1. Evaluate the given integral

(a) \[\int 3xe^{-x^2} \, dx \]

(b) \[\int 3\sqrt{x} \ln x \, dx \]

(c) \[\int \frac{x + 5}{x^2 + x - 2} \, dx \]
(d) \[\int x \sin (\pi x) \, dx \]

(e) \[\int \frac{3x}{(1 + x^2)^2} \, dx \]

(f) \[\int_0^1 2x \arctan x \, dx \]
2. Determine the area bounded by the curves $f(x) = 4^x$ and $g(x) = 3x + 1$.

3. Determine the area bounded by the x-axis, the y-axis, the line $y = 3$ and the curve $y = \sqrt{x - 2}$.
4. Calculate the volume obtained by rotating the region in the first quadrant bounded by \(f(x) = x^3 \) and \(g(x) = 2x - x^2 \) about the \(x \)-axis.

5. Calculate the volume obtained by rotating the region in the first quadrant bounded by \(f(x) = x^3 \) and \(g(x) = 2x - x^2 \) about the \(y \)-axis.
6. A 60-lb boulder is suspended over a roof by a 40-ft cable that weighs 10 lb/ft. How much work is required to raise the boulder with the cable over the roof, the distance of 40 ft?

7. A trough is filled with water and its vertical ends have the shape of a parabola with top length 8 ft and height 4 ft. Find the hydrostatic force on one end of the trough.
8. Determine the arclength of the curve \(y = \frac{1}{2}x^2 - \frac{1}{4}\ln x \) on \(2 \leq x \leq 4 \)

9. Evaluate the integral if it converges. Show divergence otherwise.

(a) \(\int_1^3 \frac{2}{(x - 1)^2} \, dx \)

(b) \(\int_0^\infty \frac{2}{1 + x^2} \, dx \)
10. Solve the initial value differential equation explicitly for $y(t)$:

\[
\frac{dy}{dt} = 2(y - 1)^2 \quad \frac{1}{2}.
\]

11. Solve the initial value differential equation explicitly for $y(x)$:

\[
\frac{dy}{dx} = xy - x \quad y(0) = 10.
\]
12. Solve the initial value first order linear differential equation:

\[y' = y + x \quad y(0) = 2. \]

13. Solve the initial value first order linear differential equation:

\[xy' + y = 3x^2 \quad y(1) = 2. \]
14. Use Euler’s Method to approximate \(y(1) \) if \(\frac{dy}{dx} = y + x \) with \(y(0) = 1 \) and \(\Delta x = \frac{1}{2} \).

15. Use Simpsons Rule to approximate \(\int_{1}^{3} \frac{1}{x} \, dx \) with \(n = 4 \).
16. Solve the initial value second order homogeneous differential equation:

\[y'' + 2y' + y = 0 \quad y(0) = 2 \quad y'(0) = 4. \]

17. Solve the initial value second order homogeneous differential equation:

\[y'' + 4y = 0 \quad y(0) = 1 \quad y'(0) = 3. \]
18. Solve the initial value second order nonhomogeneous differential equation using the method of undetermined coefficients.

\[y'' + 5y' + 4y = \sin x \quad y(0) = 0 \quad y'(0) = 0. \]
19. Tell whether the series converges or diverges and justify your answer by showing reason by a valid test.

(a) \[\sum_{n=1}^{\infty} \frac{(-1)^n}{3n + 1} \]

(b) \[\sum_{n=0}^{\infty} \frac{2^{3n}}{5^n} \]

(c) \[\sum_{n=0}^{\infty} \frac{4}{n + 1} \]

(d) \[\sum_{n=0}^{\infty} \frac{3}{n^2 + 1} \]
20. Determine the given sum:

(a) \(\sum_{n=1}^{\infty} \frac{5 \cdot 2^n}{3^n} \)

(b) \(\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \)

(c) \(\sum_{n=0}^{\infty} \frac{2}{n^2 + 4n + 3} \)

(d) \(\sum_{n=0}^{\infty} \frac{4}{n!} \)
21. Determine the Taylor Series about \(x = 0 \) for:

(a) \(f(x) = \frac{1}{1 + x} \)

(b) \(g(x) = \frac{1}{(1 + x)^2} \)

(c) \(h(x) = \frac{1}{1 + x^2} \)

(d) \(k(x) = \arctan x \)
22. Determine the fourth degree Taylor Polynomial about $x = 0$ for the function

$$f(x) = \sqrt{1+x}.$$

23. Determine the fourth degree Taylor Polynomial about $x = 1$ for the function

$$f(x) = \ln x.$$
24. Determine the interval and radius of convergence of the given series:

\[\sum_{n=1}^{\infty} \frac{(x-1)^n}{3^n}. \]

25. Determine the interval and radius of convergence of the given series:

\[\sum_{n=1}^{\infty} \frac{(x-1)^n}{n}. \]
26. Given points \(P(-1, 4, 6) \) and \(Q(-3, 6, 7) \) and \(R(-4, 7, -6) \),

(a) determine the angle \(\theta \) between \(\vec{PQ} \) and \(\vec{PR} \).

(b) Determine the equation of the plane which contains the points \(P, Q, \) and \(R \).

(c) Determine the volume of the parallelopiped formed by the vectors: \(\vec{OP}, \vec{OQ} \)
and \(\vec{OR} \) where \(O \) is the origin \((0, 0, 0)\).
27. Change coordinates:

(a) from rectangular coordinates to cylindrical coordinates.
 i. \(P(-3, 3, 6) \)
 ii. \(z = \sqrt{4x^2 + 4y^2} \)

(b) from spherical coordinates to rectangular coordinates.
 i. \(P(4, \pi/3, \pi/4) \)

(c) from rectangular to spherical coordinates.
 i. \(x^2 + y^2 + z^2 = 9 \)