Solutions for homework 9

1 Section 5.4 Using the Laplace Transform to solve Differential Equations

7. Use the Laplace transform to solve the first-order initial value problem

$$
y^{\prime}+8 y=e^{-2 t} \sin t, \quad y(0)=0
$$

We compute the Laplace tranform of the LHS using the linearity of the LT, formula (2.2) and the initial condition:

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}+8 y\right)(s) & =\mathcal{L}\left(y^{\prime}+8 y\right)(s)=\mathcal{L}\left(y^{\prime}\right)(s)+8 \mathcal{L}(y)(s)=\underbrace{s \mathcal{L}(y)(s)-y(0)}_{=\mathcal{L}\left(y^{\prime}\right)(s)}+8 \mathcal{L}(y)(s) \\
& =(s+8) \mathcal{L}(y)(s)-\underbrace{y(0)}_{=0}=(s+8) \mathcal{L}(y)(s) .
\end{aligned}
$$

The Laplace transform of the RHS, by Proposition 2.12 or formula 6 in the Table 1 (with $a=-2, b=1$), writes:

$$
\mathcal{L}\left\{e^{-2 t} \sin t\right\}(s)=\frac{1}{(s+2)^{2}+1},
$$

and therefore the initial value problem reduces to the algebraic equation:

$$
(s+8) \mathcal{L}(y)(s)=\frac{1}{(s+2)^{2}+1}
$$

i.e.,

$$
\mathcal{L}(y)(s)=\frac{1}{\left((s+2)^{2}+1\right)(s+8)}
$$

Now we use partial fractions
$\frac{1}{\left((s+2)^{2}+1\right)(s+8)}=\frac{A}{s+8}+\frac{B s+C}{(s+2)^{2}+1}=\frac{A\left[(s+2)^{2}+1\right]+(B s+C)(s+8)}{\left((s+2)^{2}+1\right)(s+8)}$
in order to find coefficients A, B, C such that:

$$
1=A\left[(s+2)^{2}+1\right]+(B s+C)(s+8)
$$

With the substitution method:

$$
s=-8 \Rightarrow A=\frac{1}{37}
$$

and

$$
s=-2+i \Rightarrow 1=(B(-2+i)+C)(6+i)
$$

$$
\begin{aligned}
& =(-2 B+C+i B)(6+i) \\
& =-12 B+6 C-B+i(-2 B+C+6 B) \\
& =-13 B+6 C+i(4 B+C)
\end{aligned}
$$

equivalently

$$
\left\{\begin{array}{r}
-13 B+6 C=1 \\
4 B+C=0
\end{array}, \quad B=-\frac{1}{37}, C=\frac{4}{37} .\right.
$$

So the Laplace transfrom is

$$
\begin{aligned}
\mathcal{L}(y)(s) & =\frac{1}{37(s+8)}+\frac{-s+4}{37\left((s+2)^{2}+1\right)} \\
& =\frac{1}{37} \frac{1}{s+8}+\frac{1}{37} \frac{-(s+2)+6}{(s+2)^{2}+1} \\
& =\frac{1}{37} \frac{1}{s+8}-\frac{1}{37} \frac{s+2}{(s+2)^{2}+1}+\frac{6}{37} \frac{1}{(s+2)^{2}+1}
\end{aligned}
$$

and using again Table 1 for the inverse Laplace transform we obtain:

$$
y(t)=\frac{1}{37} e^{-8 t}-\frac{1}{37} e^{-2 t} \cos t+\frac{6}{37} e^{-2 t} \sin t
$$

11. Use the Laplace transform to solve the second-order initial value problem

$$
y^{\prime \prime}-4 y=e^{-t}, \quad y(0)=-1, y^{\prime}(0)=0
$$

The Laplace transform of LHS, using (2.5) is:

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime \prime}-4 y\right)(s) & =\mathcal{L}\left(y^{\prime \prime}\right)-4 \mathcal{L}(y)(s)=s^{2} \mathcal{L}(y)(s)-s \underbrace{y(0)}_{-1}-\underbrace{y^{\prime}(0)}_{0}-4 \mathcal{L}(y)(s) \\
& =\left(s^{2}-4\right) \mathcal{L}(y)(s)+s
\end{aligned}
$$

