Package ‘CBM’

March 7, 2017

Type Package

Title Cross-platform Bayesian model of RNA-seq and microarray

Version 2.0

Date 2017-02-04

Author Tianzhou Ma, Fang Zhou

Maintainer Tianzhou Ma <tianzhou.ma0105@gmail.com>

Description This package performs a joint Bayesian modeling for integrating microarray and RNA-seq transcriptomic data.

License GPL (>= 2)

Imports Rcpp (>= 0.12.9), RcppArmadillo, RcppGSL, BH, BayesLogit, snowfall, cvTools

LinkingTo Rcpp, RcppArmadillo, RcppGSL, BH, BayesLogit

RoxygenNote 6.0.1

R topics documented:

GetBayesianQ ... 1
NormDiff ... 2
parMCMC ... 4
RealSubset ... 5
RunMCMC ... 5
SimData ... 6

Index

GetBayesianQ Function to get the bayesian q-value

Description

Function to get the bayesian q-value The GetBayesianQ is a function to get the bayesian q-value.

Usage

GetBayesianQ(Delta, G, K, burnin)
Arguments

Delta is a matrix outputted from the MCMC
G is the number of matched genes
K is the number of studies
burnin is the number of iterations in burnin period (i.e. those chains you wish to discard)

Value

a vector of length G of Bayesian q-values

Examples

```r
## Not run:
delta &lt; MCMC.out[["Delta"]]
q_real &lt; GetBayesianQ(Delta = delta,G=G,K=K,burnin=3000)

## End(Not run)
```

NormDiff

Function to calculate the normalization factors

Description

Function to calculate the normalization factors

Usage

```r
NormDiff(test.es, ref.es, cutoff)
```

Arguments

- **test.es**: is a matrix of logFC from the test data (i.e. other than the reference data)
- **ref.es**: is a vector of logFC from the reference data
- **cutoff**: is a logFC threshold to select the gene set for calculating the normalization factors

Value

a vector of length K-1 of normalization factors for the test data, the normalization factor for the reference data is just zero.
Examples

```r
## Not run:
data(RealSubset)
G <- nrow(Data.list[[1]])
K <- 4
index_seq <- 1
index_array <- 2:4
count <- Data.list[index_seq]
intensity <- Data.list[index_array]
X_seq <- X.list[index_seq]
X_array <- X.list[index_array]
es_seq = function (x, lib, k) {
  x = array(x)
  v1 = log((x[which(X_seq[[k]] == 1)])/(lib[which(X_seq[[k]] == 1)]))
  v2 = log((x[which(X_seq[[k]] == 0)])/(lib[which(X_seq[[k]] == 0)]))
  u = mean(v1) - mean(v2)
  return(u)
}

betaNobs = matrix(, nrow=G, ncol=length(index_seq))
for (k in 1:length(index_seq)){
  lib = colSums(count[[k]])
  for (i in 1:G){
    betaNobs[i,k] = es_seq(x=count[[k]][i,], lib=lib, k=k)
  }
}

es_array = function (x, k) {
  x = as.numeric(x)
  v1 = x[which(X_array[[k]] == 1)]
  v2 = x[which(X_array[[k]] == 0)]
  u = mean(v1) - mean(v2)
  return(u)
}

bNobs = matrix(, nrow=G, ncol=length(index_array))
for (k in 1:length(index_array)){
  for (i in 1:G){
    bNobs[i,k] = es_array(x=intensity[[k]][i,], k=k)
  }
}

es.obs <- cbind(betaNobs, bNobs)
rownames(es.obs) <- rownames(Data.list[[1]])
up.index <- which(es.obs[,1] > 0 & es.obs[,2] > 0 & es.obs[,3] > 0 &
  es.obs[,4] > 0)
down.index <- which(es.obs[,1] < 0 & es.obs[,2] < 0 & es.obs[,3] < 0 &
  es.obs[,4] < 0)
test.es <- abs(es.obs[up.index,down.index], 2:4])
ref.es <- abs(es.obs[up.index,down.index], 1]
cutoff <- 0.2
norm.factor <- NormDiff(test.es = test.es, ref.es = ref.es, cutoff = cutoff)

## Further make into a matrix to input into MCMC
norm.mat <- matrix(0, nrow=G, ncol=K)
```
Function to run parallel MCMC chain. The `parmcmc` is a function to run the MCMC chain.

