sample code of the producer is given

below. A message is defined to contain just a payload of bytes.

A user can choose her favorite serialization method to encode

a message. For efficiency, the producer can send a set of

messages in a single publish request.

To subscribe to a topic, a consumer first creates one or

more message streams for the topic. The messages published

to that topic will be evenly distributed into these sub-streams.

The details about how Kafka distributes the messages are

described later in Section V.C. Each message stream provides

an iterator interface over the continual stream of messages

being produced. The consumer then iterates over every

message in the stream and processes the payload of the

message. Unlike traditional iterators, the message stream

iterator never terminates. If there are currently no more

messages to consume, the iterator blocks until new messages

are published to the topic. We support both the point-to-point

delivery model in which multiple consumers jointly consume

a single copy of all messages in a topic, as well as the

publish/subscribe model in which multiple consumers each

retrieve its own copy of a topic.

The overall architecture of Kafka is shown in Figure V.1.

Since Kafka is distributed in nature, a Kafka cluster typically

consists of multiple brokers. To balance load, a topic is

divided into multiple partitions and each broker stores one or

more of those partitions. Multiple producers and consumers

can publish and retrieve messages at the same time.

B. Efficiency
In this section, we describe the layout of a single partition

on a broker and a few design choices that we made to access a

partition efficiently.

Simple storage: Kafka has a very simple storage layout.

Each partition of a topic corresponds to a logical log.

Physically, a log is implemented as a set of segment files of

approximately the same size (e.g., 1 GB). Every time a

producer publishes a message to a partition, the broker simply

appends the message to the last segment file. For better

performance, we flush the segment files to disk only after a

 Sample producer code:

 producer = new Producer(…);

 message = new Message(“test msg str”.getBytes());

 set = new MessageSet(message);

 producer.send(“topic1”, set);

 Sample consumer code:

 streams[] = Consumer.createMessageStreams(“topic1”, 1)

 for (message : streams[0]) {

 bytes = message.payload();

 // do something with the bytes

 }

producer producer p p

consumer consumer consumer umer

Figure V.1 Architecture

BROKER 1

topic1/part1

 /part2

topic2/part1

BROKER 2

topic1/part1

 /part2

topic2/part1

BROKER 3

topic1/part1

 /part2

topic2/part1

13791379

configurable number of messages have been published or a

certain amount of time has elapsed. A message is only

exposed to the consumers after it is flushed.

Unlike typical messaging systems, a message stored in

Kafka doesn’t have an explicit message id. Instead, each

message is addressed by its logical offset in the log. This

avoids the overhead of maintaining auxiliary index structures

that map the message ids to the actual message locations. Note

that our message ids are increasing but not consecutive. To

compute the id of the next message, we have to add the length

of the current message to its id.

Many traditional messaging systems support out of order

delivery of messages. This tends to increase the complexity of

the system and is not necessary for our purpose. Instead, in

Kafka, a consumer always consumes messages from a

partition sequentially. If the consumer acknowledges a

particular message offset, it implies that the consumer has

received all messages prior to that offset in the partition.

Under the covers, the consumer is issuing asynchronous pull

requests to the broker to have a buffer of data ready for the

application to consume. Each pull request contains the offset

of the message from which the consumption begins and a

maximum number of bytes to fetch. For every partition in a

topic, a broker keeps in memory the initial offset of each

segment file. The broker locates the segment file where the

requested message resides by searching the offset list, and

sends the data back to the consumer.

Efficient transfer: We are very careful about transferring

data in and out of Kafka. Earlier, we have shown that the

producer can submit a set of messages in a single send request.

Although the ultimate consumer API iterates one message at a

time, under the covers, each pull request from a consumer also

retrieves multiple messages up to a certain size, typically

hundreds of kilobytes.

Another unconventional choice that we made is to avoid

explicitly caching messages in memory at the Kafka layer.

Instead, we rely on the underlying file system page cache.

This has the main benefit of avoiding double buffering---

messages are only cached in the page cache. This has the

additional benefit of retaining warm cache even when a broker

process is restarted. Since Kafka doesn’t cache messages in

process at all, it has very little overhead in garbage collecting

its memory, making efficient implementation in a VM-based

language feasible. Finally, since both the producer and the

consumer access the segment files sequentially, with the

consumer often lagging the producer by a small amount,

normal operating system caching heuristics are very effective

(e.g., write-through caching and read-ahead) for performance.

