Solutions for homework 6

1 Section 4.5 Inhomogeneous equations;

THE METHOD OF UNDETERMINED COEFFICIENTS

15. Use the technique shown in Example 5.17 to find a particular solution for the given differential equation.

$$
y^{\prime \prime}+6 y^{\prime}+8 y=2 t-3
$$

The RHS is a linear polynomial, so we seek

$$
y_{p}(t)=a t+b
$$

Therefore

$$
y_{p}^{\prime}(t)=a, \quad y_{p}^{\prime \prime}(t)=0
$$

and substituting in the equation

$$
0+6 \cdot a+8 \cdot(a t+b)=2 t-3, \quad \forall t
$$

we have

$$
\begin{aligned}
& 8 a=2, \\
& 6 a+8 b=-3 .
\end{aligned}
$$

The particular solution is then

$$
y_{p}(t)=\frac{1}{4} t-\frac{9}{16} .
$$

19. Use the technique of Section 4.3 to find a solution to the associated homogeneous equation; then use the technique of this section to find a particular solution. Use Theorem 5.2 to form a general solution. Then find the solution satisfying the given initial condition.

$$
y^{\prime \prime}-4 y^{\prime}-5 y=4 e^{-2 t}, \quad y(0)=0, \quad y^{\prime}(0)=-1
$$

The homogeneous equation

$$
y_{h}^{\prime \prime}-4 y_{h}^{\prime}-5 y_{h}=0
$$

gives the characteristic polynomial

$$
\lambda^{2}-4 \lambda-5=0
$$

with roots

$$
\lambda_{1}=-1, \quad \lambda_{2}=5
$$

and therefore

$$
y_{h}(t)=C_{1} e^{-t}+C_{2} e^{5 t} .
$$

To find a particular solution, we seek

$$
y_{p}(t)=a e^{-2 t}
$$

therefore

$$
y_{p}^{\prime}(t)=-2 a e^{-2 t}, \quad y_{p}^{\prime \prime}(t)=4 a e^{-2 t}
$$

and substituting in the equation

$$
(1 \cdot 4 a-4 \cdot(-2 a)-5 \cdot a)=4 e^{-2 t}
$$

Then

$$
y_{p}(t)=\frac{4}{7} e^{-2 t},
$$

and the general solution is

$$
y(t)=y_{h}(t)+y_{p}(t) \equiv C_{1} e^{-t}+C_{2} e^{5 t}+\frac{4}{7} e^{-2 t}
$$

Using the first initial condition

$$
y(0)=0
$$

gives

$$
C_{1}+C_{2}=-\frac{4}{7}
$$

For the second initial condition, we need the derivative of the solution

$$
y^{\prime}(t)=-C_{1} e^{-t}+5 C_{2} e^{5 t}-\frac{8}{7} e^{-2 t}
$$

therefore

$$
-C_{1}+5 C_{2}-\frac{8}{7}=-1, \quad-C_{1}+5 C_{2}=\frac{1}{7}
$$

Finally,

$$
C_{1}=-\frac{1}{2}, \quad C_{2}=-\frac{1}{14},
$$

and the solution to the IVP is

$$
y(t)=y_{h}(t)+y_{p}(t) \equiv-\frac{1}{2} e^{-t}-\frac{1}{14} e^{5 t}+\frac{4}{7} e^{-2 t} .
$$

2 Section 4.6 Variation of parameters

Find a particular solution to the given second-order differential equation.
1.

$$
y^{\prime \prime}+9 y=\tan 3 t
$$

We will use the method of variation of parameters. To find the fundamental set of solutions, we use the characteristic equation $\lambda^{2}+9=0$ to get

$$
y_{1}(t)=\cos 3 t, \quad y_{2}(t)=\sin 3 t
$$

and note that the Wronskian (the determinant of the linear system in $v_{1}^{\prime}, v_{2}^{\prime}$ is)

$$
W(t)=\left|\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right| \equiv\left|\begin{array}{rr}
\cos 3 t & 3 \sin 3 t \\
-\sin 3 t & 3 \cos 3 t
\end{array}\right|=3 .
$$

Now we look for a particular solution

$$
y_{p}(t)=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)
$$

where $v_{1}(t), v_{2}(t)$ are to be determined.
The system in $v_{1}^{\prime}, v_{2}^{\prime}$ is

$$
\left\{\begin{array}{lll}
v_{1}^{\prime} y_{1} & +v_{2}^{\prime} y_{2} & =0 \\
v_{1}^{\prime} y_{1}^{\prime} & +v_{2}^{\prime} y_{2}^{\prime} & =g(t)
\end{array}\right.
$$

i.e., in this case

$$
\begin{cases}v_{1}^{\prime} \cos 3 t & +v_{2}^{\prime} \sin 3 t= \\ v_{1}^{\prime}(-3 \sin 3 t) & -v_{2}^{\prime}(3 \cos 3 t)=\end{cases}
$$

and has the solution

$$
\begin{aligned}
& v_{1}^{\prime}(t)=\frac{\left|\begin{array}{cc}
0 & y_{2}(t) \\
g(t) & y_{2}^{\prime}(t)
\end{array}\right|}{W(t)}=\frac{-g y_{2}}{W} \equiv \frac{\tan 3 t \sin 3 t}{3}=-\frac{1}{3}(\sec 3 t-\cos 3 t) \\
& v_{2}^{\prime}(t)=\frac{\left|\begin{array}{cc}
y_{1}(t) & 0 \\
y_{1}^{\prime}(t) & g(t)
\end{array}\right|}{W(t)}=\frac{y_{1} g}{W}=\frac{\cos 3 t \tan 3 t}{3}=\frac{1}{3} \sin 3 t .
\end{aligned}
$$

