Solutions for homework 3

2.2. Solutions to Separable Equations

In Exercises 1-12, find the general solution of the indicated differential equation. If possible, find an explicit solution.
3. $y^{\prime}=e^{x-y}$.

The independent variable is x and y is the unknown function.
Using $e^{x-y}=\frac{e^{x}}{e^{y}}$, we separate the variables and integrate:

$$
\begin{gathered}
\frac{d y}{d x}=e^{x-y} \\
e^{y} d y=e^{x} d x, \quad \int e^{y} d y=\int e^{x} d x \\
e^{y}=e^{x}+C
\end{gathered}
$$

Finally, to find y, we take the natural \log of both sides and obtain the general solution

$$
y(x)=\ln \left(e^{x}+C\right)
$$

5. $y^{\prime}=x y+y$.

As above, y is the unknown function and the independent variable is x. To separate the variables, we factor out y

$$
\begin{gathered}
\frac{d y}{d x}=y(x+1) \\
\frac{1}{y} d y=(x+1) d x
\end{gathered}
$$

and integrate

$$
\begin{aligned}
& \int \frac{1}{y} d y=\int(x+1) d x \\
& \ln |y|=\frac{1}{2} x^{2}+x+C
\end{aligned}
$$

To solve for y, we take the natural \log of both sides

$$
|y|=e^{\frac{1}{2} x^{2}+x+C}
$$

Using the definition of absolute value and $e^{a+b}=e^{a} e^{b}$

$$
y(x)= \pm e^{C} e^{\frac{1}{2} x^{2}+x}
$$

Defining the constant $D= \pm e^{C}$, allowed to take both positive and negative values, we can write the general solution as

$$
y=D e^{\frac{1}{2} x^{2}+x}
$$

9. $x y^{\prime}=y \ln y-y^{\prime}$

The unknown function is y and the independent variable is x. First we need a little algebra, and start by regrouping the terms containing y^{\prime} :

$$
\begin{aligned}
& x^{2} y^{\prime}=y \ln y-y^{\prime} \\
& \left(x^{2}+1\right) y^{\prime}=y \ln y
\end{aligned}
$$

Now separate the variables

$$
\frac{1}{y \ln y} d y=\frac{1}{x^{2}+1} d x
$$

Let rewrite this as

$$
\begin{equation*}
\underbrace{\frac{1}{\ln y}}_{=\frac{1}{u}} \underbrace{\frac{1}{y} d y}_{=d u}=\frac{1}{x^{2}+1} d x \tag{0.1}
\end{equation*}
$$

Remark that with the change of variables

$$
\begin{equation*}
u=\ln y \tag{0.2}
\end{equation*}
$$

we have

$$
d u=\frac{1}{y} d y
$$

and equation (0.1) writes

$$
\frac{1}{u} d u=\frac{1}{x^{2}+1} d x
$$

Now integrate

$$
\int \frac{1}{u} d u=\int \frac{1}{x^{2}+1} d x
$$

to obtain

$$
\ln |u|=\tan ^{-1} x+C
$$

Solve for u :

$$
|u(x)|=e^{\tan ^{-1} x+C}
$$

use the definition of absolute value

$$
u(x)=\underbrace{ \pm e^{C}}_{:=D} e^{\tan ^{-1} x}
$$

define a new constant

$$
D:= \pm e^{C}
$$

replace u with $\ln y$ (see (0.2)), and solve for y :

$$
\ln y(x)=D e^{\tan ^{-1} x}
$$

$$
y(x)=e^{D \tan ^{-1} x}
$$

33. A murder victim is discovered at midnight and the temperature of the body is recorded at $31^{\circ} \mathrm{C}$. One hour later, the temperature of the body is $29^{\circ} \mathrm{C}$. Assume that the surrounding air temperature remains constant at $21^{\circ} \mathrm{C}$. Use Newton's law of cooling to calculate the victim's time of death.
Note: the "normal" temperature of a living human being is approximately $37^{\circ} \mathrm{C}$.
Let $T(t)$ denote the temperature of the body, and $t=0$ correspond to midnight. Thus $T(0) \equiv$ $T_{0}=31^{\circ} C$.