The Laplace transform of LHS, using Table 1 is:

$$
\mathcal{L}\left\{e^{-t}\right\}(s)=\frac{1}{s+1}
$$

Therefore
$\mathcal{L}(y)(s)=\frac{1}{(s+1)\left(s^{2}-4\right)}-\frac{s}{s^{2}-4}=\frac{-s^{2}-s+1}{(s+1)(s-2)(s+2)}=\frac{A}{s+1}+\frac{B}{s-2}+\frac{C}{s+2}$.
Using the substitution method:

$$
A(s-2)(s+2)+B(s+1)(s+2)+C(s+1)(s-2)=-s^{2}-s+1
$$

yields

$$
A=-\frac{1}{3}, \quad B=-\frac{5}{12}, \quad C=-\frac{1}{4}
$$

Using Table 1 to get the inverse Laplace transform from

$$
\mathcal{L}(y)(s)=-\frac{1}{3} \frac{1}{s+1}+\frac{1}{12} \frac{1}{s-2}-\frac{1}{4} \frac{1}{s+2}
$$

yields

$$
y(t)=-\frac{1}{3} e^{-t}-\frac{5}{12} e^{2 t}-\frac{1}{4} e^{-2 t}
$$

21. Use the Laplace transform to solve the second-order initial value problem

$$
y^{\prime \prime}-y^{\prime}-2 y=e^{2 t}, \quad y(0)=-1, y^{\prime}(0)=0
$$

The Laplace transform of LHS, using (2.2), (2.5) is:

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime \prime}-y^{\prime}-2 y\right)(s) & =\mathcal{L}\left(y^{\prime \prime}\right)-\mathcal{L}\left(y^{\prime}\right)(s)-2 \mathcal{L}(y)(s) \\
& =s^{2} \mathcal{L}(y)(s)-s \underbrace{y(0)}_{=-1}-\underbrace{y^{\prime}(0)}_{=0}-(s \mathcal{L}(y)(s)-\underbrace{y(0)}_{=-1})-2 \mathcal{L}(y)(s) \\
& =\left(s^{2}-s-2\right) \mathcal{L}(y)(s)+s-1 \\
& =(s+1)(s-2) \mathcal{L}(y)(s)+s-1 .
\end{aligned}
$$

The Laplace transform of LHS, using Table 1 is:

$$
\mathcal{L}\left\{e^{2 t}\right\}(s)=\frac{1}{s-2}
$$

Therefore

$$
\begin{aligned}
\mathcal{L}(y)(s) & =\frac{1}{(s+1)(s-2)^{2}}-\frac{s-1}{(s+1)(s-2)}=\frac{1-(s-1)(s-2)}{(s+1)(s-2)^{2}} \\
& =\frac{-s^{2}+3 s-1}{(s+1)(s-2)^{2}}=\frac{A}{s+1}+\frac{B s+C}{(s-2)^{2}}
\end{aligned}
$$

Using the substitution method:

$$
A(s-2)^{2}+B s(s+1)+C(s+1)=-s^{2}+3 s-1
$$

yields

$$
A=-\frac{5}{9}, \quad B=-\frac{4}{9}, \quad C=\frac{11}{9}
$$

Using Table 1 to get the inverse Laplace transform from

$$
\begin{aligned}
\mathcal{L}(y)(s) & =-\frac{5}{9} \frac{1}{s+1}+\frac{1}{9} \frac{-4 s+11}{(s-2)^{2}}=-\frac{5}{9} \frac{1}{s+1}+\frac{1}{9} \frac{-4(s-2)+3}{(s-2)^{2}} \\
& =-\frac{5}{9} \frac{1}{s+1}-\frac{4}{9} \frac{1}{s-2}+\frac{1}{3} \frac{1}{(s-2)^{2}}
\end{aligned}
$$

yields

$$
y(t)=-\frac{5}{9} e^{-t}-\frac{4}{9} e^{2 t}+\frac{1}{3} t e^{2 t}
$$

2 Section 5.5 Discontinuous Forcing terms

1. Use Proposition 5.6 to find the Laplace transform of

$$
H(t-2)(t-2)
$$

Recall first Proposition 5.6:
If $f(t)$ is piecewise continuos of exponential order, and $F(s)$ is the Laplace transform of f. Then, for $c \geq 0$, the Laplace transform of $H(t-c) f(t-c)$ is given by

$$
\mathcal{L}\{H(t-c) f(t-c)\}(s)=e^{-c s} F(s)
$$

With $f(t)=t, F(s)=\frac{1}{s^{2}}$, and $c=2$, we have

$$
\mathcal{L}\{H(t-2)(t-2)\}(s)=e^{-2 s} \frac{1}{s^{2}}
$$

3. Use Proposition 5.6 to find the Laplace transform of

$$
H\left(t-\frac{\pi}{4}\right) \sin 3\left(t-\frac{\pi}{4}\right)
$$

With $f(t)=\sin 3 t, F(s)=\frac{3}{s^{2}+9}$, and $c=\frac{\pi}{4}$, we have

$$
\mathcal{L}\left\{H\left(t-\frac{\pi}{4}\right) \sin 3\left(t-\frac{\pi}{4}\right)\right\}=e^{-\frac{\pi}{4} s} \frac{3}{s^{2}+9} .
$$