Usage

```r
parmcmc(Data.list, X.list, norm.mat, index.seq, index.array, iteration, chunks, seed = 15213)
```

Arguments

- **Data.list**
 is a list of K elements, where K is the number of studies, each element is a microarray or RNAseq expression matrix with G rows and N columns, where G is number of matched genes and N is the sample size.

- **X.list**
 is a list of K elements, each element includes is a phenotypic condition of the corresponding samples, with case=1, control=0.

- **norm.mat**
 is a matrix of normalization factors, with K columns and G rows.

- **index.seq**
 index for RNA-seq studies

- **index.array**
 index for microarray studies

- **iteration**
 is the number of MCMC chains wish to run

- **chunks**
 is the number of cpu’s called

- **seed**
 is a initial seed for random number generator.

Value

A list of MCMC output matrices for three key parameters of interest: the DE indicator "Delta", the study-specific effect size "ES", and the grand mean effect size "Lambda". For details, please refer to the paper "A joint Bayesian modeling for integrating microarray and RNA-seq transcriptomic data".

Examples

```r
## Not run:
data(SimData)
G <- nrow(Data.list[[1]])
adjust.seq1 <- adjust.seq2 <- adjust.array1 <- adjust.array2 <- rep(0, G)
## For simulation, we already know the normalization factor:
adjust.array1[1:200] <- adjust.array2[1:200] <- -0.25
adjust.array1[201:400] <- adjust.array2[201:400] <- 0.25
norm.mat <- cbind(adjust.seq1, adjust.seq2, adjust.array1, adjust.array2)
index.seq <- 1:2
index.array <- 3:4
iteration <- 2000
MCMC.out <- parmcmc(Data.list, X.list, norm.mat, index.seq, index.array, iteration, chunks = 2, seed = 1)
```
RealSubset

index.array, iteration, chunks=2)

End(Not run)

RealSubset Test data

Description

Subset of 2000 genes of 4 studies from ILC PR used in the paper; includes a list of dataframes "Data.list" and a list of phenotypic conditions "X.list"

Usage

data("RealSubset")

Examples

data(RealSubset)

RunMCMC Function to run MCMC chain

Description

Function to run MCMC chain The RunMCMC is a function to run the MCMC chain

Usage

RunMCMC(Data.list, X.list, norm.mat, index.seq, index.array, iteration, seed = 15213)

Arguments

Data.list is a list of K elements, where K is the number of studies, each element is a microarray or RNAseq expression matrix with G rows and N columns, where G is number of matched genes and N is the sample size.

X.list is a list of K elements, each element includes is a phenotypic condition of the corresponding samples, with case=1, control=0.

norm.mat is a matrix of normalization factors, with K columns and G rows.

index.seq index for RNA-seq studies

index.array index for microarray studies

iteration is the number of MCMC chains wish to run

seed is a initial seed for random number generator.
a list of MCMC output matrices for three key parameters of interest: the DE indicator "Delta", the study-specific effect size "ES", and the grand mean effect size "Lambda". For details, please refer to the paper "A joint Bayesian modeling for integrating microarray and RNA-seq transcriptomic data".

Examples

```r
# Not run:
data(SimData)
G <- nrow(Data.list[[1]])
adjust.seq1 <- adjust.seq2 <- adjust.array1 <- adjust.array2 <- rep(0,G)
# For simulation, we already know the normalization factor:
adjust.array1[1:200] <- adjust.array2[1:200] <- -0.25
adjust.array1[201:400] <- adjust.array2[201:400] <- 0.25
norm.mat <- cbind(adjust.seq1,adjust.seq2,adjust.array1,
adjust.array2)
index.seq <- 1:2
index.array <- 3:4
iteration <- 2000
MCMC.out <- RunMCMC(Data.list, X.list, norm.mat, index.seq,
index.array, iteration)

# End(Not run)
```

SimData

Test data

Description

Test data of 4 studies and 2000 genes used in the simulation; includes a list of dataframes "Data.list" and a list of phenotypic conditions "X.list"

Usage

data("SimData")

Examples

data(SimData)
Index

*Topic datasets
 RealSubset, 5
 SimData, 6

GetBayesianQ, 1
NormDiff, 2
parMCMC, 4
RealSubset, 5
RunMCMC, 5
SimData, 6