Because the temperature of the surrounding medium is $A=21^{\circ} C$, we can use Newton's law of cooling in the form

$$
T(t)=A+\left(T_{0}-A\right) e^{-k t}
$$

and write

$$
T(t)=21+(31-21) e^{-k t}=21+10 e^{-k t}
$$

At $t=1, T=29^{\circ} C$, which can be used to calculate k. From the relation above we get

$$
29=21+10 e^{-k \cdot 1}
$$

which yields

$$
\begin{gathered}
k=-\ln (0.8) \\
k \approx 0.2231
\end{gathered}
$$

Thus the victim's body temperature has the following formula

$$
T(t)=21+10 e^{-0.2231 \cdot t}
$$

To find the time of death, enter "normal" body temperature,

$$
T\left(t_{\text {death }}\right)=37^{\circ} C
$$

in the expression above and solve for $t_{\text {death }}$. Namely,

$$
\begin{gathered}
37=21+10 e^{-0.2231 \cdot t_{\text {death }}} \\
t_{\text {death }}=\frac{\ln (1.6)}{-0.2231} \\
t_{\text {death }} \approx-2.1067 \mathrm{hrs}
\end{gathered}
$$

Thus, the murder occurred at approximately 9 : 54 PM .

2.3. Models of Motion

9. A ball having mass $m=0.1 \mathrm{~kg}$ falls from rest under the influence of gravity in a medium that provides a resistance that is proportional to its velocity. For a velocity of $0.2 \mathrm{~m} / \mathrm{s}$, the force due to the resistance of the medium is $-1 N$. [One Newton $[N]$ is the force required to accelerate a 1 kg mass at a rate of $1 \mathrm{~m} / \mathrm{s}^{2}$. Hence, $1 N=1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$.] Find the terminal velocity of the ball.

The resistance form has opposite sign to that of the velocity and has the form

$$
R(v)=-r v
$$

where r is a positive constant. To find r

$$
r=-\frac{R(v)}{v}\left[\frac{\mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}}{\mathrm{~m} / \mathrm{s}}\right]
$$

take

$$
v=0.2[m / s], \quad R(v)=-1[N],
$$

and so

$$
r=-\frac{-1}{0.2}=\frac{1}{0.2}=5[\mathrm{~kg} / \mathrm{s}] .
$$

The terminal velocity

$$
v_{\text {terminal }}=-\frac{\mathrm{mg}}{\mathrm{r}}\left[\frac{\mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}}{\mathrm{~kg} / \mathrm{s}}\right]
$$

(the gravitational constant $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$) is then

$$
v_{\text {term }}=-\frac{0.1 \cdot 9.8}{5}=-0.196[\mathrm{~m} / \mathrm{s}]
$$

2.4. First Order Linear Equations

5. Find the general solution of the first-order, linear equation.

$$
\begin{equation*}
x^{\prime}-\frac{2 x}{t+1}=(t+1)^{2} \tag{0.3}
\end{equation*}
$$

Rewrite the equation in the form

$$
x^{\prime}=a(t) x+f(t)
$$

by taking

$$
a(t)=\frac{2}{t+1}, \quad f(t)=(t+1)^{2}
$$

i.e.,

$$
x^{\prime}=\underbrace{\frac{2}{t+1}}_{=a(t)} x+(t+1)^{2}
$$

Therefore the integrating factor is

$$
u(t):=e^{-\int a(t) d t} \equiv e^{-\int \frac{2}{t+1} d t}=e^{-2 \ln |t+1|}=\frac{1}{e^{\ln \left(|t+1|^{2}\right)}}=\frac{1}{(t+1)^{2}}
$$

Multiply both sides of equation (0.3), or equivalently

$$
x^{\prime}=a(t) x+f(t)
$$

by the integrating factor to obtain

$$
(u x)^{\prime}=u f
$$

namely

$$
\left(\frac{1}{(t+1)^{2}} x\right)^{\prime}=1
$$

Finally we integrate

$$
\frac{1}{(t+1)^{2}} x=t+C
$$

and solve for $x(t)$:

$$
x(t)=(t+1)^{2}(t+C)
$$

15. Find the solution of the initial value problem

$$
\left(x^{2}+1\right) y^{\prime}+3 x y=6 x, \quad y(0)=-1
$$

In order to put the equation in the form

$$
y^{\prime}=a(x) y+f(x)
$$

we write it as

$$
\begin{equation*}
y^{\prime}=-\frac{3 x}{x^{2}+1} y+\frac{6 x}{x^{2}+1} \tag{0.4}
\end{equation*}
$$

$$
a(x)=-\frac{3 x}{x^{2}+1}
$$

The integrating factor is then

$$
u(x):=e^{-\int a(x) d x} \equiv e^{\int \frac{3 x}{x^{2}+1} d x}=e^{\frac{3}{2} \int \frac{2 x}{x^{2}+1} d x}=e^{\frac{3}{2} \ln \left(x^{2}+1\right)}=\left(x^{2}+1\right)^{\frac{3}{2}}
$$