In addition, we optimize the network access for consumers.

A typical approach to sending bytes from a local file to a

remote socket involves the following steps: (1) read data from

the storage media to the page cache in an OS, (2) copy data in

the page cache to an application buffer, (3) copy application

buffer to another kernel buffer, (4) send the kernel buffer to

the socket. This includes 4 data copying and 2 system calls.

On Linux and other Unix operating systems, there exists a

sendfile API [ZC] that can directly transfer bytes from a file

channel to a socket channel. This typically avoids 2 of the

copies and 1 system call introduced in steps (2) and (3). Kafka

exploits the sendfile API to efficiently deliver bytes in a log

segment file from a broker to a consumer.

Finally, to enable efficient data transfer especially across

datacenters, we support compression in Kafka. Each producer

can compress a set of messages and send it to the broker. The

compressed data is stored in the broker and is eventually

delivered to the consumer, where it is uncompressed. In

practice, we save about 2/3 of the network bandwidth with

compression enabled.

Distributed Consumer State: Unlike most other

messaging systems, in Kafka, the information about how

much each consumer has consumed is not maintained by the

broker, but by the consumer itself. Such a design reduces a lot

of the complexity and the overhead on the broker. However,

this makes it tricky to delete a message, since a broker doesn’t

know whether all subscribers have consumed the message.

Kafka solves this problem by using a simple time-based SLA

for the retention policy. A message is automatically deleted if

it has been retained in the broker longer than a certain period

(e.g., 7 days). This solution works well in practice. Most

consumers, including the offline ones, finish consuming either

daily, hourly, or in real-time.

There is an important side benefit of this design. A

consumer can deliberately rewind back to an old offset and re-

consume data. This violates the common contract of a queue,

but proves to be an essential feature for many consumers. For

example, when there is an error in application logic, the

application can re-play certain messages after the error is

fixed. As another example, the consumed data may be flushed

to a persistent store periodically (e.g., a text indexer). If the

consumer crashes, the unflushed data is lost. In this case, the

consumer can checkpoint the smallest offset of the unflushed

messages and re-consume from that offset when it’s restarted.

C. Distributed Coordination
We now describe how the producers and the consumers

behave in a distributed setting. Each producer can publish a

message to either a randomly selected partition or a partition

semantically determined by a partitioning key and a

partitioning function. We will focus on how the consumers

interact with the brokers.

Kafka has the concept of consumer groups. Each consumer

group consists of one or more consumers that jointly consume

a set of subscribed topics, i.e., each message is delivered to

only one of the consumers within the group. Different

consumer groups each independently consume the full set of

subscribed messages and no coordination is needed across

consumer groups. The consumers within the same group can

be in different processes or on different machines.

Our goal is to divide the messages stored in the brokers

evenly among the consumers, without introducing too much

coordination overhead. In Kafka, the smallest unit of

parallelism for consumption is a partition within a topic. This

means that at any given time, all messages from one partition

are consumed only by a single consumer within each

consumer group. Had we allowed multiple consumers to

simultaneously consume a single partition, they would have to

13801380

coordinate who consumes what messages, which necessitates

locking and state maintenance overhead. In contrast, in our

design consuming processes only need coordination when the

load has to be rebalanced among them, an infrequent event.

For better load balancing, we require many more partitions in

a topic than the consumers in each group. We can achieve this

by over partitioning a topic.

To facilitate the coordination, we employ a highly available

consensus service Zookeeper [Zoo]. Kafka uses Zookeeper for

the following tasks: (1) detecting the addition and the removal

of brokers and consumers, (2) triggering a rebalance process

in each consumer when the above events happen, and (3)

maintaining the consumption relationship and keeping track of

the consumed offset of each partition. When a rebalance is

triggered, each consumer reads the current information in

Zookeeper and selects a subset of partitions to consume from.

