Solutions for homework 7

1 Section 4.7 Forced Harmonic Motion

3. Plot the given function on an appropriate time interval. Use the technique of Exercise 2 to superimpose the plot of the envelope of the beats in a different line style and/or color.

$$
\cos 10 t-\cos 11 t
$$

Using the trigonometric identity

$$
\cos a-\cos b=-2 \sin \frac{a+b}{2} \sin \frac{a-b}{2}
$$

for any two given frequencies ω_{1}, ω_{2}, we can write

$$
\cos \omega_{1} t-\cos \omega_{2} t=-\sin \left(\frac{\omega_{1}+\omega_{2}}{2} t\right) \sin \left(\frac{\omega_{1}-\omega_{2}}{2} t\right)
$$

in terms of

$$
\begin{array}{ll}
\text { mean frequency }: & \bar{\omega}:=\frac{\omega_{1}+\omega_{2}}{2}, \\
\text { half difference }: & \delta:=\frac{\omega_{1}-\omega_{2}}{2}
\end{array}
$$

In our case

$$
\cos 10 t-\cos 11 t=-2 \sin \left(\frac{21}{2} t\right) \sin \left(-\frac{1}{2} t\right)=2 \sin \left(\frac{1}{2} t\right) \sin \left(\frac{21}{2} t\right)
$$

11. An inductor ($1 H$) and a capacitor ($0.25 F$) are connected in series with a signal generator that provides an emf $E(t)=12 \cos \omega t$. Assume that the system is started from equilibrium (no initial charge on the capacitor, no initial current) and ignore any damping effects.
(a) Find the current in the system as a function of time. Plot a sample solution assuming that the signal generator provides a driving force at a frequency near the resonant frequency.
(b) Find the current in the system as a function of time, this time assuming that the signal generator provides a driving force at resonant frequency. Plot your solution.
(a) The equation is $E(t)=L I^{\prime}(t)+\frac{1}{C} Q(t)$, so for the current $E^{\prime}(t)=L I^{\prime \prime}(t)+$ $\frac{1}{C} I(t)$, i.e., $I^{\prime \prime}+4 I=-12 \omega \sin \omega t$.
The solution to the homogeneous equation is $I_{h}(t)=a \cos 2 t+b \sin 2 t$.
The particular solution has the form $I_{p}(t)=\alpha \cos \omega t+\beta \sin \omega t$, where

$$
\alpha=0, \quad \beta=\frac{12 \omega}{\omega^{2}-1}
$$

Hence the current is

$$
I_{(a)}(t)=I_{h}(t)+I_{p}(t) \equiv a \cos 2 t+b \sin 2 t+\frac{12 \omega}{\omega^{2}-4} \sin \omega t
$$

With the initial conditions $I(0)=0, I^{\prime}(0)=0$ we get

$$
a=0, \quad b=-\frac{6 \omega^{2}}{\omega^{2}-4}
$$

and therefore

$$
I_{(a)}(t)=-\frac{6 \omega^{2}}{\omega^{2}-4} \sin 2 t+\frac{12 \omega}{\omega^{2}-4} \sin \omega t
$$

(b) With $\omega=2$, the equation writes $I^{\prime \prime}+4 I=-24 \sin 2 t$, hence a particular solution has the form $I_{p}(t)=t(\gamma \cos 2 t+\delta \sin 2 t)$. Standard calculations yield

$$
\delta=0, \quad \gamma=6
$$

so

$$
I_{(b)}(t)=I_{h}(t)+I_{p}(t) \equiv A \cos 2 t+B \sin 2 t+6 t \cos 2 t
$$

The initial conditions $I(0)=0, I^{\prime}(0)=0$ give

$$
A=0, \quad B=-3
$$

hence

$$
I_{(b)}(t)=-3 \sin 2 t+6 t \cos 2 t
$$

13. Place the transfer function in the form

$$
H(i \omega)=\frac{1}{R} e^{-i \phi}
$$

Use this result to find the steady-state solution of the given equation.

$$
x^{\prime \prime}+2 x^{\prime}+2 x=3 \sin 4 t
$$

Recalling the form of the forced harmonic motion equation

$$
x^{\prime \prime}+2 c x^{\prime}+\omega_{0}^{2}=A \cos \omega t
$$

we have

$$
\begin{cases}c=1, & \text { (damping constant) } \\ \omega_{0}=\sqrt{2}, & \text { (natural frequency) } \\ \omega=4, & \text { (forcing frequency) } \\ A=3 . & \text { (forcing amplitude) }\end{cases}
$$