Multiply (0.4) by the integrating factor:

$$
\begin{aligned}
\left(x^{2}+1\right)^{\frac{3}{2}} y^{\prime} & =-3 x\left(x^{2}+1\right)^{\frac{1}{2}} y+6 x\left(x^{2}+1\right)^{\frac{1}{2}} \\
\left(x^{2}+1\right)^{\frac{3}{2}} y^{\prime}+3 x\left(x^{2}+1\right)^{\frac{1}{2}} y & =6 x\left(x^{2}+1\right)^{\frac{1}{2}} \\
\left(\left(x^{2}+1\right)^{\frac{3}{2}} y\right)^{\prime} & =6 x\left(x^{2}+1\right)^{\frac{1}{2}}
\end{aligned}
$$

Now we integrate

$$
\left(x^{2}+1\right)^{\frac{3}{2}} y=2\left(x^{2}+1\right)^{\frac{3}{2}}+C
$$

and solve for y

$$
y(x)=2+C\left(x^{2}+1\right)^{-\frac{3}{2}}
$$

Finally, using the initial condition

$$
y(0)=-1
$$

gives

$$
-1=2+C, \quad C=-3
$$

hence the solution to the IVP is

$$
y(x)=2-3\left(x^{2}+1\right)^{-\frac{3}{2}}
$$

19. Find the solution of the initial value problem

$$
(2 x+3) y^{\prime}=y+(2 x+3)^{\frac{1}{2}}, \quad y(-1)=0
$$

Discuss the interval of existence and provide a sketch of your solution.
From the beginning, notice that the square root function is defined for

$$
x \in\left[-\frac{3}{2}, \infty\right)
$$

Rewrite the linear equation

$$
y^{\prime}=\frac{1}{2 x+3} y+(2 x+3)^{-\frac{1}{2}}, \quad \forall x \in I:=\left(-\frac{3}{2}, \infty\right)
$$

so

$$
y^{\prime}=a(x) y+f(x)
$$

where

$$
a(x)=\frac{1}{2 x+3}, \quad f(x)=(2 x+3)^{-\frac{1}{2}}
$$

The integrating factor is

$$
u(x)=e^{-\int \frac{1}{2 x+3} d x}=e^{-\frac{1}{2} \ln |2 x+3|}=|2 x+3|^{-\frac{1}{2}}
$$

Fig. 0.1: The solution to problem 19, plotted using dfield and Matlab

Multiply both sides of the equation

$$
y^{\prime}=\frac{1}{2 x+3} y+(2 x+3)^{-\frac{1}{2}}
$$

by the integrating factor to obtain

$$
\begin{aligned}
|2 x+3|^{-\frac{1}{2}} y^{\prime} & =|2 x+3|^{-\frac{1}{2}} \frac{1}{2 x+3} y+|2 x+3|^{-\frac{1}{2}}(2 x+3)^{-\frac{1}{2}}, \\
|2 x+3|^{-\frac{1}{2}} y^{\prime}-|2 x+3|^{-\frac{3}{2}} y & =|2 x+3|^{-1} \\
\left(|2 x+3|^{-\frac{1}{2}} y\right)^{\prime} & =|2 x+3|^{-1},
\end{aligned}
$$

which we integrate

$$
|2 x+3|^{-\frac{1}{2}} y=\frac{1}{2} \ln |2 x+3|+C
$$

and solve for the general solution $y(x)$:

$$
y(x)=\frac{1}{2}|2 x+3|^{\frac{1}{2}} \ln |2 x+3|+C|2 x+3|^{\frac{1}{2}}, \quad \forall x \in\left(-\frac{3}{2}, \infty\right)
$$

Using the initial condition $\left(-1 \in\left(-\frac{3}{2}, \infty\right)\right)$

$$
y(-1)=0
$$

yields

$$
0=C,
$$

and therefore the solution is (see the graph in Figure 0.1)

$$
y(x)=\frac{1}{2}|2 x+3|^{\frac{1}{2}} \ln |2 x+3|, \quad \forall x \in\left(-\frac{3}{2}, \infty\right)
$$

