
Solutions for homework 5

1 Section 4.3 Linear Homogeneous Equations
with Constant Coefficients

1. The following equation has distinct, real, characteristic roots. Find the
general solution.

y′′ − y′ − 2y = 0.

The characteristic equation is

λ2 − λ− 2 = 0,

with distinct real roots λ1 = −1, λ2 = 2. The solutions y1(t) = e−t and y2(t) =
e2t form a fundamental set of solutions and the general solution is

y(t) = C1e
−t + C2e

2t.

9. The following equation has complex characteristic roots. Find the general
solution.

y′′ + y = 0.

The characteristic equation is

λ2 + 1 = 0,

with complex roots λ1 = −i, λ2 = i. They form a fundamental set of solutions,
but the real solutions are y1(t) = e0×t cos t = cos t, y2(t) = e0×t sin t = sin t and
the general solution is

y(t) = C1 cos t+ C2 sin t.
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17. The following equation has repeated, real, characteristic roots. Find the
general solution.

y′′ − 4y′ + 4y = 0.

The characteristic equation is

λ2 − 4λ+ 4 = 0

which has a double root λ = 2. Therefore y1(t) = e2t and y2t = te2t form a
fundamental set of real solutions, and the general solution is

y(t) = C1e
2t + C2te

2t = (C1 + C2t)e
2t.

35. Find the solution of the initial value problem

y′′ + 12y′ + 36y = 0, y(1) = 0, y′(1) = −1.

The characteristic equation is

λ2 + 12λ+ 36 = 0

with double root λ = −6. This leads to the fundamental set of solutions y1(t) =
e−6t and y2(t) = te−6t, and the general solution

y(t) = (C1 + tC2)e−6t. (1.1)

Using the initial condition
y(1) = 0

implies C1 = −C2.
Differentiating the general solution (1.1) we have

y′(t) = C2e
−6t + (C1 + tC2)(−6e−6t) = (C2 − 6C1 − 6tC2)e−6t,

which by C1 = −C2 yields

y′(t) = (C2 + 6C2 − 6tC2)e−6t = C2(7− 6t)e−6t.

Using the initial condition on y′, i.e., y′(1) = −1, we get

C2(7− 6)e−6 = −1,

and C2 = −e6, C1 = e6. Then the solution to the IVP is

y(t) = (e6 − te6)e−6t = (1− t)e6(1−t).
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2 Section 4.4 Harmonic Motion

1. In this exercise

(i) use a computer or calculator to plot the graph of the given function, and

(ii) place the solution in the form y = A cos(ωt− φ) and compare the graph of
your answer with the plot found in part (i).

y = cos 2t+ sin 2t.

(i)
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(ii) Let rewrite the function (solution) y(t) in the form

y(t) = a · cosωt+ b · sinωt ≡ 1 · cos 2t+ 1 · sin 2t

yields (a = 1, b = 1, ω = 2), hence the magnitude A is

A :=
√
a2 + b2 =

√
12 + 12 =

√
2

and the polar angle

φ := arctan( ba ) = arctan 1 =
π

4
.

By factoring out the magnitude and using the trigonometric identity

cos(u− v) = cosu cos v + sinu sin v,

we obtain

y(t) =
√

2
(√2

2
· cos 2t+

√
2

2
· sin 2t

)
=
√

2
(

cosφ · cos 2t+ sinφ · sin 2t
)

=
√

2 cos(2t− φ) =
√

2 cos(2t− π

4
) =
√

2 cos 2(t− π

8
).

Therefore the solution has amplitude
√

2, period T = π, and is shifted to the
right by π

8 , as seen in the figure.
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7. Place the equation in the form

y = Ae−ct cos t(ωt− φ).

Then, on the plot, place the graphs of

y = Ae−ct cos(ωt− φ),

y = Ae−ct, and

y = −Ae−ct.

For the last two, use a different line style and/or color than for the first.

y = e−t/2(cos 5t+ sin 5t).

Again, plot the coefficients (a, b) of

1︸︷︷︸
=a

· cos 5︸︷︷︸
=ω

t+ 1︸︷︷︸
=b

· sin 5t

in the first quadrant and obtain magnitude

A =
√

2

and the polar angle

φ =
π

4
.