The associated homogeneous equation is

$$
\begin{array}{ll}
x_{h}^{\prime \prime}+2 x_{h}^{\prime}+2 x_{h}=0 & \text { (homogeneous equation) } \\
\lambda^{2}+2 \lambda+2=0 & \text { (characteristic equation) }
\end{array}
$$

with gives the characteristic roots

$$
\lambda_{1,2}=\frac{-2 \pm \sqrt{2^{2}-4 \cdot 2}}{2}=-1 \pm i,
$$

and the general solution to the homogeneous equation

$$
x_{h}(t)=e^{-t}\left(c_{1} \cos t+c_{2} \sin t\right) .
$$

To find a steady (particular) solution to the forced equation

$$
x_{p}^{\prime \prime}+2 x_{p}^{\prime}+2 x_{p}=3 \sin 4 t,
$$

we shall use the method of undetermined coefficients in complex form.
Namely, $x_{p}(t)$ is the imaginary part of $z(t)$:

$$
\begin{equation*}
x_{p}(t):=\operatorname{Im}(z(t)), \tag{1.1}
\end{equation*}
$$

where $z(t)$ is a particular solution to the complexified equation:

$$
\begin{equation*}
z^{\prime \prime}+2 z^{\prime}+2 z=\underbrace{3 e^{i 4 t}}_{=A e^{i \omega t}} \tag{1.2}
\end{equation*}
$$

Therefore (recall the method of undetermined coefficients) we seek $z(t)$ of the form

$$
\begin{equation*}
z(t)=\alpha e^{i 4 t} \tag{1.3}
\end{equation*}
$$

Substituting in (1.2) gives

$$
(\underbrace{16 i^{2} \alpha+2(4 i \alpha)+2 \alpha}_{=\alpha P(i \omega)}) \underbrace{e^{i 4 t}}_{=e^{i \omega t}},=\underbrace{3 e^{i 4 t}}_{=A e^{i \omega t}}
$$

hence

$$
\alpha=\frac{1}{P(i \omega)} A \equiv \frac{1}{-14+8 i} 3, \quad \quad(\text { we have } P(i \omega):=-14+8 i)
$$

and from (1.3)

$$
\begin{equation*}
z(t)=\underbrace{\frac{1}{-14+8 i}}_{H(i \omega):=\frac{1}{P(i \omega)}} 3 e^{i 4 t}, \quad \text { (transfer function } H(i \omega):=\frac{1}{P(i \omega)}) \tag{1.4}
\end{equation*}
$$

Now

$$
\begin{aligned}
& P(i \omega):=R e^{i \phi} \\
& P(i \omega):=-14+8 i \Rightarrow\left\{\begin{array}{l}
R=\sqrt{14^{2}+8^{2}}=\sqrt{260} \\
\phi=\arctan \left(-\frac{4}{7}\right)+\pi
\end{array}\right.
\end{aligned}
$$

Then (1.4) yields

$$
\begin{aligned}
z(t) & =H(i \omega) A e^{i \omega t} \\
& =\frac{1}{R e^{i \phi}} A e^{i \omega t}=\frac{A}{R} e^{-i \phi} e^{i \omega t}=\frac{A}{R} e^{i(\omega t-\phi)} \\
& \equiv \frac{3}{\sqrt{260}} e^{i\left(4 t+\arctan \left(\frac{4}{7}\right)-\pi\right)}
\end{aligned}
$$

and finally from (1.1)

$$
\begin{aligned}
x_{p}(t) & =\operatorname{Im}\left\{\frac{3}{\sqrt{260}} e^{i\left(4 t+\arctan \left(\frac{4}{7}\right)-\pi\right)}\right\} \\
& =\operatorname{Im}\left\{\frac{3}{\sqrt{260}}\left[\cos \left(4 t+\arctan \left(\frac{4}{7}\right)-\pi\right)+i \sin \left(4 t+\arctan \left(\frac{4}{7}\right)-\pi\right)\right]\right\} \\
& =\frac{3}{\sqrt{260}} \sin \left(4 t+\arctan \left(\frac{4}{7}\right)-\pi\right)
\end{aligned}
$$

