Conversions

water at normal conditions: 7.48 gal/ft³ 62.4 lb/ft³ 3.785 L/gal 8.34 lb/gal 454 g/lb 2.54 cm/in 1000 L/m^3 **Equations** $y = L_0(1-10^{-k \cdot t})$ $\frac{dD}{dt} = k_1 L - k_2 D$ $G = \sqrt{\frac{P}{\mu \cdot V}}$ $g = 9.81 \text{ m/s}^2$ $Q = \frac{V}{T}$ PFR: $C = C_0 e^{-k \cdot \tau}$ (first order) $OR = Q/A_s$ PFR: $1/C = 1/C_0 + k \cdot \tau$ (second order) $\frac{F}{M} = \frac{lb BOD_5 \text{ fed to the system per day}}{lb MLVSS}$ $L_m Q_m = L_s Q_s + L_w Q_w$ $N/N_0 = e^{-r \cdot t} \qquad \qquad k = A_0 \cdot e^{-\frac{E_a}{R \cdot T}}$ $K_{T} = K_{20} \theta^{(T-20)}$ $\theta = 1.135 (4 < T < 20)$ $\theta = 1.056 (20 < T < 30)$ $X_{(x,y,0)} = \frac{Q}{\pi S S U} \left[\exp \left[-\frac{1}{2} \left(\frac{y}{S} \right)^2 \right] \cdot \exp \left[-\frac{1}{2} \left(\frac{H}{S} \right)^2 \right] \right]$ $Re = \frac{v_t \cdot D \cdot \rho_l}{\prime\prime}$ TS = DS + SS = FDS + VDS + FSS + VSS $\mathbf{v}_{t} = \frac{\mathbf{D}^{2}(\boldsymbol{\rho}_{s} - \boldsymbol{\rho}_{1})\mathbf{g}}{18\,\prime\prime}$ $\frac{dN}{dt} = -kN$ CSTR : $\frac{C}{C_c} = \frac{1}{1 + k \cdot \tau}$ (first order) $\theta_c = \frac{\text{mass MLVSS in system}}{\text{mass MLVSS leaving per day}}$ $E = \frac{\text{volume of solid waste} + \text{volume of cover}}{\text{volume of solid waste}} \qquad V_{LF} = \frac{(\text{mass of waste delivered / time}) \cdot E}{\text{compacted density}}$ $X_r = 10^6 / SVI$ SVI = Settled Sludge Volume/MLSS * 1000 $C_D = \frac{24}{R_P}$ $h_{L} = \frac{1.067 \cdot V_{a}^{2} \cdot D}{\phi \cdot \sigma \cdot \varepsilon^{4}} \sum_{i=1}^{n} \frac{C_{D} \cdot f}{d}$ $C_D = \frac{24}{Re} + \frac{3}{\sqrt{Re}} + 0.34$

 $S = \frac{K_s}{\theta_c \cdot \mu_{max} - 1}$ $X = Y(S_0 - S) \frac{\theta_C}{\Omega}$