Factoring out the amplitude, we proceed as above

y(t) =
√

2e−t/2
(√2

2
· cos 5t+

√
2

2
· sin 5t

)
=
√

2e−t/2
(

cosφ · cos 5t+ sinφ · sin 5t
)

=
√

2e−t/2 cos(5t− φ) =
√

2e−t/2 cos(5t− π

4
)

and the amplitude is
√

2e−t/2.
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11. A 0.2-kg mass is attached to a spring having a spring constant 5kg/s2.
The system is displaced 0.5 m from its equilibrium position and released from
rest. If there is no damping present, find the amplitude, frequency, and the
phase of the resulting motion. Plot the solution.

We are given the mass m, spring constant k, the damping constant µ and
external force f(·):

m = 0.2, k = 5, µ = 0, f ≡ 0,

therefore the vibrating spring equation

mx′′ + µx′ + kx = f(t),

is in this case
0.2x′′ + 5x = 0,
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equivalently
x′′ + 25x = 0.

Hence the general solution is

x(t) = a cosω0t+ b sinω0t,

where the natural frequency
ω0 = 5.

To find the particular solution, we have to identify a, b using the given initial
conditions:

x(0) = .5,

x′(0) = 0 (the spring is released from rest).

This gives

x(0) = .5 ⇒ a = .5,

x′(0) = 0 ⇒ bω0 = 0, so b = 0,

and finally, the amplitude is

A :=
√
a2 + b2 = .5,

while the phase of the oscillation is

φ = 0,

the solution being
x(t) = 0.5 cos 5t.
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12. A 0.1-kg mass is attached to a spring having a spring constant 3.6 kg/s2.
The system is allowed to come to rest. Then the mass is given a sharp tap,
imparting an instantaneous downward velocity of 0.4 m/s. If there is no damping
present, find the amplitude, frequency, and phase of the resulting motion. Plot
the solution.

The spring’s equation is
x′′ + 36x = 0

with the solution
x(t) = a cos 6t+ b sin 6t,

hence the natural frequency is

ω0 = 6.

The initial conditions are
x(0) = 0,

x′(0) = 0.4,

hence

a = 0, b =
2

30
,

and the amplitude

A =
2

30
,

the solution

x(t) =
2

30
sin 6t =

2

30
cos
(
6t− π

2

)
,

and the phase

φ =
π

2
.
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3 Section 4.5 Inhomogeneous equations;
the method of undetermined coefficients

1. Use the technique demonstrated in Example 5.6 to find a particular solution
for the given differential equation.

y′′ + 3y′ + 2y = 4e−3t.

The forcing term is f = 4e−3t, hence we look for a particular solution

yp(t) = ae−3t,

where a is the undetermined coefficient. Consequently

y′p(t) = −3ae−3t, y′′p (t) = 9ae−3t,

and inserting these into the LHS of the equation, we obtain(
9a+ 3 · (−3a) + 2 · a

)
e−3t = 4e−3t,

and therefore
a = 2 ⇒ yp(t) = 2e−3t.

5. Use the form yp = a cosωt + b sinωt, as in Example 5.8, to help find a
particular solution for the given differential equation.

y′′ + 4y = cos 3t.

We seek a particular solution of the form of the RHS of the equation, namely

yp(t) = a cos 3t+ b sin 3t.

Then

y′p(t) = −3a sin 3t+ 3b cos 3t, y′′p (t) = −9a cos 3t− 9b sin 3t.

Substituting into the LHS of the equation we obtain

−9a cos 3t− 9b sin 3t+ 4 · (a cos 3t+ b sin 3t) = cos 3t,

and therefore
−9a+ 4a = 1
−9b+ 4b = 0.

Therefore

a = −1

5
, b = 0,
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and the solution

yp(t) = −1

5
cos 3t.

11. Use the complex method, as in Example 5.12, to find a particular solution
for the differential equation.

y′′ + 9y = sin 2t.

y(t) is the imaginary part of the function z(t) that is the solution to the equation

z′′ + 9z = ei2t,

which has a particular solution of the form

zp(t) = ae2it.

This yields
z′p(t) = 2iae2it, z′′p (t) = −4ae2it,

and therefore
(−4a+ 9 · a)e2it = e2it,

hence

a =
1

5
⇒ zp(t) =

1

5
e2it =

1

5
cos 2t+ i

1

5
sin 2t,

and finally, its imaginary part is our solution

yp(t) =
1

5
sin 2t.
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