D. Kafka Deployment at LinkedIn
 We have been using Kafka in production since Aug. 2010.

At LinkedIn, we have one Kafka cluster co-located with each

datacenter where our user-facing services run. The frontend

services generate various kinds of event data and publish it to

the local Kafka brokers in batches. The online consumers of

Kafka run in services within the same datacenter. They

include: (1) processing news postings from each member and

feed the processed data to a real-time search index; (2)

aggregating discussions across groups/forums within the same

industry; (3) a security application that limits the usage of

accounts with irregularly high activity.

We also deploy a cluster of Kafka in a separate datacenter

for offline analysis, located geographically close to our

Hadoop cluster and other data warehouse infrastructure. This

instance of Kafka runs a set of embedded consumers to pull

data from the Kafka instances in the live datacenters. We then

run data load jobs to pull data from this replica cluster of

Kafka into Hadoop and our data warehouse, where we run

various reporting jobs and analytical process on the data. We

also use this Kafka cluster for prototyping and have the ability

to run simple scripts against the raw event streams for ad hoc

querying. Without too much tuning, the end-to-end latency for

the complete pipeline is about 10 seconds on average, good

enough for our requirements.

Currently, we collect hundreds of GB of compressed

activity events per day, with a peak rate of more than 50K

messages per second produced. We have also started

collecting our service call events. We expect the peak rate to

be more than 200K messages per second when this effort is

fully ramped up.

Our tracking also includes an auditing system to verify that

there is no data loss along the whole pipeline. To facilitate that,

each message carries the timestamp and the server name when

they are generated. We instrument each producer such that it

periodically generates a monitoring event, which records the

number of messages published by that producer for each topic

within a fixed time window. The producer publishes the

monitoring events to Kafka in a separate topic. The consumers

can then count the number of messages that they have

received from a given topic and validate those counts with the

monitoring events to validate the correctness of data.

Kafka has been an Apache incubator project [KA] since

July 2011. Since then, we have seen more and more

companies outside of LinkedIn adopting Kafka. One of the

most important features that we plan to add in the future is

intra-cluster replication.

VI. CONCLUSIONS

We have described a few of the key building blocks of the

data infrastructure for a modern social web site. Each of these

systems faces related problems around partitioning, routing,

availability, expansion, management, and monitoring.

However, the constraints imposed by the application

requirements, as well as the fundamental difficulties of a

distributed system result in the need to build specialized

systems. To reduce the complexity of these solutions, we are

working on the following two most important areas: (1)

understanding the smallest most general set of infrastructure

that can serve our current and future application needs; (2)

building and leverage key lower-level distributed systems

components such as Avro, Zookeeper or Helix that can be

shared across and ease the development of these systems.

REFERENCES

[Avro] http://avro.apache.org

[Azure] Azure:

http://www.microsoft.com/windowsazure/sqlazure/

[BBJ+11] J. Baker et al., Megastore: Providing Scalable, Highly

Available Storage for Interactive Services, CIDR 2011

[CRS+08] B. Cooper et al., "PNUTS: Yahoo!'s Hosted Data

Serving Platform," VLDB 2008

[DHJ+07] Giuseppe DeCandia, et al. Dynamo: Amazon's Highly

Available Key-Value Store, SOSP 2007.

[FLP+10] Daniel Ford, et al. Availability in Globally Distributed

Storage Systems, SOSP 2010.

[KA] http://incubator.apache.org/kafka

[KNR11] Jay Kreps, Neha Narkhede and Jun Rao. Kafka: A

Distributed Messaging System for Log Processing,

NetDB 2011

[LAM78] Leslie Lamport. Time, clocks, and the ordering of

events in a distributed system. ACM Communications,

21(7), 1978

[OBS99] Michael A. Olson, Keith Bostic, and Margo Seltzer.

Berkeley DB. USENIX 1999

[SMK+01] Ion Stoica, et al. Chord: A scalable peer-to-peer lookup

service for internet applications, SIGCOMM 2001

[WHI09] Tom White. Hadoop: The Definite Guide. O’Reilly

Media. May 2009

[ZC] Efficient data transfer through zero copy:

https://www.ibm.com/developerworks/linux/library/j-

zerocopy/

[Zoo] http://zookeeper.apache.org

13811381