11. Use Heaviside function to redefine the piecewise function

$$
f(t)= \begin{cases}5, & \text { if } 2 \leq t<4 \\ 0, & \text { otherwise }\end{cases}
$$

Then use Proposition 5.6 to find its Laplace transform.
First we use the interval function H_{24} to rewrite $f(t)$ as

$$
f(t)=5 H_{24}(t)
$$

then by formula (5.5) with $a=2, b=4$ we find the Laplace transform

$$
\mathcal{L}\{f(t)\}(s)=\mathcal{L}\left\{5 H_{24}(t)\right\}(s)=5 \frac{e^{-2 s}-e^{-4 s}}{s}
$$

17. Find the inverse Laplace transform of function

$$
G(s)=\frac{e^{-s}}{s-2}
$$

Create a piecewise definition for your solution that doesn't use the Heaviside function.
By Proposition 5.6, with $F(s)=\frac{1}{s-2}, f(t)=e^{2 t}, c=1$, we have

$$
e^{-s} \frac{1}{s-2}=\mathcal{L}\left\{H(t-1) e^{2(t-1)}\right\}(s)
$$

and therefore

$$
\mathcal{L}^{-1}\left\{e^{-s} \frac{1}{s-2}\right\}(t)=H(t-1) e^{2(t-1)}=\left\{\begin{array}{ll}
0, & \text { if } t<1 \\
e^{2(t-1)}, & \text { if } t \geq 1
\end{array} .\right.
$$

3 Section 5.6 The Delta Function

2. Find the unit impulse response to the system

$$
y^{\prime \prime}-4 y^{\prime}+3 y=\delta(t), \quad y(0)=y^{\prime}(0)=0
$$

From Theorem 6.10, we have that

$$
\begin{aligned}
\mathcal{L}\{e(t)\}(s) & =\frac{1}{s^{2}-4 s+3}=\frac{1}{(s-3)(s-1)}=\frac{1}{2}\left(\frac{1}{s-3}-\frac{1}{s-1}\right) \\
& =\frac{1}{2} \frac{1}{s-3}-\frac{1}{2} \frac{1}{s-1}
\end{aligned}
$$

and therefore

$$
e(t)=\frac{1}{2} e^{3 t}-\frac{1}{2} e^{t}
$$

3. Find the unit impulse response to the system

$$
y^{\prime \prime}-4 y^{\prime}-5 y=\delta(t), \quad y(0)=y^{\prime}(0)=0
$$

From Theorem 6.10, we have that

$$
\begin{aligned}
\mathcal{L}\{e(t)\}(s) & =\frac{1}{s^{2}-4 s-5}=\frac{1}{(s-5)(s+1)}=\frac{1}{6}\left(\frac{1}{s-5}-\frac{1}{s+1}\right) \\
& =\frac{1}{6} \frac{1}{s-5}-\frac{1}{6} \frac{1}{s+1}
\end{aligned}
$$

and therefore

$$
e(t)=\frac{1}{6} e^{5 t}-\frac{1}{6} e^{-t}
$$

5. Find the unit impulse response to the system

$$
y^{\prime \prime}-9 y=\delta(t), \quad y(0)=y^{\prime}(0)=0
$$

From Theorem 6.10, we have that

$$
\begin{aligned}
\mathcal{L}\{e(t)\}(s) & =\frac{1}{s^{2}-9}=\frac{1}{(s-3)(s+3)}=\frac{1}{6}\left(\frac{1}{s-3}-\frac{1}{s+3}\right) \\
& =\frac{1}{6} \frac{1}{s-3}-\frac{1}{6} \frac{1}{s+3}
\end{aligned}
$$

and therefore

$$
e(t)=\frac{1}{6} e^{3 t}-\frac{1}{6} e^{-3 t}
$$

7. Find the unit impulse response to the system

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\delta(t), \quad y(0)=y^{\prime}(0)=0
$$

From Theorem 6.10, we have that

$$
\mathcal{L}\{e(t)\}(s)=\frac{1}{s^{2}+2 s+2}=\frac{1}{(s+1)^{2}+1}
$$

and therefore by Table 1

$$
e(t)=e^{-t} \sin t
$$