Integrating, we get

$$
v_{1}(t)=-\frac{1}{9} \ln |\sec 3 t+\tan 3 t|+\frac{1}{9} \sin 3 t, \quad v_{2}(t)=-\frac{1}{9} \cos 3 t
$$

and the particular solution

$$
y_{p}(t)=-\frac{1}{9} \cos 3 t \ln |\sec 3 t+\tan 3 t|
$$

3.

$$
y^{\prime \prime}-y=t+3
$$

We will use the method of variation of parameters. To find the fundamental set of solutions, we use the characteristic equation $\lambda^{2}-1=0$ to get

$$
y_{1}(t)=e^{t}, \quad y_{2}(t)=e^{-t}
$$

and note that the Wronskian (the determinant of the linear system in $v_{1}^{\prime}, v_{2}^{\prime}$ is)

$$
W(t)=\left|\begin{array}{cc}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right| \equiv\left|\begin{array}{cc}
e^{t} & e^{-t} \\
e^{t} & -e^{-t}
\end{array}\right|=-2
$$

Now we look for a particular solution

$$
y_{p}(t)=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)
$$

where $v_{1}(t), v_{2}(t)$ are to be determined.
The system in $v_{1}^{\prime}, v_{2}^{\prime}$ is

$$
\left\{\begin{array}{lll}
v_{1}^{\prime} y_{1} & +v_{2}^{\prime} y_{2} & =0 \\
v_{1}^{\prime} y_{1}^{\prime} & +v_{2}^{\prime} y_{2}^{\prime} & =g(t)
\end{array}\right.
$$

i.e., in this case

$$
\left\{\begin{array}{l}
v_{1}^{\prime} e^{t}+v_{2}^{\prime} e^{-t}=0 \\
v_{1}^{\prime} e^{t}-v_{2}^{\prime} e^{-t}=t+3
\end{array}\right.
$$

and has the solution

$$
\begin{aligned}
& v_{1}^{\prime}(t)=\frac{\left|\begin{array}{cc}
0 & y_{2}(t) \\
g(t) & y_{2}^{\prime}(t)
\end{array}\right|}{W(t)}=\frac{-g y_{2}}{W} \equiv \frac{-(t+3) e^{-t}}{-2}=\frac{(t+3) e^{-t}}{2} \\
& v_{2}^{\prime}(t)=\frac{\left|\begin{array}{cc}
y_{1}(t) & 0 \\
y_{1}^{\prime}(t) & g(t)
\end{array}\right|}{W(t)}=\frac{y_{1} g}{W}=\frac{(t+3) e^{t}}{-2}=-\frac{(t+3) e^{t}}{2}
\end{aligned}
$$

Integrating, we get

$$
\begin{aligned}
& v_{1}(t)=-\frac{1}{2} e^{-t}(t+3)-\frac{1}{2} e^{-t}=-\frac{1}{2} e^{-t}(t+4) \\
& v_{2}(t)=-\frac{1}{2} e^{t}(t+3)=-\frac{1}{2} e^{t}(t+2)
\end{aligned}
$$

Finally,

$$
y_{p}(t)=-(t+3) .
$$

5.

$$
y^{\prime \prime}-2 y^{\prime}+y=e^{t}
$$

The homogeneous equation

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

has the set of fundamental solutions $\left(\lambda^{2}-2 \lambda+1=0\right)$

$$
y_{1}(t)=e^{t}, \quad y_{2}(t)=t e^{t}
$$

which are linearly independent

$$
W(t)=\left|\begin{array}{cc}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right| \equiv\left|\begin{array}{cc}
e^{t} & t e^{t} \\
e^{t} & (t+1) e^{t}
\end{array}\right|=e^{2 t} \neq 0
$$

The particular solution is then

$$
y_{p}(t)=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)
$$

where $v_{1}(t), v_{2}(t)$ are to be determined.
The system in $v_{1}^{\prime}, v_{2}^{\prime}$ is

$$
\left\{\begin{array}{lll}
v_{1}^{\prime} y_{1} & +v_{2}^{\prime} y_{2} & =0 \\
v_{1}^{\prime} y_{1}^{\prime} & +v_{2}^{\prime} y_{2}^{\prime} & =g(t)
\end{array}\right.
$$

i.e., in this case

$$
\left\{\begin{array}{l}
v_{1}^{\prime} e^{t}+v_{2}^{\prime} t e^{t}=0 \\
v_{1}^{\prime} e^{t}+v_{2}^{\prime}(t+1) e^{t}=e^{t}
\end{array}\right.
$$

and has the solution

$$
\begin{aligned}
& v_{1}^{\prime}(t)=\frac{\left|\begin{array}{cc}
0 & y_{2}(t) \\
g(t) & y_{2}^{\prime}(t)
\end{array}\right|}{W(t)}=\frac{-g y_{2}}{W} \equiv \frac{-e^{t} t e^{t}}{e^{2 t}}=-t, \\
& v_{2}^{\prime}(t)=\frac{\left|\begin{array}{cc}
y_{1}(t) & 0 \\
y_{1}^{\prime}(t) & g(t)
\end{array}\right|}{W(t)}=\frac{y_{1} g}{W}=\frac{e^{t} e^{t}}{e^{2 t}}=1 .
\end{aligned}
$$

Integrating, we get

$$
\begin{aligned}
& v_{1}(t)=-\frac{1}{2} t^{2}, \\
& v_{2}(t)=t .
\end{aligned}
$$

Finally,

$$
y_{p}(t)=-\frac{1}{2} t^{2} e^{t}+t t e^{t}=\frac{1}{2} t^{2} e^{t}
$$

